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The last decade has witnessed tremendous efforts to shape the Internet of things (IoT) platforms to be well suited for healthcare
applications. These platforms are comprised of a network of wireless sensors to monitor several physical and physiological
quantities. For instance, long-term monitoring of brain activities using wearable electroencephalogram (EEG) sensors is widely
exploited in the clinical diagnosis of epileptic seizures and sleeping disorders. However, the deployment of such platforms is
challenged by the high power consumption and system complexity. Energy efficiency can be achieved by exploring efficient
compression techniques such as compressive sensing (CS). CS is an emerging theory that enables a compressed acquisition using
well-designed sensing matrices. Moreover, system complexity can be optimized by using hardware friendly structured sensing
matrices. This paper quantifies the performance of a CS-based multichannel EEG monitoring. In addition, the paper exploits
the joint sparsity of multichannel EEG using subspace pursuit (SP) algorithm as well as a designed sparsifying basis in order to
improve the reconstruction quality. Furthermore, the paper proposes a modification to the SP algorithm based on an adaptive
selection approach to further improve the performance in terms of reconstruction quality, execution time, and the robustness of

the recovery process.

1. Introduction

Nowadays, a huge interest has been dedicated to the develop-
ment of Internet of things (IoT) based connected health plat-
forms. These platforms are empowered by several wearable
battery-driven sensors that collect and record different vital
signs for a long period. The collected data is sent using low-
power communication protocols to a nearby gateway. The
gateway then delivers the data to the host cloud. At the cloud
level, various signal processing and data analysis techniques
are performed to provide computer-aided medical assistance.
However, the performance of these platforms is bottlenecked
mainly by the limited lifespan of wearable sensors. Therefore,
exploring data compression techniques can reduce the num-
ber of the data transmitted from the sensors to the gateway,
hence prolonging the sensor’s lifespan. Compressive sensing
(CS) theory has proved to be a reliable compression technique
which provides the best trade-off between reconstruction
quality and low-power consumption compared to conven-
tional compression approaches such as transform coding or
segmentation and labeling techniques [1].

CS is a novel data sampling paradigm that merges
the acquisition and the compression processes into one
operation. CS relies on the signal sparsity/compressibility
in order to acquire a compressed form of the signal while
maintaining its salient information. CS has been introduced
in [2, 3]; the authors have proved that any sparse signal can
be recovered exactly from a smaller set of measurements than
its original dimension. Therefore, it is possible to acquire
sparse signals by taking far fewer random measurements than
what the famous Shannon-Nyquist theorem states using well-
designed matrices. Despite the fact that CS is a relatively new
theory, it has been incorporated in a wide range of emerg-
ing applications including image processing, radar, wireless
communication, and monitoring-based applications.

Furthermore, to cope with current monitoring systems,
an extension to CS has been introduced in [4], namely,
distributed compressive sensing (DCS). DCS aims to exploit
both the signal intrastructure (the sparsity) and the inter-
structure of the acquisition system (correlation between the
measurements of the different sensors) in order to acquire the
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information about the signals of interest using the minimum
number of measurements.

Subsequently, by leveraging the sparsity of most biosig-
nals such as electrocardiogram (ECG) and electromyogram
(EMG) [5, 6], many efforts have been dedicated to exploit CS
and DCS in wireless body area network (WBAN) applications
to enable CS-based IoT platforms for connected health. In
such platforms, the compressed data is transmitted to a
fusion node (gateway) that possesses enough computing and
communication abilities. Afterwards, the data is routed to
the cloud via the Internet for reconstruction, processing, and
analysis. It is worth mentioning that data reconstruction can
be performed on the gateway to empower an “IoT-based edge
computing platform.”

CS-based systems for EMG and ECG monitoring have
been thoroughly investigated, where various aspects have
been well analyzed, for instance, the comparison between
CS and state-of-the-art compression techniques [7], the
system design considerations [5], the effect of the sparsifying
dictionaries [8], and the best algorithms in terms of quality
of reconstruction [9]. In addition, authors in [10] further
leveraged the biosignals structure, where, instead of only
exploring the signal sparsity in one domain, the authors pro-
posed using all the available structure such as low rank, piece-
wise smoothness, and the sparsity in more than one domain.
Subsequently, the authors in [10] proposed a reconstruction
framework that aims to exploit any a priori information
about the signals in order to enhance the reconstruction
quality.

Moreover, the application of CS in electroencephalogram
(EEQ) signals has been presented in the literature. The per-
formance of such CS-based systems is controlled by two
parameters, the sparsity of the signal, which depends mainly
on the sparsifying basis, and the appropriate recovery algo-
rithm adopted. Authors in [11] have shown the possibility of
using CS for EEG compression as long as the EEG signal is
recorded at least via 22 channels. The major limitation facing
the deployment of CS in EEG compression is that it is very
hard to find the transform domain where the EEG exhibits
a sparse behavior. Therefore, different classes of sparsifying
basis and dictionaries have been investigated to determine
the best basis that provides the sparsest representation for
EEG. Senay et al. have quantified the use of Slepian basis as
sparsifying basis for EEG [12]; the obtained result shows a
low error rate for the reconstructed EEG signal. In addition,
Aviyente has presented a CS-based EEG compression system
exploiting Gabor frame as dictionary for EEG signals [13],
whereas Gangopadhyay et al. [14] have found that adopting a
wavelet transform for EEG is more efficient in terms of quality
of reconstruction. Zhang et al. presented in [15] a block sparse
Bayesian learning (BSBL) approach to recover EEG raw data
that enable both good reconstruction quality and low system
complexity by using sparse sensing matrices and wavelet
matrices as the sparsifying basis. More recently, authors in
[16] introduced an optimization model based on ¢, norm to
enhance the cosparsity and to enforce the low-rank structure
of the EEG signal. The authors proposed using a second-order
difference matrix as the sparsifying dictionary to enhance the
sparsity of the EEG signal as well as exploit the collaboration
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between the cosparsity and the low-rank structure to recover
simultaneously a multichannel EEG signal.

Besides selecting the optimum sparsifying matrix, adopt-
ing the appropriate reconstruction algorithm plays an impor-
tant role in the recovery of the EEG data. Greedy algorithms
have been widely explored in CS applications due to their
low complexity and their superior performance compared
to other recovery algorithms, such as convex relaxation
approaches. The widely used greedy algorithms are orthogo-
nal matching pursuits (OMP) [17], stage-wise OMP (StOMP)
[18], compressive sampling matching pursuit (CoSaMP) [19],
and subspace pursuit (SP) [20].

The main task in greedy algorithms is to identify the
locations of the largest coefficients in the estimated signal.
Greedy algorithms adopt a signal proxy approach at each
iteration to identify these locations. If the sensing matrix
satisfies the restricted isometry property condition [21], then
the signal proxy is very similar to the original signal and the
locations of the nonzero elements can be easily identified.
OMP and StOMP reconstruct the signal in an iterative
approach by locating the largest coefficient at each time.
On the other hand, SP and CoSaMP select more than one
coeflicient at each iteration which allows them to converge to
the solution with a lower number of iterations. However, SP
and CoSaMP require information about the signal sparsity
which is not available a priori in many applications as the
sparsity of the signal often changes over time. Moreover, the
sparsity parameter k depends not only on the signal structure
but also on the space where the data is sparse; hence, the
same signal can exhibit different levels of sparsity depending
on the sparsifying basis. The required knowledge of sparsity
estimate parameter k presents a critical issue with the SP and
CoSaMP, where a poor choice of k can remarkably degrade
the reconstruction quality. Adaptive sparsity algorithms have
been proposed in the literature; authors in [22, 23] have
performed various modification to OMP, CoSaMP, and SP
algorithms in order to provide an adaptive framework that
estimates the best value for the sparsity parameter k. Sparsity
adaptive matching pursuit (SAMP) proposed in [22] is con-
sidered as a generalization of both OMP and SP by updating
k at each iteration until a certain condition is satisfied. The
SAMP increases the value of sparsity parameter k using a
two-stage verification process until the difference between
the norms of the residual for every two successive iterations
is below a certain threshold.

In this paper, a CS-based scheme for EEG signal compres-
sion and recovery is presented. The contributions of the paper
are as follows:

(i) Joint channel reconstruction using SP algorithm is
presented. The proposed approach renders a bet-
ter reconstruction quality than the conventional
channel-per-channel recovery.

(ii) The concept of concatenated basis as the sparsifying
basis for EEG signals is explored to tackle the problem
of the nonsparsity, and the concatenated basis consists
of a random selection of elements from both discrete
cosine transform matrix (DCT) and discrete wavelet
transform matrix (DWT).
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(iii) A new adaptive approach is presented to reconstruct
the EEG signal. The new algorithm is a modification
of the SP algorithm to provide an algorithm that
does not require the knowledge of the sparsity of
the signal a priori. The new proposed dynamic selec-
tion subspace pursuit (DSSP) algorithm performs an
adaptive selection at each iteration for the coefficients
that capture most of the signal energy. The proposed
algorithm promotes two improvements over SP: first,
an enhancement of the data reconstruction quality
and, second, an increased robustness compared with
SP, as the latter would provide a bad reconstruction
quality if the sparsity parameter is poorly estimated.

The rest of the paper is organized as follows: CS fun-
damentals are briefly presented in Section 2. Section 3
addresses the main issue of the paper where the description
of joint reconstruction approach and the proposed recovery
algorithm is provided. Simulation results and discussion are
presented in Section 4. Section 5 concludes the paper.

2. Compressed Sensing

2.1. Acquisition Model. The acquisition model of CS (1) is rep-
resented by an inner product between the input sparse signal
x € RM and the sensing matrix ® € R (such that m <
N) to generate the compressed measured signal y € R,

y = Ox. 1)

In most cases, the input signal x is not sparse in time
domain, yet it can exhibit a sparse behavior under the appro-
priate transform. Thus, given a set {‘I’i}fi | that spans R, x can
be expressed as a linear combination between the elements
of ¥ with a vector s € RY such that x = Y w5, The
input signal x is said to be k-sparse if s has only k < N
nonzero entries. The set of the indices corresponding to the
positions of the nonzero entries of s is called the support of s
and denoted as %;.

The sensing matrix @ € which maps the N-length
input signal x to an M-length signal y has to enable a small
number of samples to acquire the salient information in the
input signal. Moreover, it should allow acceptable reconstruc-
tion quality. Therefore, ® has to satisfy two conditions on the
RIP and should be incoherent with sparsifying matrix W [21].
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2.2. Reconstruction Algorithms. Data reconstruction is the
crucial task in any CS-based system. Thus, several approaches
to recover the original signal x from the measured signal
y have been proposed in literature. However, there are two
main classes of reconstruction algorithms that have been
widely explored, namely, convex optimization and greedy
algorithms. Convex optimization approaches provide the
exact solution if the input signal is completely sparse. Convex
optimization algorithms are based on the £1 minimization
operation; for instance, basis pursuit (BP) algorithm [24]
considers the following solution:

X =argmin [x|,

)
subject to 'y = ®x.

In the case where the acquisition process is contaminated
with noise, two different techniques can be deployed; first,
if the noise level is known a priori, basis pursuit denois-
ing (BPDN) [25] can be applied. However, if there is no
knowledge about the noise level, least absolute shrinkage and
selection operator (LASSO) presents an efficient approach to
recover the original signal.

Greedy algorithms provide a suboptimal recovery for
sparse signals, yet they outperform convex optimization
approaches in the case where the signal of interest is highly
sparse [17]. Greedy algorithms solve (1) iteratively by taking
locally optimal decisions. These algorithms aim to find the
locations of the nonzero coeflicients to enable a fast recovery.
Greedy algorithms include several variants such as gradient
pursuit, matching pursuit (MP) [26], and OMP [17]. OMP
offers a fast recovery compared to convex optimization
approaches; however, it suffers from bad recovery quality for
signals with a low degree of sparsity. Thus, several improved
versions of OMP have been proposed, such as CoSaMP [19],
SP [20], and StOMP [18].

2.3. Distributed Compressive Sensing. Conventional CS
exploits only the sparsity of the data. However, if the same
data is collected using different sensing nodes or different
channels, their measurements would be highly correlated. In
such scenario, the measurements exhibit the same behavior,
such as being sparse in a particular domain.

Therefore, in a multichannel CS-based data acquisition
system, each sensing node collects and compresses its data
individually without taking any considerations about the
other nodes. For the recovery, two approaches can be consid-
ered to reconstruct the data; first, data reconstruction can be
performed on each sensing node individually, this approach
ignores the dependency between the measurements of differ-
ent sensors, and, hence, the quality of the reconstruction
depends only on the sparsity of each recording. The second
approach exploits the collaboration between all measure-
ments to obtain more information about the data; thus, a
better reconstruction quality can be achieved. This process
is called joint measurement setting and it has motivated the
introduction of the DCS concept.

DCS presents a new distributed coding framework that
exploits both the sparsity of the signal and the correlation
between the different signals in multisensing architectures.
In the DCS acquisition stage, each sensor collects its mea-
surements by taking random projections of the signal without
any consideration about the states of the other sensors in
the network. However, the reconstruction phase exploits the
intersignal correlation by using all of the obtained measure-
ments to recover all the signals simultaneously.

3. CS-Based EEG Compression

EEG is a well-considered framework to measure the electrical
activity of the brain; EEG signals are widely used to detect dif-
ferent types of neurological disorders such as comas, epilepsy,
and sleep disorders. Moreover, EEG can also be used for
nonmedical applications such as brain-computer interface.
EEG signals are recorded over a long period of time using a set



of electrodes placed over the head of the subject. EEG signals
are considered as a multivariate signal acquired via multiple
channels which results in the generation of big EEG data that
need to be stored and transmitted. However, several studies
have highlighted the limitation of such approach in terms of
high energy consumption due to massive raw data streaming.
Thus, EEG monitoring platforms would benefit from more
power efficient sampling and compression prior to wireless
transmission. These limitations motivate the incorporation of
CS and DCS to the EEG acquisition and compression.

3.1. Related Work. CS-based EEG monitoring has been inves-
tigated in the literature. First, the feasibility of applying CS to
EEG acquisition has been addressed in [11, 27]. The authors
quantified CS-based EEG monitoring, where CS has been
used as a compression technique to reduce both the storage
and the processing load. The obtained results revealed that
CS does not provide a good reconstruction quality unless
an appropriate acquisition scheme is deployed. CS can be
applied only if at least 22 channels are deployed to collect the
EEG data.

The low sparsity of the EEG raw data in both time and
frequency domains presents the main challenge in the design
of CS-based EEG monitoring systems. Thus, a great attention
was dedicated to providing dictionaries and basis that render
a high sparse representation of EEG signals. Subsequently,
several dictionaries have been investigated in the literature
such as Slepian basis, Gabor frames, and DW'T matrices [12-
15,28].1In [12], Senay et al. quantified a CS framework for EEG
compression using Slepian functions as a sparsifying dictio-
nary. By projecting the EEG signal into the Slepian basis, a
sparse representation is achieved; hence, the EEG can be effi-
ciently compressed with CS at a very low error rate. In addi-
tion, Aviyente analyzed a CS framework for EEG compression
in terms of the mean square error (MSE) using Gabor frame
method as sparsifying basis [13]. The author argued that
chirped Gabor dictionary would be very efficient and it can
increase the sparsity of the signals; hence, it improves the
performance of CS-based EEG monitoring. On the other
hand, Gangopadhyay et al. claimed in [14] that wavelet-based
dictionaries are more suitable for CS-based EEG compression
than the previously mentioned approaches. Author in [11]
have provided a detailed performance study for six different
sparsifying dictionaries, namely, Gabor, Mexican Hat, cubic
Spline, linear Spline, cubic B-Spline, and linear B-Spline.
In the paper, intensive sets of simulations were carried out
for different reconstruction algorithms in 18 different test
conditions. The B-Spline dictionaries proved to be the most
promising, yielding best reconstruction quality and achieving
the lowest error rates. Furthermore, Liu et al. proposed in [16]
anew framework for EEG monitoring based on sparse signal
recovery method and simultaneous cosparsity and low-rank
(SCLR) optimization approaches. The proposed approach
utilizes second-order difference matrix as the sparsifying
basis and ¢0 minimization for data reconstruction. Never-
theless, Zhang et al. explored the BSBL which was initially
developed in [29] to empower ECG signal monitoring for
EEG reconstruction [15]. The idea of the paper is that, instead
of finding the optimal sparsifying dictionary, the authors used
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general dictionary matrices (DWT and DCT) to represent
the EEG signal. Yet, they explored BSBL to take advantage
of the block structure of the EEG signal. The results revealed
an acceptable reconstruction quality for particular sets of
applications.

Besides evaluating the sparsity, the metrics for EEG data
reconstruction have been investigated as well. For instance,
root-mean-squared difference (PRD) has been used to evalu-
ate the reconstruction quality of EEG reconstruction in [30].
However, different thresholds have been established based on
the targeted application. In [31], based on energy preservation
criterion, authors determined that the maximum PRD which
provides an acceptable recovery is 7%. Such PRD value can
guarantee that 99.5% of the signal energy is persevered,
whereas Higgins et al. demonstrated in [32] that up to 30%
PRD is tolerable with EEG compression for applications of
automated seizure detection.

Table 1 expatiates on the comparative results between
several works presented in the literature on the integration
of CS in context of EEG monitoring.

3.2. Joint Channel Reconstruction. In a multichannel acquisi-
tion scenario, the joint sparsity of the signal ensemble is often
smaller than the aggregate over individual signals sparsities
[4]. Therefore, if the signal of interest is characterized by a
weak sparsity, such as EEG signals, it is possible to explore
the joint sparsity of the ensemble. In addition, exploiting joint
sparsity would result in a remarkable reduction in the number
of measurements required to achieve an acceptable recovery.

The corresponding CS model CS-based EEG compression
system for the J channels can be written as follows:

Y = ®X, (3)

where X = [x},%,,...,X;] € RN denotes the original EEG
raw data and N is the number of samples in each channel,
whereas Y = [y}, y,,...,y/] € R denotes the compressed
form of the EEG data.

The proposed method represents the multichannel signal
data by stacking, column-wise, the measurement vectors of
the different channels into a single vector. This approach
allows the recovery of a multiple channel recording simulta-
neously by exploring their joint sparsity in order to reduce
the number of the required measurements for each channel
as well as achieve a better reconstruction quality than the
conventional CS recovery which recovers each of the channel
measurements individually.

The joint-measurements acquisition model can be
expressed as

Y, =®[X], j=L2....L (4)

where [ is an integer number such that | = J/A and A
denotes the number of channels to be recovered simultane-

ously. The vector [X] j € R™N is the column-wise stack-

ing of the elements of X such that [X]; = [XZ;_I)AH, XZ;—I)A+2’

. ’X(Tj—1)A+A]T
For EEG data recovery, each [X] jis reconstructed indi-
vidually by applying the SP algorithm. The pseudocode for
SP algorithm is presented in Algorithm 1.
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TABLE 1: Summary of CS-based EEG monitoring approaches presented in the literature.

References Sparsifying basis Reconstruction algorithm CR PRD MSE

Abdulghani et al. [11] B-Spline BP 0.33 18.61 —

Casson and Rodriguez-Villegas [33] DWT BP 0.4 25 —

Zhang et al. [15] DWT BSBL 0.5 — 0.078

Liu et al. [16] Second-order difference matrix £0 0.5 — 0.045

Input:

Y] j: measurement vector
®: sensing matrix

€: stopping criterion

k: sparsity estimate
Initialization:

Q=[]

% = [y,

current iterationi = 0

Wi=i+l
@) G = @*r

@ a=0uql

() X1, = ®LIY];

(6) ' = [Y]; - @ [x] "
Output:

Procedure: While ¢! — r V|, > eand [t < £V,

(3) Q" = {k indices corresponding to the largest absolute value of fell}}

(X];: reconstructed EEG signal that satisfies [X] in

™~ _ [l _ @t
0= 0 and [X]jQ = o, [Y]

ALGORITHM l: Subspace pursuit algorithm.

3.3. Proposed DSSP Algorithm. Unlike SAMBP, this paper pro-
poses the DSSP algorithm, which follows a straightforward
modification to the SP algorithm by exploring the key idea of
CS. That is, if the signal is highly compressible, then only a
small number of the coefficients capture most of the signal’s
energy. Subsequently, by locating these coeflicients at each
iteration, the true support of the signal (the locations of the
largest nonzero coeflicients) can be identified.

Moreover, as the signal structure often changes with time,
its sparsity changes as well. Thus, to cope with this variation in
the signal structure, the algorithm should exhibit a dynamic
selection approach; that is, the number of selected coeflicients
at each iteration should be updated depending on the changes
in the signal structure. Hence, the proposed DSSP algorithm
follows an energy-based selection approach that updates the
number of selected coefficients depending on the acquired
signal at any given time.

Therefore, in the DSSP algorithm, rather than selecting a
fixed number of coeflicients at each iteration, the algorithm
locates the indices of the minimum number of coefficients
that capture the most of the signal’s energy. This approach
expands the true support of the signal stage by stage. In addi-
tion, DSSP refines the estimated signal at each iteration,
where the columns of the sensing matrix corresponding to the
locations of the selected coefficients are used to solve a least
square problem. This process is repeated until an acceptable

quality of reconstruction is achieved based on error mini-
mization condition.

In order to select the appropriate number of coefficients
that capture most of the signal proxy energy at each iteration,
the parameter 0 < A < 1 is defined as the rate between the
energy of the selected coefficient and the energy of the signal
proxy at each iteration. Therefore, in order to select the appro-
priate set of coefficients that holds most of the signal proxy
energy, the parameter A can be selected as high as possible as
long as it allows the selection of at least one coefficient at each
iteration.

The pseudocode of the DSSP is listed in Algorithm 2.

4. Results and Discussion

In order to quantify the performance of CS-based scheme for
EEG compression, intensive experiments have been carried
out using MATLAB computing software. The EEG signals
were taken from the database of the EEGLab [34]. The EEG
database considered contains 80 channel recordings, each
with 384 samples.

In order to set up the simulations, Symlets wavelet-based
transform [35] is used as sparsifying basis for the EEG signal.
Symlets have been selected after several empirical simulations
to determine the best wavelet class that provides the best
reconstruction quality.
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Input:

Y] ; measurement vector

@: sensing matrix

€: stopping criterion

A: Energy parameter, 0 < A < 1

PO = [Y]j

current iteration i = 0

Procedure: While [|r/! — ¢! I, >e€

and [, < e,

Mi=i+1

(2) Calculate the signal proxy G(n] =11 — @* )
(3) Calculate the energy of the signal proxy

1N
2
E:N;mw|

(4) Sort G[n]* ™ in an ascending order
(5) O = minimum k indices corresponding to the largest
absolute that satisfies

1 k
P, = EZ{IG[n]IZ > AE

6 Q=0u ol
(7) [X1g, = DLV
®) r'" = [Y]; - @5 [X];"

Output:

(X];: rec?]nstructed EEG signal that satisfies [X]; om0 =0
i _ ot

and [X]jQ = (DQ[Y]j

ALGoRITHM 2: Dynamic selection subspace pursuit (DSSP) algorithm.

In the design of the sensing matrix, two approaches have
been adopted. In the first one, the entries of the sensing
matrix are drawn from a normal distribution such that
® ~ (0,1/M). Whereas, in the second one, the entries are
drawn form a Bernoulli distribution with entries {1, —1}. The
experiments results are averaged on 100 trials.

The signal reconstruction quality is evaluated in terms of
the normalized mean square error (NMSE). NMSE calculates
the 2-norm of the difference between the original ECG signal

X] i and the reconstructed one [/XT] as follows:

X1, - XT|.
2= 2,
|,

Furthermore, the term compression ratio (CR) is defined
as the ratio between M, the number of samples in the com-
pressed signal, and N, the number of samples in the original
ECG signal:

NMSE = (5)

CR=—. (6)

First, the adopted algorithm for EEG signal reconstruc-
tion is SP. As shown in Algorithm 1, the SP algorithm requires
the sparsity estimate as an input; however, there is no
established rule to select the best sparsity parameter k. Thus,
in order to determine the optimum value of k, intensive

TABLE 2: Averaged reconstruction performance.

5] A=1 A=2 A=4 A=38
Random matrix N/A 0.156 0.14 0.1056 0.092
Bernoulli matrix  0.078 0.157 0.1423 0.1051 0.0844

empirical simulations have been performed. The obtained
results indicate that the optimal value of k for channel-per-
channel reconstruction (EEG signal with 384 samples) is k =
55+ 3. Subsequently, for joint channel reconstruction the best
sparsity estimate value is k = A x 55.

Table 2 presents performance comparison in terms of
NMSE between the reconstruction quality of the proposed
approach and the result presented in [15] where the same EEG
data has been used. To this end, the number of samples to
be transmitted M = N/2 is equal to the number of samples
used in [15]. Moreover, in order to quantify the performance
of our proposed approach, different values of A have been
selected, such that A = {1,2,4,8}. A = 1 represents the case
where each channel is recovered individually and no joint
sparsity is explored. The results show clearly that exploiting
the joint sparsity improves the reconstruction quality, where
the latter increases with the increase of the number of
channels recovered simultaneously. In addition, the choice of
the sensing matrix does not have a great impact on the recon-
struction quality except for the case where CR = 0.5, in which
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FIGURE 1: Recovery quality in terms of NMSE for different values of
compression ratio (CR) using a random matrix.

0.18
0.16
0.14
0.12

0.1
0.08
0.06
0.04

0.02 " "
0.3 0.4 0.5 0.6 0.7

Compression ratio (%)

NMSE (dB)

—«— Joint channel A =4
—=— Joint channel A =8

—— Channel-per-channel A = 1
Joint channel A =2

FIGURE 2: Recovery quality in terms of NMSE for different values of
compression ratio (CR) using a binary matrix.

a better performance is obtained using Bernoulli matrix.
Nevertheless, the reconstruction quality obtained in [15] still
outperforms the quality achieved by the proposed approach.

The low quality of reconstruction obtained can be
explained by the fact that the wavelet basis does not provide a
good sparse representation to EEG data. Therefore, by using
the concept of dictionary concatenation [36] which has been
investigated for ECG signals in [8], a sparsifying basis for
EEG has been proposed. The basis is constructed by selecting
random elements from DCT and wavelet families, namely,
Daubechies and Symlets.

Figures1and 2 present the reconstruction quality in terms
of NMSE for different values of CR using random and binary
sensing matrix, respectively. The obtained results consolidate
the previous results where exploiting joint-recovery with
A = 4,8 enhances remarkably the reconstruction quality.
Moreover, using the proposed dictionary renders a better
reconstruction than using a DWT as sparsifying basis. Fur-
thermore, the same reconstruction quality obtained in [15] by
taking CR = 0.5 can be obtained by exploring joint-recovery

NMSE (dB)

0.3 0.35 0.4 0.45 0.5
Compression ratio (%)

DSSP A =0.8
—+— DSSPA=0.85

—— SP
—=— DSSPA=0.5
—— DSSPA=0.7

FIGURE 3: Comparison between reconstruction quality of DSSP with
SP for channel-per-channel recovery.
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0.3 0.35 0.4 0.45 0.5
Compression ratio (%)

—*— DSSPA=0.9
—o— DSSP A =0.95

—— SP
DSSP A =0.8

FIGURE 4: Comparison between reconstruction quality of DSSP with
SP for joint-recovery with A = 2.

combined with the proposed basis using only a CR = 0.3 for
the case where A = 8. On the other hand, with A = 2, an infe-
rior reconstruction quality is achieved compared to channel-
per-channel recovery for CR value higher than 0.4. One
reason for such inferior performance is the poor selection of
the sparsity estimate for the SP algorithm; hence, SP is not
robust to sparsity change within the different signal blocks.
Secondly, in order to quantify the performance of the
proposed algorithm (DSSP), intensive numerical simulations
have been carried out in order to determine the best approach
to select the parameter A. Figures 3 and 4 quantify the
performance of the DDSP algorithm for different values of
A. Figure 3 presents the reconstruction quality in terms of
NMSE for channel-per-channel recovery method. A values
have been selected such that A = {0.5,0.7,0.8,0.85, 0.9, 0.95}.
The obtained results show that the NMSE decrease constantly
with increasing the value of CR, which leads to a better
reconstruction quality. In addition, the results show that, with
value of A = 0.9, the signal true support is very well located at
each iteration which provides a better reconstructing quality.
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Figure 4 illustrates the performance for joint channel
recovery with A = 2, and the obtained results consolidate
with the results presented in Figure 3 which shows the
superiority of DDSP using A = 0.9 over the SP algorithm.
However, when the value of A approaches 1, the DDSP
selects more coefficients at each iteration; subsequently, the
coefficients which do not belong to the true support of the
signal are more likely to be selected, which can degrade
the quality of the reconstruction such as the case where A =
0.95.

Figure 5 presents the execution time for the SP with
DSSP using different values of A. The reported results are
averaged over the reconstruction time for 80 channels. As
the reconstruction time of the implemented algorithms is
controlled by the speed of the processor and the number of
tasks handled by the processor, all the algorithms have been
implemented on the same program in a single PC to reduce
the effect of this dependency. It is worth mentioning that the
results are obtained using a PC equipped with an Intel Core
i7-3770 @ 3.4 Ghz CPU and a RAM of 16.0 GB. The obtained
execution time illustrates that, for CR values less than 0.4,
SP converges faster compared to the proposed algorithm.
However, it is worth mentioning that, for such low CR, SP
does not guarantee an acceptable recovery quality. On the
other hand, for CR higher than 0.4, although the proposed
algorithm includes more steps in order to determine the best
sparsity estimate at each iteration, the obtained results show
that the proposed algorithm outperforms the SP algorithm
in terms of the reconstruction time in case of A = 0.8.
This can be explained by the fact that the proposed selection
approach is more likely to determine the true support of
the signal which will lead to a lower number of iterations
to converge to the desired reconstruction quality. However,
as DSSP achieves its best performance with A = 0.9 for a
CR = 0.45 as shown previously in Figure 4, increasing the
number of samples transmitted would result in an additional
information about the signal which renders a faster recovery
as illustrated by the decrease of the execution time from CR
=0.5to CR=0.6.
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5. Conclusion

Biosignal compression represents a hot topic to be addressed
in order to enable IoT-based connected health platforms that
offer low-power consumption, simple system design, and
efficient performance.

Efficient EEG compression schemes using CS have not
achieved the desired performance yet. This is mainly due to
the nonsparse nature of EEG signals. This paper investigates
the concept of joint-recovery to improve the reconstruc-
tion quality of EEG signals by exploiting the collaboration
between the multichannel measurements. Moreover, the
paper explores the idea of basis concatenation to tackle the
issue of EEG nonsparsity. The experimental results have been
compared to the state-of-the-art BSBL algorithm using the
same database as well as similar system setup. Thus, by adopt-
ing SP-based joint channel recovery, the achieved reconstruc-
tion quality outperforms the one obtained BSBL algorithm.
In addition, the paper quantifies the use of both Bernoulli
and random matrices as sensing matrix; the obtained results
reveal that both classes provide a similar performance in
terms of quality of reconstruction. However, Bernoulli matri-
ces have proved in the literature to be hardware friendly and
offer a low system complexity.

Furthermore, an adaptive reconstruction algorithm has
been proposed to tackle the problem of the variation of the
signal sparsity over time. The most prominent advantage
of the proposed DSSP is the ability to provide a good
reconstruction quality without prior knowledge of the signal
sparsity which can be very useful in several applications.

In conclusion, the obtained results are very promising and
their hardware implementation for remote monitoring in IoT
applications can be further investigated as future work.

Disclosure

The statements made herein are solely the responsibility of the
authors.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This paper was made possible by National Priorities Research
Program (NPRP) grant from the Qatar National Research
Fund (a member of Qatar Foundation) (Grant no. 9-114-2-
055).

References

[1] C.Karakus, A. C. Gurbuz, and B. Tavli, “Analysis of energy effi-
ciency of compressive sensing in wireless sensor networks,”
IEEE Sensors Journal, vol. 13, no. 5, pp. 1999-2008, 2013.

[2] D. L. Donoho, “Compressed sensing,” Institute of Electrical and
Electronics Engineers Transactions on Information Theory, vol.
52, no. 4, pp. 1289-1306, 2006.

[3] E. J. Candes, J. Romberg, and T. Tao, “Robust uncertainty
principles: exact signal reconstruction from highly incomplete



Wireless Communications and Mobile Computing

[8

(10]

(12]

(16]

(17]

frequency information,” Institute of Electrical and Electronics
Engineers Transactions on Information Theory, vol. 52, no. 2, pp.
489-509, 2006.

D. Baron, M. E Duarte, M. B. Wakin, S. Sarvotham, and R.
G. Baraniuk, “Distributed compressive sensing,” 2009, https://
arxiv.org/abs/0901.3403.

A.M.R. Dixon, E. G. Allstot, D. Gangopadhyay, and D. J. Allstot,
“Compressed sensing system considerations for ECG and EMG
wireless biosensors,” IEEE Transactions on Biomedical Circuits
and Systems, vol. 6, no. 2, pp. 156-166, 2012.

D. Bortolotti, M. Mangia, A. Bartolini, R. Rovatti, G. Setti, and
L. Benini, “Energy-aware bio-signal compressed sensing recon-
struction on the wbsn-gateway,” IEEE Transactions on Emerging
Topics in Computing, vol. PP, no. 99, pp. 1-1, 2016.

A.M.R. Dixon, E. G. Allstot, A. Y. Chen, D. Gangopadhyay, and
D.]J. Allstot, “Compressed sensing reconstruction: Comparative
study with applications to ECG bio-signals,” in Proceedings of
the 2011 IEEE International Symposium of Circuits and Systems,
ISCAS 2011, pp. 805-808, Rio de Janeiro, Brazil, May 2011.

O. Kerdjidj, K. Ghanem, A. Amira, F. Harizi, and F. Chouireb,
“Concatenation of dictionaries for recovery of ECG signals
using compressed sensing techniques,” in Proceedings of the 26th
International Conference on Microelectronics (ICM), pp. 112-115,
IEEE, Doha, Qatar, December 2014.

L. FE. Polania, R. E. Carrillo, M. Blanco-Velasco, and K. E. Barner,
“Exploiting prior knowledge in compressed sensing wireless
ECG systems,” IEEE Journal of Biomedical and Health Informa-
tics, vol. 19, no. 2, pp- 508-519, 2015.

Y. Liu, M. De Vos, 1. Gligorijevic, V. Matic, Y. Li, and S. Van
Huffel, “Multi-structural signal recovery for biomedical com-
pressive sensing,” IEEE Transactions on Biomedical Engineering,
vol. 60, no. 10, pp. 2794-2805, 2013.

A. M. Abdulghani, A. J. Casson, and E. Rodriguez-Villegas,
“Compressive sensing scalp eeg signals: implementations and
practical performance,” Medical & biological engineering &
computing, vol. 50, no. 11, pp. 1137-1145, 2012.

S. Senay, L. E. Chaparro, M. Sun, and R. J. Sclabassi, “Compres-
sive sensing and random filtering of eeg signals using slepian
basis,” in Proceedings of the 16th European Signal Processing
Conference, pp. 1-5, IEEE, Lausanne, Switzerland, August 2008.

S. Aviyente, “Compressed sensing framework for EEG compres-
sion,” in Proceedings of the IEEE/SP 14th WorkShoP on Statistical
Signal Processing (SSP 07), pp. 181-184, August 2007.

D. Gangopadhyay, E. G. Allstot, A. M. R. Dixon, and D. . Allstot,
“System considerations for the compressive sampling of EEG
and ECoG bio-signals,” in Proceedings of the 2011 IEEE Bio-
medical Circuits and Systems Conference (BioCAS), pp. 129-132,
IEEE, San Diego, CA, USA, November 2011.

Z. Zhang, T. P. Jung, S. Makeig, and B. D. Rao, “Compressed
sensing of EEG for wireless telemonitoring with low energy
consumption and inexpensive hardware,” IEEE Transactions on
Biomedical Engineering, vol. 60, no. 1, pp. 221-224, 2013.

Y. P. Liu, M. De Vos, and S. Van Huffel, “Compressed sensing
of multichannel EEG signals: the simultaneous cosparsity and
low-rank optimization,” IEEE Transactions on Biomedical Engi-
neering, vol. 62, no. 8, pp. 2055-2061, 2015.

J. A. Tropp and A. C. Gilbert, “Signal recovery from random
measurements via orthogonal matching pursuit,” Institute of
Electrical and Electronics Engineers Transactions on Information
Theory, vol. 53, no. 12, pp. 4655-4666, 2007.

(18]

(20]

(21]

[22]

[23

[26]

(27]

(28]

(29

D. L. Donoho, Y. Tsaig, I. Drori, and J.-L. Starck, “Sparse solu-
tion of underdetermined systems of linear equations by stage-
wise orthogonal matching pursuit,” Institute of Electrical and
Electronics Engineers Transactions on Information Theory, vol.
58, no. 2, pp. 1094-1121, 2012.

D. Needell and J. A. Tropp, “CoSaMP: Iterative signal recovery
from incomplete and inaccurate samples,” Applied and Compu-
tational Harmonic Analysis , vol. 26, no. 3, pp. 301-321, 2009.
W. Dai and O. Milenkovic, “Subspace pursuit for compressive
sensing signal reconstruction,” Institute of Electrical and Elec-
tronics Engineers Transactions on Information Theory, vol. 55,
no. 5, pp. 22302249, 2009.

E.J. Candes and M. B. Wakin, “An introduction to compressive
sampling: A sensing/sampling paradigm that goes against the
common knowledge in data acquisition,” IEEE Signal Processing
Magazine, vol. 25, no. 2, pp. 21-30, 2008.

T. T. Do, L. Gan, N. Nguyen, and T. D. Tran, “Sparsity adaptive
matching pursuit algorithm for practical compressed sensing,”
in Proceedings of the 42nd Asilomar Conference on Signals,
Systems and Computers (ASILOMAR ’08), pp. 581-587, Pacific
Grove, Calif, USA, October 2008.

G. Sun, Y. Zhou, Z. Wang, W. Dang, and Z. Li, “Sparsity adaptive
compressive sampling matching pursuit algorithm based on
compressive sensing,” Journal of Computational Information
Systems, vol. 7, no. 4, pp. 2883-2890, 2012.

S.S. Chen, D. L. Donoho, and M. A. Saunders, “Atomic decom-
position by basis pursuit,” SIAM Journal on Scientific Comput-
ing, vol. 20, no. 1, pp. 33-61,1998.

E.J. Candes, “The restricted isometry property and its implica-
tions for compressed sensing,” Comptes Rendus Mathematique,
vol. 346, no. 9-10, pp. 589-592, 2008.

S. G. Mallat and Z. Zhang, “Matching pursuits with time-
frequency dictionaries,” IEEE Transactions on Signal Processing,
vol. 41, no. 12, pp. 3397-3415, 1993.

A. M. Abdulghani, A. J. Casson, and E. Rodriguez-Villegas,
“Quantifying the feasibility of compressive sensing in portable
electroencephalography systems,” in International Conference
on Foundations of Augmented Cognition, vol. 5638 of Lecture
Notes in Computer Science, pp. 319-328, Springer, Berlin, Ger-
many, 2009.

J. Haboba, M. Mangia, R. Rovatti, and G. Setti, “An architecture
for 1-bit localized compressive sensing with applications to
EEG,” in Proceedings of the 2011 IEEE Biomedical Circuits and
Systems Conference (BioCAS), pp.137-140, IEEE, San Diego, CA,
USA, November 2011.

Z. Zhang, T.-P. Jung, S. Makeig, and B. D. Rao, “Compressed
sensing for energy-efficient wireless telemonitoring of non-
invasive fetal ECG via block sparse bayesian learning,” IEEE
Transactions on Biomedical Engineering, vol. 60, no. 2, pp. 300-
309, 2013.

G. Higgins, S. Faul, R. P. McEvoy et al., “EEG compression using
JPEG2000 how much loss is too much?” in Proceedings of the
2010 32nd 2010 Annual International Conference of the IEEE
Engineering in Medicine and Biology (EMBC), pp. 614-617, IEEE,
Buenos Aires, Argentina, September 2010.

J. L. Cardenas-Barrera, J. V. Lorenzo-Ginori, and E. Rodriguez-
Valdivia, “A wavelet-packets based algorithm for EEG signal
compression,” Medical Informatics and the Internet in Medicine,
vol. 29, no. 1, pp. 15-27, 2004.

G. Higgins, B. McGinley, N. Walsh, M. Glavin, and E. Jones,
“Lossy compression of EEG signals using SPIHT,” IEEE Elec-
tronics Letters, vol. 47, no. 18, pp. 1017-1018, 2011.


https://arxiv.org/abs/0901.3403
https://arxiv.org/abs/0901.3403

10

(33]

(34]

[36]

A.]. Casson and E. Rodriguez-Villegas, “Signal agnostic com-
pressive sensing for body area networks: Comparison of signal
reconstructions,” in Proceedings of the Conference of the IEEE
Engineering in Medicine and Biology Society, pp. 4497-4500,
IEEE, 2012.

A. Delorme and S. Makeig, “EEGLAB: an open source toolbox
for analysis of single-trial EEG dynamics including indepen-
dent component analysis,” Journal of Neuroscience Methods, vol.
134, no. 1, pp. 9-21, 2004.

A. Mishra, E Thakkar, C. Modi, and R. Kher, “Comparative
analysis of wavelet basis functions for ecg signal compression
through compressive sensing,” International Journal of Com-
puter Science and Telecommunications, vol. 3, no. 5, pp. 23-31,
2012.

E. J. Candes, Y. C. Eldar, D. Needell, and P. Randall, “Com-
pressed sensing with coherent and redundant dictionaries,”
Applied and Computational Harmonic Analysis , vol. 31, no. 1,
pp. 59-73, 2011.

Wireless Communications and Mobile Computing



International Journal of

Rotating
Machinery

The Scientific
quld Journal

Journal of

Sensors

Advances in

Civil Engineering

Journal of

Robatics

Advances in
OptoElectronics

International Journal of
Navigation and
Observation

Aoet®

International Journal of
Anten nas and
Propagation

International Journal of
Chemical Engineering

Hindawi

Submit your manuscripts at
https://www.hindawi.com

Active and Passive
Electronic Components

Modelling &
Simulation
in Engineering

ekt sty St |
e L~

Shock and Vibration

International Journal of

Distributed
Sensor Networks

Journal of

Control Science
and Engineering

Journal of
Electrical and Computer
Engineering

International Journal of

Aerospace
Engineering

and Vibration



