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A B S T R A C T

Interactive data visualization tools for residential energy data are instrumental indicators for analyzing end
user behavior. These visualizations can be used as continuous home feedback systems and can be accessed from
mobile devices using touch-based applications. Visualizations have to be carefully selected in order for them to
partake in the behavioral transformation that end users are encouraged to adopt. In this paper, six energy data
visualizations are evaluated in a randomized controlled trial fashion to determine the optimal data visualization
tool. Conventional visualizations, namely bar, line, and stacked area, are compared against enhanced charts,
namely spiral, heatmap, and stacked bar, in terms of effectiveness, aesthetic, understandability, and three
analysis questions. The study is conducted through a questionnaire in a mobile application. The application,
created through React Native, is circulated to participants in multiple countries, collecting 133 responses.
From the received responses, conventional plots scored higher understandability (by 22.74%), effectiveness
(by 13.44%), and aesthetic (by 10.54%) when compared with the enhanced visualizations. On the flipside,
enhanced plots generated higher correct analysis questions’ responses by 8% compared to the conventional
counterparts. From the 133 collected responses, and after applying the unpaired t-test, conventional energy
data visualization plots are considered superior in terms of understandability, effectiveness, and aesthetic.
1. Introduction

In modern society, excessive domestic energy consumption is an
issue surpassing all other dilemmas despite the increasing awareness
of existing environmental problems (Ouyang and Hokao, 2009). For
instance, global heating and cooling energy consumption is expected
to grow by 84% by 2030, according to Ürge-Vorsatz et al. (2015). Paz
et al. (2012) emphasizes that it is of the utmost importance that
future leaders, scientists, and engineers be more aware about the
current and future problems related to environmental sustainability.
Consequently, recent research has focused on controlling household
energy usage for better efficiency in energy consumption either by
studying the acceptability of energy-saving measures with different
physical characteristics as in Poortinga et al. (2003), increasing the
energy consumption understanding by initiating a large-scale energy
monitoring campaign as Almeida et al. (2011) did, or analyzing the
residential power consumption trends in the world in a certain period
of time as the work of Pablo-Romero et al. (2017).
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Energy consumption is mainly affected by several key factors re-
lated to the end user’s habits, age, gender, income level, household
structure, and educational background, as mentioned by Yue et al.
(2013). According to Huebner et al. (2013), behavioral change to new
habits is opposed by the repetition of a certain behavior in a usual
pattern. It is evident that state-of-the-art techniques, strategies, and
models can change inefficient energy usage habits to efficient ones.
The trans-theoretical model (He et al., 2010), the reasoned action
approach (Fishbein et al., 2011), the motivational interviewing (Miller
and Rollnick, 2012), and the reinforcement learning (Hu and Zira,
2014; Decker et al., 2016) are some examples of such techniques and
strategies. However, in this context, the adoption of modern technology
is lightly addressed. On one hand, smart home energy moderating
systems exploiting energy data visualization and wireless power me-
tering are proposed by Jahn et al. (2010). On the other hand, toler-
ating heating and cooling settings is achieved in the case study Nest
Thermostat (Nest, 2018), based on advanced algorithms employed for
the understanding and prediction of end users’ behavioral patterns.
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Although the aforementioned state-of-the-art studies present energy
profiles, behavioral change towards efficient energy behavior is not
applied. For this purpose, combining behavior change models, infor-
mative data visualization, and personalized recommender systems is of
utmost significance to be deployed in practical systems.

Data visualization systems have been a key part of many research
and development fields. For instance, they are used to aid clinicians
in making correct diagnostic imaging orders (Rayo et al., 2015), to
visually explore differential gene expression data (Simon et al., 2017),
and to organize and reduce narrative data into a single geographical
plot (Irwin et al., 2017). Moreover, they are used in visualizing complex
communication network (Verspoor et al., 2018), in comparing carbon
footprint locally (Engel et al., 2012), in relating different films using
minimum spanning dendrograms (Vlachos and Svonava, 2013), and au-
tomatically visualizing big data (Golfarelli and Rizzi, 2020). The variety
of applications that this tool impacts are tremendous and important.
From that perspective, it is essential that such tool is also utilized in the
energy sector, especially the residential branch, to educate consumers
and buildings’ owners about their buildings’ consumption. This in turn
helps users monitor and control their energy usage, since people are
normally unaware of their energy consumption, simply because they
do not see it, as mentioned by Trinh and Jamieson (2014). Visualizing
the total energy consumption of a household, the financial impact
it has, and the main appliances causing it, whether it is efficient or
not, can significantly influence consumers. This influence is either in
terms of performing the necessary reductions in energy consumption,
or simply maintaining the same consumption if it is deemed efficient.
Also, the feedback, in form of bills or warnings (in case of excessive
consumption), from utilities is naturally infrequent, preventing such
feedback from having significant impact. These visualization systems
can be used as continuous home feedback systems and can be accessed
from mobile phones and tablets.

In this paper, the efficacy of six energy data visualizations is eval-
uated in a randomized controlled trial fashion to determine the fa-
vored energy data visualizations. Real energy data from the Individual
Household Electric Power Consumption Data Set (IHEPCDS) (Hebrail
and Berard, 2012) are visualized in the proposed mobile application
in an aggregated form on multiple levels. To summarize, the main
contribution axes of the paper are as follows:

• To the best of the authors’ knowledge, this is the first study that
uses a novel interactive mobile application survey, built from
scratch using React Native, to display energy visualizations and
acquire participants’ responses

• The survey is conducted via the mobile application to measure
the suitability of conventional and enhanced visualization plots
for improving energy saving in buildings. We conducted the study
in this manner to catch the user experience for these plots on the
final destination, which is a mobile application.

• A set of enhanced smart energy usage visualizations are cre-
ated/introduced, including heatmap chart, stacked bar chart, and
spiral chart, which provide more options to present energy con-
sumption data than the conventional visualizations.

The outcome of this study are utilized in a greater umbrella frame-
ork, namely ‘‘consumer Engagement towards Energy saving behavior
y means of Exploiting Micro Moments and Mobile recommendation
ystems’’, abbreviated as (EM)3 (Bensaali et al., 2020). It is a research
nitiative that aims to endorse domestic energy-saving behavior with
he use of a recommender system, powered by artificial intelligence al-
orithms and data visualizations (Alsalemi et al., 2020). It includes four
ain components: (1) Data collection (i.e. consumption footprints and

mbient conditions) at the appliance level (Alsalemi et al., 2019); (2)
lassification and anomaly detection using micro-moments to analyze
onsumers’ behavior and points of potential improvement (Alsalemi
t al., 2019); (3) Generating personalized recommendations to achieve
hose points of potential improvement (Sardianos et al., 2019); and
2

Fig. 1. Overview of the (EM)3 framework.

(4) Data visualization where energy consumption data are portrayed
in a highly engaging and effective manner. Data visualization tools
can be used for multiple purposes that include a representation of
historical energy consumption data, along with being an assistive tool
for recommender systems to explain the suggested recommendations
for end users. Fig. 1 shows an overview of the framework. The so called
‘‘best’’ data visualization charts investigated in this study will be used
later in the framework’s deployment.

For the data collection module, it is the basis for collecting necessary
data that aids the system in understanding the users’ consumption pref-
erences under certain environmental conditions within the household,
linking it to the external weather conditions. To that end, it collects
data related to energy consumption at the appliance level, ambient
temperature, humidity, luminosity, temperature, and consumer’s occu-
pancy. The second module is tackling dataset storage, management, and
classification of the collected data. It aims to create an energy profile
of a consumer where it can be utilized to determine the energy con-
sumption pattern for that consumer in a certain household. Moreover,
it helps in detecting anomalous energy consumption patterns, such as
having the air conditioner turned on while the weather is very cold
within the house, or having the lights turned on in a room, when
no one is within the vicinity of that room. Thus, it classifies what is
considered as an anomalous consumption and what is not. Thirdly,
the recommender system tries to suggest certain actions that puts the
interest of the consumer as a first priority. Recommender systems have
been used extensively in e-commerce and content streaming platforms,
where they would ‘‘recommend’’ certain products/series to buy/watch
based on the user’s current choices. The same can be applied in the
energy context, where a recommender system can take advantage
of the consumers’ available information so that it can recommend
certain actions, which will further optimize their consumption, con-
sidering their preferences along the way. Moreover, it can incentive
recommendations that it provides by highlighting the effects they will
produce when the recommended suggestions are accepted and acted
upon. Finally, the data visualization module is as important as any
of the previous modules. The idea is to utilize such graphs to present
collected data in an aesthetic, easy-to-understand graphs that can raise
the consumers’ awareness regarding their consumption. Moreover, it
can show consumers their anomalous consumption easily on a graph,
and visually describe the impact that the recommendations will have
on if they are accepted.

The remainder of this paper is organized as follows. Section 2 sum-
marizes recent work in energy data visualizations. Section 3 discusses
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the study methodology. Section 4 presents the obtained sample size
and the employed enhanced and conventional data visualizations. The
results are reported and discussed in Section 5. The paper is concluded
in Section 6.

2. Related work

Smart grids idea is about collecting data using Internet of things
(IoT) sensors at multiple levels in the supply chain, from the electric
utility until the end user. Consequently, better and efficient man-
agement of assets and services can be achieved. According to Leroy
and Yannou (2018), consumers have become unpredictable more than
ever in their consumption, thus, smart systems, aided by the IoT
sensors, can reduce this uncertainty, which in turn will help utilities
in consumption estimation and resources’ allocation. Not only that, but
energy consumption visualization is easily integrated into the idea of
smart grids/cities due to the abundance of collected data. Data mining
techniques in the energy field play a huge role in understanding the
massive data that is being collected (Li et al., 2020), where informa-
tion about individuals’ power consumption can then be extracted and
visualized (Wilcox et al., 2019).

2.1. Energy consumption visualizations

With data visualization, consumers can acquire a better understand-
ing of their appliances’ consumption, showing how they contribute
to the whole energy consumption. Thus, with the right incentive,
consumers can become more aware and more energy-efficient. For
instance, some studies have already shown interest in energy consump-
tion visualization inside buildings (Smith et al., 2019; Chen et al.,
2020), where the former is interested in light commercial buildings’
energy consumption visualization, and the latter is focused on domestic
consumption visualization and human behavior simulation. In addition,
augmented reality (AR) is also utilized to enhance the consumers’
awareness regarding electronic devices/appliances consumption (Beka-
roo et al., 2018).

From the reviewed studies like Bonino et al. (2012), such visualiza-
tion charts can help the users from different aspects including:

1. To identify consumption trends which will enable them to re-
duce the consumption. For example, the trends might show that
the consumption is at its highest in the evening between 4–5 PM,
when the user’s family is back from work/school.

2. To determine the energy consumed by individual appliances so
that the users can identify which appliances are responsible for
high energy consumption.

3. To investigate the impact of the consumption either monetarily
or environmentally. For example, the visualization might indi-
cate the cost of operating a washing machine or the number of
trees that need to be planted to compensate the consumption.

4. To keep track of the energy consumed by individual members
of a household, so that members with high consumption can be
made aware of their consumption while informing them with
more intelligent choices.

5. To be able to set a goal for everyday consumption and receive
tips on how this goal can be achieved by making intelligent
choices like switching off an appliance.

6. To enable the control of appliances from the visualization di-
rectly. For example, if the visualization notifies that an appliance
is consuming high energy, then the user should be able to switch
off that appliance.

Using data visualization charts to show users their energy con-
umption can have positive effects in reducing it, as visualizations are
apable of tackling the most important factor in the electricity supply
hain; the human factor. With the rapid increase and growth of tech-
ologies, mobile phones have become an integral part of people’s lives
3

and are used for a variety of applications. Weiss et al. (2010) confirmed
the suitability of using mobile devices to track energy consumption.
They have also found that mobile phones are suitable for the task due
to the high interactivity and portability they offer. While, Micheel et al.
(2015) found that users prefer a mobile device to keep track of their
water and energy consumption due to its quick access and instant alerts.
Hence, our visualizations are built to be used on a mobile application.
According to Blumenstein et al. (2016), through their increasingly
widespread usage, mobile devices have become a highly important
target environment for Visualization of Knowledge. However, much
too little focus has been given to the assessment of digital simulation
strategies on mobile devices.

In an effort to understand the commonly used visualizations, we
reviewed the papers that visualized energy consumption in a single
unit, in multiple units, and over wider geographical areas. Though
we are only interested in visualizing the energy consumption in a
single unit, we reviewed related work that visualized consumption over
multiple units and wider geographical areas as the fundamental visual-
ization remained consistent across all categories. These visualizations
often visualized the consumption for a single unit and then built an
extra layer of visualization on top of the fundamental visualization to
aggregate the consumption across several units.

We also decided to review only 2D visualizations as they are bet-
ter suited for users who are not very skilled with computers (Se-
brechts et al., 1999). With the evolution of mobile phones, users
often turn to mobile applications for entertainment, technology, home-
automation, gaming, etc. Hence, we decided to create a mobile applica-
tion that monitors energy consumption that would be useful for energy
consuming end users.

The energy visualizations are reviewed and classified based on
categories loosely inspired from the authors of Bonino et al. (2012) and
Murugesan et al. (2015). These categories will help the readers identify
popular features supported by the visualization, the target platform
they are used in, the area for which consumption is visualized, and
other details that describe the visualization.

1. Central Theme: Direct Feedback, Historical Trends, or Goal-
Setting? While there are many visualizations available for visu-
alizing energy consumption, the common theme of the visualiza-
tions can be categorized under three main categories which are
descriptive of the main tasks supported by these visualization.
The developed visualizations often adopt one or more central
themes and can be broadly classified as:

(a) Direct Feedback + Tips (DF+T) Visualization: These
visualizations provide feedback to the users about which
device or where (e.g. in which room) they are consuming
more energy, and provides tips on how they can cut
down on their consumption. Some of the tips may include
switching off an appliance that is consuming significant
amount of power to balance the electricity load.

(b) Historical Trends (HT) Visualization: These visualiza-
tions show the trends in consumption to the user. For
example, from these trends, users might be able to rec-
ognize that the highest consumption is during weekends
so they can take actions to lower the consumption during
those periods.

(c) Goal-Setting (GS) Visualization: These visualizations
help the users to set an energy consumption goal that can
help them to be rewarded if they abide by the set goal.
These rewards are often monetary in nature and help
motivate the users in achieving their targets. This feature
can be considered as a bonus add-on feature that is often
coupled with one or both of the other two categories who
are more essential in nature.
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Fig. 2. Examples of conventional and enhanced visualizations: (C1): ECOIS [Bar chart] (Ueno et al., 2006), (C2): ALIS Dashboard [Line chart, Bar chart] (Bartram et al., 2010),
(C3): StepGreen.org [Stacked area chart] (Grevet et al., 2010), (E1): VIMOEN [Map] (Ruiz et al., 2020), (E2): Demand Horizon [Horizon chart] (Goodwin et al., 2013), and
(E3): Phyllotaxis [Phyllotaxis] (Rodgers and Bartram, 2011).
In addition to the ‘‘Direct Feedback’’ that is provided by the
Residential Stock Viz. proposed by Mattinen et al. (2014) and
the Power and Energy Viz. discussed in Monigatti et al. (2010)
visualizations, they also allow users to analyze the impact of
their decisions such as the impact of switching off lights. En-
ergy Control System (ECoS) (Murugesan et al., 2017) takes
it a step further by offering tips to combat the consumption
while providing the ability to control the appliances from the
visualization.

2. Type of Visualization: Conventional or Enhanced? Most of the
energy visualizations are built using conventional charts such
as pie charts, bar charts, line charts, area charts, to name a
few. These charts are mostly static, offer little to no interaction,
and often visualize the default hourly consumption. On the
other hand, enhanced visualization charts offer better interac-
tivity and more in-depth detail about the consumption such
as appliance-level consumption, per-minute consumption, etc.
We use the term ‘‘Enhanced visualizations’’ to include novel
representations, visualizations that are considered an enhanced
version of conventional ones, and pre-existing visualizations that
have not been explored for visualizing energy consumption. For
example, advanced versions of conventional visualizations like
time-pie charts, stacked-bar charts, time-area charts, which are
advanced versions of the conventional pie, bar, and area charts
are classified as enhanced visualizations as they offer more detail
and interactivity than the their conventional counterparts. Other
enhanced energy consumption visualizations include coloring
the layout of the house/building or map of the country/world,
4

heatmaps, and artistic visualizations like Phyllotaxis, Hive and
Pinwheel visualizations. Some examples of conventional and
enhanced visualizations are shown in Fig. 2.

3. Geographical Area that the Visualization covers: Single Unit
or Multiple Units? The visualizations can visualize the consump-
tion of a single unit as in the case of a user’s house, multiple
offices in the case of a building, or can cover larger geographical
areas to monitor the consumption of different cities/states in
a country. Charts that visualize the energy consumption of a
single unit are mostly used by residents to visualize their own
energy consumption. On the other hand, multi-units charts are
mostly used by energy managers to monitor the consumption
of an entire building. This gives an indication of which apart-
ments/offices are consuming the most energy in a building, or
which buildings are consuming the most energy if the energy
manager is responsible for a group of buildings. This feature
is also occasionally used by residents to compare their con-
sumption with other residents. The multi-units visualizations can
also be extended to wider geographical areas like countries to
monitor the consumption of individual states or districts. The
Adaptive Living Interface System (ALIS) Dashboard portrayed
in Bartram et al. (2010) is an interesting tool capable of visual-
izing the consumption of a single house, while giving the users
the ability to compare their consumption against other houses in
a community.

4. Primary Feature of the Visualization: Time or House/Building
Layout? Many visualizations often monitor consumption over a
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period of time, while some visualizations monitor the consump-
tion over different rooms in a house, different apartments in a
building, or over wider geographical areas. The visualizations
that monitor consumption over time provide a general indication
of the hourly consumption. To a certain extent, it can also shed
some light about the consumption of the different appliances if
a user can track his/her activities in a day. For example, it can
help users in remembering their usage of the washing machine
between 10–10:30 AM. On the other hand, energy consumption
visualization using an apartment/building layout provides more
details about the critical areas with high consumption. It allows
users within a household to implicitly know what appliance or
individual generated that consumption based on their knowledge
of the family members whereabouts.

From Table 1, it is clear that most visualizations are developed to
e used as a web application, with very little work focused on mobile
pplications. Hence, our visualizations are developed to visualize and
rack energy consumption from a mobile interface. The table also
ndicates that the popular form of visualizations are line and bar charts
ith very few studies using stacked bar charts and heatmap visualiza-

ions. Our mobile application uses two types of visualizations, namely
nhanced and conventional, to visualize the energy consumption. Each
ype is associated with three types of visualizations. On one hand, the
nes belonging to the conventional visualizations group include:

1. Bar chart to visualize the monthly consumption of a house.
2. Line chart to visualize the monthly consumption of a house as

a continuous line.
3. Stacked Area chart to visualize hourly appliance-level con-

sumption as stacked areas.

On the other hand, the three charts belonging to the enhanced visual-
izations group include:

1. Heatmap to visualize the consumption in intervals of 10 min
with added interactivity to show the consumption per room
when a cell in the heatmap is clicked.

2. Stacked Bar chart to visualize the appliance-level consumption
per hour. The chart allows the user to select the appliances from
a scrollable list.

3. Spiral chart to depict a concise representation of the consump-
tion over a year which allows users to easily detect trends over
months and seasons. To the best of our knowledge we are the
first to use a Spiral Chart to track energy consumption over a
period of a year.

Hence, we predominantly developed linear visualizations with the
xception of the spiral chart. In accordance with Cleveland and McGill’s
inding, we used visualizations for which all the elements in the charts
re positioned along a common axis, the width of the bars in the bar
hart and the area of the elements in the heatmap visualizations are
lso kept at a constant size for easier perception. The heatmap also uses
gradient coloring to visualize the level of consumption. The spiral

hart which uses polar coordinates is used as it compactly visualizes
he consumption over a period of a year, as opposed to using a linear
hart using a cartesian representation that would require more screen
pace which cannot be afforded on the small mobile screen display.

.2. Experiment studies

Some experiment studies have been conducted to assess to what
xtent visualizations can impact the energy consumption in residential
uildings. This is the case of Herrmann et al. (2017), where they
onduct an experiment study to assess whether end users comprehend
omestic energy feedback. Specifically, 43 participants have been in-
olved, and their knowledge has been assessed to evaluate achieved
ehavioral change after being trained with various kinds of energy
5

q

consumption data visualizations. The participants have been invited to
play an energy game both before and after being trained with data
visualizations. Moving forward, because it is not straight forward to
satisfy all the users using static ready-made visualization plots when
developing an energy efficiency system, Watanabe et al. (2013) conduct
a questionnaire study to collect the users’ requirements in terms of
energy data visualization. The questionnaire has been conducted using
a web application to help in selecting convenient visualization graphs
from the questionnaire’s answers. In a similar approach, Costanza et al.
(2012) has evaluated the impact of using an enhanced interactive
visualization, namely FigureEnergy, to comprehend when, how, and, to
what end, each specific energy usage has been performed. Explicitly,
12 participants (out of the original 15) have been involved in this
study through installing sub-meters in their households and running
the FigureEnergy application for a two weeks period.

The premise of this paper is to develop a mobile application that
can be used by the general public to monitor and conserve energy. 2D
visualizations are used since they are easier to explore, develop, and
employ when compared with the 3D ones on smaller displays. Hence,
the decision is to develop the application using 2D techniques, while
the review of 3D visualizations is considered to be outside the scope of
the review of this paper. Some of the popular 2D energy visualization
applications have been summarized in Table 1.

3. Methods

In this section, the proposed methodology to obtain the achieved
results is presented. Firstly, the randomized controlled trial scheme that
has been deployed to conduct the study is discussed, along with the
questions that are given to the participants to be answered. Secondly,
the working scheme behind the React Native application is discussed,
where the GitHub repository for the application is publicly shared to
be utilized, especially if others decided to deploy and build over the
graphs that are utilized in our study.

3.1. Randomized controlled trial

The study design is illustrated in Fig. 3. The study follows a ran-
domized controlled trial design, which splits the participants into two
groups: the control group that evaluates the conventional visualiza-
tions, and the intervention group that evaluates the enhanced visual-
izations.

The assessment can be summarized as follows:

1. Recruit study sample (via emails, social media channels, and
over the (EM)3 project’s website Bensaali et al., 2020).

2. Randomize sample and send application link to each partici-
pant (participants did not have the application installed before
commencing the study). This is done through a random group
assignment accomplished within the mobile application.

3. Participants run the application and rate each of their respec-
tive group’s visualizations based on the aforementioned crite-
ria (i.e. effectiveness, aesthetic, and understandability), along
providing answers regarding the three analysis questions.

4. Following data collection, responses are analyzed per group,
where a comparison is conducted at the end to decide whether
to reject (or fail to reject) the study hypothesis.

For this randomized controlled trial, the null hypothesis is de-
ined as the following: the two groups, assessed using the application
uestionnaire, show no statistically significant difference in favoring
group over the other. This is tested using three variables simul-

aneously namely, understandability, effectiveness, and aesthetic. To
nalyze the participants’ feedback, responses are averaged, grouped by
ategory (i.e. enhanced or conventional), and compared accordingly.
he complete list of questions used in this study can be found on our
ebsite (Bensaali et al., 2020). The complete list of questions used in

his study are attached as supplementary material. Below are the main

ualitative questions asked for each provided visualization:
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Table 1
Comparison of popular energy consumption visualizations.

Name of the Viz. Target
Platform

Central Theme Typea Primary
Featureb

Primary Viz. Covered Area

House-layout prototype (Bonino et al., 2012) – DF & GS E L Coloring Single unit
Energy research Centre of the Netherlands
(ECN) Viz. (Van Wijk and Van Selow, 1999)

– DF & HT E T Calendar + Line Multi-units

Residential Stock Viz. (Mattinen et al., 2014) – DF E L Map Multi-units
Power and Energy Viz. (Monigatti et al., 2010) – DF E T & L Radar + Pie + Layout Single unit
Energy Control System (ECoS) (Murugesan
et al., 2017)

Web DF+T E L Map + Line + Pie Single unit

Energy Consumption Information System
(ECOIS) (Ueno et al., 2006)

– DF+T & HT C T Bar + Pie Single unit

Adaptive Living Interface System (ALIS)
Dashboard (Bartram et al., 2010)

– DF+T & HT & GS C T Line + Bar Community

StepGreen.org (Grevet et al., 2010) Web DF & HT & GS C T Bar + Pie + Line Community
VIsual MOnitoring of ENergy (VIMOEN) (Ruiz
et al., 2020)

Web DF & HT E L Map + Pie + Line + Area Multi-units

Artistic Viz. (Rodgers and Bartram, 2011) – DF E T Phyllotaxis + Pinwheel +
Hive + Line + Stacked-bar

Single unit

Demand Horizon Viz. (Goodwin et al., 2013) Web DF+T & HT E T Horizon charts Multi-units
Consumption Signatures Viz. (Goodwin et al.,
2013)

Web DF+T & HT E T Heatmap Multi-units

SmartHome Heatlines Viz. (Goodwin et al.,
2013)

Web DF & HT C T Line Multi-units

Ownership Groups Viz. (Goodwin et al., 2013) Web DF & HT C T Bar + Box Multi-units
Figure Energy (Costanza et al., 2012) – DF & GS C T Line Single unit
Time-pie Viz. (Masoodian et al., 2013) – DF & HT E T Time-pie Multi-units
Time-stack + Time-pie Viz. (Masoodian et al.,
2015)

Mobile DF & HT E T Time-stack + Time-pie Multi-units

Electric-Save (E-SAVE) (Soni and Lee, 2012) Mobile DF+T E L Layout + Radar + Pie Single unit
Energy-Efficient Home (E2 Home) (Ghidini and
Das, 2012)

Web DF+T & HT C T Line + Linked map Single unit

Google + Microsoft Power Meter (Ghidini and
Das, 2012)

Web DF & HT E T Horizon charts Multi-units

Sensor-Actuator Gateway Agent (SAGA)
Dashboard (Buevich et al., 2011)

Mobile DF & HT C T Bar + Pie + Line Multi-units

WattDepot Visualizer Client for Smart Grids
(Brewer and Johnson, 2010)

– DF C T Line Country

Real-time price Viz. (Nilsson et al., 2017) – DF C T Stacked-bar + Line Multi-units
energy Visualization (eViz) for carbon
reduction(Pahl et al., 2016)

– DF E L Thermal imaging Single unit

Power Consumption Viz. (Ali and Kim, 2013) Web DF & HT E L Layout + Line Multi-units
VISUAL-TimePAcTS software (Ellegård and
Palm, 2011)

– DF C T Grids + Stacked-bar Single unit

Handy Feedback (Weiss et al., 2009) Mobile DF & HT C T Gauge + Bar + Line Single unit

aC: Conventional; E: Enhanced.
bT: Time; L: Layout.
Fig. 3. Study’s design scheme.
1. How effective is the provided visualization in portraying power
consumption information? (1 not effective at all – 5 very effective)

2. How easy to understand is the provided visualization in portray-
ing power consumption information? (1 not easy at all – 5 very
easy)
6

3. How visually pleasing is the provided visualization? (1 not visu-
ally pleasing at all - 5 very visually pleasing)

4. In terms of quantity, how do you describe the amount of data
presented? (options: a. sparse (not enough), b. adequate (enough),
c. excessive (very complex))
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Fig. 4. Application usage cycle on a smartphone.
It is noteworthy to mention that each visualization is designed to
portray energy data in a different way and may present insight to end
users. Therefore, visualizations presented in this study may not present
the same energy consumption data due to their design differences.

3.2. Questionnaire and application overview

The reviewed plots have inspired the visualizations deployed in
the mobile application depicted in Fig. 4. These visualizations have
been created by the authors of this manuscript on React Native using
different available libraries, such as React Native SVG, React Native
SVG Plots, React Native Plot Kit, D3.js, and React Native WebView.
They are inspired from the conducted literature review, and from
existing visualizations over the internet, especially from the galleries
of the aforementioned libraries. After the first creation of the ap-
plication, which included the visualizations, it was circulated among
senior researchers and their feedback helped in enhancing the quality
and design of both the charts and the application itself. One of the
senior researchers have published papers related to data visualization
for electrical energy consumption and browsing patterns in computer
logs. Moreover, other senior researchers aided in questions’ formula-
tion by eliminating out-of-context questions, rephrasing the presented
questions, and adding the analysis questions to quantify users’ under-
standing of presented plots. Lastly, they provided their professional
opinions on the represented data from their long teaching/research
experience in academic institutes. The enhancements are carried out
in a manner to reduce any possible bias incoming from the smart-
phones’ operating system (OS). Thus, user feedback on such plots is
crucial, where it is hoped that it catches their authentic experience
and provides better judgement for which plots to be deployed at later
stages. Although the first responses that the participants provide are
only considered, the application still allows them to complete the
questionnaire as much as they want without limiting their curiosity,
and stores their extra responses for any possible use. This is depicted
by the loop in Fig. 4. Participants are well-informed regarding the
collected data on the first screen they face when the application is
launched as shown in Fig. 4 ‘‘Home Screen’’.

To measure the participants’ feedback, both qualitative and quan-
titative questions are addressed in the questionnaire. The qualitative
questions are common for all plots to measure the participants’ overall
satisfaction regarding the plot they currently see, based on a five point
7

Likert Scale. On the other hand, quantitative questions are tailored for
each plot to measure the participants’ understanding objectively. These
measurements are adopted to deduce an accurate judgement of which
plots to be deployed in the future.

This application is available for both iOS and Android. It has ex-
tremely similar behavior on both platforms as React Native framework
is used to create this application. It is a cross-platform application
development framework that allows developers to write a single pro-
gram that will work on both iOS and Android operated smart devices.
It is designed and debugged to work smoothly on smartphones with
different screen sizes to avoid biasing participants with different screen
sizes. A video showing the application can be found in the project’s
website which is included in our GitHub repository.1

Once the participant completes the questionnaire, his/her response
is stored on Firebase online NoSQL database, namely Firestore. It offers
cascaded filtering options which are deemed to be useful in analyzing
the participants’ responses (Sharma, 2018). Another reason is that li-
braries supporting Firestore database are well-established on numerous
programming languages (i.e. JavaScript and Python). Database security
is guaranteed using Firebase’s Rules that prevent anyone from accessing
database’s content using any channel other than the smartphone.

4. Data visualization study

In this section, a discussion is carried over the achieved sample size,
shedding light over important demographic features of the collected
sample. Moreover, the visualization charts that are involved in the
study are highlighted, detailing the information that are held within,
mentioning explicitly how we utilized the publicly available dataset in
our developed charts over the React Native mobile application.

4.1. Sample size

To conduct the visualization study, data are collated from a total of
133 participants from multiple countries. In terms of age, 58 and 55 out
of the 133 participants are in 25–34 and 18–24 age range, respectively,
constituting the largest portion. Conversely, 19 participants are in the
35–44 age group while only 1 participant represented the 45–54 age

1 https://github.com/EM3-Project/EM3-Data-Visualization-Study-App.

https://github.com/EM3-Project/EM3-Data-Visualization-Study-App
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Table 2
Study demographics.

Country No. Age Groups No.

Qatar 81 25–34 58
Algeria 18 18–24 55
Greece 9 35–54 20
France 7
United Kingdom 4
United States 3
Canada 2
Jordan 2
Switzerland 1
Egypt 1
Spain 1
Germany 1
Unknown 3
Total Participants 133

group. Naturally, 81 participants are from Qatar, representing the vast
majority. Next in place is Algeria with 18 participants, followed by
Greece (9), France (7), United Kingdom (4), United States (3), Canada
(2), Jordan (2), Switzerland (1), Egypt (1), Spain (1), Germany (1), and
3 that could not be located. Among the 133 participants, 112 are males,
and 21 are females. Table 2 numerates the study demographics.

It is noteworthy to know that the study has been distributed to grad-
uate students and researchers in a number of universities and research
centers including Qatar University, Harokopio University of Athens,
and Algerian Center for Development of Advanced Technologies. This
has also resulted in a male-majority because larger number of male
students/researchers are targeted. Moreover, regarding the number of
participants in each age band, it is clear that there is a sampling
bias. Typically, the participation rate is skewed towards the younger
demographic, which extensively use their smartphones, and have the
time and ability to complete such questionnaires.

4.2. Employed data visualizations

The developed visualizations in this study, shown in Fig. 5, are split
into two categories: conventional and enhanced. Conventional plots
represent classical visualizations used for a plethora of applications.
They are plain, simple, and easy to understand. They include bar,
line, and stacked area charts. For the bar chart, it contains the energy
consumption of the whole month aggregated in a single bar. It can be
manipulated to show them aggregated on a weekly or even daily basis,
but will create a long and hard-to-comprehend stream of bars, where
the earliest/latest days will be harder to visualize. For the line chart,
it is similar to the bar chart, however, the energy consumption data
are connected to show a flow of energy consumption instead of single
bars. For the stacked area chart, the target is to visualize the appliances
consumption in an aggregated manner throughout the day, which is
also capable of showing more appliances/rooms on the same chart.
However, the main issue is that it will become incomprehensible if too
many appliances are visualized together with no categorization. This
visualization has been considered as conventional as its development
has received a great attention in different applications (energy as
in Koivunen-Niemi (2021), healthcare portrayed in Kusumawardani
et al. (2016), etc.), especially with the wide use of the Python and R
programming languages. Typically, various studies have been proposed
to investigate a better design of interactive vertical (Talbot et al., 2014)
and horizontal (Howorko et al., 2018) stacked bar charts.

On the other hand, enhanced visualizations convey information
with richly-interactive plots that have multiple layers of meaning. They
can potentially be harder to interpret, but can be quite valuable and
succinct in presentation. Some enhanced plots are completely new data
representations while others can be a mix of conventional plots. They
include spiral, heatmap, and stacked bar interactive charts. Enhanced
charts allow participants to interact with them in a way that the
8

charts unravel more energy-consumption-related information once an
interaction has been established. This feature could allow more under-
standability, establishing a deeper layer of meaning from the shown
data. For the heatmap chart, it displays the energy consumption data
for a single day in periods of 10 minutes. It is designed to be dynamic
and compatible with different scenarios, where it can group the energy
consumption data on hourly basis even. Once the user presses on any of
the heatmap chart cells (periods), it shows the consumption of different
rooms within a house as shown in Fig. 6. It can even show the energy
consumption on the appliances level, instead of rooms, if the data are
designed in such way. For the stacked bar chart with appliances, this
chart can be considered as an enhancement to the stacked area chart. It
is aimed at showing daily energy consumption, however, its novelty is
that users can see each appliance’s consumption and select which one to
view for that day. Not only that, but if duplicates of the same appliance
are available in the same household, such as lighting, television, etc.,
all will be stacked on top of each other in a dynamic behavior. For
the spiral chart, it can be thought of as an enhanced version of the bar
chart from the conventional group, but more concise, where the whole
year, aggregated daily, can be easily visualized, and it incorporates the
seasons in that year, with extra interactivity. For instance, if one of the
bars is pressed, a tip is shown highlighting the date that specific bar
represents, and the total amount of energy consumption in that day.
Moreover, it shows the total consumption for all the past and present
days, and the consumers can see their consumption in a specific day
relative to other days, which makes it easier to visually understand the
energy consumption without even looking into the consumption actual
value.

What makes the enhanced charts an improvement to the conven-
tional one is the following:

• They can be seen as an extended version of the conventional
group, which to the best of our knowledge, are not implemented
elsewhere in the fashion that we did, especially in the energy field
sector.

• The interactivity these charts provide.
• Their concise representation of the visualized information, espe-

cially on small screens.
• Their creation on the React Native platform and presentation on

small display devices.

As mentioned earlier, the majority of charts in Fig. 5 convey real
energy consumption data that are taken from an existing open-source
dataset. Both the bar and line charts show the energy consumption
of year 2007 from IHEPCDS published by Hebrail and Berard (2012)
aggregated on monthly periods. For the heatmap chart, the date 1-4-
2007 is specifically chosen from the IHEPCDS dataset because it is the
day with the highest variations within that year. The data are summed
into 10-minutes periods to show the whole day’s consumption. For
the spiral chart, the energy consumption data recorded for the year
2007 in IHEPCDS are aggregated as days to show the consumption
throughout the year. For the stacked area and stacked bar chart, the
data are arbitrary, but are inspired from the Appliance Consumption
Signature-Fribourg 2 (ACS-F2) dataset shared by Ridi et al. (2014).

5. Results and discussion

After the responses’ collection phase, a Python script is developed
to extract relevant statistics. For each of the plots, average scores for
how effective is the plot in conveying the information, how easy it is to
interact with, and how understandable its content is, i.e. effectiveness,
aesthetic, and understandability, respectively, are calculated. Those
metrics are used to determine the best visualization category, where the
mean and the standard deviation (SD) of each metric are reported. SD
is calculated by averaging the variances from each chart for a specific

metric, and taking the square root of the resulting variance.
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Fig. 5. Overview of (a) conventional and (b) enhanced study visualizations.
5.1. Enhanced vs. conventional

Fig. 7 illustrates the conventional and enhanced plots’ results. Con-
ventional plots scored an average of 4.255 (SD = 0.922) for understand-
ability, 3.956 (SD = 1.048) for effectiveness, and 3.877 (SD = 1.046)
for aesthetic. Note that to get these values for a specific chart group in
a specific metric, you can simply take the mean of the three charts in
that metric from Fig. 7. On average, and for the conventional group,
9

bar chart had the highest scores, followed by the line and the stacked
area charts, respectively.

Our null hypothesis states that there is no statistical difference
(in terms of mean) between the conventional and enhanced groups
over the three metrics, namely understandability, effectiveness, and
aesthetics. In order to test the null hypothesis, we use the unpaired t-
test on both enhanced and conventional groups. The picked threshold
(𝛼) is 0.05, allowing us to draw a conclusion with 95% confidence. The
reason we use the unpaired t-test is that the study is conducted over
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Table 3
T-test used parameters and relevant values.

Parameter Understandability Effectiveness Aesthetic

Enhanced Conventional Enhanced Conventional Enhanced Conventional

𝜇 3.467 4.255 3.487 3.956 3.508 3.877
𝜎 0.822 0.644 0.750 0.789 0.773 0.728
𝜎2 0.676 0.415 0.563 0.623 0.598 0.530
𝑁 65 68 65 68 65 68

𝑑𝑓 121 131 130
𝑡𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 2.428 2.425 2.425
𝑡𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 6.135 3.511 2.837

Where 𝜇 is the mean, 𝜎 is the SD, 𝜎2 is the variance, 𝑁 is the sample size, 𝑑𝑓 is the degree of freedom for the t-test, 𝑡𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 is the critical t
value for two-tailed test with 𝛼𝑛𝑒𝑤 = 0.05

3
, and 𝑡𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 is the estimated t value from the unpaired t-test.
Fig. 6. Detailed view of the heatmap when tapping on a cell.

two independent samples, and the aim is to compare the mean of the
sample’s ratings to the group they are assigned. Moreover, parametric
tests are more powerful than non-parametric tests, and the unpaired
t-test can be applied on the case of our study because we have a
minimum sample size of 65 (65 participants for the enhanced group,
while 68 for the conventional group). For the unpaired t-test, the
relevant parameters are mentioned in Table 3. Because we are using
three variables simultaneously for comparison, we use the Bonferroni
correction term, which in essence instructs us to divide 𝛼 by the number
of t-tests applied simultaneously. Because the number of t-tests is 3,
Bonferroni correction term generates a new 𝛼 that can be utilized to
get 𝑡𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙. 𝛼𝑛𝑒𝑤 is calculated as following:

𝛼𝑛𝑒𝑤 = 𝛼
3
→ 𝛼𝑛𝑒𝑤 = 0.01667 (1)

where 𝛼 is the probability that the population parameter will not be in
the confidence interval, and 𝛼𝑛𝑒𝑤 is the corrected version of 𝛼 by the
Bonferroni correction term.
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It is worth noting that the SD used in the t-test is calculated from
the averaged ratings, while the previous SDs are calculated from the
variances of the original ratings. The reason for using such SDs for the
unpaired t-test is to be consistent with the number of samples for each
group. If we use the previous SDs, it will be as if we are taking into
account the sample size multiplied by 3 for each group. From Table 3,
it is clear that the inter-group difference is evidently high given that
𝑡𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 > 𝑡𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 for all three metrics with 𝛼𝑛𝑒𝑤 = 0.05

3
. Thus, from

this multivariate unpaired t-test, we reject the null hypothesis of having
both groups equally favored by participants. We can confidently (95%
confidence interval) say that the conventional plots are favored by the
participants.

From the aforementioned results, it is evident that there is dis-
crepancy between the average scores of conventional and enhanced
visualizations. Conventional plots excel by 22.74% in understandabil-
ity, 13.44% in effectiveness, and 10.54% in aesthetic. This could be
explained by the fact that conventional plots are considered more
familiar. Moreover, the plain and simple nature of these visualizations
can simplify participants’ understanding and interaction with them.
On average conventional plots scored higher in terms of effectiveness,
aesthetic, and understandability but slightly lack in terms of content
analysis. Enhanced plots generated a higher percentage by 8% in the
analysis questions’ responses compared to the conventional counter-
parts, perhaps due to the fact that participants needed longer time to
grasp the portrayed enhanced plots and paid more attention to the
details within. This could have led them to learn more about the plots
and the information they present.

This conclusion produces several insights. Enhanced plots can be
used to convey energy consumption data as effective as conventional
visualizations but with higher levels of meaning, extra interactivity, and
more importantly, flexibility towards varying datasets (e.g. appliance
level or aggregated). However, they are not favored by the participants
as they can be complex for unfamiliar end users. Also, classical plots can
be used all the same when the dataset employed is simple. Moreover,
anonymous participants’ location data aid in providing richer under-
standing of the study data. As an example, anonymous location data
can provide insight on how certain demographics can perceive energy
data visualizations differently.

5.2. Comparison with the state-of-the-art

Even though a significant interest has been paid recently to energy
data visualizations, it is still a difficult task to compare visualizations or
conduct related surveys/questionnaires and rigorously understand the
state-of-the-art. Specifically, different parameters essentially impede
results reproducibility and restrain empirical comparison of existing
visualization plots and executed surveys/questionnaires. They can be
summarized as follows: (i) it is very challenging to assess the gen-
erality of energy data visualizations as most visualization tools are
implemented for distinct scenarios and use different data types. More-
over, researchers also often clean, pre-process, and resample energy
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Fig. 7. Conventional and enhanced visualizations’ results.
onsumption footprints based on their specific needs, where appliance-
evel or aggregated-level are considered in our work. Consequently,
his makes empirical reproduction of the visualization plots difficult;
ii) there is an absence of questionnaire comparisons using the same
enchmarks, which is principally due to the lack of available open-
ource benchmark toolkits, and the use of different population samples
n different regions; and (iii) it is worthy to mention that to the best
f the authors’ knowledge, this is the first work that develops a React
ative application as a questionnaire to assess the efficacy of several
nergy data visualizations in an interactive way.

However, our study can be compared with other questionnaire/
urvey studies on other relevant aspects such as the number of individ-
als participating in the study, number of countries involved, the type
f consumption data used, and the nature of the deployed tool. Table 4
llustrates a comparison between the proposed study and the state-of-
he-art in terms of the aforementioned parameters. It is clearly seen that
he proposed questionnaire has various advantages. For example, the
umber of participants in our study reached 133, which is much higher
ompared to those published by Costanza et al. (2012), Herrmann et al.
2017), who used feedback from 15 and 43 participants, respectively.
urthermore, in our case, the participants are from multiple countries,
hile for all the other studies, they are only from a unique country or
ven from the same region, which limits the validity and applicability
f their outputs to only a particular country or region. Therefore, to
he best of our knowledge, we introduced the most comprehensive
nergy data visualization questionnaire in this article. Moreover, it is
orth noting that the questionnaire has been sent to more than 200

ndividuals; however, we have got 133 responses. On another side, the
tudy’s objective was to check the ability of end-users to reply to this
ind of questionnaire. Consequently, to not bias the analysis, we have
onsidered only the received responses of the 133 participants without
nsisting on the other participants to send their responses.

In addition, we have deployed the questionnaire study using a
obile application because individuals are actually empowered by

martphones each day, where if such devices are utilized correctly, they
an be a productivity-boosting instruments. Therefore, making research
uestionnaires/surveys using mobile applications is now a challenging
ask, which facilitates and motivates individuals to participate in such
11

tudies. In contrast, other studies used traditional techniques based
on websites or web applications. Indeed, mobile applications provide
more benefits compared to websites or web applications: (i) they are
faster than web-based tools; (ii) they can offer more functionalities
because they have access to the system’s resources; (iii) they can work
offline; (iv) they provide great security and safety options (since native
applications should first be approved by the App Store); and (iv) they
are easy to build because of the availability of developer tools, interface
elements, and software development kits (SDKs).

6. Conclusion

In this paper, a data visualization study on domestic energy data is
conducted. Conventional visualizations, namely bar, line, and stacked
area charts, are compared against enhanced charts, namely spiral,
heatmap, and stacked bar charts, in terms of effectiveness, aesthetic,
and understandability. The study is conducted through a mobile appli-
cation circulated to participants in multiple countries. From the 133
responses, conventional data visualizations can be considered superior
in terms of effectiveness, aesthetic, and understandability against the
enhanced plots, however, lacking when it comes to the analysis ques-
tions. From the received responses, conventional plots outperformed
enhanced plots by 22.74% in understandability, by 13.44% in effec-
tiveness, and by 10.54% in aesthetic. Enhanced plots, on the other
hand, generated higher correct analysis questions’ responses by 8%.
From the 133 collected responses, and after applying the multivari-
ate unpaired t-test, conventional energy data visualization plots are
considered superior in terms of understandability, effectiveness, and
aesthetic.

The conducted study has several limitations. First, the scope of the
study could be larger to span more regions and wider representative
demographics, with more focus on reducing the gap between the male
and female participants’ genders. This will help in increasing the cred-
ibility of the results. Second, more powerful statistical tools could be
employed for thorough analysis of study data. Part of our next steps
in this work is to develop a real-time interactive tool that can help
end users to visualize actual energy consumption footprints collected
at aggregated or appliance-levels, coming from the data collection
module. Moreover, it allows interaction with the connected appliances,
especially if an anomalous consumption is observed such as excessive

consumption, or consumption while end user is outside.
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Table 4
Comparison of proposed study with state-of-the-art.

Study # Participants Utilized Tool Data Level # Participants’
Countries

Herrmann et al. (2017) 43 Online questionnaire Appliance 1
Watanabe et al. (2013) – Web application Appliance 1
Costanza et al. (2012) 15 Online questionnaire Aggregated 1
Proposed Work 133 Mobile application Appliance & aggregated 12
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