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The over-population and the limited energy resources have puzzled the government and
private organizations to think about the providence of non-stop energy resources to the
industries, hospitals, smart homes, and shopping malls to ensure normal routine activities.
To accept this challenge, some researchers put their efforts into generating energy from
renewable energy resources (solar, fossil fuels, wind turbines, geothermal energy, and
many others) to fulfill the needs of life. While some researchers worked on the efficient
utilization of the available energy resources to save the energy for future generations.
Inspiring from the second approach, this research work has proposed a systematic
allocation of energy resources using the slice-based mechanism in a smart grid
environment. This research framework using a hybrid model comprises long short-
term memory (LSTM), and a support vector machine (SVM), where the LSTM classifies
different energy requests (for allocation of energy resources) while the SVM accomplishes
the statistical analysis (to estimate the number of solar energy resources allocated and for a
specific interval of time). This need-based allocation of energy resources will not only assist
in saving energy resources for future use, but will also improve the life of the power grid and
other electric appliances (due to over-usage and burning). The applicability of this model is
validated by testing it on a real-time scenario like slice failure conditions, slice overflow
conditions, a huge number of requests, and alternate slice allocation conditions.
Furthermore, the incoming request classification is also validated based on its accurate
identification using a confusionmatrix, varying number of hidden layers, accuracy, and time
consumption. The outperformance of the selected based on these scenarios and
validation metrics reflects the applicability of this framework. Moreover, this framework
will assist in reducing overbilling charges and energy savage for future generations due to
its need-based allocation of energy resources assignment capabilities.
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1 INTRODUCTION

Globally, the rapid economic development has endowed to an
exponential increase in energy demands. The snippy evolution
in world economies especially in the United States, China, and
Europe is bound to increase energy consumption (Bórawski
et al., 2019). The energy sector is followed as the prime caryatid
of excrescence, development, and keenness of enterprises and
new economies (European Commission Directorate-General
for Energy, 2018). Around the world, 80% of the population
uses electricity as a primary source of energy. Both government
and non-government organizations contribute their full efforts
to ensure non-interrupted power to their customers but the
over-population, exponential growth in technologies, modern-
day societies, and high reliance on electricity have baffled the
researcher and power suppliers, in monitoring, managing, and
analyzing the power grids to ensure non-stop power flow (Tian
et al., 2021). The unavailability of sufficient incentives to
upgrade the transmission infrastructure for example, in the
US and Europe power cuts have become more frequent (Bruch
et al., 2011). Achieving high energy security and
environmental protection are the primary concern of an
economy focused on sustainability. The non-uniform and
unbalanced distribution of electric power mostly concludes
with power outages and this power outage is among the key
hurdles to sustainability. The power outage is divided into two
different types of short-term power failure and long-term
power failure. In the first failure form, the electricity mostly
lasts part of an hour or for a few hours, but the long-term
blackout ensues in enduring the electricity for days or even
weeks (Tian et al., 2021).

Generally, we are facing bounded energy resources with
more demands. Moreover, a high budget is required to produce
energy from these limited resources. Keeping in view this
critical problem the research community divided into two
groups with different approaches 1) to identify new energy
resources to meet the customers’ needs and requirements, and
2) to efficiently utilize the available resources and develop an
optimum power distribution model to provide need-based
energy resources to the customers. This need-based
distribution of resources not only assists in ensuring energy
security and environmental protection but also improve the
life of the available resources. The first group of researchers
(those who decided to find alternate energy resources)
presented new ideas such as Brockway et al. (2019)
presented the use of fossil fuels as an alternate source of
energy. They further explained that under many kismets it
will remain the potent energy source to at least 2050. However,
the extraction of useful energy from fossil fuels requires more
energy and high incentives that resultantly make it more
expensive for the customers and industrialists. Jurasz et al.
(2020) accomplished a systematic analysis of the literature to
perform a complementarity of the renewable energy sources.
This research article provides chronological and spatial
information about the extant and presented a
complementarity concept of the extant. Panwar et al. (2011)
and Sinsel et al. (2020) presented review articles to explain the

use of renewable energy sources for environmental protection.
Bórawski et al. (2019) suggested the use of biofuels as a
renewable energy source for the European Union (EU). In
this research article, the authors used descriptive and statistical
analysis to detail the changes in bioenergy development in the
EU. A. Kalogirou proposed a renewable energy source
comprising solar collectors, geothermal energy, solar ponds,
and photovoltaics for sea-water desalination (Kalogirou,
2005). Normally removal of salt from sea water requires
high energy, so, the author presented a renewable source for
sea-water desalination to bring this water into daily routine
purposes like drinking, cooking, etc.

The key motivation behind the second approach (optimum
utilization of the available resources) was cyber-attacks, meter
reading errors, electricity theft, billing errors, fraud, and many
other reasons. The unfair means and irregular distribution of
the resources mostly result in providing more than enough
resources to a group of people with no need, while limited
energy resources to those (supposed to have more resources
like industries, irrigation departments, etc.). In order to
combat these challenges, some researchers like Colmenar-
Santos et al. (2019) presented the concepts of smart grids to
handle the issues like intermittency and the non-dispatchable
nature of wind and solar energy production, but flexibility
needs can migrate from generation to load, with the accretion
of demand-side resources and storage technologies. A novel
grid technique is suggested for the optimal integration of
renewable resources and electric vehicles to increase
penetration of renewable energy. Gu et al. (2020) presented
a reliable fault ride mechanism to resist a large-scale
disconnection of renewable energy plants due to grid faults.
Lee and Lee presented an adaptive renewable energy
mechanism for the base stations in the cellular networks to
reduce energy consumption and provide high throughput with
the help of traffic management and energy cooperation
strategies (Lee and Lee, 2020). A network scheduling
programming is used for the dispatching purposes between
the on-grid and renewable energy resources in the base
stations, while Lu et al. (2020) used stochastic programming
for the optimal dispatch of on-grid and renewable energy
resources. Rahbar et al. (2015) developed a real-time offline
energy storage management framework for the renewable
energy sources in the microgrid. Shah performed feasibility
of six renewable energy sources including geothermal,
municipal solid waste, biomass, wind, solar, and micro-
hydro to develop a secure and renewable hydrogen-based
energy source in Pakistan (Shah, 2020). The hydrogen-
based energy source will enhance energy security and
decrease hazardous emissions. The applicability of this
renewable energy source was evaluated using Fuzzy Delphi,
environmental data envelopment analysis (DEA), and fuzzy
analytical hierarchy process (FAHP).

With the emergence of smart homes and integration of
intelligent IoT-based smart devices, numerous automated
appliances are nowadays available in every smart home
architecture. These devices include a lighting system, colling
and an air-conditioning system, efficient heating and
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ventilation system, and many others. These devices on one side
make our life easier but on the other side, it requires more
energy to operate and resultantly it ends up with overbilling
and high costs. So, significant attention is required in terms of
energy efficiency. Moreover, the energy management of the
poly-generation system or micro-generation has always been
very complex. Keeping the balance between demands and
production is always considered as a hectic job for the
research community. To combat these challenges Hadi et al.
(2020) proposed an efficient demand response algorithm to
resist the intermittency problem by providing a continuous
power supply to the customers. Han et al. (2014) developed a
smart home energy management system using ZigBee and PLC
technologies. In this research article, they perform energy
estimation scheduling to reduce energy costs. O’Malley
et al. (2020) reviewed the multi-carrier energy systems
(MCESs) for future low carbon energy systems using
electrification and very high variable renewable energy
penetrations. Based on their review assessments they
concluded that MCESs are more efficient and flexible to
deploy on a large- and small-scale network level but are
more complex to control and manage. These systems are
classified using strong association in computation and
planning throughout multiple energy vectors and/or sectors
to provide reliable, cost-effective energy services to end users/
customers with minimal impact on the environment.

To meet the high climate protection and resource efficiency,
the development of a sustainable smart grid design is required to
present a need-based allocation of energy resources to stop the
waste of energy resources. This hypothetical model contains a
slicedmechanism to provide energy resources to the appliances in
smart homes. This hypothetical model uses LSTM and SVM
classifiers, where the LSTM performs the identification of
different energy requests (devices requesting energy resources)
while the SVM classifiers perform the statistical analysis to
calculate the time allocation of energy resources and relieving
of energy resources. Based on the energy consumption and
requirements, this hypothetical model divides the appliances
into different categories. It allocates energy resources based on
the information including season, weather, and priority-based
allocation of resources (like if it is hot then more power for the
fridge, water pumps, and air conditioning system, while if it is
winter then more power to heaters and other heating appliances).
The rest of the study is organized by explaining the most recent
and relevant research work reported in section 2 of the study.
Section 3 details the hypothetical model along with a full
description and algorithm. Section 4 evaluates the proposed
hypothetical model based on some critical analysis followed by
the conclusion and recommendations in section 5 of the study.

2 RELATED WORK

Energy crises in the world have gained significant attention from
the research community to think about the reduction of the
energy resources in different areas. The abundance of integrated
devices in the market and the installation of more appliances in

smart homes have exponentially increased the energy
consumption in the last few years (Han et al., 2014).
Renewable energy sources and energy saving are alternate
solutions for addressing the energy problems of smart
residents. Power generation and consumption must be
simultaneously considered for saving energy cost problems.
The exponential increase in energy consumption, the
diminution of non-renewable energy resources, the CO2
emanations resulting from energy production, and the
affiliated global warming have become critical concerns
worldwide, that drive the creation of new solutions for energy
management and consumption. Tipantuña and Hesselbach
presented an adaptive architecture for efficient energy
utilization for both renewable and non-renewable energy
sources (Tipantuña and Hesselbach, 2020). They suggested
software-defined networking (SDN) and network functions
virtualization (NFV) technologies enable and promote the
primary use of energy from renewable sources. Khan et al.
(2021a) proposed a smart appliances control system for the
smart resident environment using the mobile application. A
CNN-based hybrid solution is proposed for object
identification and control purposes. Kumar et al. (2022a);
Kumar et al. (2022b) suggested a hybrid model for proficient
energy management using a grey wolf optimizer. Primarily, their
work focuses on achieving energy from renewable energy
resources and performing size optimization with reduced costs
and increased productivity for the end-users.

To ensure the semipermanent development of human society,
standards like energy saving and smart utilization have been
encouraged by many researchers in the last few years, but above
all, the need for low or zero-carbon emission sources, like
renewable energy sources, have been bolstered (Int. Energy
Agency Birol, 2013). Thus, green energy from renewable
resources like wind and solar, in power grids has egressed as
an environmentally friendly, important, and sustainable
substitute to fulfill the current and future energy demands.
However, the wavering nature of renewable sources due to
environmental and geographical conditions may cause
imbalance or instability when incorporated into the
generation-consumption ecosystem (Carrasco et al., 2006).
Moreover, the ineffective use of the limited energy generated
has resulted in the development of different architectures such as
Demand-Response (DR) systems that are capable of utilizing the
available energy resources efficiently (Medina et al., 2010). This
architecture comprises a set of actions and requests swapped
between the energy consumer and the supplier that is
accomplished using agreements, and aims to promote
consumer involvement in energy management by granting the
modification of consumption based on availability (Medina et al.,
2010). The use of DR systems is encouraged among the
consumers by offering reduced electricity bills or free-use
electricity periods (Basmadjian et al., 2013; Basmadjian et al.,
2018). The DR architecture can be implemented by integrating
advanced ICT technology, such as data centers (Ghatikar, 2012).

Algorithms using deep learning (DL) architectures can convert
simple features intomore complex and abstract features automatically
and are capable of solving practical problems by combining these
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features. Resultantly, DL has gained significant research interest in
diverse domains. Since the Parousia of DL technology in 2013, DL
architectures such as deep neural network (DNN) and deep belief
network (DBN) have been suggested for fault diagnosing in
mechanical systems. Using the recent literature as evidence, we
concluded that the four DL algorithms based on CNN, DNN,
Automatic Encoder (AE), and LSTM are extensively proposed in
the fields of energy resource allocation and dis-connection as depicted
in Table 1. The corresponding network model structures of these
DNN models are shown in Figure 1.

The CNN architecture contains one or more convolutional
and pooling layers, merged with a fully connected layer. These
models outperformed in processing images and natural language
databases, which can highly minimize the number of parameters
used in the training process (Khan et al., 2019). On the other side,
the CNN model is time-consuming in both the simulation and
learning process. Also, its architecture is highly complicated and
difficult to implement. The DNN architectures comprise at least
one hidden layer trained by back-propagation and gradient
descent functions. In the DNN models when we add a greater
number of hidden layers it yields more abstract features that
ultimately result in over-fitting problems. Auto encoder (AE) is
an unsupervised training model that efficiently performs in
compressing data, and thus it is often followed in data
denoising and reducing visual-based data dimensions. The
encouraging aspect of using the AE model is its ability to
choose the suitable extended model using the actual
processing data as an argument. But the capability to process
only one type of data is considered the discouraging aspect of AE-
based models. LSTM is a derived form of recursive neural
network, capable of learning long distance dependent data. It
contains multiple cells associated in series with each other, where
every “cell” is framed by an input gate, an output gate, a forgetting
gate, and a state unit. Strong sequence data modeling is the

prominent tool of this architecture. Furthermore, the gradient
fading problems can also be addressed using the output and
forgetting gates. The unavailability of sufficient data (for training
purposes) results in overfitting conditions and it is followed as the
discouraging aspect of the LSTM models.

For achieving optimum resource utilization and traffic control,
the researchers proposed sliced-based solutions for different
research problems such as Khan et al. (2021b); Khan et al.
(2022) suggested a sliced design for network communication
systems to efficiently control the congestion and network traffic.
They proposed a convolution neural network (CNN) for
classification purposes, while LSTM and SVM for statistical
analysis. This statistical analysis was aimed to calculate the
traffic status to counter slice overflow or failure conditions.
Thantharate et al. (2019) proposed a deep slice model for
internet security and efficient communication in a 5th

generation network. Bideh et al. (2020) suggested Message
Queue Telemetry Transport (MQTT) and Constraint
Application Protocol (CoAP) for calculating energy
consumption to secure lightweight IoT protocols. Requeno
et al. (2012) proposed a sliced model to perform phylogenetic
analysis to validate the biological properties of phylogenies. After
studying the literature, it was concluded that there is no sliced-
based framework suggested for the efficient allocation of energy
resources. To counter this problem, this research work presents a
smart grid design for optimum energy resource allocation using a
slice-based deep learning model. This model uses LSTM and a
support vector machine (hybrid architecture), where the LSTM
performs the time-based allocation of resources while SVM will
perform the statistical analysis to identify the need-based
allocation of energy resources. This slice-based mechanism will
not assure the non-stop energy resources, but it will minimize the
over-billing charges of the customers. In addition, it will have low
chances to cable damage or failure of overall grids.

TABLE 1 | Different DL-based model used in smart grid management.

DL-based
models

Research problem addressed Application and characteristic
evaluation

Stacked AE Wang et al. (2018) suggested stacked auto-encoder for cyber-attacks on
smart grids. Barbeiro et al. (2014) exploited AEmodel for state estimation in
distribution grids.

AE models are designed to accurately accumulate the nonstationary and
nonlinear features of data relevant to the electric load. These feature vectors
are then applied to electric load forecasting to improve the accuracy of the
grid which ultimately results in a narrower width of state variables. The
probability in the form of forecasting errors is calculated using the Gaussian
distribution parameter.

DeepCoin Ferrag and Maglaras, (2020) proposed a DL-based blockchain-driven
energy exchange framework for smart grids to counter intrusion attacks.
Hasankhani et al. (2021) accomplished a systematic evaluation to assess
the literature for evaluating the future of blockchain-driven applications in
the domains of smart grids and safe energy transmissions.

This model exploits two different schemes, a blockchain-driven system,
and a DL-based system. The blockchain-driven system comprises five
stages: assemble stage, agreement stage, producing a block stage and
consensus-making stage, and view change stage. It integrates a novel
reliable peer-to-peer energy system using a practical Byzantine fault
tolerance algorithm to achieve prominent results. To hinder smart grid
attacks, this model makes secures each block with hash functions and
short signatures.

Bayesian deep
learning

Yang et al. (2020) suggested Bayesian DL-based design instead of the
probabilistic load forecasting (PLF) model to ensure high reliability and
efficient energy transmission in a smart grid.

Exponential increases in deploying smart meters in millions of households
results in a drastic amount of individual electricity consumption. To counter
this problem the Bayesian DL model provides a cluster-based pooling
scheme primarily implemented to boost data diversity and volume for the
framework.
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3 PROPOSEDCONCEPTUAL FRAMEWORK

A conceptual framework is developed in this research work for
the development of a smart grid design that works by
implementing a sliced-based approach to allocate energy
resources to smart home appliances. The conceptual
frameworks are proposed for numerous research problems like
Sampaio and González proposed a conceptual design for
Photovoltaic solar energy (Sampaio and González, 2017). They
performed a systematic analysis by selecting different parameters
like current market values, cost and technologies proposed
different ways of obtaining energy resources, advantages, and
disadvantages, and implications. Azar and Menassa presented a
conceptual design for energy estimation in a smart building using

the agent-based framework (Azar and Menassa, 2010). Chung
et al. (2017) suggested a conceptual design for evaluating the
security of available energy resources in South Korea. They
performed a systematic evaluation of different energy
resources like coal, oil, nuclear, natural gas, and renewable
energy resources. They mainly focused on indexes of supply
reliability, environmental sustainability, electricity production
cost, and technology complementarity. Sadeq et al. (2022)
presented a conceptual framework using a wireless sensor
network integrated with MAC protocol (WSN-MAC) to
achieve high energy consumption for the IoT devices.

Based on the literature evidence, a conceptual framework is
presented in this research work for the efficient allocation of
energy resources in smart homes. The proposed conceptual

FIGURE 1 | Typical architectures of (A) CNN model, (B) DNN model, (C) LSTM, and (D) auto encoder.
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framework is depicted in Figure 2. Generally, this framework
is divided into three main sections. The input section
(incoming energy from different electrical and mechanical
sources including solar panels, hydel powers, mechanical
systems, generators, and other renewable energy resources),
the smart grid (the overall input energy is provided to the
smart grid to perform a systematic allocation of energy
resources using the artificial intelligence-based design), and
the different systems and devices that consume energy
resources. These consumers can be of type smart homes,
industries, banking systems, air-conditioning plants,
universities, and many others. The artificial intelligence-
based design uses a hybrid design comprising LSTM and
SVM classifiers and identification models. The SVM
performs the statistical analysis to identify the need for
resources to accomplish a certain task. This need-based
allocation of resources will not only save energy resources
for future use, but also keeps different valuable appliances
from burning due to overload or overuse conditions. After
identifying the requirement of resources, the LSTM model
calculates the timely allocation of energy resources. Also, this
model is capable of assigning priority-based allocation of
energy resources. For example, in hard weather conditions
(summer) the priority will be assigned to the water pump and
other water evacuation systems (because it is more difficult to
have time without water). On the side, if it is winter, then
energy resources will be assigned to those appliances that keep
the room temperature constant for living beings.

In the literature, the SVM classifier is extensively suggested
for the classification of linear and non-linear problems (Khan

et al., 2021c). Promising results can be generated by carefully
choosing the quadratic function that solely depends on the
regularization parameter. Kernel-based functions are a handy
tool in the regularization process. Different kernel functions
like radial-based function (RBF) kernel, polynomial-based
kernel, sigmoid, and linear kernels are handy tools to
consider.

• Linear-based Kernel – H(u, v) � u × v
• Sigmoid-based Kernel – H(u, v) � tanh〈β0uv + β1〉
• RBF-based Kernel – H(u, v) � e(−γ||u−v||

2)
• Polynomial Kernel – H(u, v) � [(u × v) + 1]d

The letters d, β0, β1, and γ are the metrics that can be estimated
empirically with the help of Eq. 1.

f(x) � WTθx + v (1)
where w ∈ R and b ∈ R and θ(x) depicts a feature vector.

The motivation behind the use of the SVM classifier is its easy
implementation, the providence of accurate results during a
limited span of time, and operationally smartness. The
transformation function is implemented with the help of a
non-linear operator θ(x) to convert inputs au, bu into a high
dimensional space. The optimum hyper-place is depicted in Eq. 2
below.

f(x) � sgn(∑ buxuM(au, a) + y) (2)
where M(au, a) � e(−γ||au−a||

2) is the kernel function using RBF,
and this overall sgn (.) represents the sign function.

FIGURE 2 | Proposed conceptual framework.
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Algorithm 1. Algorithm for the proposed hybrid energy
framework is mentioned below.

To validate the proposed conceptual model, home appliances
database1 developed by the U.S. Department of Commerce is
freely available for simulation and experimental work.
Candanedo et al. (2017) used this database for identifying the

energy use of different appliances using data-driven predictive
models. They have used four different classification models
including SVM with the radical kernel, multiple linear
regression, random forest, and gradient boosting machines
(GSM). The description of this database is detailed in Table 2.
The data is accumulated for a time interval ranging from 10 min
to about 4.5 months.

After training and testing our model with this real-time time,
the following results are generated depicted in Figure 3. It
represents the number of appliances requested for energy
resources and served (resources allocated during a time
interval of 13 h). From Figure 3, it is concluded that sufficient
resources are assigned to home appliances and commercial-based
devices and there are no overloading or slice failure conditions. In
other words, there are enough resources left to serve the new
incoming requests.

This model is validated for overloading conditions (requesting
more than enough energy resources). The overloading condition
is depicted in Figure 4, where the eOrganize requests for energy
resources more than a slice can cover (>95%), then in this case the

TABLE 2 | Description of the database used for simulation purposes (Candanedo, 2017).

S. No Parameters Description S. No Parameters Description

1. Total number of instances 19735 2. Number of Web hits 185122
3. Type of entries in the database Time series, multivariate 4. Entries type Real-time (date, time)
5. Number of features 29 6. Attribute information Appliances, energy use in Wh, temperature, humidity, etc.

FIGURE 3 | Number of energy requests served.

FIGURE 4 | Load overloading error in eOrganize slice and automatic
allocation of requests to mSlice.

1https://archive.ics.uci.edu/ml/datasets/Appliances+energy+prediction
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energy resources are automatically assigned from the reserved
energy resources (mSlice) to handle any unwanted situation like
overloading or slice failure conditions. The proposed model is
capable of assigning mSlice to the newly incoming energy
requests and also assigns the mSlice to the currently available
requests as depicted in Figure 4.

After overloading conditions, the automatic allocation of
resources allocation is depicted in Figure 5. These results are
generated for a period of 18 h. From Figure 5, it is concluded that
at 9:30 and 9:45 h an overloading condition arises. When the

model predicts these conditions, the new energy requests are
automatically directed to mSlice (master slice) for allocation of
sufficient energy requests.

4 RESULTS AND DISCUSSIONS

The applicability of the proposed sliced-based energy resource
allocation model is validated using different scenarios and
performance validation metrics. The scenarios include slice

FIGURE 5 | Automatic allocation of mSlice to eOrgnaize requests after overloading conditions.

TABLE 3 | Performance evaluation of different techniques using different performance parameters.

Techniques Recall Precision F1-score Accuracy AUC

particle swarm optimization 0.72 0.76 0.81 0.82 0.86
grey wolf optimization 0.74 0.81 0.85 0.87 0.89
Conv1D Net 0.76 0.78 0.81 0.82 0.83
Proposed model 0.96 0.87 0.87 0.86 0.95

FIGURE 6 | mSlice automatic allocation during slice failure conditions.
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failure conditions and many energy requests. While performance
metrics include accurate request identification capabilities based
on precision, accuracy, and accurate time slot assignment.
Moreover, the simulation time required and identification
using a varying number of hidden layers are also used as
evaluating strategies in this research work.

4.1 Energy Slice Failure Condition
The selected research model is assessed for the slice failure
condition. The applicability of the proposed hybrid model is
tested based on its accurate slice failure identification and
accurate assignment of the mSlice (master slice). Based on the
simulated results depicted in Figure 6, our hybrid model
accurately assigned the master slice (mslice) in case of slice
failure conditions.

In Figure 6, a slice failure condition occurs in the dHome
slice (home appliances slice) during the period of 2 h and
15 min during the time interval 2:30 to 4:45, while another slice
failure condition occurred for a period of 5 h during the
interval 1:00 p.m. to 5:00 p.m. The proposed hybrid model
automatically detects this slice failure condition and allocated
the master slice to provide a non-stop energy resource to the
ongoing requests. This automatic alternate slice allocation
reflects the high applicability of this need-based energy
resource allocation framework. And after slice recovery, the
dHome slice is then automatically assigned back to the
ongoing operations. In other words, there is no energy loss
or operation loss condition occurred during this handover/
slice-exchange process.

4.2 Alternate Slice Allocation
The proposed model is also validated for a high number of energy
requests (utilization of an energy slice of more than 95%). In this
case, the new devices from both the dHome slice and eOrganize
slice are automatically routed to the mSlice. This automatic
redirection assists in controlling the devices’ requests in peak

hours’ conditions like the summer season (when there is more
attention required for the ventilation and cooling systems).

4.3 Accurate Incoming Requests
Classification
The proposed research framework is also avouched for the
classification of incoming requests based on energy resources
requirements (low energy resources consuming devices or high
energy resources consuming devices. In other words, the
incoming requests are from factories or industries (that mostly
require non-stop high energy resources) or the home appliances
(smart cars, smart doors, other home appliances) that typically
require small energy resources. To avouch the performance of the
proposed hybrid model confusion matrix, time consumption
using a different number of hidden layers, precision, and
accuracy are used. The experimental results are detailed below.

Figure 7 depicts the identification rate of the proposed
framework using a confusion matrix as a validation parameter.
The small false-positive values depict the applicability of the
proposed model in the targeted research domain.

FIGURE 7 | Confusion matrix for the proposed framework (A) for training set, (B) for test set.

FIGURE 8 | Hidden layers-based performance validation using time
consumption as a key metric.
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This framework is also evaluated using a varying number of
hidden layers (hL) and corresponding time consumption. The
low time consumption during the classification process depicts
the applicability of the proposed hybrid framework. In our case,
we used hidden layers (starting from one hidden layer). The
corresponding results are depicted in Figure 8. These simulation
results are generated on a core-i7 laptop. From Figure 8, it is
observed that increases in hL resultantly increase the time
consumption in the energy requests classification. If the
proposed framework is trained using a GPU-based system,
then the time consumption will be reduced to a number of
seconds instead of minutes.

Applicability of the proposed hybrid model is also validated
using different classification and recognition models including
particle swarm optimization technique, grey wolf optimization,
and convolution 1dimensional network (Conv 1D Net). For
validation purposes, different performance metrics including
recall, accuracy, precision, and area under the curve (AUC)
are used. Based on the performance values it was concluded
that our model outperformed by generating optimum
classification and recognition results. During the experimental
results, it was concluded that particle swarm optimization and
grey wolf optimization techniques are shallow architectures.
Shallow architectures performed well in binary classification
problems, while failing in multi-class problems. In our case,
we have a multi-class problem (including six different classes).

5 CONCLUSION

Globally, the actual energy consumption is more than the
available current energy reservoirs. The daily-based
infrastructure development with a high speed and exponential
increase in world population is another prominent challenges to
these available energy reservoirs. The research community, the
public, and private organizations put their part by exploring new
energy resources from solar, fossil fuels, wind turbines,
geothermal energy, and many others to meet the current and
future energy demands. But the non-planned energy distribution
mechanism concludes with non-optimum results in the form of
non-stop energy providence to different sectors (industries, smart
homes, etc.). An efficient and need-based resource allocation
framework is required for the providence of energy resources so

that the misuse and waste of energy resources must be stopped.
To combat this critical problem this research work presents a
sliced-based energy providence mechanism using a hybrid model
consisting of LSTM and SVM classifiers. This hybrid model can
classify incoming energy requests and provides energy resources
based on their requirements. In the sliced approach, the low and
high energy consumption devices are divided into different slices.
This sliced-based division assist not only helps in evaluating the
incoming requests, but it also assists in estimating the currently
available resources to fulfill the number of future energy requests
they can serve.

The SVM classifier performs the statistical analysis to
handle overloading and slice-failure conditions. Also, it
ensures the timely allocation of energy resources. The
applicability of this framework is analyzed using a real-time
database and different slice failure conditions (alternate slice
allocation during slice failure or overflow conditions). Other
performance metrics include confusion matrix, accuracy, and
time consumption. Based on the performance results, our
framework outperformed not only in generating optimum
classification results and providing need-based energy
resources, but it also saves energy resources for future
generations.
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