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A B S T R A C T   

Harmful algal blooms (HABs) have long been a critical threat to environmental safety and health, especially in 
inland lakes with rapidly growing socioeconomic development. Although satellite remote sensing provides an 
efficient manner to observe floating algae blooms, tracing and capturing the distribution of HABs in water bodies 
remains challenging for their high dynamics in both spatial and temporal dimensions. This study analyzed the 
spatio-temporal dynamics of HABs in Chaohu Lake, China, from 2000 to 2021. Daily MODIS remote sensing 
observations, including 7926 images, were utilized. The Floating Algae Index (FAI) was applied to each image to 
detect the area and severity of HABs. Results show that the HABs in Chaohu Lake have generally been increasing 
in the past two decades, with two intermittent decreases in 2016–2017 and 2020–2021, and the duration of HABs 
tended to be longer over the years. HABs were most severe and frequent in the lake’s northwestern area. 
Temperature and precipitation are two main meteorological factors positively correlated with HABs. The fast- 
growing socio-economy reflected by population and GDP increase lake eutrophication and HABs. However, 
environment management policies since 2020 have had a significant and rapid influence in decreasing the lake’s 
nutrients, which greatly reduced HABs severity in 2020 and 2021. This study’s results further indicate that high- 
frequency remote sensing observations, although with occasional data missing due to cloud cover, can still 
perform well in describing HABs, as long as the analysis method is appropriately adopted. This finding provides 
potential significance for utilizing remote sensing products, especially for highly dynamic object observation 
where high-quality images are lacking.   

1. Introduction 

For the past few decades, inland waters have faced severe challenges 
of HABs due to increasing human activities and global climate change 
(Xu et al., 2003; Wang et al., 2015; Zhang et al., 2015). HABs can last a 
few days to months. Frequent HABs outbreaks threaten water resources, 
environmental systems, human health, etc. (Liu et al., 2021; Chen et al., 
2021). HABs will severely deplete oxygen levels and produce massive 
methane emissions with a pungent poisonous gas (Guo et al., 2021; 
Friedman and Levin, 2005). HABs are a greater threat to water safety 
and ecological health for inland urban lakes. Therefore, it is vital to 
observe, trace, and analyze the evolution of HABs. However, HABs can 
develop rapidly under optimal climatic and aquatic conditions. The 
severity and spatial distribution are highly dynamic, for it is sensitive to 

meteorological factors such as temperature, precipitation, and wind 
direction (Díaz et al., 2021), making it challenging to describe the 
detailed spatio-temporal dynamics of HABs over long periods. 

Remote sensing technology provides an efficient manner to review 
long-term HABs development in water areas or trace the real-time 
condition of HABs (Coffer et al., 2021; Bosse et al., 2019). Remote 
sensing has a significant advantage over in situ observations due to its 
low cost, easy access, and traceability to the past time (Sun et al., 2016; 
Yuan et al., 2021). Different satellite remote sensing products have been 
applied in observing and analyzing HABs in water areas globally 
(Stroming et al.,2020; Hunter et al.,2009). Various indicators have been 
used to extract HABs based on remote sensing images, such as normal
ized difference vegetation index (NDVI) (Qin et al., 2022; Cao and Han, 
2021; Teta et al., 2021), enhanced vegetation index (EVI) (Pan et al., 
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2012; Cong et al.,2009; Hillman et al.,2021), floating algae index (FAI) 
(Jia et al., 2019; Shi et al., 2019; Naghdi et al., 2018), maximum chlo
rophyll index (MCI) (Alikas et al., 2010) and machine learning models 
based on spectral band data (Song et al., 2022; Pyo et al., 2021; Li et al., 
2021). 

Chaohu lake has attracted numerous studies on its HABs (Zhang 
et al., 2015); it is one of the five largest freshwater lakes in China, is 
heavily affected by eutrophication, and has been prone to HABs. Pre
vious studies have analyzed various spatial and temporal variations of 
HABs using different satellite remote-sensing products (Zhang et al., 
2015; He et al., 2018; Ma et al., 2021). Previous studies revealed that the 
HABs in Chaohu Lake occurred mainly from May to November, were 
more frequent and severe in western parts of the lake, and have been 
increasing during the past few decades. However, as HABs are highly 
dynamic, there remain uncertainties in the general and detailed char
acteristics of HABs. 

The driving forces of HABs growth have attracted increasing atten
tion, as it may potentially explain the outbreak of HABs and be helpful in 
future water environment management (Ma et al., 2021; Qin et al., 
2022; Liu et al., 2022; Zhang et al., 2021). HABs are sensitive to envi
ronmental factors and human activities. Meteorological factors 
commonly involve temperature, precipitation, sunshine hour, wind 
condition, etc.; human activity factors involve population, economic 
growth, land use, water management policies, etc. (Xu and Xu, 2022; 
Zhou et al., 2022b). Previous studies indicate that temperature and 
precipitation are two dominant meteorological factors for the Chaohu 
Lake (Ma et al., 2021). HABs are favored by higher temperatures (25℃- 
30℃) and light rain, which is why HABs in Chaohu grow fast in hot and 
wet summers. The wind force is a complicated driving force to the 
spatial distribution of HABs, as it may gather floating algae or boost the 
vertical movement of nutrients and aggravate HABs (Zhang et al., 2021; 
Hu et al., 2021). Sunshine duration is another complicated factor for 
HABs: appropriate sunshine duration is positively correlated to HABs, 
while too low sunshine hours may inhibit algae, and too much sunshine 
may also make algae inactive (Ma et al., 2021; Chen et al., 2021; Jing 
et al., 2019). Human activities are crucial to HABs, especially inland 
shallow lakes with low water exchange rates (Qin et al., 2022). Various 
typical HABs prone lakes are located beside cities or industries, such as 
Taihu Lake, Dianchi Lake, and Dongting Lake. Negative human activity 
factors on algal blooms include pollutant inflow, population, economic 
growth, etc. (Zhao et al., 2019; Khalil et al., 2022), while positive factors 
include pollutant controlling measures, ecological restoration, biolog
ical measures, etc (Box et al., 2021). Driving forces of these factors were 
analyzed using both quantitative and qualitative methods, such as cor
relation coefficients, multiple regression, time series analysis and qual
itative comparisons (Xia et al., 2019; Busico et al., 2020). 

Despite analysis of driving forces, the development of HABs remains 
a complicated issue as the driving forces vary significantly between 
different areas and periods. For instance, Guo et al. (2022) compared the 
similarities and differences between Chaohu Lake and Taihu lake, as 
both are large inland lakes with similar HABs situations, meteorological 
conditions, and social development. They found that the temporal trend 
of HABs in Chaohu Lake varied more than in Taihu lake from 2000 to 
2019. HABs in both lakes expanded from lakeside to lake center since 
2015, and total phosphorus played a more critical role in both lakes after 
2008. However, there remains some uncertainty on the impact of certain 
factors, i.e., how and how much the inflow nutrients aggravated HABs in 
Chaohu Lake, as the long-term historical water quality data varied 
greatly due to social development level and water management 
measures. 

Satellite remote sensing products differ in their parameters for 
observation start year, spatial resolution, temporal resolution, return 
period and band ranges, etc. Generally, there exist trade-offs among 
remote sensing products because no product has the best performance in 
all features (Gholizadeh et al., 2016). For instance, MODIS remote 
sensing has significant advantages and disadvantages in observing HABs 

(Xiong and Barnes, 2006): it has high temporal resolution and sufficient 
spectral bands but low spatial resolution and frequent missed data 
caused by cloud cover. Although various satellite remote sensing prod
ucts have been adopted in HABs observation, few studies discuss the 
applicability of specific satellite remote sensing products in observing 
HABs in detail, addressing an exciting topic to judge whether the MODIS 
satellite is a good choice in HABs analysis. 

This study analyzed HABs in Chaohu Lake using MODIS remote 
sensing daily observations from 2000 to 2021. Detailed analysis of 
spatial and temporal dynamics of HABs over the past two decades was 
derived. Potential driving forces, including precipitation, temperature, 
wind speed/direction, socioeconomic development, and water man
agement policies, were analyzed to indicate their correlations with HABs 
in Chaohu Lake. Lastly, MODIS remote sensing products’ applicability 
and potential advantage in highly dynamic HABs observations and 
management were illustrated. 

The overall framework of this study is shown in Fig. 1. The rest of this 
paper is organized by the following framework: The data and its pro
cessing method are introduced in Section 2; spatio-temporal dynamics 
results are presented in Section 3; driving forces to HABs variations as 
well as the advantage of MODIS product of this study are discussed in 
section 4. 

2. Material and methods 

2.1. Study site 

Chaohu Lake (117◦ 16′54′′-117◦51′46′′E,31◦ 43′28′′-31◦ 25′28 “ N), a 
classically eutrophic lake in China, was employed as the study site in this 
paper. It is China’s fifth largest shallow inland lake, with an average 
depth of 2.67 m and an average water level of 8.37 m above sea level. 
Fig. 2 shows the location of Chaohu Lake. Among the ten main tribu
taries of the numerous tributaries of Chaohu Lake, nine are inflow 
tributaries, which facilitate nutrients in the basin flowing into the lake. 
The unique outflow tributary is the Yuxi river at the east lakeside. 

The meteorological factor and socioeconomic conditions create 
favorable conditions for HABs outbreak in Chaohu Lake. Firstly, Chaohu 
Lake lies in China’s warm and wet subtropical monsoon region, with an 
average annual temperature of 15.8℃ and average annual precipitation 
of 1000 mm. 60 % to 70 % of the precipitation concentrates in summer 
(May-October). The synchronous hot-humid climate is very suitable for 
algal bloom outbreaks. Secondly, the rapid development of urban 
agglomeration in the basin since the 1980 s, especially the Hefei city to 
the northwest lake. As the capital of Anhui province, the scale and 
economy of Hefei city have grown rapidly during the past two decades. 
Thus, continuous nutrient loadings flowed into the Chaohu Lake 
through tributaries, resulting in HABs in Lake Chaohu. HABs have 
occurred almost every year since the 1990s, and the severity is 
increasing. In summary, the algal blooms of Chaohu Lake are charac
terized by high frequency, high temporal variance, and high spatial 
diversity. 

2.2. Data 

2.2.1. MODIS observations data 
MODIS satellite, launched in 1999, is a large space remote sensing 

instrument developed by NASA. The MODIS surface reflectance prod
ucts estimate the surface spectral reflectance with 36 bands every 1–2 
days. In this study, two MOD09 products, MOD09GQ and MOD09GA, 
were used as a database for extracting algal blooms of Chaohu Lake. The 
detailed specifications of the MOD09 product are referred to in htt 
ps://lpdaac.usgs.gov/documents/306/MOD09_User_Guide_V6.pdf. 
Table 1 presents main parameters of the two products. 

A total of 7926 images were acquired from the MOD09 database, 
forming a continuous observation of the Chaohu Lake. Table 2 lists the 
number of images for each year. The severity and coverage of HABs in 
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this paper were derived from each image to reveal the algal bloom’s 
spatial and temporal evolution pattern during the past two decades. 

2.2.2. Driving forces data 
Although a generally recognized driving force set has not been 

established, the most often considered driving forces can be categorized 
into meteorological and human activity factors. In this study, these two 
types of driving forces are also evaluated based on data availability. 

1. Meteorological driving forces. Meteorological data of Chaohu 
Lake were obtained from the Integrated Surface Data – Lite, announced 
by NCDC (National Climatic Data Center) of NOAA, USA. The dataset 
covers numerous stations worldwide, and for Chaohu Lake, we use 
station No. 58321. The scale of data is an hour. Meteorological records, 
including temperature, wind speed, cloud cover, and precipitation, were 
utilized in this paper. 

2. Human activity driving forces. Considering data availability, GDP, 

Fig. 1. Framework of paper.  

Fig. 2. Location of Chaohu Lake.  

Table 1 
Main parameters of MOD09GQ and MOD09GA.  

Product Revisit Parameters 

Name Spatial 
Resolution (m) 

Wavelength 
(nm) 

Description 

MOD09GQ Daily b01 250 620–670 red band 
b02 250 841–876 near-IR (NIR) 

band 
MOD09GA Daily b05 500 1230–1250 SWIR1 band 

b06 500 1628–1652 SWIR2 band 
b07 500 2105–2055 SWIR3 band  
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population of the neighboring city Hefei of Chaohu Lake, and water 
management policies were considered in human activity driving forces. 
The population and GDP of Hefei city were obtained from the govern
ment’s yearbook. We have been keeping abreast of the water manage
ment policies for the past ten years. The water management policies and 
related water condition data referred to in this paper are cited from 
official government portals. 

2.2.3. Data pre-processing and GEE platform 
The MOD09 database is L2 remote sensing product, which was pre

viously corrected for atmospheric conditions such as gases, aerosols and 
Rayleigh scattering. In this study, the pre-processing of MOD09 refers to 
resampling, land masking, cloud masking, and water-leaving reflectance 
correction (Jia et al., 2019). First, the MOD09GQ was resampled to 250 
m using bilinear interpolation to implement a better spatial resolution. 
Land surface and cloud pixels often have similar spectral features with 
HABs, so they should be masked to avoid signal interference, called land 
masking and cloud masking. To obtain a more stable reflectance per
formance of inland water areas, water-leaving reflectance corrections 
were carried out using the simple but effective method proposed by 
Wang et al. (2016). After these pre-processing, the images were 
considered calibrated and appropriate for HABs detection. 

Processing 7926 remote sensing images using traditional one-by-one 
processing manners is unrealistic. Several cloud computing platforms 
have been developed to address this issue, and one of the most widely 
used platforms is Google Earth Engine (GEE) (Alikas et al., 2010; Song 
et al., 2022). GEE is a cloud-based geospatial processing platform for 
large-scale environmental monitoring and analysis. Till now, the GEE 
platform has provided research support in various fields such as vege
tation observation (Johansen et al., 2015), water environment moni
toring (Lobo et al., 2021), flood monitoring (DeVries et al., 2020), and 
different geo-big data analysis (Tamiminia et al., 2020). 

This study applies GEE as the remote sensing processing platform. 
The GEE platform significantly improved data processing efficiency and 
provided an essential guarantee for data acquisition and analysis of the 
vast information load. 

2.3. HABs detection indicator 

When cyanobacteria proliferate and distribute on large water sur
faces, the spectral characteristics of the water surface are similar to 
vegetation, so indicators detecting vegetation can be adapted to detect 
algal bloom in water areas. The FAI indicator, proposed by Hu (2009), is 
a specific indicator to detect algae in the water. FAI is an ideal indicator 
to identify HABs in lakes and oceans as it is less sensitive to environ
mental interferences such as cloud cover, aerosol thickness, and solar 
scintillation than NDVI and EVI. In this study, the FAI indicator is 
derived from The MODIS Surface Reflectance product. The product 
provides an estimate of the surface spectral reflectance as it would be 
measured at ground level in the absence of atmospheric scattering or 
absorption. 

The original description of FAI is as follows: 

FAI = Rrc,NIR − R′
rc,NIR (1)  

R′
rc,NIR = Rrc,RED +

(
Rrc,SWIR − Rrc,RED

)
•

λNIR − λRED

λSWIR − λRED
(2)  

where Rrc,NIR,Rrc,RED,Rrc,SWIR are Rayleigh corrected red reflectance, near 

infrared reflectance and short infrared reflectance, λRED is the infrared 
center wavelength, λNIR is near infrared center wavelength, and λSWIR is 
short wave infrared center wavelength. 

In this study, as the MOD09 surface reflectance product is used, 
Rrc,NIR,Rrc,RED and Rrc,SWIR correspond to corrected reflectance Rc

rs,NIR, 
Rc

rs,RED and Rc
rs,SWIR, respectively (Jia et al., 2019). The corrected reflec

tance of MOD09 product centered at wavelength λ,Rc
rs(λ), is derived by: 

Rc
rs(λ) =

R(λ) − min(RNIR : RSWIR)

π (3)  

where R(λ) is the original MOD09 reflectance at wavelength λ, 
min(RNIR : RSWIR) is the minimum positive reflectance value between 
NIR and SWIR bands, and π is the denominator to transform surface 
reflectance to reflectance. 

Zhang et al. (2015) calibrated the threshold of HABs for Chaohu 
Lake, which is − 0.0026 of the FAI indicator. We have tested the 
reasonability of this threshold by comparing the derived HABs area with 
the “ground true” area announced by the Department of Ecology and 
Environment of Anhui Province. The official severity of HABs were 
published online: https://sthjt.ah.gov.cn/public/21691/110831651.ht 
ml. The derived HABs area using threshold − 0.0026 fits the official 
announcement well. Therefore, in this study, we distinguish HABs and 
non-HABs areas using a threshold of − 0.0026; that is, pixels with FAI 
value greater than − 0.0026 is regarded as algae coverage, otherwise, it 
is considered as a non-algae area. 

2.4. Spatio-temporal dynamics analysis of HABs 

Spatial and temporal dynamics analysis was carried out by calcu
lating FAI values for each pixel. Fig. 3 illustrates the general idea of 
temporal and spatial analysis. Details of the spatial and temporal anal
ysis is explained in 2.4.1 and 2.4.2. 

2.4.1. Temporal dynamics 
1. Daily, monthly, and annual HABs area statistics. A binary 

classification of FAI was applied to all pixels of each MODIS observation 
between 2000 and 2021. Knowing that each pixel covers a 250 m*250 m 
area in MODIS images, algae coverage was converted from HABs pixel 
numbers multiplied by the area of the pixel unit. Based on daily HABs 
coverage, monthly average and annual average HABs coverage were 
further inferred by averaging daily HABs area time series data. 

2. Temporal outbreak frequency. Each year’s temporal frequency 
of a large area HABs outbreak is a key symbol for assessing the severity 
of algal blooms. This study divides HABs outbreaks into three grades: 
light, medium, and heavy. According to the announcement of the 
Department of Ecology and Environment of Anhui Province, algal 
blooms were divided into “scattered little”, “light”, “medium” and 
“heavy” grades. Both HABs area and distribution determined the grades. 
Based on the long-term announcement, we defined in this paper that 
light grade refers to HABs coverage between 100 km2 to 200 km2 (15 % 
− 30 % of the lake area); medium grade refers to HABs coverage be
tween 200 km2 to 300 km2 (30 % − 45 % of the lake area), and heavy 
grade HABs coverage greater than 300 km2 (greater than 45 % of the 
lake area). The outbreak times of each year were counted to reveal HABs 
frequency and severity. 

3. Monthly average HABs area. Since HABs are highly sensitive to 
temperature and have seasonal periodicity, monthly average HABs areas 

Table 2 
Numbers of images for each year.  

Year 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 

Image amount 312 365 365 365 366 365 365 365 366 365 365 
Year 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 
Image amount 365 366 365 365 364 367 365 365 362 369 309  
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are derived to illustrate the seasonal evolutionary pattern. The monthly 
average HABs area is derived by averaging the HABs area of all images of 
each month from 2000 to 2021. 

4. Maximum HABs area. HABs distribution is highly dynamic in 
both temporal and spatial dimensions due to its fast-growing feature and 
sensitivity to meteorological factors; moreover, algal bloom distribu
tions observed from remote sensing images are often masked by cloud 
cover, which may underestimate algal bloom coverage. Therefore, the 
maximum HABs areas observed from remote sensing images are more 
representative in reflecting algal bloom peak situations. Here, the 
maximum HABs area for each year was selected and presented. 
Furthermore, the occurrence month of the maximum HABs area was also 
given to illustrate the timing of the most severe HABs. 

5. Start time, end time, and duration of HABs. Taking HABs 
coverage greater than 100 km2 as the threshold of HABs outbreak, start 
time, end time, and duration can be derived from the daily HABs area 
time series. The first date that HABs area exceeds 100 km2 was regarded 
as the year’s start time; similarly, the last date that HABs area exceeds 
100 km2 was regarded as the year’s end time, and the time between start 
time and end time was taken as duration of HABs in a year. 

2.4.2. Spatial dynamics 
HABs in Chaohu Lake are more uneven in spatial distribution due to 

the low flow speed and various onshore influences. To analyze the 
spatial dynamics of HABs and their evolutional pattern over time, spatial 
frequency and severity were derived. 

1. Spatial frequency. The spatial frequency of HABs refers to the 
occurrence times of HABs for each pixel during a year, as illustrated in 
Fig. 3. The spatial frequency map of the overall lake can be drawn based 
on the frequency of each pixel. 

2. Spatial severity. Maximum FAI analyzes the spatial severity of 
HABs for each pixel during a specific period. To reduce the influence of 
missing pixel FAI values due to cloud cover, we adopt maximum FAI to 
describe the spatial severity instead of the average value (Zhou et al., 
2022a). We did not remove the “imperfect” images with partially 
missing data caused by cloud cover, because preserving as much useful 
information as possible could help reveal the trend of the high dynamics 
of HABs. 

In conclusion, the spatial dynamics are derived by overlapping all 
images during a specific year and derived from values in each pixel. 

From spatial dynamic analysis, the general distribution of multiple HABs 
spatial distributions can be summarized and presented. 

3. Results 

3.1. Temporal variations analysis 

Fig. 4 presents daily HABs coverage from MODIS observation based 
on 7926 MODIS images. The blue curve refers to the daily HABs area, 
and the red curve is the maximum area of each month. To illustrate the 
general trend of HABs area variations, the monthly average area series is 
calculated and presented, shown in Fig. 5. 

It can be indicated from Fig. 4 and Fig. 5 that despite the HABs area 
varying greatly from year to year, there exist significant cycles. That is, 
HABs area reaches a peak in summer (July to September) and shrinks in 
winter, which is quite accordant with temperature. HABs are basically 
stable and light before 2010 and gradually increase after 2010. The daily 
HABs area in Fig. 4 clearly demonstrates that since 2012, HABs occur
rences have become more frequent, and the peaks often occurred more 
than once a year, often emerging several rounds of HABs growing cycles. 
Severe and frequent HABs were noticed in 2014, 2015, 2018 and 2019. 

To compare daily HABs area regimes of each year, Fig. 6 presents the 
boxplot of HABs area for each year. Since HABs area on most days was 
quite low, the natural logarithm axis was used to distinguish the quan
tiles better. The boxplot shows that the upper and lower limits vary 
greatly from year to year, indicating that the HABs severity and fre
quency vary greatly. The median value is a more subject indicator of 
HABs severity than the maximum or average values, as it represents the 
overall level of all HABs data within a year. For instance, HABs in 2019 
have the highest median value, indicating that HABs in 2019 are one of 
the severest among all years, although their maximum value is lower. 
This inference agrees with the following results. 

Each year’s HABs outbreak frequency was counted and shown in 
Fig. 7. The average occurrence frequency of HABs outbreaks is 38 days a 
year, while the frequency varied greatly and showed dramatic time- 
varying trends. The average outbreak frequency from 2000 to 2006 
was 26 days, then increased to 39 days from 2007 to 2017, and sharply 
increased to 75 days in 2018 and 2019, followed by a sharp decrease to 
37 days in 2020 and 2021. The year with the highest HABs frequency 
was 2019, whose HABs occurrences reached 87 days, and heavy HABs 

Fig. 3. Sketch of temporal and spatial analysis.  
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occurrences reached 26 days. Xue et al. (2022) tracked the dynamics of 
FAI using MODIS, VIIRS, GOCI, and OLCI images, showing that Lake 
Chaohu experienced severe algal blooms after 2010 similar with the 
results in Fig. 7. 

Qin et al. (2022) compared the HABs evolutional pattern of Chaohu 
with that of Taihu, which is also one of the largest inland lakes with 
severe HABs. It was found that the temporal trend of HABs in Chaohu 
was more complicated than that in Taihu in the past few decades. Here, 
based on temporal trends on daily, monthly, and annual scales, the HABs 

evolution course of Chaohu Lake is divided into four stages: 
Stage 1 (2000–2006). In this stage, the HABs area in Chaohu Lake 

was relatively low and stable, and the frequency of severe algal blooms 
was relatively rare. The maximum bloom area is 550 km2. 

Stage 2 (2007–2017). The HABs area increased significantly in this 
stage. The maximum outbreak time occurred in 2015, accounting for 47 
times. The maximum bloom area occurred in 2009, reaching 616.52 
km2. The frequency of severe algal blooms increased significantly and 
became a common phenomenon, indicating that the algal blooms were 

Fig. 4. Variation of the daily area of algal blooms in Chaohu Lake from 2000 to 2021倪程:此图增加分辨率.  

Fig. 5. The monthly average area of algal blooms from 2000 to 2021.  

Fig. 6. The annual average area of algal blooms from 2000 to 2021.  
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getting more severe. A decrease in HABs area emerged in 2016 and 
2017, likely because the average temperature in the summers of the two 
years was lower than the average value historically, and strict envi
ronmental countermeasures were carried out during the two years. This 
short sudden decrease in HABs was also highlighted in reference (Qin 
et al.,2022). 

Stage 3 (2018–2019). The severity of algal bloom strongly reboun
ded considerably after 2018, showing a sharp increase in both HABs area 
and severity. HABs frequency reached its peak in 2019, amounting to 87 
times; meanwhile, the average HABs area reached its peak in 2019, 
amounting to 67.49 km2. These two years were the severest during all 
22 years, severely impacting the environment and human lives. 

Stage 4 (2020–2021). The HABs severity suddenly decreased in 2020 
and 2021, just after the sudden increase in 2018 and 2019, which posed 
significant shifts. The frequency of HABs was 45 times and 28 times, 
respectively. Although there were over ten occurrences of severe HABs, 
the total occurrences showed a significant decrease since 2019. The 
sudden improvement was mainly due to powerful water pollutant- 
controlling countermeasures, which will be discussed in detail in 4.1.2. 

Fig. 8 shows the monthly mean HABs area from 2000 to 2021. It is 
indicated that algal blooms were rare in the winter to the spring season, 
from December to April. The extent of algal blooms expanded from May, 
peaked in August, and then slowly decreased. The trend of algal blooms 

was highly accordant with temperature trends, indicating that temper
ature is a critical factor in triggering algal blooms. Detailed examination 
shows a slight delay of HABs area peak (occurred in August) compared 
with the temperature peak (occurred in July) because of algae’s prolif
eration and accumulative process. These trends are consistent with re
sults from previous studies of Chaohu Lake (Qin et al.,2022). 

Fig. 9 presents the maximum area of HABs and their occurrence 
month for each year. The annual maximum HABs area mainly occurred 
in August, accounting for 16 years among all 22 years. The maximum 
extent tended to be lower and stable before 2007; since 2008, the 
maximum area significantly increased and kept at a high level (except in 
2017). The maximum HABs area occurred in 2019, reaching an area of 
644 km2, covering 82 % of the Chaohu Lake. The maximum HABs area 
tended to increase from 2000 to 2021. 

Fig. 10 presents the start and end months of each year. It is indicated 
that from 2000 to 2006, algal bloom occurrences mainly concentrated in 
June to October; since 2007, the start time became earlier, and the 
duration became longer. Algal bloom lasted until December 2015 and 
started in January 2016, showing an ongoing outbreak throughout two 
years. Generally, the agal bloom duration has been getting longer in 
recent 15 years. 

Fig. 7. Frequency of HABs area from 2000 to 2021.  

Fig. 8. Monthly average HABs area from 2000 to 2021.  

T. Zhou et al.                                                                                                                                                                                                                                    



Ecological Indicators 146 (2023) 109842

8

3.2. Spatial variations analysis 

To analyze the spatio-temporal trend of algal bloom evolution during 
the past two decades, HABs frequency distribution were derived to 
indicate the distribution of HABs, shown in Fig. 11. Besides, annual 
average FAI was calculated to indicate the general severity of HABs, 
shown in Fig. 12. 

Fig. 11 and Fig. 12 indicated that HABs concentrated in the north
western part of the lake for almost all years, both in frequency and 
severity. This feature is accordant with previous studies (Qin 
et al.,2022), mainly due to the human activity influences from Hefei city 
lies to the northwest of Chaohu Lake (Fig. 2). With more than 9 million 
population, domestic and industrial sewage of Hefei city flows into 
Chaohu Lake through tributaries. As a result, the eutrophication of the 

northwestern lake has long been aggravated. 
Temporal trends of HABs spatial distribution also revealed the evo

lution pattern of HABs. From 2000 to 2006, algal blooms were generally 
light and stable, mainly concentrated in the northwestern lake; from 
2007 onwards, agal blooms began to spread from lakeside to the lake 
center, and the occurrence frequency of the northwestern lake also 
increased, indicating increasing severity of algal blooms. The frequency 
of large-scale outbreaks (area greater than 300 km2) also increased 
significantly, reaching 23 times in 2015. There was a retracement in 
2016 and 2017. However, in 2018, the blooms began to erupt in the 
whole lake, with the outbreak frequency peaking in 2019. In 2020 and 
2021, there is a sharp decrease of HABs severity, which will be discussed 
in 4.1.2. 

4. Discussion 

4.1. Driving Forces of HABs 

4.1.1. Meteorological driving forces 
A previous study analyzed the influence of precipitation and tem

perature on algal blooms in Chaohu Lake (Coffey et al., 2018). They 
found significant increasing temperature trends and slight precipitation 
trends in the lake region. Thus, the deterioration of HABs was prelimi
narily ascribed to the increase in temperature and precipitation. 

As introduced in 2.2.2, daily meteorological data were collected, 
including precipitation, temperature, cloud cover, wind direction, and 
wind velocity. Fig. 13 presents monthly average temperature, precipi
tation, and cloud cover trends. 

As Fig. 13 shows, there exist clear correlations between precipita
tion, temperature, cloud cover, and HABs area. Temperature and HABs 
area aroused simultaneously from May to October and decreased from 
November to March, which indicated a clear positive correlation be
tween temperature and HABs. Precipitation varied greatly from season 
to season. It was difficult to observe its correlation with HABs from the 
Fig. 13. Coffey et al. (2018) reviewed various driving factors of water 
quality to document how different water quality attributes are sensitive 
to these drivers. They concluded that the effects of most factors are 
complicated, and precipitation is the only factor that positively corre
lates with water quality “in all regions” likely because heavy precipi
tation drives more episodic pollutant loading to water bodies. This is 
different from some intuition that precipitation will improve water 
quality by diluting pollutants in water body. Cloud coverage is also 
related to HABs, as it may reduce nutrient utilization by phytoplankton 
(D’Silva et al., 2012; Patil and Anil, 2008; Cho et al., 2014; Cao et al., 
2011). In other words, cloud cover is likely to correlate with HABs 

Fig. 9. Annual maximum HABs area and their peak months from 2000 to 2021.  

Fig. 10. Start time, end time and duration of HABs in Chaohu Lake from 2000 
to 2021 (blue: duration shorter than 3 months; green: duration between 4 and 
6 months; red: duration longer than 6 months). (For interpretation of the ref
erences to colour in this figure legend, the reader is referred to the web version 
of this article.) 
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negatively. 
Table 3 shows the correlation coefficients among the driving forces 

and HABs. HABs area is highly correlated to temperature, with a coef
ficient of 0.70. Precipitation is also positively dependent on the HABs 
area. In contrast, the correlation coefficient between cloud cover and 
HABs area is much smaller than other variables. 

To illustrate the contribution of temperature and precipitation to 
HABs area, a linear regression equation using monthly indicators was 
found as follows: 

S = − 17.80+ 2.49T + 0.09P (2)  

Where S is the monthly average HABs area of Chaohu Lake in km2, T is 
the monthly average temperature in ℃, P is the monthly total precipi
tation in mm. The multiple regression analysis yields an R2 coefficient of 
0.52, indicating that 52 % of the variation in HABs area can be explained 
by temperature and precipitation, as other types of driving forces in
fluence algal blooms, such as wind conditions, urbanization, and water 
management policies. 

The regression equation reveals that precipitation and temperature 
positively correlate to HABs area. With increased precipitation or tem
perature, HABs area is likely to increase. This explains why the HABs 
area expands rapidly in hot and wet summers. Fitting performance 
shows that the regression equation better predicts low and medium 
HABs areas than high to peak HABs. The reason is that the algal bloom 
area may increase rapidly in a short time triggered by short and 

intensive environmental variables. However, monthly climate variables 
are typically smoother, so the regression equation will likely underes
timate peak HABs areas. 

The wind force is another crucial factor that may influence the dis
tribution of algal blooms. A previous study suggested that the HABs area 
in Taihu lake significantly decreases when wind speed exceeds 4 m/s 
because of the turbulence and changes in algal buoyancy caused by wind 
force (Huang et al., 2014). Also, Marshall et al. (2015) revealed a 
negative correlation between wind intensity and algal blooms. 

The wind force is a vector characterized by both intensity and di
rection. Chaohu Lake lies in the monsoon climate zone with distinctive 
climate features, so wind direction varies significantly over seasons. This 
study collected the hourly wind direction and wind speed of the algal 
bloom season (May to October) from 2000 to 2021 from NCDC intro
duced in 2.2.2. Fig. 14 presents the wind rose map with the frequency 
and intensity of wind forces each month. The rose map shows apparent 
shifts in wind direction over months, from south and east direction to 
north and east directions. Generally, the east and south directions are 
the dominant wind directions in the algal bloom season. On the one 
hand, wind forces may increase algae’s vertical movement, thus 
decreasing its appearance. This explains why the algae blooms may be 
quite diverse in very short hours and under constant environmental 
variables. It was recorded occasionally that the spatial distribution of 
algal blooms in Chaohu Lake considerably changed in one night because 
the wind shifted in the opposite direction. On the other hand, algae may 

Fig. 11. Spatial distribution of algal bloom occurrence frequency from 2000 to 2021.  
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be gathered in the opposite direction of wind force. This partly explains 
why the algal blooms in the lake’s northern part are much more severe 
than in the southern part from May to July (Figs. 11 and 13). 

4.1.2. Human activity driving forces 
Human activities include various elements such as management 

measures, nutrient inflows, land use, and industrial disposals (Khalil 
et al., 2022; Abbas et al., 2022). Chaohu Lake has a giant neighboring 
city: Hefei city. Two main tributaries of Chaohu Lake, Shiwuli and 
Nanfei rivers flow through Hefei city to the lake. Therefore, it has been a 
widely accepted view that the economic development of Hefei city has 
been the most human activity factor for the HABs in Chaohu Lake (Duan 
et al., 2015). In this study, considering data availability, two main so
cioeconomic variables, the population and GDP of Hefei city, were 
collected to reveal its impact on HABs in Chaohu Lake. 

Fig. 15 shows the annual population and GDP from 2000 to 2021. 
The population and GDP increased slowly before 2009 but rapidly since 
2010 and have maintained at high speed since then. By comparing the 
population and GDP trends with HABs trends, it can be indicated that 
their fast-growing stages were almost synchronized. The fast-growing 
population and GDP implied fast-growing domestic sewage and indus
trial wastewater discharge to the Chaohu Lake through its northwestern 
tributaries, such as Shiwuli, Pai, and Nanfeihe rivers (Fig. 2). Although 
long-term water quality information is lacking, it was reported that the 
water quality of these three rivers was the worst among all the tribu
taries of Chaohu Lake. Numerous inflow nutrients increased the overall 
eutrophication level of Chaohu Lake, especially the northwestern part of 
the lake. This explains why the HABs sharply increased after 2008 and 
why the northwest part of the lake always had the heaviest HABs. Liu 
et al. (2022) discussed the relationship between microplastics and algal 

bloom distribution in Chaohu Lake. As a symbol indicator of human 
activity, it was found that the abundance of microplastics in the estu
aries and the western part of the lake were higher than those in other 
locations, and microplastics could promote the growth of algae blooms 
in the early stage. This proved the role of human activity in promoting 
algal blooms and explained the uneven distribution of HABs over the 
years. 

Except for GDP and population indicators, water environment 
management policy also profoundly influences the algal bloom regime. 
Since the water environment of Chaohu Lake has greatly threatened the 
ecology, water supply and human health, the eutrophication and 
frequent outbreak have addressed much attention from the government 
except for pursuing economic flourish. In recent years, continuous 
countermeasures greatly relieved the water environment and HABs in 
Chaohu Lake. For instance, an inspection of ecological and environ
mental protection by the Chinese government policed the Chaohu Lake 
water environment and land use conditions in 2016. It announced 
strictly that there were infractions in pollutant discharge in 2017. In 
2020, Chaohu Lake encountered the highest precipitation, which trig
gered severe HABs after the storm season. After that, the government 
carried out the “promote Chaohu Lake as the best name card of Hefei 
city” Act to systematically curb both the water and basin environment of 
Chaohu Lake. Ten wetlands around Chaohu Lake, with a total area of 
100 km2, were established (https://www.hefei.gov.cn/english/Local 
News/107972479.html). It should be noted that these powerful envi
ronmental management measures require solid financial support. 
Therefore, the 20-year fast-growing GDP of Hefei city provides a strong 
guarantee for the measures. From this point of view, GDP is like a 
double-edge sword that may deteriorate and improve water conditions. 

The effect of policy is directly revealed by water conditions before 

Fig. 12. Spatial distribution of annual maximum FAI from 2000 to 2021.  
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and after 2020. We collected the main water pollutant indicators 
including NH3-N, COD and TP in 2019, 2020 and 2021 from local 
government, shown in Table 4. To better reveal the annual changes, 
year-over-year variance percentage of each indicator is calculated and 
shown in Fig. 16. 

Firstly, it can be found from Table 4 that the west lake did have 
higher NH3-N, COD, and TP than the east lake, which is in line with the 
HABs distribution in previous results. We can see a significant decrease 
in nutrients since 2020, i.e., NH3-N decreased by over 50 % in 2020 and 
2021, and COD decreased by over 10 % in 2021. This reveals that the 
inflow of eutrophic substances was sharply reduced in the two years. TP, 
on the contrary, kept stable during the three years. This is because the 
Chaohu Lake deposited a large amount of phosphorus (Liu et al., 2012), 

which is unlikely to decrease in a short time. 
In general, the water condition of Chaohu lake has significantly 

improved since 2020, which explains the sudden improvement of HABs. 
The significant efficiency in policies and countermeasures further re
veals that except for meteorological factors, pollutants from human 
activities are an essential source of HABs. Human countermeasures 
significantly contribute to HABs decrease. These conclusions align with 
previous studies (Guo et al., 2022) that various countermeasures have 
significantly improved HABs in Chaohu Lake since 2020. Similarly, the 
effect of countermeasures in recent years in another inland eutrophic 
lake in China, Dianchi, was validated (Ma et al. 2022). The analysis 
revealed that environmental management measures taken by local 
governments led to improvements in the lake’s trophic state, and 
continued strengthening of environmental pollution control is expected 
to curb the algal blooms in Lake Dianchi. 

4.2. Advantages of MODIS remote sensing in HABs monitoring 

Various satellite remote sensing products have been utilized to 
observe algal blooms, each with advantages and limitations (Marshall 
and Thenkabail, 2015). For instance, when we choose the Landsat sat
ellite instead of MODIS satellite, we obtain better spatial resolution but 
give up the better temporal resolution, as the spatial resolution of 
Landsat and MODIS satellites are 30 m and 250 m, respectively; how
ever, the temporal resolution of Landsat and MODIS satellites is 16-day 

Fig. 13. Temperature, air pressure, cloud cover, and precipitation from 2000 to 2021 in Chaohu region.  

Table 3 
Correlation coefficients among temperature, precipitation, cloud cover, and 
HABs area from 2000 to 2021.   

Temperature Precipitation Cloud 
coverage 

HABs 
area 

Temperature (℃) 1    
Precipitation (mm) 0.49 1   
Cloud coverage 

(okta) 
0.09 0.21 1  

HABs area (km2) 0.70 0.49 0.10 1  
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and 1 day. Similarly, suppose we choose the Sentinel satellite instead of 
the Landsat satellite. In that case, we could obtain better temporal res
olution but give up a long-term record, as the Landsat satellite was 
launched in the 1980 s while the Sentinel satellite was launched in 2014. 
Many studies noticed the complementary among satellites, so they 
adopted multiple-source remote sensing data to acquire better perfor
mance (Dong et al., 2019; Mu et al., 2019; Zhang et al., 2020). However, 

blending different satellites involves another critical problem: spectral 
data calibration and fusion, as different satellites vary in sensors and 
spectral bands. 

The current study reveals the merit of the advantages of MODIS 
remote sensing in HABs observation. The primary superiority of the 
MODIS product is the high-frequency observations. As HABs are highly 
dynamic in spatial and temporal dimensions, the frequency of obser
vations plays an essential role in capturing the variations. With MODIS 
observations, daily observations can be obtained so that the daily, 
monthly and annual variations can be derived for detailed spatio- 
temporal analysis. Although MODIS remote sensing has been criticized 
for its frequent cloud blockage (Zhao and Duan, 2020; Li et al., 2019), 
our study proved that as long as the observations are frequent enough, 
even incomplete images blocked by clouds can “piece together” quite 
accurate spatial and temporal trends. On the contrary, even with high 
spatial resolution and cloud-free quality, single images cannot capture 
the detailed dynamics of HABs. Another advantage of the MODIS 
product is the complementary spectral coverage and bands. The MODIS 
remote sensing products provide 36 bands ranging from 0.4um-14.4um, 
providing high flexibility and capability for advanced band-based cal
culations such as machine learning and deep learning. 

Fig. 14. Wind rose map of each month in HABs season.  

Fig. 15. Annual population and GDP of Hefei city from 2000 to 2021.  

Table 4 
Annual average NH3–N, COD and TP of Chaohu Lake in 2019, 2020 and 2021 
(unit: mg/L).   

Year NH3–N COD TP 

East lake 2019  0.12  13.38  0.06 
2020  0.08  14.28  0.06 
2021  0.04  12.11  0.08 

West lake 2019  0.25  15.25  0.10 
2020  0.14  14.05  0.08 
2021  0.06  12.58  0.10 

Total lake 2019  0.17  14.08  0.08 
2020  0.12  14.14  0.07 
2021  0.05  12.23  0.08  
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5. Conclusions 

HABs outbreaks have been a global issue and pose a critical challenge 
to ecosystems and humans. This paper conducts a systematic spatio- 
temporal analysis framework of HABs variations based on a traditional 
algae-prone inland lake, Chaohu Lake. A total of 7926 MODIS remote 
sensing images were utilized to identify the distributions and trends of 
HABs from 2000 to 2021. Our results show that there had been an 
increasing general regime in HABs area and severity during the past two 
decades, and the duration within a year was generally increasing. 
Spatial analysis shows that the northern lake had severer HABs than the 
southern lake, especially the northwestern area, with consistently higher 
frequency and severity. Driving force analysis indicated that precipita
tion and temperature are two main dominant meteorological factors that 
positively correlated to HABs, and the fast-growing population and GDP 
of Hefei city are highly correlated to HABs increase since 2008. Water 
environment policies since 2020 significantly decreased water nutrients 
and HABs. 

Furthermore, this study proved that high-frequency remote sensing 
observations, even with non-neglectable missing data caused by cloud 
cover, can still produce good performance in describing HABs dynamics. 
Although missing values may inevitably break the integrity of obser
vation of a single image, they are still helpful in tracing the highly dy
namic HABs trends because “imperfect data is better than no data”. The 
current study may provide a potential reference for increasing remote 
sensing data utilizing efficiency in tracking highly dynamic objects. 
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