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A B S T R A C T   

Context: Predictive maintenance is a technique for creating a more sustainable, safe, and profitable industry. One 
of the key challenges for creating predictive maintenance systems is the lack of failure data, as the machine is 
frequently repaired before failure. Digital Twins provide a real-time representation of the physical machine and 
generate data, such as asset degradation, which the predictive maintenance algorithm can use. Since 2018, 
scientific literature on the utilization of Digital Twins for predictive maintenance has accelerated, indicating the 
need for a thorough review. 
Objective: This research aims to gather and synthesize the studies that focus on predictive maintenance using 
Digital Twins to pave the way for further research. 
Method: A systematic literature review (SLR) using an active learning tool is conducted on published primary 
studies on predictive maintenance using Digital Twins, in which 42 primary studies have been analyzed. 
Results: This SLR identifies several aspects of predictive maintenance using Digital Twins, including the objec
tives, application domains, Digital Twin platforms, Digital Twin representation types, approaches, abstraction 
levels, design patterns, communication protocols, twinning parameters, and challenges and solution directions. 
These results contribute to a Software Engineering approach for developing predictive maintenance using Digital 
Twins in academics and the industry. 
Conclusion: This study is the first SLR in predictive maintenance using Digital Twins. We answer key questions for 
designing a successful predictive maintenance model leveraging Digital Twins. We found that to this day, 
computational burden, data variety, and complexity of models, assets, or components are the key challenges in 
designing these models.   

1. Introduction 

Since the emergence of the Industrial Revolution, technical and 
technological advancements have dramatically increased industrial 
productivity. However, after the 1970s, with the trend toward machine 
automation, technological advancements in the industry were lacking 
compared to other markets [1]. In 2011, a new revolution of digital 
advancement in the industry began, also known as Industry 4.0 [2]. This 
transformation connects sensors, machines, and Information Technol
ogy(IT) systems to increase value along the supply chain. These con
nected systems, also called cyber-physical systems, can interact and 
exchange data through Internet protocols. 

While manufacturing processes and machines have become 
increasingly smart and complex, worldwide regulations induce a need 
for more secure, reliable, and safe systems. A machine component 

failure, for instance, may cause further damage to the machine, harm 
employees, or pollute the environment. Maintenance is executed to 
avoid dangerous machine failures to improve a machine’s health 
condition. 

The following maintenance methods are discussed in the literature 
[3]: Reactive maintenance, preventive maintenance, condition-based 
maintenance, predictive maintenance, and prescriptive maintenance. 
Descriptions of these methods are presented in the Background and 
Related Work section. This study focuses on predictive maintenance 
approaches, as the field is rapidly evolving while still being imple
mented. However, large datasets with run-to-failure data must be built 
to develop predictive maintenance models. Unfortunately, most ma
chines equipped with sensors are well-designed, resulting in very low 
amounts of failure data. As these machines are equipped with sensors 
and are connected to the Internet, it is possible to connect the physical 
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system to its digital mirror, the so-called Digital Twin. 
Current literature and trends towards Industry 4.0 aim towards the 

massive introduction of Digital Twins. The rapid increase of digital sensor 
data from machines, and the availability to use this data through the 
Internet of Things (IoT), enables businesses to make data-driven de
cisions [4]. Digital Twins are exact digital replicas of a physical system 
or component. Additionally, they leverage data from the physical system 
as inputs to simulate how they affect it. Digital Twins have many vari
ants, such as Twins that simulate components, assets, systems, and 
processes. The abstraction level aims to serve various employees in the 
business, such as technicians, sales, R&D, and management, respectively 
[4]. The Digital Twin abstraction levels can be distinguished between 
(1) components, (2) systems, and (3) systems of systems. Here, a 
component can be a bearing or pump, a system can be a gearbox or 
engine, while a system-of-systems may represent a shop floor or fleet of 
airplanes. [4] also describes that Digital Twins use (1) physical equip
ment, (2) a digital model of that equipment, (3) data extraction and 
communication between the cyber-physical systems, and (4) data ana
lytics. Once the correct type of Digital Twin is designed, failure data can 
also be generated through the simulated version of the equipment [5]. 
The generated data can be used to train a fault detection algorithm. 
When such an algorithm is trained, its model can use inputs from the 
cyber-physical system to (1) classify whether a failure will happen, or (2) 
when there is enough data, predict when the failure is going to happen (i. 
e., estimation of the remaining useful life). One of the capabilities of the 
Digital Twin, according to [6], is to estimate the physical system’s 
response to an unexpected event before it occurs. This prediction may be 
made by analyzing the event and the current response to previous 
behavior predictions. A complete Digital Twin instance can be produced 
depending on the data collected and the completeness of the simulations 
employed. 

In this study, an SLR on predictive maintenance using Digital Twins 
is conducted to collect and synthesize the available literature to present 
the state-of-the-art to establish a foundation for future research. We aim 
to find all relevant information regarding Predictive Maintenance using 
Digital Twins from a Software Engineering perspective. The literature 
review identifies the critical components of predictive maintenance 
using Digital Twins that academics and the industry may use. The steps 
used in the SLR process follow [7]. We have carefully identified and 
synthesized 42 academic studies that leverage predictive maintenance 
using Digital Twins. No comprehensive overview of studies of the cur
rent state of predictive maintenance using Digital Twin has been re
ported to this day. Hence, this paper aims to identify and synthesize the 
current studies focusing on predictive maintenance using Digital Twins 
and identify the objectives, the application domains, development ap
proaches, and the corresponding challenges and solution directions. This 
research provides a foundation for future research on leveraging Digital 
Twin techniques to improve predictive maintenance capabilities. New 
technological advancements in Artificial Intelligence (AI), Machine 
Learning (ML), Deep Learning (DL), Computer Vision, IoT, and Digital 
Twin fields provide many opportunities for predictive maintenance 
using Digital Twins; however, there are many general and 
domain-specific challenges to address. 

2. Background and related work 

There are several maintenance methods. Each of these methods has a 
different balance of complexity versus costs. [3] provided the following 
non-exhaustive list of five maintenance methods:  

• Reactive maintenance focuses on performing maintenance only when 
a component breaks, which is often used for components with low 
cost and risk of hazardous situations. Reactive maintenance induces 
machine downtime through unscheduled maintenance. This is the 
costliest maintenance method, which contains a high risk of cata
strophic failures of the whole machine.  

• Preventive maintenance focuses on performing maintenance at the set 
times. Here, the lifetime of each part is determined, and maintenance 
is done before the part fails. Preventive maintenance allows busi
nesses to schedule maintenance and avoid machine downtime. 
However, this under-utilizes the component [4], as the trend is to 
ensure safety and service maintenance by over-maintaining the 
machine, which is expensive [3].  

• Condition-based maintenance consists of predicting maintenance 
based on degradation and variation from the normal behavior of the 
machine [8]. The advancement of IoT and cloud computing, lever
aged to monitor the asset’s status, allows these abnormalities to be 
discovered. AI algorithms can improve condition-based techniques 
by diagnosing and collecting precise status data [9].  

• Predictive maintenance focuses on proactive methods to reduce cost 
and increase machine uptime. Predictive maintenance aims to fore
see when a component or system will no longer fulfill its function. 
This estimation is quantized through the remaining useful life (RUL), 
a Health Indicator, or equipment effectiveness. Based on the RUL and 
other machine data, businesses can predict when to schedule main
tenance for a component or system [10, 11]. Making full use of each 
asset is also more sustainable, as resources are used to their fullest 
capacity while not damaging other assets.  

• Prescriptive maintenance refers to predictive maintenance with a 
module to prescribe an action plan [12]. Consequently, the preven
tive maintenance plan is substituted with a proactive and intelligent 
approach [13, 14]. It is estimated that the impact on service, cost, 
and safety would be optimal. However, this method is also the most 
complex to implement. 

Even though Digital Twins have matured in the latest years, Digital 
Twin-based design was not fully explored until the study of [15], who 
proposed a Digital Twin design pattern catalog. They proposed design 
patterns for each stage in the product development process and indi
cated what a Digital Twin is not, such as a Digital Model, Digital 
Generator, and a Digital Shadow. In their perception, a Digital Twin 
contains a causally connected and synchronized digital object and 
physical object. In addition to the “real” Digital Twin patterns, the 
patterns that do not include two-way synchronization were also adopted 
in the design pattern catalog. An abstracted catalog of design patterns is 
listed in Table 1. 

There are multiple related literature reviews on Digital Twins, cyber- 
physical systems, and predictive maintenance. For instance, [16] pro
vides a detailed review of the challenges and opportunities of AI-enabled 
Prognostics and Health Management (PHM), including predictive 
maintenance. [17] provide a review of RUL prediction methods using 

Table 1 
Digital Design pattern catalog, adapted from [15].  

Name Lifecycle stage Description 

Digital Model Concept, Development, 
and Production 

A blueprint for manually developing a 
physical object 

Digital 
Generator 

Concept, Development, 
and Production 

A blueprint for automatically 
developing a physical object 

Digital 
Shadow 

Concept, Development, 
and Production 

Modeling an existing physical object 

Digital 
Matching 

Utilization, Support Finding physical objects that match the 
features of the digital model 

Digital Proxy Utilization, Support, 
and Retirement 

Acting as a proxy for the physical object 

Digital 
Restoration 

Utilization and Support Restoring a physical object to its earlier 
state 

Digital 
Monitor 

Utilization and Support Monitoring a physical object 

Digital 
Control 

Utilization and Support Monitoring and controlling a physical 
object 

Digital 
Autonomy 

Utilization and Support Monitoring and controlling a physical 
object without manual, human 
intervention  
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deep learning. [18–21] were categorized as literature reviews on smart 
manufacturing in the industry using Digital Twin technology. [22] 
performed a review on Digital Twins for RUL prediction on gear 
degradation specifically. Using the Digital Twin, they identified that 
RUL prediction is established using physics or data-driven models. 
Studies used gear crack, fatigue, surface scratch, tooth breakage, and 
permanent deformation for physics-based models. Studies used shallow 
learning methods or deep learning methods for data-driven models. 

Additionally, [23] reviews RUL prediction for offshore fixed and 
floating wind turbine power converters using Digital Twin technology. 
[24–28] were categorized as reviews on Industry 4.0 and techniques 
such as machine health management or smart manufacturing. In their 
reviews, the scope is on cyber-physical systems rather than Digital Twin 
systems. [29, 30] provide reviews of augmented reality applications in 
smart manufacturing, which is a key technology to facilitate human 
integration in a manufacturing system. At last, [3] provided the most 
related study to ours; a review on Digital Twins for maintenance. 
However, [3] looked at maintenance from a broad perspective. Also, 
preventive and prescriptive techniques were analyzed. In summary, 
related work investigated Digital Twins or predictive maintenance 
separately and often in a non-systematic way. 

2.1. Results in relation to related work 

Our study’s main difference from the related work is that we have 
explicitly adopted an SLR protocol, a widely accepted method used in 
the Evidence-Based Medicine and Software Engineering communities. 
Additionally, we have focused our research on the combined effort of 
Digital Twins and predictive maintenance. Based on the SLR protocol, 
we have searched and identified primary studies from a broad set of over 
eight hundred studies, from which we selected 42 primary studies. This 
systematic review methodology differs from [3], which published a re
view on Digital Twins for maintenance. Besides, [24–28] studied 
cyber-physical systems for health management. Therefore, we devel
oped a systematic review that is significantly different, with new and 
relevant insights. 

The coming sections are organized as follows: Section 3 explains the 
systematic literature review research methodology. Section 4 presents 
the results. Section 5 shows the discussion. Section 6 discusses the 
conclusion and future work. 

3. Research methodology 

The related work shows no up-to-date overview of predictive main
tenance using Digital Twins. As predictive maintenance and Digital 
Twins are developing rapidly, we aim to provide an overview of the 
current trends of the techniques used. In addition, we see that most 
secondary research focuses on a specific application domain or compo
nent. This study aims to overview the key features required to build 

predictive maintenance models that leverage Digital Twins. By doing so, 
this study can act as an accelerator for future primary studies in this 
domain. We perform a semi-automated SLR to gather all relevant pri
mary studies. 

We constructed a review protocol before conducting the SLR based 
on the guidelines from [7, 31, 32], who describe that a predefined, 
strictly followed protocol reduces bias among researchers and increases 
rigor and reproducibility. Fig. 1 shows the adopted review protocol. 

Section 3.1 provides a table of research questions for the SLR. Section 
3.2 to 3.2.3 describes the SLR’s scope, search methods, and search 
string. Section 3.2.4 describes the inclusion/exclusion criteria of the 
retrieved literature, and Section 3.3 adds quality assessment criteria 
applied to the retrieved literature. 

3.1. Research questions 

We aim to find all relevant information regarding Predictive Main
tenance using Digital Twins from a Software Engineering perspective. 
When building a Digital Twin for Predictive Maintenance, developers 
should always know (1) its objective and application domain, (2) plat
form to develop Digital Twins, (3) model representation type to use for 
developing a Digital Twin, (4) approaches for developing predictive 
maintenance algorithms, (5) abstraction level of the Digital Twin, (6) 
Digital Twin design pattern to use, (7) communication protocol to use, 
(8) Twinning parameters for predictive maintenance and Digital Twins, 
and (9) challenges to expect. We constructed a table of research ques
tions to which the SLR should provide answers. Research Questions are 
given in Table 2. 

Fig. 1. Systematic literature review protocol.  

Table 2 
Research questions.  

No. Research Question (RQ) 

RQ1 What is the objective of predictive maintenance using Digital Twins? 
RQ2 On which application domains is predictive maintenance using Digital 

Twins applied? 
RQ3 Which Digital Twin platforms are used to develop Digital Twins for 

predictive maintenance? 
RQ4 Which model representation types are used to develop Digital Twins for 

predictive maintenance? 
RQ5 Which approaches are being applied for predictive maintenance using 

Digital Twins? 
RQ6 Which abstraction levels of Digital Twins are used for predictive 

maintenance? 
RQ7 Which Digital Twin design patterns are applied for predictive maintenance? 
RQ8 Which communication protocols are used for Digital Twins for predictive 

maintenance? 
RQ9 Which Twinning state parameters are used for predictive maintenance using 

Digital Twins? 
RQ10 What are the challenges and possible solution directions with respect to 

predictive maintenance using Digital Twins?  
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3.2. Search strategy 

The literature search aims to collect as many related primary studies 
on predictive maintenance using Digital Twins as possible (i.e., a high 
recall) while excluding irrelevant studies (i.e., a high precision). A well- 
developed search strategy is essential to achieve high recall and preci
sion levels. This section elaborates on the review’s search strategy: the 
scope (i.e., publication period and publication venue), search method (e. 
g., automatic search or manual search), and search string. 

3.2.1. Search scope 
The SLR scope consists of two dimensions, namely, publication 

period and publication venues. Concerning the publication period, this 
SLR includes papers published from January 2002 to August 2021. The 
year 2002 was taken as the starting point since, from this year, Digital 
Twins have been introduced in literature [33]. We conducted the liter
ature search in August 2021, accepting only studies until that point. 
From a publication venue perspective, we searched for studies in the 
following databases: ScienceDirect, Scopus, ACM Digital Library, IEEE 
Xplore, Wiley, Taylor, and Francis Online, and Springer Link. Publica
tion venues were required to cover a large number of papers regarding 
the Software Engineering discipline. 

3.2.2. Search method 
For this systematic study, we used an automated literature search. 

Automatic search refers to scanning for the search strings in electronic 
databases. We used an automatic search for each publication venue. We 
also supported our search with snowballing (i.e., backward snowballing 
and forward snowballing), which means that we used both the reference 
list of the selected papers and the citations to the selected papers to find 
more relevant papers in this SLR research. 

3.2.3. Search string 
To find relevant articles regarding Predictive Maintenance using 

Digital Twins, we used the following general search string: 
(“digital twin” OR “cyber-physical system”) AND (“predictive 

manufacturing” OR “condition monitoring system” OR “prognostics and 
health management” OR “remaining useful life” OR “predictive 
maintenance”) 

We used Digital Twin and predictive maintenance as starting terms. 
Then, we added Remaining Useful Life, one of the Key Performance 
Indicators (KPIs) for predictive maintenance. A predictive maintenance 
system is also often called a condition monitoring system, which exe
cutes Prognostics and Health Management. Last, we added cyber- 
physical system, an umbrella term for physical systems controlled by 
algorithms. This term is often used in titles that also describe Digital 
Twins. However, cyber-physical systems are a broader term than Digital 
Twin, resulting in a lower precision. 

Table 3 lists the results of the search query. A total of 831 papers 
were found through an automated search. Scopus was the source with 
the most results (330 studies). ACM Digital Library was the source with 
the lowest amount of results (40 studies). Since there were duplicating 
studies retrieved from different databases, the total number of papers 
per stage might not equal the sum of retrieved studies. 

3.2.4. Study selection criteria 
The terms “Digital Twin” and “Predictive Maintenance” provided 

many secondary studies. We identified the relevant studies using the 
study selection criteria provided in Table 4. In this table, IC and EC 
denote inclusion and exclusion criteria, respectively. 

As the selection of primary studies is known to be repetitive, dull, 
highly erroneous, and the most time-consuming task [32], we leverage a 
data-driven tool to assist our selection process. [34] provides a list of all 
SLR automation tools. We used ASReview, an active learning tool from 
Utrecht University [35], which uses continuously evolving machine 
learning algorithms to perform primary study selection efficiently. We 
selected ASReview as the software is open-source, the software runs 
locally, making sure data is kept private, the user interface is intuitive, 
and experience with the software was gained through a hackathon. 

To use the ASReview software, we exported all articles to Excel and 
later imported these articles into the tool. We selected the default ma
chine learning model, Naïve Bayes, and selected primary studies. The 
system provides the reviewer with articles that are ranked on the 
probability of inclusion. After each decision, the model is updated and 
proposes the next article with the highest probability of inclusion. We 
decided to stop reviewing after reading 20 irrelevant articles in a row. 

The selection criteria were applied by reading the title and abstract, 
which reduced the number of included studies to 144. The second col
umn of Table 3 lists the number of articles that passed the selection 
criteria. Finally, we retrieved and read the entire study and applied the 
selection criteria, reducing the number of papers to 42. 

3.3. Study quality assessment 

In addition to the exclusion criteria, the quality of the included 
literature was assessed as well. Quality criteria have been derived to 
determine if factors could bias study results. Table 5 shows the quality 
criteria. While developing the quality assessment criteria, the summary 
quality checklist for quantitative and qualitative studies has been 
adopted, as proposed by [7] and [36]. We chose the study quality 
assessment criteria based on their impact on the quality of this SLR. 

While reading each study’s full text, points were granted to each of 
the eight assessment criteria based on a scale from 1 to 0. As [37] 
described in their study, a full point should be provided for Q1 if the 
study’s goal was specified in the introduction (expected place), and no 
point (0) should be provided if the study’s intent was not mentioned in 
the report. A half-point (0.5) should be given if the objective was stated 
vaguely or not at the expected location. Studies with a grade lower than 
4 out of 8 were excluded. As a result, studies with a higher grade were 
kept to include only high-quality input for our study. Fig. 2 shows that 
three papers have been excluded after quality assessment. Therefore, the 
number of included articles was reduced to 42 (Table 3, fourth column). 

Table 3 
Overview of search results in different stages of the SLR process.  

Source After 
Automated 
Search 

After 
Selection 
Criteria 
(Abstract) 

After 
Selection 
Criteria  
(Full-Text) 

After Quality 
Assessment 

ScienceDirect 58 36 18 17 
ACM Digital 

Library 
40 2 0 0 

IEEE Xplore 60 40 10 9 
Springer 160 (preview 

only off) 
21 4 4 

Wiley 103 4 1 1 
Scopus 330 132 40 37 
Taylor and 

Francis 
Online 

80 5 2 2 

Total 831 144 45 42  

Table 4 
Study inclusion and exclusion criteria.  

No. Criterion 

IC1 The study must have full text (e.g., abstract-only papers are not considered) 
IC2 The study must be a primary study 
IC3 The study must be related to predictive maintenance using Digital Twins 
EC1 The study is a duplicate publication 
EC2 The study is published before 2002 
EC3 The study is published in a language other than English  
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3.4. Data extraction 

We leveraged a data extraction form as a structured method to 
extract the essential data from the 42 primary studies. An extraction 
form with essential features was first created using the research ques
tions from Table 2. After performing several pilot extractions, the data 
extraction form was iteratively updated and refined after reading more 
papers. The final data extraction form is shown in Table 6. In addition to 
the ten data extraction elements that answer the research question, this 
form contains general metadata, including the year of publication and 
title. The table shows the ten research question elements as R1-R10. This 
data form was implemented in MS Excel and can be downloaded from 
the attachments. 

3.5. Data synthesis 

We performed a data analysis on the extracted data form. Many 
papers use synonyms for key terms. Therefore, we first standardized 
these terms. We created several bar charts, pie charts, and heatmaps 
using Python’s pandas and seaborne libraries. These charts provide in
sights into data patterns. The full dataset has been made available on 
[115]. 

4. Results 

The results section first describes the main statistics of the 42 
selected primary studies. Afterward, the results corresponding to each 
research question are presented. 

4.1. Active learning process 

As discussed in the methodology section, we stopped primary study 
selection based on the abstract after the ASReview software proposed 20 

irrelevant studies in a row, as we assumed to have included all relevant 
articles at that point. In our case, we stopped the primary selection 
process after reading 46.86% of all retrieved studies. 

Fig. 3 shows the percentage of proposed papers that have been 
accepted. In the beginning, there were many included studies, and the 
number of reviewed papers was low. Therefore, the percentage of 
accepted proposed studies is high. However, as there are more irrelevant 
studies than relevant studies, at some point, there is a high number of 
reviewed studies, while the accepted papers are low. Therefore, the 
fraction of proposed papers accepted in Fig. 3 decreases. Fig. 4 shows the 
percentage of relevant studies found vs. the reviewed studies. The gray 
dotted line shows the general case of a manual search with randomly 
selected studies for reviewing. The blue line shows the active learning 
assisted SLR progression. After reading 46.86% of all studies, we 
assumed all relevant studies were found. 

Table 5 
Quality checklist.  

No. Question 

Q1 Are the aims of the study clearly stated? 
Q2 Are the study’s scope, context, and experimental design clearly defined? 
Q3 Are the variables in the study likely to be valid and reliable? 
Q4 Is the research process documented adequately? 
Q5 Are all the study questions answered? 
Q6 Are the negative findings presented? 
Q7 Are the main findings assessed regarding creditability, validity, and 

reliability? 
Q8 Do the conclusions relate to the aim of the purpose of the study? Are they 

reliable?  

Fig. 2. Histogram of the quality assessment grades.  

Table 6 
The data extraction form.  

No. Extraction Element 

1 ID 
2 Title 
3 Passed inclusion criteria 
4 Date of extraction 
5 Year of publication 
6 Authors 
7 Repository of extraction 
8 Publication title 
9 Type 
10 Volume 
11 Issue 
12 Pages 
13 DOI 
14 URL 
15 Keywords 
16 Abstract 
17 Times cited on extraction 
R1 Objective 
R2 Application domain 
R3 Digital Twin platform 
R4 Digital Twin model representation type 
R5 Digital Twin approaches 
R6 Digital Twin abstraction level 
R7 Digital Twin design pattern 
R8 Communication protocol 
R9 Twinning state parameter 
R10 Open challenges and solution directions  

Fig. 3. Fraction of proposed papers accepted per paper reviewed.  
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4.2. Main statistics 

Table 7 lists the 42 included primary studies. [38] were the first to 
introduce Prognostics and Health Management using Digital Twins, with 
an application on wind turbines’ gearboxes. 

Fig. 5 shows that the key authors in this field are P. Aivaliotis, A.R. 
Nejad, Z. Liu, and K. Georgoulias. We see that P. Aivaliotis and K. 
Georgoulias often collaborated in their studies. 

Fig. 6 shows a sunburst diagram of the distribution of studies per 
search database. The inner ring shows the ratio of studies per database, 
while the outer ring shows the distribution of studies that have also been 
found on Scopus. For example, of the 17 studies found on ScienceDirect, 
15 have also been found on Scopus. 

ScienceDirect and Springer were the most popular databases for 
primary studies, with 17 and 4 studies directly found. Table 8 shows that 
the publication channel with the most publications on predictive 
maintenance using Digital Twins is the open-access IFAC-PapersOnLine, 
with three primary studies. 

When looking at the study type, 40.5 percent were conference pa
pers, and 59.5 percent were categorized as journal articles, indicating 
that most studies in this systematic review are peer-reviewed. 

4.3. RQ1: What is the objective of predictive maintenance using digital 
twins? 

Fig. 7 shows the objectives of predictive maintenance using Digital 
Twins. Nearly all studies acknowledge that the aim is to estimate, pre
dict, or detect the condition of a component, system, or system-of- 
systems for maintenance more effectively using Digital Twins. Here, 
the output to predict differs. These outputs can be categorized into 
classification and regression tasks. A classification task indicates cate
gorical targets, such as machine states. Regression tasks indicate 
continuous targets, such as the time until a machine fails. 

For regression tasks, twenty studies aimed to estimate the RUL [39, 
41, 44, 48, 49, 52, 53, 57-59, 61, 63-68, 70-72, 76, 79], four studies 
aimed to predict a Health Indicator [41, 50, 51, 61], two studies aimed 
to monitor a machine’s condition [54, 69], one study generated an 
Overall Equipment Effectiveness index [55], another study aimed to 
estimate the Modulation Transfer Function [40]. One study predicted 
the rate of risk for machine failure [57]. 

For classification tasks, four studies aimed to diagnose faults [42, 47, 
48, 62], two studies detected anomalies [62, 77], and one study aimed to 
classify a machine’s condition [38]. 

Seven studies aimed to design a framework [43, 45, 53, 64, 73, 78] or 
reference model [74] for predictive maintenance using Digital Twins. 

Fig. 4. Percentage of relevant records found per records reviewed.  

Table 7 
The 42 primary studies used in this systematic literature review.  

ID Title Year Reference 

1 A data-driven digital-twin prognostics method for 
proton exchange membrane fuel cell remaining useful 
life prediction 

2021 [39] 

2 A Digital Twin approach based on nonparametric 
Bayesian network for complex system health 
monitoring 

2021 [40] 

3 A Digital Twin Proof of Concept to Support Machine 
Prognostics with Low Availability of Run-To-Failure 
Data 

2019 [41] 

4 A Digital-Twin-Assisted Fault Diagnosis Using Deep 
Transfer Learning 

2019 [42] 

5 A Hybrid Cyber Physical Digital Twin Approach for 
Smart Grid Fault Prediction 

2020 [43] 

6 A hybrid predictive maintenance approach for CNC 
machine tool driven by Digital Twin 

2020 [44] 

7 A smart process controller framework for Industry 4.0 
settings 

2021 [45] 

8 An Architecture Based on Digital Twins for Smart Power 
Distribution System 

2020 [46] 

9 An industrial digitalization platform for condition 
monitoring and predictive maintenance of pumping 
equipment 

2019 [47] 

10 Application of digital twins in the management of 
socioeconomic systems 

2021 [48] 

11 Approach for a Holistic Predictive Maintenance Strategy 
by Incorporating a Digital Twin 

2019 [49] 

12 Comparison of Agent Deployment Strategies for 
Collaborative Prognosis 

2021 [50] 

13 Deep digital twins for detection, diagnostics and 
prognostics 

2020 [51] 

14 Degradation curves integration in physics-based 
models: Towards the predictive maintenance of 
industrial robots 

2021 [52] 

15 Design of cyber-physical systems architecture for 
prognostics and health management of high-speed 
railway transportation systems 

2018 [53] 

16 Digital twin based condition monitoring of a knuckle 
boom crane: An experimental study 

2020 [54] 

17 Digital twin design for real-time monitoring – a case 
study of die cutting machine 

2020 [55] 

18 Digital twin driven prognostics and health management 
for complex equipment 

2018 [38] 

19 Digital Twin for Machining Tool Condition Prediction 2019 [56] 
20 Digital twin for oil pipeline risk estimation using 

prognostic and machine learning techniques 
2021 [57] 

21 Digital twin for reliability analysis during design and 
operation of mechatronic systems 

2020 [58] 

22 Digital twin modeling for predictive maintenance of 
gearboxes in floating offshore wind turbine drivetrains 

2021 [59] 

23 Digital Twin of an Automotive Brake Pad for Predictive 
Maintenance 

2019 [60] 

24 Digital twin–driven aero-engine intelligent predictive 
maintenance 

2021 [61] 

25 Digital-twin assisted: Fault diagnosis using deep transfer 
learning for machining tool condition 

2021 [62] 

26 Domain adaptation digital twin for rolling element 
bearing prognostics 

2020 [63] 

27 Industrial AI Enabled Prognostics for High-speed 
Railway Systems 

2018 [64] 

28 Life prediction for aircraft structure based on Bayesian 
inference: Towards a digital twin ecosystem 

2020 [65] 

29 Lifetime prediction using a tribology-aware, deep 
learning-based digital twin of ball bearing-like 
tribosystems in oil and gas 

2021 [66] 

30 Machines’ Behaviour Prediction Tool (BPT) for 
maintenance applications 

2020 [67] 

31 Methodology for enabling Digital Twin using advanced 
physics-based modeling in predictive maintenance 

2019 [68] 

32 On digital twin condition monitoring approach for 
drivetrains in marine applications 

2019 [69] 

33 Online condition monitoring of floating wind turbines 
drivetrain by means of digital twin 

2022 [70] 

34 Optimal RUL Estimation: A State-of-Art Digital Twin 
Application 

2020 [71] 

(continued on next page) 
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4.4. RQ2: On which application domains is predictive maintenance using 
digital twins applied? 

Insights in application domains provide knowledge in which do
mains predictive maintenance using Digital Twins have matured and in 
which domains this topic is still in its infancy. The majority of included 
studies applied their algorithm or framework to an application domain. 
The application domains of the included studies are shown in Fig. 8. The 
figure depicts that Manufacturing and Energy are the main application 
domains. 

The Manufacturing domain was the most frequently included appli
cation domain, with 25 studies. Out of these studies, eight focus on 
computer numerical control (CNC) machines, five focus on Industrial 
Robots, and two focus on Semiconductor Manufacturing. 

Within the Energy domain, most research is focused on Renewable 
Energy sources (n = 4), such as Wind Turbines. The other studies focus on 
Fossil Energy (n = 3), Energy Grids (n = 2), and Nuclear Energy (n = 1). 

Nine studies apply their study in the Aerospace domain, which can be 
related to the fact that NASA provides several datasets in this field, such 
as the Intelligent Maintenance Systems Bearing dataset [80] and the 
Turbofan Engine Degradation Simulation dataset [81]. Using these 
datasets eliminates the need to build a custom Digital Twin, as the data 
has already been simulated, accelerating and standardizing the research 
process. 

We must note that even though there is a large variety in the 
application domains, many papers across all application domains 
discuss the application of Predictive Maintenance on components with 
rapid wear, such as rolling bearings and gearboxes. 

4.5. RQ3: Which digital twin platforms are used to develop digital twins 
for predictive maintenance? 

Fig. 9 shows the count plot of Digital Twin platforms. Digital Twin 
platforms are often IoT-enabled software tools that host a Digital Twin 
model and its modules. Four studies have used OpenModelica from the 
same authors [52, 67, 68, 79]. OpenModelica is an open-source 
modeling and simulation environment based on the Modelica pro
gramming language [82]. It is used often by both experts in industry and 
academics. 

[41, 47, 78] used MathWorks Simulink to design and analyze models 
that can act as Digital Twins. They have been used for predictive 
maintenance of pumping equipment, drilling machine, and a trans
mission system. 

[59, 70] leveraged a drivetrain Multibody System Simulation from 
Simpack to generate additional input data on top of data from the 
physical object. 

The figure shows that eight other studies used another platform for 
building a Digital Twin. Some papers consider the predictive mainte
nance module as part of a Digital Twin. Others only consider the 
modeling and simulation module as the Digital Twin. We listed the 
modeling platforms for building Digital Twins as follows:  

1 [69] used Fedem, now SAP Leonardo. The Digital Twin platform has 
been used to model drivetrains in marine applications.  

2 Ramboll, a Danish consulting engineering company, developed 
Ramboll Offshore Structural Analysis Programs (ROSAP). [75] have 
used this platform for predictive modeling of offshore structure 
dynamics.  

3 [73] developed a platform of IoT and Digital Twin-based predictive 
maintenance, REclaim oPtimization, and simuLatIon Cooperation in 
digitAl twin (REPLICA). The platform sits on top of two European 
research projects, RECLAIM and CPSwarm. They leveraged the 
knowledge from CPSwarm’s optimization and simulation results and 
combined it with the Adaptive Sensorial Networks from RECLAIM.  

4 [65] used ANSYS, a finite element modeling software, to calculate 
the stress intensity factor under specific load conditions. This Digital 
Twin model was then applied for aircraft wing crack growth 
prediction.  

5 [60] created a Digital Twin of an automotive brake pad for predictive 
maintenance. They developed a 3D Computer Aided Design (CAD) 
model of the brake pad and used the Creo software to connect it to 
real-time data. [60] used the Creo Simulate software to generate 
additional data. 

Table 7 (continued ) 

ID Title Year Reference 

35 Predictive Maintenance on Aircraft and Applications 
with Digital Twin 

2020 [72] 

36 REPLICA: A solution for next generation iot and digital 
twin based fault diagnosis and predictive maintenance 

2020 [73] 

37 Social Internet of Digital Twins via Distributed Ledger 
Technologies: Application of Predictive Maintenance 

2019 [74] 

38 State-of-the-art and future directions for predictive 
modeling of offshore structure dynamics using machine 
learning 

2019 [75] 

39 Streaming Synthetic Time Series for Simulated 
Condition Monitoring 

2018 [76] 

40 The application of machine learning for the prognostics 
and health management of control element drive system 

2020 [77] 

41 The Design of a Digital-Twin for Predictive Maintenance 2020 [78] 
42 The use of Digital Twin for predictive maintenance in 

manufacturing 
2019 [79]  

Fig. 5. Authors who have published more than one relevant article.  
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6 [58] modeled a rolling bearing using the GeNIe Modeler and SMILE 
engine by BayesFusion. The Digital Twin model has been generated 
using a Bayesian Network of a bearing test rig from the case study.  

7 [55] designed a Digital Twin for real-time monitoring of a die-cutting 
machine. [55] leveraged the J-Mobile software to create a dashboard 
that takes care of connectivity, device management, process man
agement, and data visualization for the lower levels of the IoT 
platform.  

8 [42] leveraged a Process Visibility System (PVS) based on ENVISION. 
The PVS retrieves operation data from a Programmable Logic Com
puter (PLC) without installing any sensors. It can use the retrieved 
data to generate a Digital Twin. [42] generated a digital shop floor of 
multiple machines, i.e., a system of systems. 

4.6. RQ4: Which model representation types are used to develop digital 
twins for predictive maintenance? 

[21, 83] state several approaches to detect production failures. These 
approaches can be model-based or data-driven. Model-based approaches 
represent the physical asset through mathematical or physical equa
tions. [83] provides a non-exhaustive list of model representation types 
as follows: 

• The geometric model defines shapes, sizes, and positions, and it as
sembles the relations of machine components.  

• The physical model simulates physical properties and loads.  
• The behavior model describes how the physical system is governed 

by driving or disturbing factors. 
• The collaborative information model defines how different compo

nents interact and simulates the collaborative behavior among 
several assets.  

• The decision-making model makes the model capable of evaluating, 
reasoning, and validating. It consists of a variable input, algorithms, 
and a collection of constraints and rules. 

The geometric, physical, behavior and collaborative models are 

descriptive models, while the decision-making model is an intelligent 
data-driven model approach [83]. To our knowledge, we can add 
another representation type, called a hybrid model. This type combines 
two or more models, such as a physical and data-driven model. Due to 
Industry 4.0 and the increasing use of IoT, huge amounts of historical 
machine data are often available. Data-driven models can find hidden 
patterns in this data and use these patterns to model a physical asset. 

[3] describes that Digital Twins using a model-based approach pro
duce the most accurate synthetic data. However, they are also costly, as 
it takes more time to develop these models, and they require expert 
domain knowledge. On the other hand, decision-making models, such as 
machine learning algorithms, rapidly speed up the time to market 
developing Digital Twins with a slightly decreased accuracy. 

Fig. 10 shows the number of studies that used each Digital Twin 
model representation type. Furthermore, one study may use multiple 
model representation types for a Digital Twin. If multiple models were 
used, we would also count one Hybrid-approach Model. Looking at 
Fig. 10, we see that, in total, three studies used such a Hybrid approach 
[38, 40, 44]. For instance, [38] explains, “a high-fidelity digital mirror 
model for the equipment is built in different levels of geometry, physics, 
behavior and rule” [38]. Rule-based and data-driven model representa
tion types were categorized as decision-making model representation 
types. 

Next to [38], there was one study that used a geometric [65] rep
resentation and one study that used a behavior [58] model representa
tion. [40, 44] combined physical and decision-making model 
representation types to develop a Digital Twin. Twenty studies used a 
physics-based model exclusively [41-43, 47-49, 52, 54, 57, 59, 60, 
67-72, 75, 78, 79], while seven used a decision-making model repre
sentation type exclusively [39, 51, 56, 61-63, 66]. 

4.7. RQ5: Which approaches are being applied for predictive maintenance 
using digital twins? 

This section discusses approaches applied for predictive mainte
nance using Digital Twins. We categorized extracted approaches into (1) 

Fig. 6. Sunburst diagram of the distribution of studies per search database.  
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Machine Learning, (2) Deep Learning, (3) Model Optimization, (4) 
Statistical, and (5) Mathematical approaches. In the following sub
sections, we discuss each of these approaches. We plotted a heat map 
versus the Digital Twin model representation types for each of these 
approaches to show what type of Digital Twin the approach is applied. 

4.7.1. Machine learning approaches 
Fig. 11 shows the Machine Learning approaches used for predictive 

maintenance using Digital Twins. Four studies implemented a Support 
Vector Machine (SVM) [57, 58, 63, 77]. SVM is an algorithm that learns 

a hyperplane through linear algebra to perform classifications [84]. [57] 
used a polynomial kernel SVM for binary classification to predict oil 
pipeline risk. [58] used an SVM for multi-class classification of seven 
states of a rolling bearing. [77] used an ensemble of 276 binary SVM 
classifiers for 24-class health state classification of a Control Element 
Drive machine. 

[44] used an ensemble of a regression variant of the SVM, the Sup
port Vector Regressor (SVR), linear regression, decision tree regression, 
and random forest regression for RUL prediction of a cutting tool. De
cision trees aim to perform classification or regression using a binary 
tree algorithm. Each leaf node represents a single numeric input variable 
and a binary split point on that variable. The tree’s leaf nodes contain an 
output variable used for predictions [84]. Random forest is based on 
decision trees, as it trains an ensemble of multiple ‘weak’ decision trees. 
These weak decision trees are trained on a randomly sampled set of 
features to resolve the greedy behavior of decision trees. Specifically, 
[44] aimed to predict the wear of the cutting tool due to cutting force. 
The ensemble was used as a data-driven approach in hybrid with a 
model-driven (i.e., physics-based) approach. 

[45] used a decision tree as an explainable model for root-cause 
analysis to find causes that lead to the deterioration of silicon wafers’ 
polishing velocity in the semiconductor industry. [50, 77] used k-means 
clustering. K-means clustering is an unsupervised learning algorithm 
that categorizes the samples in k number of clusters [84]. [50] used the 
k-means algorithm to cluster assets with similar Health Indicators, while 
[77] used the k-means algorithm combined with Principal Component 
Analysis (PCA) to find natural clusters in coil signal data and assign a 
Health Indicator to each coil profile. PCA is an unsupervised learning 
method to reduce the dimensions of the feature space [77]. 

[38] employed an extreme learning machine (ELM), a feedforward 
neural network with a single hidden layer with fast learning speed and 
good generalization performance to predict the fault cause of a gearbox 
(i.e., tooth wear, fatigue, or breakage). 

Table 8 
Number of inclusions per publication title.  

Publication channel Type Publication 
source 

Count 

IFAC-PapersOnLine Journal Elsevier 3 
Procedia CIRP Conference Elsevier 2 
Proceedings of the Annual Conference of 

the Prognostics and Health 
Management Society, PHM 

Conference PHM Society 2 

Robotics and Computer-Integrated 
Manufacturing 

Journal Elsevier 2 

Mechanical Systems and Signal 
Processing 

Journal Elsevier 2 

IEEE International Conference on 
Prognostics and Health Management 
(ICPHM) 

Conference IEEE 2 

2020 25th IEEE International Conference 
on Emerging Technologies and Factory 
Automation (ETFA) 

Conference IEEE 1 

2020 IEEE Conference on Industrial 
Cyberphysical Systems (ICPS) 

Conference IEEE 1 

Forschung im Ingenieurwesen/ 
Engineering Research 

Journal Springer 1 

International Journal of Advanced 
Manufacturing Technology 

Journal Springer 1 

Journal of Manufacturing Systems Journal Elsevier 1 
Procedia Manufacturing Journal Elsevier 1 
Engineering Failure Analysis Journal Elsevier 1 
Proceedings of the 29th European Safety 

and Reliability Conference, ESREL 2019 
Conference ESREL 1 

International Journal of Intelligent 
Systems 

Journal Wiley 1 

2020 3rd International Conference on 
Artificial Intelligence and Big Data 
(ICAIBD) 

Conference IEEE 1 

International Journal of Hydrogen Energy Journal Elsevier 1 
International Journal of Production 

Research 
Journal Taylor and 

Francis 
1 

2019 27th Telecommunications Forum 
(TELFOR) 

Conference IEEE 1 

Conference Proceedings of the Society for 
Experimental Mechanics Series 

Conference Springer 1 

CIRP Annals Journal Elsevier 1 
CEUR Workshop Proceedings Conference CEUR 1 
International Journal of Computer 

Integrated Manufacturing 
Journal Taylor and 

Francis 
1 

E3S Web of Conferences Journal E3S 1 
International Journal of Prognostics and 

Health Management 
Journal PHM Society 1 

IEEE Access Journal IEEE 1 
Sensors (Switzerland) Journal MDPI 1 
Nuclear Engineering and Technology Journal Elsevier 1 
Journal of Intelligent Manufacturing Journal Springer 1 
2020 IEEE International Conference on 

Big Data (Big Data) 
Conference IEEE 1 

Proceedings of the International 
Conference on Offshore Mechanics and 
Arctic Engineering - OMAE 

Conference ASME 1 

Processes Journal MDPI 1 
Journal of Industrial Information 

Integration 
Journal Elsevier 1 

Procedia Computer Science Journal Elsevier 1 
2020 Annual Reliability and 

Maintainability Symposium (RAMS) 
Conference IEEE 1  

Fig. 7. Objective of predictive maintenance using Digital Twins.  
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[64] used a self-organizing map (SOM) for fault diagnosis and 
damage level prediction through time-frequency features from the vi
bration signal. A SOM is an unsupervised machine learning model for 
pattern recognition, typically used for dimensionality reduction. 

4.7.2. Deep learning approaches 
Fig. 12 shows the Deep Learning algorithms used for Digital Twin 

representation or predictive analytics. Deep learning is a subdomain of 
Machine Learning, inspired by artificial neural networks. These layered 
networks are often stacked; we call them deep neural networks [85]. 

[39, 42, 51, 62, 71] used an autoencoder algorithm to represent a 
Digital Twin. The autoencoder is a neural network type that learns a 
compressed representation of raw data. The autoencoder is composed of 
an encoder and decoder part. The encoder compresses the input while 
the decoder attempts to recreate the input from the encoder. The 

encoder model is saved after training, whereas the decoder is deleted. 
The encoder may then be used as a data preparation approach to extract 
features from raw data so that a new machine learning model can be 
trained [86]. 

To rebuild the input time series, preserve the healthy data informa
tion, identify anomalies, reconstruct the error, and generate an unsu
pervised Health Indicator for reliable RUL prediction, [71] employed a 
Long Short-Term Memory (LSTM)-based encoder-decoder. The LSTM 
algorithm is a type of Recurrent Neural Network (RNN) designed for 
time series data where the order of data samples is important. LSTMs are 
designed to store long and short-term temporal information. LSTMs are 
generally uni-directional, but may also be bi-directional (bi-LSTM) [87]. 
The LSTM can be used as an encoder-decoder, where the encoder part 
reduces the feature space, and the decoder part up-samples the feature 
space, which reduces overall noise. [39] used a feedforward neural 

Fig. 8. Application domain.  

Fig. 9. Count plot of Digital Twin platforms.  
Fig. 10. Count plot of Digital Twin model representation types.  
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Fig. 11. Machine learning models used for Digital Twin representation or predictive analytics.  

Fig. 12. Deep learning models used for digital twin representation or predictive analytics.  
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network as an autoencoder. To train the autoencoder to discover the key 
features, the autoencoder is trained to reconstruct the input from a 
corrupted input: the so-called denoising autoencoder. They stacked 
multiple denoising autoencoders to predict the RUL of a proton ex
change membrane fuel cell to obtain a Stacked Denoising Autoencoder 
(SDA). Each Denoising Autoencoder’s output provides new input for the 
next Denoising Autoencoder. On top of the SDA, a logistic regression 
layer is used to predict the RUL. [42] and [62] used a Stacked Sparse 
Autoencoder (SSA) with a Softmax activation function to classify a 
machine’s health condition. As [42] describes: “Sparse autoencoder 
(SAE) imposes the sparsity constraint on AE to make most of the hidden units 
be inactive” [42]. [51] used a Variational Autoencoder (VAE) as an 
explicit Deep Digital Twin to estimate a Health Indicator. VAEs (varia
tional autoencoders) are a type of variational Bayesian approach. 
Despite their architectural resemblance to conventional autoencoders, 
VAEs have a different architecture with a different mathematical 
formulation and purposes. Instead of a fixed vector, the latent space in 
this architecture comprises a combination of distributions. The VAE has 
been built up of convolutional and de-convolutional layers. 

[40l, 48, 51, 66] used a Convolutional Neural Network (CNN). CNNs 
are one of the most common DL architectures. CNNs use a set of con
volutional and pooling operations to extract topological features of input 
data. Afterward, a set of fully-connected layers is used for classification. 
CNNs are mostly used in computer vision applications [88]. As 
mentioned above, [51] has built a VAE using convolutional layers. [66] 
used the data from three sensors, (1) normal load, (2) frictional torque, 
and (3) temperature, to develop a data-driven Digital Twin based on a 
CNN inspired by Google’s Wavenet architecture. The CNN made use of 
dilated causal convolutions. After testing, the CNN-based Digital Twin 
estimated the RUL of a four-ball tester with 95% accuracy. [48] used a 
hybrid CNN and Bi-LSTM architecture for multi-class classification of a 
Health Indicator in the C-MAPSS dataset. [40] used a CNN to estimate 
the Modulation Transfer Function (MTF), a key performance evaluation 
indicator used in the design stage of the electro-optical system. 

[64] used an Auto-Associative Neural Network (AANN). An AANN 
comprises a five-layer feedforward network that can be divided into two 
three-layer neural networks connected in series, like autoencoder ar
chitecture. An input layer is followed by a hidden layer and a bottleneck 
layer in the network. The bottleneck layer compresses the input data and 
topology while allowing effective feature extraction. A second 
non-linear hidden layer and the output layer of the second network 
follow the bottleneck layer. [64] proposed an AANN methodology to 
model the vibration and speed relationship between sensors near the 
four wheels of a high-speed train, and change of such relationship due to 
dent or corrosion on the track will generate residual signal between the 
neural network input and output data. The residual signal is then used as 
an indicator to locate irregularities on the railway track. 

[48, 61, 63, 71] used a LSTM architecture. As mentioned above, [71] 
used an LSTM encoder-decoder (LSTM-ED) as an autoencoder, and [48] 
used a hybrid CNN and Bi-LSTM architecture for multi-class classifica
tion. [63] used a Bi-LSTM architecture as the feature extractor in the 
Domain Adversarial Neural Network (DANN) regime. [61] used 
data-driven and deep learning technology to develop a Digital Twin 
from sensor data and historical operation data of equipment and realizes 
reliable simulation data mapping through intelligent sensing and data 
mining called implicit Digital Twin (IDT). The aero-engine sensor data 
samples from the C-MAPSS dataset in IDT are fused to obtain a Health 
Indicator, combined with the LSTM method, to predict an aero engine’s 
life. 

[43] used a Spiking Neural Network (SNN) to detect anomalies in a 
Smart Energy Grid, which receives data from a sensor in a specific area. 
SNN considers temporal information, which fits their time series fore
casting approach, exhibiting low computational needs. 

[56] employed a Bi-Directional Gated Recurrent Unit (Bi-GRU) to 
construct a monitoring model to predict the tool wear condition based 
on extracted local features. A GRU’s behavior is similar to the LSTM; 

however, it does not contain a memory unit. 
Next to a VAE for explicit Digital Twin, [51] constructed a Genera

tive Adversarial Network (GAN) in the implicit deep generative network 
setting. The GAN training process is cast as a two-player non-coopera
tive game where each player has control over its parameters (i.e., the 
weights of each network that constitute either the Generator (G) or 
Discriminator (D). One significant advantage of the GAN approach is 
that it does not require minimizing a Mean Squared Error (MSE) loss, 
unlike most regression and system identification methods. Instead, the D 
approximates the density ratio between the observed and generated 
data, and the G minimizes some divergence. These training dynamics 
allow the GAN to become sensitive to even low magnitude deviations 
from the manifold. As with the VAE, the GAN algorithm also predicts a 
Health Indicator. 

[72] leveraged a multilayer perceptron (MLP) in a machine learning 
platform called OnPoint Cortex. The MLP contains a deep set of stacked 
linear neurons to perform a supervised learning task. With the MLP, [72] 
could accurately predict the risk of failure in the C-MAPSS dataset. 

In the previous sections, we have discussed machine learning 
methods. For these methods, evaluation metrics have been defined. 
Fig. 13 shows the model validation metrics that have been used for 
digital twin models or predictive algorithms. 

First, eleven studies used more than one key metric. [48] used overall 
accuracy, Root Mean Squared Error (RMSE), Mean Absolute Error 
(MAE), micro-, and macro-averaged precision and recall, and R2 to 
evaluate the performance of three models. [57] used the accuracy, 
precision, recall, and F1-measure metrics to compare two SVM models 
with different kernels. [51] used MSE through a loss function to optimize 
the VAE. They also used the Receiver Operating Characteristic (ROC) to 
compare the VAE and GAN Digital Twin models. [61] used the RMSE, 
relative error quantile (MAPE), and R2 metrics to find the optimal 
training and testing data distribution for RUL estimation. [39] used 
precision and relative accuracy to evaluate a model’s ability to predict 
the RUL. [77] used accuracy, recall, and precision to show the results of 
the SVM algorithm for anomaly detection. [71] used MAE, R2, model 
loss, and accuracy to show the performance of their LSTM-ED model on 
RUL estimation. [62] used MAE, R2, and accuracy to compare the per
formance of four models. [56] used RMSE and MAE to demonstrate the 
improvement of their wear estimation model quantitatively. [63] used 
Cumulative Relative Accuracy (CRA), RMSE, and MAE to calculate the 
error between the actual and predicted RUL of several Deep Learning 

Fig. 13. Model validation metrics for AI-based models.  
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models. [66] used accuracy, MAE, and the Pearson R correlation coef
ficient to compare various CNN architectures. [44] used the Pearson R 
correlation coefficient for feature selection and RMSE to find the optimal 
machine learning algorithm. 

Second, seven studies showed to use of one key metric to compare 
algorithms. [67, 79] used synchronous tuning of the simulation models, 
responsible for keeping the precision of the Digital Twin achievement 
over 95%. [40] used MSE to compare the validation results of MTF be
tween a nonparametric Bayesian Network and a CNN. [38, 42, 54, 72] 
used accuracy to compare several predictive analytics algorithms. 

4.7.3. Model optimization methods 
In AI-based solutions, models can be optimized in several methods. 

[39, 44, 58, 71] used cross-validation (CV) to evaluate a predictive 
maintenance model. [58] used data from a bearing test rig to generate 
data for training and testing using cross-validation. [71] used 5-fold 
cross-validation to find the model that performs best on RUL predic
tion. [39] used cross-validation to find the optimal parameters of their 
SDA. [44] used a grid search algorithm, a variation on a CV. A parameter 
grid is provided with grid search, and all possible combinations are 
evaluated in a CV setting. As a result, the parameter setting with the best 
results is returned. 

4.7.4. Statistical approaches 
Several statistical approaches have been used in the predictive ana

lytics phase, as shown in Fig. 14. We have identified studies that used 
probability distribution functions, Kalman and particle filters, Monte 
Carlo methods, and Principal Component Analysis (PCA). 

[72] used a kernel density probability distribution function to 
establish the likelihood of failure based on past failures and the time 
since the last repair. 

[39, 40, 44, 70, 75] used a Particle filter or Kalman filter, also known 
as a Linear Quadratic Estimation (LQE). Both are statistical approaches 
for noise reduction. Only linear systems can leverage a Kalman filter 
[89]. If a non-linear system is encountered, and the goal is to estimate 
system states, a non-linear state estimator is required. The working 
principles behind particle filters are like unscented Kalman filters, but 
particle filters can approximate any distribution. For this, particle filters 

require a larger set of points, referred to as particles. However, the 
particle filter is computationally more expensive than a Kalman filter 
[89]. [70] used the Kalman filter to estimate the states/unnoisy 
response, where the output provides sufficient inputs for the designed 
load observers. [75] used the Kalman filter for wave load identification. 

[44] used a particle filter algorithm that includes two processes: 
prediction and updating. In the prediction process, Monte Carlo sam
pling is used to estimate the next state according to the prior probability 
density of the system, and the updating process uses the measured data 
to modify the prediction results. [39] employed a Particle filter 
approach using an exponential empirical model as a comparison against 
their SDA model. [40] used a Gaussian Particle Filter (GPF), which uses 
Gaussian density estimation as a continuous approximation instead of a 
discrete approximation to resample the particles. 

[44, 51, 65, 70, 75] applied Monte Carlo methods, a broad class of 
computational algorithms relying on repeated random sampling to 
obtain numerical results. [65] used the Monte Carlo Method to numer
ically solve posterior distribution in a finite element model. [51] used 
Monte Carlo sampling to numerically solve an integral equation of the 
VAE to estimate Health Indicators. Additionally, [70] employed crude 
Monte Carlo simulation to mitigate the influence of uncertainty in the 
input measurements in the estimated error. [75] used a Markov Chain 
Monte Carlo Method based Finite Element Model to model non-linear 
system behavior. 

[42, 51, 57, 77] used the PCA algorithm. [42, 51] used PCA to reduce 
the dimensionality of the learned features to a plottable 2D or 3D space. 
[57] applied PCA to estimate the contribution rate of each feature for 
feature selection. [77] employed PCA, as they needed to perform a 
dimensionality reduction, which is a way to train machine learning 
models in a feature space that would otherwise be too large. 

4.7.5. Mathematical approaches 
Several studies have applied mathematical approaches throughout 

the Digital Twin modeling and predictive maintenance, as shown in 
Fig. 15. Exponential Degradation Model, n-Degrees of Freedom model, 
Finite Element Method, and Johnson-Cook model approaches have been 
applied. 

[41] employed an Exponential Degradation Model (EDM), which is a 

Fig. 14. Statistical approaches.  
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model that follows the degradation trend based on set parameters. Using 
the EDM, a failure of interest can be detected. As the EDM is parame
terized, it is flexible and scalable to multiple machines. In particular, 
[41] employed stochastic parameters. 

[51, 59, 69, 70] used an n-Degrees of Freedom (DOF) torsional vi
bration model. An n-DOF system is a system that requires n coordinates 
to describe its equation of motion. There are n natural frequencies in an 
n-DOF system, and each natural frequency corresponds to a natural state 
of vibration with a displacement configuration known as the normal 
mode. Eigenvalues and eigenvectors are mathematical terminology for 
these quantities [90]. For monitoring the remaining usable lifespan of 
the gears in the different gearbox gear stages owing to contact fatigue 
stress, [59] employed a 14-DOF model as the drivetrain digital twin 
model. [70] proposed using a 3-DOF model to compromise the 
complexity and accuracy in their application for providing a rough 
estimation of RUL using a method implementable by a turbine onboard 
automation system. [51] employed a 3-DOF torsional model as the 
drivetrain Digital Twin for monitoring the residual life of main and 
high-speed shafts. [69] employed a 5-DOF modeling approach, as the 
increased fidelity led to less accurate simulations than a 1-DOF modeling 
approach. Thus, the increased fidelity led to a decrease in the accuracy 
in this case. 

[38, 49, 54, 65, 75] used a Finite Element Method (FEM), a method 
to numerically solve differential equations by dividing a modeled object 
into smaller connected elements. [49] employed a FEM simulation to 
gather information on geometrics (i.e., CAD models), materials, and 
process data. [38] used a FEM to simulate a wind turbine’s blade 
deformation, gear tooth stress, and bearing temperature. [65] acquired 
material property parameters, such as Young’s modulus, Poisson’s ratio, 
and constitutive model from a laboratory. The material property infor
mation was fed into digital twin FEM to perform a non-linear analysis. 
[75] used typical FEM input parameters that influence the modal pa
rameters to generate a Digital Twin of offshore structures are mass, the 
center of gravity, element stiffness, Local Joint Stiffness, soil stiffness, 
and damping properties. [54] generated a Digital Twin of a knuckle 
boom crane through real-time FEM simulation, where the estimated 
payload weight is used as an input. 

[44] leveraged a Johnson-Cook plasticity model to accurately 

describe and simulate the relationship between stress, strain, and tem
perature during the milling process. 

4.8. RQ6: Which abstraction levels of digital twins are used for predictive 
maintenance? 

The abstraction level of the Digital Twin describes the level of detail 
of the Digital Twin and the level of precision of the predictive mainte
nance module. For example, a component-level Digital Twin may pro
vide more specific maintenance predictions than a system-level Digital 
Twin. Fig. 16 shows the number of studies that developed Digital Twin 
on a component, system, or system-of-systems level. Nineteen studies 
discussed the use of Digital Twins on a component level, for instance, 
bearings [47, 51, 52, 58, 63, 66, 68, 79], and gearboxes [38, 51, 52, 59, 
67, 68, 79]. 

System-level Digital Twins aim to perform predictive maintenance 
on a full machine, such as high-speed railway transportation systems 
[53, 64], drivetrains [64, 69, 70], boom cranes [54], or CNC machines 
[44, 55, 56]. Seventeen studies have focused on developing Digital 
Twins on this abstraction level. 

[42] published the only study discussing using a system-of-systems 
Digital Twin for predictive maintenance of a whole shop floor. 

4.9. RQ7: Which digital twin design patterns are applied for predictive 
maintenance? 

Fig. 17 shows which design patterns of Digital Twins have been 
applied for predictive maintenance. The Digital Twin design pattern 
count shows how many studies discuss that pattern. However, a Digital 
Control pattern also includes a Digital Monitoring pattern, and a Digital 
Monitoring pattern also includes a Digital Shadow/Model pattern. We 
have included just the highest maturity level pattern of the Digital Twin 
in these cases. Therefore, a study discussing the Digital Control pattern is 
counted with the Digital Control pattern. 

We see that just three patterns have been applied to this day. First, 
the Digital Shadow pattern has been applied nine times, as researchers 
use NASA’s Bearing and Turbofan Engine Degradation simulation 
datasets as Digital Twins [48, 51, 58-61, 63, 71, 72]. These datasets 
contain simulation data of bearings and turbofan engines with sensorial 

Fig. 15. Mathematical approaches.  

Fig. 16. Count plot of Digital Twin abstraction level.  
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features and an RUL for each time step. 
[49] and [45] are the only studies that discuss the Digital Control 

pattern. In addition to an RUL estimation model, [49] also developed a 
Decision Support System (DSS) to provide rule-based and concrete so
lution proposals. The DSS would incorporate maintenance instructions 
for production workers and engineers, options to optimize costs for 
controlling, and recommendations for optimized product or machine 
development in the future. Unfortunately, the development and imple
mentation of the DSS were not included in the study. 

[45] discuss using a Prognostics and Healing Module as part of a 
smart controller framework. These Prognostics and Healing Module use 
Digital Twin simulation data, Big Data, Root-Cause Analysis, pre
processing, and Machine Learning and provide rule-based decision-
making to determine the type of intervention. 

Thirty studies make use of the Digital Monitor pattern [38-44, 46, 47, 
52-57, 62, 64-70, 73-79]. Using a Digital Twin, they describe the 
monitoring of the RUL, a machine’s condition, degrading health indi
cator, or performing fault diagnosis and analysis, and anomaly detec
tion. During the monitoring, they provide predictive information of the 
physical object while leaving the decision-making to the machine 
operators. 

4.10. RQ8: Which communication protocols are used for digital twins for 
predictive maintenance? 

The communication protocols describe the data exchange methods 
between the physical and digital assets. Fig. 18 shows the communica
tion protocols used to transmit information between the physical and 
digital objects. 

Message Queuing Telemetry Transport (MQTT) is the standard pro
tocol for IoT data exchange. MQTT uses a TCP/IP stack and publish/ 
subscribe architecture [91]. The MQTT protocol uses two network entity 
types: a broker and numerous clients. An MQTT broker is a server that 
receives all messages from clients and routes the messages to clients that 
are supposed to retrieve. Clients can publish messages on a certain topic, 
which the broker distributes to clients subscribed to that topic. Two 
studies leveraged the MQTT protocol [76, 79]. [76] used the MQTT 
protocol with the open-source RabbitMQ message broker, [79] used the 
ORION Context Broker. Additionally, [79] used JSON-MQTT to send 
JSON payloads over MQTT. 

Open Platform Communications Unified Architecture (OPC UA) is a 
communication protocol for IoT and Industry 4.0. OPC UA standardizes 

data exchange between physical objects in industrial environments 
while being manufacturer-independent. It uses a client-server commu
nication architecture and a TCP/IP stack. Two studies leveraged the OPC 
UA protocol [41, 78]. [78] used an XML schema to transport data in an 
object-oriented manner. [41] do not describe the data schema. 

[47, 55] used the Modbus protocol. Modbus supports three protocols, 
TCP/IP, RTU, and ASCII [92]. [55] used Modbus TCP, which uses the 
Ethernet protocol and a client/server communication, while [47] used 
Modbus RTU, which uses serial master/slave communication. 

[57] used the File Transfer Protocol (FTP) over HTTP to exchange 
data from a Bolt IoT module to a Bolt cloud server. [73] used the 
Extensible Messaging and Presence Protocol (XMPP), a protocol that 
uses XML schemas and exchanges data via TCP/IP. 

Additionally, [55, 57] used a SQL database to store sensor data, 
while [41] applied Mongo DB to store the data. 

4.11. RQ9: Which twinning state parameters are used for predictive 
maintenance using digital twins? 

Twinning state parameters are essential for creating an all- 
encompassing Digital Twin that elaborates the complete behavior of 
the physical asset. Additionally, these Twinning state parameters are key 
for explaining the degradation of the physical asset. 

Fig. 19 shows the twinning state parameters used for predictive an
alytics of maintenance. The figure shows that most data sources or state 
parameters are focused on mechanical or electrical influences. The vi
bration was the most used sensorial data, with 13 studies that used the 
state parameter. Velocity, torque, and temperature were the other most 
used state parameters, with 10 and 9 studies. 

Two state parameters need to be elaborated. First, [41, 42] used 
operational data from a PLC. The data originating from the PLC is not 
further described. Second, [40] used ten images in addition to me
chanical stress and electronic overstress to assess the health of an 
electro-optical system. 

4.12. RQ10: What are the challenges and possible solution directions with 
respect to predictive maintenance using digital twins? 

In total, eight challenge types were mentioned more than one time. 
The three main challenges were a computational burden, data variety, 
and data, model, or asset complexity. The three major challenges are 
further elaborated. All challenges found are listed in Table 9. A solution 
direction for a challenge is given when found. 

Computational burden: [39, 44, 52, 55] regarded computational 

Fig. 17. Count plot of Digital Twin design patterns.  

Fig. 18. Count plot of communication protocols.  
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burden due to the level of detail as a challenge, which impacts the 
cost-effectiveness, energy, and time consumption of the proposed 
method. [38, 61, 62] describe the challenge of performing complex 
computations on a large volume of operational data at high velocity. The 
computational burden on local hardware may be solved by using cloud 
computing, which is often cheaper than hosting and maintaining a 
server on-premise. 

Data variety: [39, 40, 51, 52] proposed that creating an accurate 
Digital Twin with measurements from just one operating condition is 
challenging. [52] also proposed to use additional external sensors to 
monitor the degradation of a system. [58] describe that there is just a 
limited set of datasets for bearing health conditions. [72] identified the 
lack of semi-healthy and failure data as a challenge for predictive 
maintenance. [93] describes the use of different RUL estimation models 
when tackling different datasets. 

Asset/data/model complexity: [40, 44, 56] proposes that complex 
asset modeling with different behavior at different environments is 
challenging. [38, 44, 67] also add that it is currently deemed unrealistic 
to establish a detailed Digital Twin due to the complexity of assets. [61] 
describe the challenge of data complexity as follows: “A large amount of 
data will be generated during operation, which has the characteristics of 
multi-modality, multi-source heterogeneity, multidimensional, and complex 
distribution” [61]. 

Data scarcity: [41] describes that small firms barely manage asset 

maintenance data. [71, 72, 77] describe that large amounts of labeled 
run-to-failure data are required to create predictive models. However, 
these amounts of labeled data are not available. 

Data quality: [51] describes that there are uncertainties in the 
available data. [50] add that there is high noise in the data, which is 
challenging for parameter estimation. [46] describe the issue as follows: 
“How to combine the high precision sensing data with the effective depth of 
the system mechanism to obtain better state evaluation” [46]. 

Feature extraction: [62] describes that it is difficult to extract normal 
and abnormal behavior from large real-time datasets. [76, 78] describe 
that it is a time-consuming challenge to create meaningful data from 
sensor equipment. 

Lack of reference model, standards, or framework: [65, 78] describe 
that there is no mature reference model for Digital Twins to this day. 
[74] propose to overcome the lack of standards, manufacturers and 
other organizations must come together to design a common standard 
for predictive maintenance approaches. Joint undertakings such as the 
European [94] may solve this challenge. 

Prediction feedback loop: [56, 63, 66] describes the need for a feed
back loop in predictive maintenance methods to evolve dynamically 
with the asset. The use of reinforcement learning methods, like Hidden 
Markov Models, could resolve this challenge. 

5. Discussion 

In the following sub-sections, we discuss the results of our study. In 
Section 5.1, we discuss the threats to the validity of the present study 
and how we tried to address them. 

This study represents the first SLR on predictive maintenance using 
Digital Twins, focusing on providing a full overview for developers to 
the best of our knowledge. In this respect, we identified over eight 
hundred papers from which we selected 42 high-quality primary studies. 
We can make several interesting observations from the results, which we 
highlight for each research question. 

Active learning process 
Using the ASReview software, we automated the primary study se

lection process using Natural Language Processing and Machine 
Learning. The active learning capabilities of ASReview showed to pre
dict the most relevant studies. We could have reduced the number of 
irrelevant studies to 10, with a slightly higher risk of stopping too early. 

Main statistics 
We have included 42 primary studies in this review, of which 59.5 

percent of studies were categorized as journal articles. Since 2018, a 
stable number of high-quality papers have been published. Of these 
studies, most have also been identified by the Scopus database. 

RQ1. What is the objective of predictive maintenance using Digital Twins? 
Most researchers did not explicitly mention their objectives in the 

introduction or abstracts section. However, most of the mentioned ob
jectives were straightforward and aimed at predicting a health indicator 
for an asset, such as RUL. For instance, [53] mentioned: “The primary 
goal is to transform the invisible patterns of component degradation and loss 
of efficiency into health insights” [53], where, after further reading, they 
aimed to predict RUL. 

RQ2. On which application domains are predictive maintenance using 
Digital Twins applied? 

We have found two main application domains for predictive main
tenance using Digital Twins: Manufacturing and Energy. For the 
Manufacturing domain, we found three subdomains, while for the En
ergy domain, we identified four subdomains. For most studies, it was 
simple to extract the application domain, as they mentioned a use case 
study. However, some studies used a component-level or system-level 
Digital Twin of a bearing or gearbox – within different application do
mains. Nonetheless, these Digital Twins could be applied in other 
application domains with slight to no changes. 

RQ3. Which industry Digital Twin platforms are used to develop Digital 
Twins for predictive maintenance? 

Fig. 19. Count plot of twinning state parameters.  

Table 9 
Identified challenges.  

ID Challenge # of 
studies 

References 

1 Computational burden 7 [38, 39, 44, 52, 55, 
61, 62] 

2 Data variety 6 [39, 40, 51, 52, 58, 
72] 

3 Asset/data/model complexity 6 [38, 40, 44, 56, 61, 
67] 

4 Data scarcity 4 [41, 71, 72, 77] 
5 Data quality 3 [46, 50, 51] 
6 Feature extraction 3 [62, 76, 78] 
7 Lack of reference model, standards or 

framework 
3 [65, 74, 78] 

8 Prediction feedback loop 3 [56, 63, 66]  

R. van Dinter et al.                                                                                                                                                                                                                             



Information and Software Technology 151 (2022) 107008

17

[21] explained in their Digital Twin SLR study that industrial Digital 
Twin platforms had been developed by GE Predix Platform, SIEMENS 
PLM, Microsoft Azure, IBM Watson, PTC Thing Worx, Aveva, SAP Leo
nardo Platform, Twin Thread, DNV-GL, Dassault 3D Experience, Sight 
Machine, and Oracle Cloud. However, from all these platforms, only SAP 
Leonardo was used once by [69]. Further research must demonstrate 
whether these industrial Digital Twin platforms fit the need for predic
tive maintenance. 

RQ4. Which model representation types are used to develop Digital Twins 
for predictive maintenance? 

Most studies explicitly mentioned the type of model they used to 
represent the Digital Twin. We carefully read the methodology section to 
categorize the studies that did not explicitly mention one of the terms. 
Sometimes it was difficult to categorize the Digital Twin model repre
sentation type, as some authors consider the predictive maintenance 
module as part of the Digital Twin. Therefore, they mention a hybrid 
methodology, while the digital mirroring is executed using a physics- 
based model, and a decision-making model is used for predictive 
analytics. 

RQ5. Which approaches are being applied for predictive maintenance 
using Digital Twins? 

The following paragraphs discuss approaches for predictive main
tenance using Digital Twins. 

Machine Learning approaches 
Throughout the application of predictive maintenance, the most- 

used machine learning approach is the Support Vector Machine. It has 
been applied for classification tasks, while one study also used it for 
regression. Remarkably, just two studies applied regression tasks to es
timate the RUL with machine learning. This could be possible, as all 
studies have been published since 2018, after which Deep Learning has 
progressed massively. 

Deep Learning approaches 
For deep learning approaches in predictive maintenance using Dig

ital Twins, the approaches can be divided into approaches for Digital 
Twin model representation and approaches for predictive maintenance 
modeling. Our study shows that autoencoders, AANNs, and GANs have 
been used to represent a Digital Twin, while other architectures, such as 
LSTMs, GRUs, and MLPs, have been used for predictive maintenance. 
However, the CNN architecture has been applied for both Digital 
Twinning and predictive maintenance. 

Model validation metrics 
To our understanding, accuracy, MAE, precision, and (R)MSE have 

been used most frequently as model validation metrics. No key model 
validation metric has been designated to compare different studies. 
However, [95] describes that using a single all-encompassing metric is 
easier to explain and compare for readers and researchers. Based on our 
results, we can state that additional research on the key model valida
tion metric for each task in predictive maintenance for Digital Twins still 
must be executed. 

Model optimization methods 
Even though many studies have leveraged machine and deep 

learning, only five studies have used model optimization methods. The 
process of training machine learning models is the most complex and 
time-consuming aspect of applying the approach in general, both in 
terms of the effort necessary for building the process and the computing 
complexity required to perform it. Therefore, using hyperparameter 
tuning methods, such as grid search, random search, or Bayesian opti
mization, could drastically improve a method’s performance. Further
more, cross-validation allows authors and readers to compare 
algorithms and parameter configurations. 

Statistical approaches 
A clean dataset is required to develop predictive analytics or digital 

twinning models, as they provide the knowledge more effectively. 
Cleaning sensor data and datasets, therefore, could provide huge per
formance increases. Therefore, using a noise filtering method, such as 
Particle Filter or Kalman Filter could be useful. Additionally, when 

opting for a physics-based Digital Twin model, using Monte Carlo 
sampling methods for Finite Element Method modeling enables re
searchers to develop high-fidelity models. 

Mathematical approaches 
The studies demonstrated that n-DOF torsional vibration models 

were frequently applied for assets heavily affected by vibrations, such as 
rolling bearings and gearboxes. Furthermore, when CAD models have 
been developed in the development phase, a FEM model could be 
applied as a Digital Twin. However, developing a FEM-based Digital 
Twin requires domain knowledge, which is costly and scarce. Addi
tionally, a FEM-based Digital Twin is also static. Therefore, when an 
asset is slightly changed, it cannot evolve in a data-driven manner. 

RQ6. Which abstraction levels of Digital Twins are used for predictive 
maintenance? 

Most authors explicitly mentioned the abstraction level of the Digital 
Twin. However, sometimes it was difficult to categorize the granularity 
of the Digital Twin. For instance, is a pump a component or system? This 
may differ in various circumstances. Therefore, we kept a list of classi
fied assets and used the same abstraction level for each asset. 

RQ7. Which Digital Twin design patterns are applied for predictive 
maintenance? 

We closely followed the Digital Twin design pattern catalog by [15] 
to classify the type of design pattern used. As expected, most studies 
applied a Digital Monitor design pattern. However, some studies used 
the NASA Bearing or Turbofan Engine Degradation simulation datasets. 
Using this dataset removes the need to develop a “real” Digital Twin, 
with continuous communication between a physical and digital object, 
which hugely decreases the time to develop RUL prediction models 
while improving reproducibility. We classified these ‘Digital Twins’ as 
Digital Shadow design patterns. 

RQ8. Which communication protocols are used for Digital Twins for 
predictive maintenance? 

Most studies did not mention the communication protocol to ex
change data between the physical and digital objects. However, most 
studies mentioned that the communication protocol used a TCP/IP 
stack. We noticed that studies regarding Cyber-Physical Systems that do 
not apply to Digital Twins often elaborate on the communication pro
tocols. Nonetheless, communication protocols are a key feature to 
enabling Digital Twins, as their speed, quality of service, and security 
standards are essential in the operations. 

RQ9. Which Twinning state parameters are used for predictive mainte
nance using Digital Twins? 

To develop a Digital Twin or predictive maintenance module, fea
tures must be selected that explain the machine’s behavior or degra
dation. The selected primary studies frequently elaborated on the 
selected features to reach their objectives. After extracting the Twinning 
state parameters, we combined similar state parameters, such as speed 
and velocity. Other studies mentioned the sensors used to measure 
twinning parameters, such as accelerometers to measure vibrations. 

RQ10. What are the challenges and possible directions with respect to 
predictive maintenance using Digital Twins? 

Extracting the challenges from the studies was a tedious task, as not 
every challenge is expressed in the same field in every study. One study 
may express challenges in the discussions section, while others express 
them in the introduction, while others express it in both. The authors 
have thoroughly scanned each article to find any challenges. However, 
some challenges may be overlooked. 

5.1. Threats to validity 

Construct validity: The construct validity of the SLR determines if it 
accurately measures what it claims to. We employed several databases 
with a computer science discipline to gather a large set of evidence on 
predictive maintenance using Digital Twins. We created automated 
database search queries. Even while a database is a powerful literature 
search tool, it is also sensitive to how a query is phrased, and even tiny 
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word changes can result in drastically different search results. 
The first threat to construct validity is a query’s phrasing. As each 

database requires custom search query formulations, we developed a 
general search query and modified them slightly for each database. As 
each search query has been customized, a relevant study might have 
been missed. To avoid this threat, the authors have thoroughly discussed 
the query design and evaluated the results of several trials. We included 
“cyber-physical systems” as a safety measure, an umbrella topic closely 
related to Digital Twins. 

The primary study selection step is the second threat. Authors are 
more inclined to publish favorable outcomes of their study than negative 
results, according to the phenomena of publication bias [7]. Using the 
ASReview decision support system and the study quality evaluation, we 
have mitigated the risk of publication bias. After screening a primary 
studies pilot set, the study selection criteria were defined, reducing the 
risk of selection bias. All selection criteria were debated among the 
co-authors to ensure each included study’s quality. Even though the 
selection is based on predetermined criteria and quality evaluation 
questions, it is difficult to eliminate personal and subjective judgments 
from the scoring process. Since the domains of predictive maintenance 
and Digital Twins are vast, it requires a broad spectrum of expert 
knowledge. Therefore, we carefully reviewed the studies, but we might 
have misinterpreted some aspects of the studies. 

The third threat is the data extraction process. Even though the data 
extraction form was established, some essential data fields may be left 
out. We modified the data extraction form several times to ensure all the 
data we needed to answer the research questions. If the additional data 
(i.e., communication protocols, mathematical approaches, and statisti
cal approaches) could be retrieved from several studies and was bene
ficial in answering the research objectives, we added new data fields. 

Internal Validity: Internal validity reveals biased relationships be
tween results, leading to structural flaws. We carefully formulated each 
research question to determine the required approaches, methods, and 
techniques to perform predictive maintenance using Digital Twins to 
overcome these biases. As there are many options for developing pre
dictive maintenance and Digital Twins, and the field is relatively new, 
we might have missed essential research questions or made assumptions 
about the current research questions, which may contain flaws. 

External Validity: The external validity shows how well the SLR 
study’s outcome can be applied to other settings. This SLR study only 
reviewed studies that leveraged Digital Twin technology for predictive 
maintenance purposes. Likely, novel predictive maintenance techniques 
have not been applied with Digital Twins yet, and vice versa. As these 
studies have not been published in this setting, they have not been 
discussed regardless of their potential. 

Conclusion Validity: The conclusion validity measures the reproduc
ibility of the SLR. Our study followed the methodology by [32] and the 
protocol proposed by [7]. The research question design, search process, 
screening criteria, and quality evaluation were performed based on this 
widely used protocol. To reduce individual bias, we reviewed our SLR 
method in different meetings. We deduced all conclusions from the 
retrieved and synthesized data based on the tables and figures to prevent 
subjective interpretation of the results. 

5.2. Review update 

Since the submission of this research, much progress has been made 
in predictive maintenance using Digital Twins. As the review scope 
filtered studies published until August 2021, new advancements may 
have been excluded from this study. However, we have conducted a 
second search after the review and included relevant articles in this 
section. 

First, [96] provides a comprehensive overview of Digital Twins for 
predictive maintenance. They included essential information of reported 
frameworks, Digital Twin model representation types, and communi
cation protocols. Second, eighteen studies published after August 2021 

were identified to provide novel information on predictive maintenance 
using Digital Twins [97–114]. 

6. Conclusion and future work 

This study presents a systematic literature review (SLR) of the evi
dence generated in the past four years. This review aimed to identify the 
features, challenges, and solution directions of predictive maintenance 
using Digital Twins. We addressed 42 studies in this SLR that capture 
state-of-the-art strategies to leverage Digital Twin technology to 
improve predictive maintenance capabilities. To the best of our 
knowledge, this is the first SLR of its kind to look at Digital Twins as a 
predictive maintenance accelerator. Our choice to adopt an SLR as an 
instrument to answer our key research questions showed to be very 
useful and led us to the critical insights that could be beneficial to both 
practitioners and researchers. 

This study has led to novel insights into the current literature on 
predictive maintenance using Digital Twins. Our heat maps for ap
proaches enable researchers to comfortably find the key approaches and 
algorithms to use when developing a predictive maintenance module for 
each Digital Twin representation type. We have found that RUL esti
mation is the key objective for predictive maintenance using Digital 
Twins, as RUL is a KPI that provides essential information for mainte
nance planners. As a result, the leading approaches for predictive 
maintenance also focus on regression tasks. In the Manufacturing and 
Energy domains, predictive maintenance technologies using Digital 
Twins have been widely researched. Another important insight from this 
SLR is the overview of challenges and solution directions. We have 
collected the challenges that researchers explicitly mentioned. Then, we 
categorized the challenges based on their kind and, when available, 
included solutions for each challenge. 

Our analysis observed a low adaptation level of industrial Digital 
Twin platforms. Furthermore, more research on recurrent neural net
works for predictive maintenance using Digital Twins may be per
formed. The key challenges are a computational burden, the complexity 
of data, models, and assets, and the lack of reference architectures and 
standards. The discussion section provides a list of identified relevant 
studies published after the review was conducted. 

Predictive maintenance using Digital Twins pays off because it 
dramatically reduces the number of maintenance activities and ma
chines’ downtime while increasing machine lifetime. As for future 
research, we plan to develop a design pattern catalog and reference 
architecture for predictive maintenance using Digital Twins. 

Declaration of Competing Interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Data Availability 

No data was used for the research described in the article. 

References 

[1] M. Rüßmann, M. Lorenz, P. Gerbert, M. Waldner, J. Justus, P. Engel, M. Harnisch, 
Industry 4.0: the future of productivity and growth in manufacturing industries, 
Boston Consulting Group 9 (2015) 54–89. 

[2] K. Schwab, The fourth industrial revolution, Currency (2017). 
[3] I. Errandonea, S. Beltrán, S. Arrizabalaga, Digital Twin for maintenance: a 

literature review, Comput. Ind. 123 (2020), 103316. 
[4] K. Shanmugam, The perfect pair: digital twins and predictive maintenance, in, 

2021. 
[5] S. Miller, Mathworks, predictive maintenance using a digital twin, in, 2019. 
[6] B. Schleich, N. Anwer, L. Mathieu, S. Wartzack, Shaping the digital twin for 

design and production engineering, CIRP Ann. 66 (2017) 141–144. 

R. van Dinter et al.                                                                                                                                                                                                                             

http://refhub.elsevier.com/S0950-5849(22)00133-1/sbref0001
http://refhub.elsevier.com/S0950-5849(22)00133-1/sbref0001
http://refhub.elsevier.com/S0950-5849(22)00133-1/sbref0001
http://refhub.elsevier.com/S0950-5849(22)00133-1/sbref0002
http://refhub.elsevier.com/S0950-5849(22)00133-1/sbref0003
http://refhub.elsevier.com/S0950-5849(22)00133-1/sbref0003
http://refhub.elsevier.com/S0950-5849(22)00133-1/sbref0006
http://refhub.elsevier.com/S0950-5849(22)00133-1/sbref0006


Information and Software Technology 151 (2022) 107008

19

[7] B. Kitchenham, S. Charters, Guidelines For Performing Systematic Literature 
Reviews in Software Engineering, in, Keele University, 2007. 

[8] J. Nixon, E. Pena, The evolution of asset management: harnessing digitalization 
and data analytics, in: Offshore Technology Conference, OnePetro, 2019. 

[9] M.M. Mabkhot, A.M. Al-Ahmari, B. Salah, H. Alkhalefah, Requirements of the 
smart factory system: a survey and perspective, Machines 6 (2018) 23. 

[10] P. Papachatzakis, N. Papakostas, G. Chryssolouris, Condition based operational 
risk assessment an innovative approach to improve fleet and aircraft operability: 
maintenance planning, in: 1st European Air and Space Conference, Berlin, 
Germany, 2007, pp. 121–126. 

[11] Z. Kang, C. Catal, B. Tekinerdogan, Remaining useful life (Rul) prediction of 
equipment in production lines using artificial neural networks, Sensors 21 (2021) 
932. 

[12] A. Consilvio, P. Sanetti, D. Anguìta, C. Crovetto, C. Dambra, L. Oneto, F. Papa, 
N. Sacco, Prescriptive maintenance of railway infrastructure: from data analytics 
to decision support, in: 2019 6th International Conference on Models and 
Technologies for Intelligent Transportation Systems (MT-ITS), IEEE, 2019, 
pp. 1–10. 

[13] S. Khoshafian, C. Rostetter, Digital prescriptive maintenance, internet of things, 
process of everything, BPM Everywhere (2015) 1–20. 

[14] K. Matyas, T. Nemeth, K. Kovacs, R. Glawar, A procedural approach for realizing 
prescriptive maintenance planning in manufacturing industries, CIRP Ann. 66 
(2017) 461–464. 

[15] B. Tekinerdogan, C. Verdouw, Systems architecture design pattern catalog for 
developing digital twins, Sensors 20 (2020) 5103. 

[16] Z. Zhao, J. Wu, T. Li, C. Sun, R. Yan, X. Chen, Challenges and Opportunities of AI- 
Enabled Monitoring, Diagnosis & Prognosis: A Rev. Chinese J. Mech. Eng. 34 
(2021) 1–29. 

[17] Y. Wang, Y. Zhao, S. Addepalli, Remaining useful life prediction using deep 
learning approaches: a review, Procedia Manuf. 49 (2020) 81–88. 

[18] B. He, K.-.J. Bai, Digital twin-based sustainable intelligent manufacturing: a 
review, Adv. Manuf. 9 (2021) 1–21. 

[19] L. Lattanzi, R. Raffaeli, M. Peruzzini, M. Pellicciari, Digital twin for smart 
manufacturing: a review of concepts towards a practical industrial 
implementation, Int. J. Comput. Integrated Manuf. 34 (2021) 567–597. 

[20] T.Y. Melesse, V.D. Pasquale, S. Riemma, Digital twin models in industrial 
operations: a systematic literature review, Procedia Manuf. 42 (2020) 267–272. 

[21] C. Semeraro, M. Lezoche, H. Panetto, M. Dassisti, Digital twin paradigm: a 
systematic literature review, Comput. Ind.y 130 (2021), 103469. 

[22] B. He, L. Liu, D. Zhang, Digital twin-driven remaining useful life prediction for 
gear performance degradation: a review, J. Comput. Inf. Sci. Eng. 21 (2021). 

[23] K. Sivalingam, M. Sepulveda, M. Spring, P. Davies, A review and methodology 
development for remaining useful life prediction of offshore fixed and floating 
wind turbine power converter with digital twin technology perspective, 2018, in: 
2nd International Conference on Green Energy and Applications (ICGEA), 2018, 
pp. 197–204. 

[24] G.Y. Lee, M. Kim, Y.J. Quan, M.S. Kim, T.J.Y. Kim, H.S. Yoon, S. Min, D.H. Kim, J. 
W. Mun, J.W. Oh, I.G. Choi, C.S. Kim, W.S. Chu, J. Yang, B. Bhandari, C.M. Lee, J. 
B. Ihn, S.H. Ahn, Machine health management in smart factory: a review, J. Mech. 
Sci. Technol. 32 (2018) 987–1009. 

[25] E.M. Rúbio, R.P. Dionísio, P.M.B. Torres, Industrial IoT devices and cyber- 
physical production systems: review and use case, Lecture Notes in Electr. Eng. 
(2019) 292–298. 

[26] T. Zheng, M. Ardolino, A. Bacchetti, M. Perona, The applications of Industry 4.0 
technologies in manufacturing context: a systematic literature review, Int. J. 
Prod. Res. 59 (2021) 1922–1954. 

[27] C. Liu, P. Zheng, X. Xu, Digitalisation and servitisation of machine tools in the era 
of industry 4.0: a review, Int. J. Prod. Res. (2021) 1–33. 

[28] H. Yang, S. Kumara, S.T.S. Bukkapatnam, F. Tsung, The internet of things for 
smart manufacturing: a review, IISE Trans. 51 (2019) 1190–1216. 

[29] J. Egger, T. Masood, Augmented reality in support of intelligent manufacturing – 
A systematic literature review, Comput. Ind. Eng. (2020) 140. 

[30] C.K. Sahu, C. Young, R. Rai, Artificial intelligence (AI) in augmented reality (AR)- 
assisted manufacturing applications: a review, Int. J. Prod. Res. 59 (2021) 
4903–4959. 

[31] M.S. Ali, M.A. Babar, L. Chen, K.-.J. Stol, A systematic review of comparative 
evidence of aspect-oriented programming, Inf. Softw. Technol. 52 (2010) 
871–887. 

[32] R. van Dinter, B. Tekinerdogan, C. Catal, Automation of systematic literature 
reviews: a systematic literature review, Inf. Softw. Technol., (2021) 106589. 

[33] M. Grieves, J. Vickers, Digital twin: Mitigating unpredictable, Undesirable 
Emergent Behavior in Complex systems, in: Transdisciplinary perspectives On 
Complex Systems, Springer, 2017, pp. 85–113. 

[34] S.R. Toolbox, Search, in, 2014. 
[35] R. van de Schoot, D. Oberski, J. de Bruin, R. Schram, P. Zahedi, Automated 

systematic review v0.1.1, in: zenodo (Ed.), 2019. 
[36] H.G. Gurbuz, B. Tekinerdogan, Model-based testing for software safety: a 

systematic mapping study, Software Quality J. 26 (2018) 1327–1372. 
[37] J. Tummers, A. Kassahun, B. Tekinerdogan, Obstacles and features of Farm 

Management Information Systems: a systematic literature review, Comput. 
Electron. Agriculture 157 (2019) 189–204. 

[38] F. Tao, M. Zhang, Y. Liu, A.Y.C. Nee, Digital twin driven prognostics and health 
management for complex equipment, CIRP Ann. 67 (2018) 169–172. 

[39] S. Meraghni, L.S. Terrissa, M. Yue, J. Ma, S. Jemei, N. Zerhouni, A data-driven 
digital-twin prognostics method for proton exchange membrane fuel cell 
remaining useful life prediction, Int. J. Hydrogen Energy 46 (2021) 2555–2564. 

[40] J. Yu, Y. Song, D. Tang, J. Dai, A Digital Twin approach based on nonparametric 
Bayesian network for complex system health monitoring, J. Manuf. Syst. 58 
(2021) 293–304. 

[41] L. Cattaneo, M. MacChi, A Digital Twin Proof of Concept to Support Machine 
Prognostics with Low Availability of Run-To-Failure Data, in: IFAC-PapersOnLine, 
2019, pp. 37–42. 

[42] Y. Xu, Y. Sun, X. Liu, Y. Zheng, A digital-twin-assisted fault diagnosis using deep 
transfer learning, IEEE Access 7 (2019) 19990–19999. 

[43] N. Tzanis, N. Andriopoulos, A. Magklaras, E. Mylonas, M. Birbas, A. Birbas, 
A hybrid cyber physical digital twin approach for smart grid fault prediction, in: 
2020 IEEE Conference on Industrial Cyberphysical Systems (ICPS), 2020, 
pp. 393–397. 

[44] W. Luo, T. Hu, Y. Ye, C. Zhang, Y. Wei, A hybrid predictive maintenance approach 
for CNC machine tool driven by Digital Twin, Robot Comput. Integr. Manuf. 
(2020) 65. 

[45] Y. Cohen, G. Singer, A smart process controller framework for industry 4.0 
settings, J. Intell. Manuf. (2021). 

[46] G. Zhang, C. Huo, L. Zheng, X. Li, An architecture based on digital twins for smart 
power distribution system, in: 2020 3rd International Conference on Artificial 
Intelligence and Big Data (ICAIBD), 2020, pp. 29–33. 

[47] M. Short, J. Twiddle, An industrial digitalization platform for condition 
monitoring and predictive maintenance of pumping equipment, Sensors 
(Switzerland) (2019) 19. 

[48] S. Barkalov, D. Dorofeev, I. Fedorova, A. Polovinkina, Application of digital twins 
in the management of socio-economic systems, in: E3S Web of Conferences, 2021. 

[49] A. Werner, N. Zimmermann, J. Lentes, Approach for a holistic predictive 
maintenance strategy by incorporating a digital twin, Procedia Manuf. 39 (2019) 
1743–1751. 

[50] M. Dhada, M.P. Hernández, A.S. Palau, A.K. Parlikad, Comparison of agent 
deployment strategies for collaborative prognosis, in: 2021 IEEE International 
Conference on Prognostics and Health Management (ICPHM), 2021, pp. 1–8. 

[51] W. Booyse, D.N. Wilke, S. Heyns, Deep digital twins for detection, diagnostics and 
prognostics, Mech. Syst. Signal Process. (2020) 140. 

[52] P. Aivaliotis, Z. Arkouli, K. Georgoulias, S. Makris, Degradation curves integration 
in physics-based models: towards the predictive maintenance of industrial robots, 
Robot. Comput. Integr. Manuf. (2021) 71. 

[53] Z. Liu, Z. Zhang, G. Xu, W. Jin, J. Lee, Design of cyber-physical systems 
architecture for prognostics and health management of high-speed railway 
transportation systems, Int. J. Prognostics and Health Manag. (2018) 9. 

[54] T. Moi, A. Cibicik, T. Rølvåg, Digital twin based condition monitoring of a 
knuckle boom crane: an experimental study, Eng. Fail. Anal. (2020) 112. 

[55] K.-.J. Wang, Y.-.H. Lee, S. Angelica, Digital twin design for real-time monitoring – 
a case study of die cutting machine, Int. J. Prod. Res. (2020) 1–15. 

[56] Q. Qiao, J. Wang, L. Ye, R.X. Gao, Digital twin for machining tool condition 
prediction, Procedia CIRP 81 (2019) 1388–1393. 

[57] E.B. Priyanka, S. Thangavel, X.-.Z. Gao, N.S. Sivakumar, Digital twin for oil 
pipeline risk estimation using prognostic and machine learning techniques, J. Ind. 
Inf. Integration (2021), 100272. 

[58] T. Kaul, A. Bender, W. Sextro, Digital twin for reliability analysis during design 
and operation of mechatronic systems, in: Proceedings of the 29th European 
Safety and Reliability Conference, ESREL, 2019, pp. 2340–2347, 2020. 

[59] F.K. Moghadam, G.F.S. Rebouças, A.R. Nejad, Digital twin modeling for 
predictive maintenance of gearboxes in floating offshore wind turbine 
drivetrains, Forschung im Ingenieurwesen/Eng. Res. 85 (2021) 273–286. 

[60] P.K. Rajesh, N. Manikandan, C.S. Ramshankar, T. Vishwanathan, 
C. Sathishkumar, Digital twin of an automotive brake pad for predictive 
maintenance, Procedia Comput. Sci. 165 (2019) 18–24. 

[61] M. Xiong, H. Wang, Q. Fu, Y. Xu, Digital twin–driven aero-engine intelligent 
predictive maintenance, Inte. J. Adv. Manuf. Technol. 114 (2021) 3751–3761. 

[62] B.D. Deebak, F. Al-Turjman, Digital-twin assisted: fault diagnosis using deep 
transfer learning for machining tool condition, Int. J. Intelligent Syst. n/a (2021). 

[63] C. Liu, A. Mauricio, J. Qi, D. Peng, K. Gryllias, Domain adaptation digital twin for 
rolling element bearing prognostics, in: Proceedings of the Annual Conference of 
the Prognostics and Health Management Society, PHM, 2020. 

[64] Z. Liu, C. Jin, W. Jin, J. Lee, Z. Zhang, C. Peng, G. Xu, Industrial AI enabled 
prognostics for high-speed railway systems, in: 2018 IEEE International 
Conference on Prognostics and Health Management (ICPHM), 2018, pp. 1–8. 

[65] T. Wang, Z. Liu, M. Liao, N. Mrad, Life prediction for aircraft structure based on 
Bayesian inference: towards a digital twin ecosystem, in: Proceedings of the 
Annual Conference of the Prognostics and Health Management Society, PHM, 
2020. 

[66] P.S. Desai, V. Granja, C.F. Higgs, Lifetime prediction using a tribology-aware, 
deep learning-based digital twin of ball bearing-like tribosystems in oil and gas, 
Processes 9 (2021). 

[67] P. Aivaliotis, E. Xanthakis, A. Sardelis, Machines’ Behaviour Prediction Tool 
(BPT) For Maintenance Applications, in: IFAC-PapersOnLine, 2020, pp. 325–329. 

[68] P. Aivaliotis, K. Georgoulias, Z. Arkouli, S. Makris, Methodology for enabling 
digital twin using advanced physics-based modelling in predictive maintenance, 
Procedia CIRP 81 (2019) 417–422. 

[69] S.S. Johansen, A.R. Nejad, On digital twin condition monitoring approach for 
drivetrains in marine applications, in: Proceedings of the International 
Conference on Offshore Mechanics and Arctic Engineering - OMAE, 2019. 

[70] F.K. Moghadam, A.R. Nejad, Online condition monitoring of floating wind 
turbines drivetrain by means of digital twin. Mech. Syst. Signal Process., 2022, 
p. 162. 

R. van Dinter et al.                                                                                                                                                                                                                             

http://refhub.elsevier.com/S0950-5849(22)00133-1/sbref0008
http://refhub.elsevier.com/S0950-5849(22)00133-1/sbref0008
http://refhub.elsevier.com/S0950-5849(22)00133-1/sbref0009
http://refhub.elsevier.com/S0950-5849(22)00133-1/sbref0009
http://refhub.elsevier.com/S0950-5849(22)00133-1/sbref0010
http://refhub.elsevier.com/S0950-5849(22)00133-1/sbref0010
http://refhub.elsevier.com/S0950-5849(22)00133-1/sbref0010
http://refhub.elsevier.com/S0950-5849(22)00133-1/sbref0010
http://refhub.elsevier.com/S0950-5849(22)00133-1/sbref0011
http://refhub.elsevier.com/S0950-5849(22)00133-1/sbref0011
http://refhub.elsevier.com/S0950-5849(22)00133-1/sbref0011
http://refhub.elsevier.com/S0950-5849(22)00133-1/sbref0012
http://refhub.elsevier.com/S0950-5849(22)00133-1/sbref0012
http://refhub.elsevier.com/S0950-5849(22)00133-1/sbref0012
http://refhub.elsevier.com/S0950-5849(22)00133-1/sbref0012
http://refhub.elsevier.com/S0950-5849(22)00133-1/sbref0012
http://refhub.elsevier.com/S0950-5849(22)00133-1/sbref0013
http://refhub.elsevier.com/S0950-5849(22)00133-1/sbref0013
http://refhub.elsevier.com/S0950-5849(22)00133-1/sbref0014
http://refhub.elsevier.com/S0950-5849(22)00133-1/sbref0014
http://refhub.elsevier.com/S0950-5849(22)00133-1/sbref0014
http://refhub.elsevier.com/S0950-5849(22)00133-1/sbref0015
http://refhub.elsevier.com/S0950-5849(22)00133-1/sbref0015
http://refhub.elsevier.com/S0950-5849(22)00133-1/sbref0016
http://refhub.elsevier.com/S0950-5849(22)00133-1/sbref0016
http://refhub.elsevier.com/S0950-5849(22)00133-1/sbref0016
http://refhub.elsevier.com/S0950-5849(22)00133-1/sbref0017
http://refhub.elsevier.com/S0950-5849(22)00133-1/sbref0017
http://refhub.elsevier.com/S0950-5849(22)00133-1/sbref0018
http://refhub.elsevier.com/S0950-5849(22)00133-1/sbref0018
http://refhub.elsevier.com/S0950-5849(22)00133-1/sbref0019
http://refhub.elsevier.com/S0950-5849(22)00133-1/sbref0019
http://refhub.elsevier.com/S0950-5849(22)00133-1/sbref0019
http://refhub.elsevier.com/S0950-5849(22)00133-1/sbref0020
http://refhub.elsevier.com/S0950-5849(22)00133-1/sbref0020
http://refhub.elsevier.com/S0950-5849(22)00133-1/sbref0021
http://refhub.elsevier.com/S0950-5849(22)00133-1/sbref0021
http://refhub.elsevier.com/S0950-5849(22)00133-1/sbref0022
http://refhub.elsevier.com/S0950-5849(22)00133-1/sbref0022
http://refhub.elsevier.com/S0950-5849(22)00133-1/sbref0023
http://refhub.elsevier.com/S0950-5849(22)00133-1/sbref0023
http://refhub.elsevier.com/S0950-5849(22)00133-1/sbref0023
http://refhub.elsevier.com/S0950-5849(22)00133-1/sbref0023
http://refhub.elsevier.com/S0950-5849(22)00133-1/sbref0023
http://refhub.elsevier.com/S0950-5849(22)00133-1/sbref0024
http://refhub.elsevier.com/S0950-5849(22)00133-1/sbref0024
http://refhub.elsevier.com/S0950-5849(22)00133-1/sbref0024
http://refhub.elsevier.com/S0950-5849(22)00133-1/sbref0024
http://refhub.elsevier.com/S0950-5849(22)00133-1/sbref0025
http://refhub.elsevier.com/S0950-5849(22)00133-1/sbref0025
http://refhub.elsevier.com/S0950-5849(22)00133-1/sbref0025
http://refhub.elsevier.com/S0950-5849(22)00133-1/sbref0026
http://refhub.elsevier.com/S0950-5849(22)00133-1/sbref0026
http://refhub.elsevier.com/S0950-5849(22)00133-1/sbref0026
http://refhub.elsevier.com/S0950-5849(22)00133-1/sbref0027
http://refhub.elsevier.com/S0950-5849(22)00133-1/sbref0027
http://refhub.elsevier.com/S0950-5849(22)00133-1/sbref0028
http://refhub.elsevier.com/S0950-5849(22)00133-1/sbref0028
http://refhub.elsevier.com/S0950-5849(22)00133-1/sbref0029
http://refhub.elsevier.com/S0950-5849(22)00133-1/sbref0029
http://refhub.elsevier.com/S0950-5849(22)00133-1/sbref0030
http://refhub.elsevier.com/S0950-5849(22)00133-1/sbref0030
http://refhub.elsevier.com/S0950-5849(22)00133-1/sbref0030
http://refhub.elsevier.com/S0950-5849(22)00133-1/sbref0031
http://refhub.elsevier.com/S0950-5849(22)00133-1/sbref0031
http://refhub.elsevier.com/S0950-5849(22)00133-1/sbref0031
http://refhub.elsevier.com/S0950-5849(22)00133-1/sbref0036
http://refhub.elsevier.com/S0950-5849(22)00133-1/sbref0036
http://refhub.elsevier.com/S0950-5849(22)00133-1/sbref0037
http://refhub.elsevier.com/S0950-5849(22)00133-1/sbref0037
http://refhub.elsevier.com/S0950-5849(22)00133-1/sbref0037
http://refhub.elsevier.com/S0950-5849(22)00133-1/sbref0038
http://refhub.elsevier.com/S0950-5849(22)00133-1/sbref0038
http://refhub.elsevier.com/S0950-5849(22)00133-1/sbref0039
http://refhub.elsevier.com/S0950-5849(22)00133-1/sbref0039
http://refhub.elsevier.com/S0950-5849(22)00133-1/sbref0039
http://refhub.elsevier.com/S0950-5849(22)00133-1/sbref0040
http://refhub.elsevier.com/S0950-5849(22)00133-1/sbref0040
http://refhub.elsevier.com/S0950-5849(22)00133-1/sbref0040
http://refhub.elsevier.com/S0950-5849(22)00133-1/sbref0042
http://refhub.elsevier.com/S0950-5849(22)00133-1/sbref0042
http://refhub.elsevier.com/S0950-5849(22)00133-1/sbref0043
http://refhub.elsevier.com/S0950-5849(22)00133-1/sbref0043
http://refhub.elsevier.com/S0950-5849(22)00133-1/sbref0043
http://refhub.elsevier.com/S0950-5849(22)00133-1/sbref0043
http://refhub.elsevier.com/S0950-5849(22)00133-1/sbref0044
http://refhub.elsevier.com/S0950-5849(22)00133-1/sbref0044
http://refhub.elsevier.com/S0950-5849(22)00133-1/sbref0044
http://refhub.elsevier.com/S0950-5849(22)00133-1/sbref0045
http://refhub.elsevier.com/S0950-5849(22)00133-1/sbref0045
http://refhub.elsevier.com/S0950-5849(22)00133-1/sbref0046
http://refhub.elsevier.com/S0950-5849(22)00133-1/sbref0046
http://refhub.elsevier.com/S0950-5849(22)00133-1/sbref0046
http://refhub.elsevier.com/S0950-5849(22)00133-1/sbref0047
http://refhub.elsevier.com/S0950-5849(22)00133-1/sbref0047
http://refhub.elsevier.com/S0950-5849(22)00133-1/sbref0047
http://refhub.elsevier.com/S0950-5849(22)00133-1/sbref0048
http://refhub.elsevier.com/S0950-5849(22)00133-1/sbref0048
http://refhub.elsevier.com/S0950-5849(22)00133-1/sbref0049
http://refhub.elsevier.com/S0950-5849(22)00133-1/sbref0049
http://refhub.elsevier.com/S0950-5849(22)00133-1/sbref0049
http://refhub.elsevier.com/S0950-5849(22)00133-1/sbref0050
http://refhub.elsevier.com/S0950-5849(22)00133-1/sbref0050
http://refhub.elsevier.com/S0950-5849(22)00133-1/sbref0050
http://refhub.elsevier.com/S0950-5849(22)00133-1/sbref0051
http://refhub.elsevier.com/S0950-5849(22)00133-1/sbref0051
http://refhub.elsevier.com/S0950-5849(22)00133-1/sbref0052
http://refhub.elsevier.com/S0950-5849(22)00133-1/sbref0052
http://refhub.elsevier.com/S0950-5849(22)00133-1/sbref0052
http://refhub.elsevier.com/S0950-5849(22)00133-1/sbref0053
http://refhub.elsevier.com/S0950-5849(22)00133-1/sbref0053
http://refhub.elsevier.com/S0950-5849(22)00133-1/sbref0053
http://refhub.elsevier.com/S0950-5849(22)00133-1/sbref0054
http://refhub.elsevier.com/S0950-5849(22)00133-1/sbref0054
http://refhub.elsevier.com/S0950-5849(22)00133-1/sbref0055
http://refhub.elsevier.com/S0950-5849(22)00133-1/sbref0055
http://refhub.elsevier.com/S0950-5849(22)00133-1/sbref0056
http://refhub.elsevier.com/S0950-5849(22)00133-1/sbref0056
http://refhub.elsevier.com/S0950-5849(22)00133-1/sbref0057
http://refhub.elsevier.com/S0950-5849(22)00133-1/sbref0057
http://refhub.elsevier.com/S0950-5849(22)00133-1/sbref0057
http://refhub.elsevier.com/S0950-5849(22)00133-1/sbref0058
http://refhub.elsevier.com/S0950-5849(22)00133-1/sbref0058
http://refhub.elsevier.com/S0950-5849(22)00133-1/sbref0058
http://refhub.elsevier.com/S0950-5849(22)00133-1/sbref0059
http://refhub.elsevier.com/S0950-5849(22)00133-1/sbref0059
http://refhub.elsevier.com/S0950-5849(22)00133-1/sbref0059
http://refhub.elsevier.com/S0950-5849(22)00133-1/sbref0060
http://refhub.elsevier.com/S0950-5849(22)00133-1/sbref0060
http://refhub.elsevier.com/S0950-5849(22)00133-1/sbref0060
http://refhub.elsevier.com/S0950-5849(22)00133-1/sbref0061
http://refhub.elsevier.com/S0950-5849(22)00133-1/sbref0061
http://refhub.elsevier.com/S0950-5849(22)00133-1/sbref0062
http://refhub.elsevier.com/S0950-5849(22)00133-1/sbref0062
http://refhub.elsevier.com/S0950-5849(22)00133-1/sbref0063
http://refhub.elsevier.com/S0950-5849(22)00133-1/sbref0063
http://refhub.elsevier.com/S0950-5849(22)00133-1/sbref0063
http://refhub.elsevier.com/S0950-5849(22)00133-1/sbref0064
http://refhub.elsevier.com/S0950-5849(22)00133-1/sbref0064
http://refhub.elsevier.com/S0950-5849(22)00133-1/sbref0064
http://refhub.elsevier.com/S0950-5849(22)00133-1/sbref0065
http://refhub.elsevier.com/S0950-5849(22)00133-1/sbref0065
http://refhub.elsevier.com/S0950-5849(22)00133-1/sbref0065
http://refhub.elsevier.com/S0950-5849(22)00133-1/sbref0065
http://refhub.elsevier.com/S0950-5849(22)00133-1/sbref0066
http://refhub.elsevier.com/S0950-5849(22)00133-1/sbref0066
http://refhub.elsevier.com/S0950-5849(22)00133-1/sbref0066
http://refhub.elsevier.com/S0950-5849(22)00133-1/sbref0068
http://refhub.elsevier.com/S0950-5849(22)00133-1/sbref0068
http://refhub.elsevier.com/S0950-5849(22)00133-1/sbref0068
http://refhub.elsevier.com/S0950-5849(22)00133-1/sbref0069
http://refhub.elsevier.com/S0950-5849(22)00133-1/sbref0069
http://refhub.elsevier.com/S0950-5849(22)00133-1/sbref0069
http://refhub.elsevier.com/S0950-5849(22)00133-1/sbref0070
http://refhub.elsevier.com/S0950-5849(22)00133-1/sbref0070
http://refhub.elsevier.com/S0950-5849(22)00133-1/sbref0070


Information and Software Technology 151 (2022) 107008

20

[71] M.D. Anis, S. Taghipour, C.G. Lee, Optimal RUL estimation: a state-of-art digital 
twin application, in: 2020 Annual Reliability and Maintainability Symposium 
(RAMS), 2020, pp. 1–7. 

[72] S. Heim, J. Clemens, J.E. Steck, C. Basic, D. Timmons, K. Zwiener, Predictive 
Maintenance on Aircraft, Applications with Digital Twin, 2020 IEEE Int. 
Conference on Big Data (Big Data) (2020) 4122–4127. 

[73] R. Rossini, D. Conzon, G. Prato, C. Pastrone, J. Reis, G. Gonçalves, REPLICA: a 
solution for next generation iot and digital twin based fault diagnosis and 
predictive maintenance, in: CEUR Workshop Proceedings, 2020, pp. 55–62. 

[74] C. Altun, B. Tavli, Social internet of digital twins via distributed ledger 
technologies: application of predictive maintenance, 2019 27th Telecommun. 
Forum (TELFOR) (2019) 1–4. 

[75] U.T. Tygesen, K. Worden, T. Rogers, G. Manson, E.J. Cross, State-of-the-art and 
future directions for predictive modelling of offshore structure dynamics using 
machine learning, in: Conference Proceedings of the Society for Experimental 
Mechanics Series, 2019, pp. 223–233. 

[76] J. Zenisek, J. Wolfartsberger, C. Sievi, M. Affenzeller, Streaming synthetic time 
series for simulated condition monitoring, IFAC-PapersOnLine 51 (2018) 
643–648. 

[77] A. Oluwasegun, J.-.C. Jung, The application of machine learning for the 
prognostics and health management of control element drive system, Nuclear 
Eng. Technol. 52 (2020) 2262–2273. 

[78] S. Centomo, N. Dall’ora, F. Fummi, The design of a digital-twin for predictive 
maintenance, in: IEEE Symposium on Emerging Technologies and Factory 
Automation, ETFA, 2020, pp. 1781–1788. 

[79] P. Aivaliotis, K. Georgoulias, G. Chryssolouris, The use of Digital Twin for 
predictive maintenance in manufacturing, Int. J. Comput. Integrated Manuf. 32 
(2019) 1067–1080. 

[80] J. Lee, H. Qiu, G. Yu, J. Lin, Bearing Data Set, NASA Ames Prognostics Data 
Repository (2007). 

[81] A. Saxena, K. Goebel, Turbofan engine degradation simulation data set, NASA 
Ames Prognostics Data Repository (2008) 878–887. 

[82] OpenModelica, Introduction, in, n.d. 
[83] C. Semeraro, M. Lezoche, H. Panetto, M. Dassisti, S. Cafagna, Data-driven pattern- 

based constructs definition for the digital transformation modelling of 
collaborative networked manufacturing enterprises, in: Working Conference on 
Virtual Enterprises, Springer, 2019, pp. 507–515. 

[84] J. Brownlee, Master machine learning algorithms: discover how they work and 
implement them from scratch, 2016. 

[85] J. Brownlee, Deep learning for natural language processing: develop deep 
learning models for your natural language problems, Machine Learn. Mastery 
(2017). 

[86] J. Brownlee, Autoencoder Feature Extraction for Classification, in, 2020. 
[87] J. Brownlee, Long short-term memory networks with python: develop sequence 

prediction models with deep learning, Machine Learn. Mastery (2017). 
[88] M. Kaji, J. Parvizian, H.W. van de Venn, Constructing a reliable health indicator 

for bearings using convolutional autoencoder and continuous wavelet transform, 
Appl. Sci. (Switzerland) 10 (2020) 1–21. 

[89] MATLAB, Understanding Kalman Filters, Part 5: Nonlinear, State Estimators, 
2017. 

[90] A.S.M. Al-Azzawi, Two-Degree-of-Freedom Systems, in, University of Babylon, n. 
d. 

[91] HiveMQ, 15 frequently asked MQTT questions, in, 2019. 
[92] Wago, Snelle communicatie tussen automatiserings- en veldapparaten: MODBUS, 

in, n.d. 
[93] M. Ulusoy, Predictive maintenance, part 3: remaining useful life estimation, in, n. 

d. 
[94] Key digital technologies joint undertaking, key digital technologies joint 

undertaking, in, n.d. 
[95] A. Ng, Machine learning yearning, in: URL: https://www.mlyearning. org/(96), 

2017. 

[96] Y. You, C. Chen, F. Hu, Y. Liu, Z. Ji, Advances of digital twins for predictive 
maintenance, Procedia Comput. Sci. 200 (2022) 1471–1480. 

[97] R. Rossini, G. Prato, D. Conzon, C. Pastrone, E. Pereira, J. Reis, G. Gonçalves, 
D. Henriques, A.R. Santiago, A. Ferreira, AI environment for predictive 
maintenance in a manufacturing scenario, in: 2021 26th IEEE International 
Conference on Emerging Technologies and Factory Automation (ETFA), 2021, 
pp. 1–8. 

[98] W. Zhen, T. Dunbing, L. Changchun, X. Xin, Z. Linqi, Z. Zhuocheng, L. Xuan, 
Augmented-reality-assisted bearing fault diagnosis in intelligent manufacturing 
workshop using deep transfer learning, 2021 Global Reliability and Prognostics 
and Health Manag. (PHM-Nanjing) (2021) 1–6. 

[99] D. Kibira, G. Shao, B.A. Weiss, Buiding a digital twin for robot workcell 
prognostics and health management, in: Proceedings of the Winter Simulation 
Conference, IEEE Press, Phoenix, Arizona, 2021, p. 142. Article. 

[100] X. Shao, B. Cai, H. Fan, X. Liu, A data-driven remaining useful life prediction 
methodology: optimization based on digital twin, 2021 Global Reliability and 
Prognostics and Health Manag. (PHM-Nanjing) (2021) 1–7. 

[101] X. Wang, F. Liu, D. Zhao, Deep transfer fault diagnosis using digital twin and 
generative adversarial network, in: 2021 IEEE International Conference on 
Sensing, Diagnostics, Prognostics, and Control (SDPC), 2021, pp. 186–193. 

[102] H.H. Hosamo, P.R. Svennevig, K. Svidt, D. Han, H.K. Nielsen, A Digital Twin 
predictive maintenance framework of air handling units based on automatic fault 
detection and diagnostics, Energy Build. 261 (2022), 111988. 

[103] K. Classens, W.P.M.H.M. Heemels, T. Oomen, Digital twins in mechatronics: from 
model-based control to predictive maintenance, 2021 IEEE 1st Int. Conference on 
Digital Twins and Parallel Intelligence (DTPI) (2021) 336–339. 

[104] A.E. Bondoc, M. Tayefeh, A. Barari, Employing LIVE digital twin in prognostic 
and health management: identifying location of the sensors, IFAC-PapersOnLine 
55 (2022) 138–143. 

[105] J. Hu, N. Hu, P. Luo, Y. Yang, Fault diagnosis of gearbox based on digital twin 
concept model, 2021 4th Int. Conference on Intelligent Robotics and Control Eng. 
(IRCE) (2021) 30–34. 

[106] S. Panagou, F. Fruggiero, M. Lerra, C.d. Vecchio, F. Menchetti, L. Piedimonte, O. 
R. Natale, S. Passariello, Feature investigation with digital twin for predictive 
maintenance following a machine learning approach, IFAC-PapersOnLine 55 
(2022) 132–137. 

[107] Z. Wu, J. Li, A framework of dynamic data driven digital twin for complex 
engineering products: the example of aircraft engine health management, 
Procedia Manuf. 55 (2021) 139–146. 

[108] N.G. Malek, M. Tayefeh, D. Bender, A. Barari, LIVE digital twin for smart 
maintenance in structural systems, IFAC-PapersOnLine 54 (2021) 1047–1052. 

[109] Z. Ren, J. Wan, P. Deng, Machine-learning-driven digital twin for lifecycle 
management of complex equipment, IEEE Trans Emerg Top Comput 10 (2022) 
9–22. 

[110] T. Zhang, W. Du, G. Zhang, J. Wang, PHM of rail vehicle based on digital twin, 
2021 Global Reliability and Prognostics and Health Manag. (PHM-Nanjing) 
(2021) 1–5. 

[111] S. Mi, Y. Feng, H. Zheng, Y. Wang, Y. Gao, J. Tan, Prediction maintenance 
integrated decision-making approach supported by digital twin-driven 
cooperative awareness and interconnection framework, J. Manuf. Syst. 58 (2021) 
329–345. 
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