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A B S T R A C T   

Numerical simulations can provide the physical insights into the carrier transport mechanism in the solar cells, 
and the factors influencing their performance. In this paper, perovskite solar cell (PSC) based on the mixed 
perovskite (CH3NH3Pb(I1-xBrx)3 has been numerically simulated using the SCAPS simulator. A comparative 
analysis of different electron transport layers (ETLs) based on their conduction band offsets (CBO) has been 
performed, while Spiro-OMeTAD was used as a hole transport layer (HTL). Among the proposed ETLs, CdZnS 
performed better and demonstrated the power conversion efficiency (PCE) of 25.20%. Also, the PCE of the PSC 
has been optimized by adjusting the doping concentrations in the ETL, Spiro-OMeTAD layer, and the thickness of 
the perovskite light absorber layer. It was found that the doping concentration of 1021 cm� 3 for the CdZnS based 
ETL and 1020 cm� 3 for Spiro-OMeTAD are the optimum concentrations values for demonstrating enhanced ef-
ficiency. A 600 nm thick perovskite layer has found to be appropriate for the efficient PSC design. For the initial 
guessing and numerical model validation, the photovoltaic data of a very stable (over one year with PCE ~13%) 
n-i-p structured (ITO/TiO2/CH3NH3Pb(I1-xBrx)3/Spiro-OMeTAD/Au) PSCs was used. These numerically simu-
lated results signify the optimum performance of the photovoltaic device that can be further implemented to 
develop the highly efficient PSCs.   

1. Introduction 

Perovskite solar cells (PSCs) have been recognized as an emerging 
candidate for future photovoltaic technology owing to their low cost, 
ease in fabrication, and high-power conversion efficiency (PCE). How-
ever, besides the stability issues and environmental factors, nonradiative 
recombination and losses are considered as the key factors to limit their 
performance [1–3]. Electron transport layer (ETL) and hole transport 
layer (HTL) are the major components of the PSCs, which can potentially 
reduce the nonradiative recombination and losses [4–8]. 

Specifically, ETL is an essential component of a PSC, which not only 
extracts the electrons from the perovskite absorber but also blocks the 
holes [9]. Since the development of dye-sensitized solar cells (DSSC), 
TiO2 has been considered as a renowned ETL material due to its wide 
bandgap and chemical stability [10,11]. However, the deposition of 
TiO2 based ETL requires high-temperature sintering (>450 �C), making 

it undesirable for large scale manufacturing and flexible PSCs [12]. Also, 
TiO2 has low carrier mobility (10� 4 cm2 v� 1s� 1) and low conductivity, 
causing poor charge transport in PSC [13]. Even though the doped TiO2 
layers have been used to improve the performance of the PSCs [14,15] 
but the stability is compromised due to doping. Also, Snaith et al. [16] 
reported that UV light activates charge traps and oxygen vacancies in 
TiO2, which reduce the conversion efficiency of the PSCs due to the 
capturing of photogenerated carriers. There exists a conduction band 
offset (CBO) between TiO2 and perovskite which results in interface 
recombination in PSCs [17]. Thus, due to above detrimental properties 
of TiO2, it is crucial to explore new electron transport layer materials to 
further enhance the conversion efficiency of PSCs. Thereby, a careful 
selection of ETL material and theoretical confirmation is essential to 
investigate for the PSCs. As far as HTL materials are concerned, 
Spiro-OMeTAD is widely used to produce the high efficiency PSCs 
[18–20]. Its good energy level alignment and decent conductivity after 
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doping [21] play a key role in the regeneration of perovskite absorber as 
well as extraction and transportation of photogenerated charge carriers 
to their respective electrode [22,23]. 

In this study, the SCAPS-1D simulator [24] has been used to 
numerically simulate the effects of various ETLs, while Spiro-OMeTAD 
was used as an HTL. First, we numerically reproduced the results 
(SCAPS-1D) for the experimentally designed stable perovskite solar cells 
based on ITO/TiO2/CH3NH3Pb(I1-xBrx)3/Spiro-OMeTAD/Au, and then 
the optimization of PSCs was done with respect to the doping concen-
trations of ETL and HTL layers. Henceforth, the optimized design of the 
PSCs (with respect to the doping concentrations) is further analyzed for 
the perovskite absorber layer thickness. Also, we investigated the effect 
of different ETL materials to find a promising replacement for TiO2. 
Furthermore, the thickness of ETLs was varied to look at its impact on 
solar cell performance. Finally, a comparative analysis based on 
different ETL materials is performed to find the optimized PSC design. 

Here it is important to note that SCAPS is a Windows-oriented pro-
gram, which has been developed with LabWindows/CVI of National 
Instruments. The carrier densities, band graphs, current densities at any 
certain bias point can be calculated. The J-V simulation, recombination 
current, interface traps density, and quantum efficiency simulation can 
be performed. The working point in SCAPS can be specified by the pa-
rameters which are relevant to that measurement, such as illumination 

conditions, the initial working point, shunt conductance, and series 
resistance, recombination mechanisms, and SRH-types, etc. Previously, 
a comparative study of TiO2 and ZnO-based electron transport layers 
were undertaken for MAPbI3 based PSCs using SCAPS simulation by K. 
Adhikari et al. [25], in which the effect of absorber thickness was 
studied. In another work [26], the performance of MAPbI3 perovskite 
absorber has been evaluated for different ETL and HTL materials, where 
the effect of defect density on PSC performance was investigated. 
Similarly, comparison for different ETLs by considering copper iodide as 
HTL was also performed using SCAPS for the MAPbI3 based PSCs [27]. In 
addition to an absorber, HTL, and ETL layer thickness and defect den-
sity, several other parameters critically influence the PSC performance. 
These parameters include the doping concentrations of ETL and HTL, 
diffusion lengths, and CBO of ETL [28]. For example, a suitable CBO of 
ETL with the perovskite absorber can reduce the interface recombina-
tion [29]. Thus, a detailed and comprehensive investigation of all the 
parameters mentioned above is needed to understand the factors influ-
encing the performance of the PSCs profoundly. 

2. Device modeling and simulation 

The schematic of the experimentally fabricated n-i-p structured using 
mixed perovskite precursor is shown in Fig. 1(a). Indium tin oxide (ITO) 

Fig. 1. (a) The schematic of the experimentally fabricated n-i-p structured PSCs (b) Schematic of the structure constructed for the simulation (using SCAPS-1D) with 
interface defect layers (DL1 and DL2). (c) numerically reproduced J-V characteristics of the experimentally fabricated n-i-p structured PSCs, (d) Energy band diagram 
of simulated PSCs. 
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is a transparent conducting oxide layer that acted as front contact in 
fabricated PSC. A mixed metal halide perovskite (CH3NH3Pb(I1-xBrx)3) 
layer is sandwiched between compact-TiO2/mesoporous-TiO2 and 

Spiro-OMeTAD. TiO2 and Spiro-OMeTAD acted as ETL and HTL layers, 
respectively, in CH3NH3Pb(I1-xBrx)3 based PSC. Gold (Au) layer served 
as back metal contact in the PSC. A 1-D device simulation tool SCAPS 

Table 1 
Input Parameters for PSC device simulation.  

Parameters ITO ETL Defect layer, DL1 Absorber CH3NH3Pb(I1-xBrx)3 Defect layer,DL2 HTL (Spiro -OMeTAD) 

Thickness (nm) 500 40 10 [30] 600 10 [30] 300 
EgðeVÞ 3.5 [27] 3.2 [30] 1.61 1.61 [32] 1.61 3.0 [30] 
χðeVÞ 4.0 [27] Table S1 3.86 3.86 [33] 3.86 2.45 [30] 
εr  9 [30] Table S1 6.5 6.5 [29] 6.5 3 [30] 

Ncðcm� 3Þ 2.2x10þ18 2.2x10þ18 [30] 2.2x10þ18 2.2x10þ18 [30] 2.2x10þ18 2.2x10þ18 [30] 

Nvðcm� 3Þ 1.8x10þ19 1.8x10þ19 [30] 1.8x10þ19 1.8x10þ19 [30] 1.8x10þ19 1.8x10þ19 [30] 

μn= ðcm� 3 =VsÞ 20 [27] Table S1 2 2 [29] 2 2E-4 [30] 

μp= ðcm� 3 =VsÞ 10 [27] Table S1 2 2 [29] 2 2E-4 [30] 

NDðcm� 3Þ 1x10þ18 [30] 1x10þ21 1x10þ13 1x10þ13 [29] 1x10þ13 0 

NAðcm� 3Þ 0 0 1x10þ13 1x10þ13 [29] 1x10þ13 1x10þ20 

Ntðcm� 3Þ 1x10þ15 [33] 1x10þ15 [29] 1x10þ17 [30] 2.5x10þ13 [31] 1x10þ17 [30] 1x10þ15 [30] 

Eg: Energy band gap; χ:Electron Affinity; Ꜫr: Relative Permittivity; Nc: Conduction Band Density of States; Nv: Valance Band Density of states; μn: Electron Mobility; μp: 
Hole Mobility; ND: Donor concentration; NA: Acceptor Concentration; Nt: Defect Density. 

Fig. 2. (a) Effect of doping of ETL (TiO2) on the photovoltaic parameters of PSCs, (b) Built-in electric field at the ETL/perovskite interface (c) Quasi-Fermi level 
separation under low doping concentration and (d) Quasi-Fermi level separation under high doping concentration. 
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(ver. 3.305) based on Poisson and continuity equations is used [24] to 
model and simulate the PSC structure. The simulated structure of the 
PSC is constructed according to the experimentally designed PSCs (see 
Fig. 1(b). The interface defect layers (DL1 and DL2) were used between 
ETL/absorber interface and absorber/HTL interface in the simulated 
model to take into account the effect of carrier recombination at the 
layer interfaces [29]. Here it is important to note that for the inclusion 
mesoporous TiO2 layer in the simulation, a 3D model is required. 
However, due to the limitation of the SCAP-1D, it has been considered as 
a part of the ETL as described in Ref. [30]. For the initial guessing and 
numerical model validation, the photovoltaic data of a very stable (over 
one year with PCE ~13%) n-i-p structured (ITO/TiO2/CH3NH3Pb 
(I1-xBrx)3/Spiro-OMeTAD/Au) was used. In this work, the ETL (TiO2) 
was doped with LiTFSI while the HTL (spiro-OMeTAD) was doped with 
Li-TFSI and Co[t-BuPyPz]3[TFSI]3 (FK209) [31]. During the simulation, 
after reproducing the experimental results and I–V curve fitting in 
SCAPS, we kept all the parameters of base PSC constant. We varied the 
doping concentration of the ETL layer from 1014 cm� 3 to 1022 cm� 3. 
SCAPS provides both types of doping; graded, and uniform. Here, we 
used uniform doping both for ETL and HTL. 

Table 1 summarizes the parameters and their values used in PSC 
simulations for each layer. Most of the parameter values are extracted 
from fabricated PSC devices and rest from the literature. Here Eg is 
bandgap, χ is electron affinity, εr is relative permittivity, μn and μp are 
electron and hole mobility, NA and ND are acceptor and donor 

concentrations, and Nt is the defect density. Here, Nt ¼ 2.5x1013 cm� 3 

for perovskite absorber in order to have the carrier diffusion lengths of 1 
μm [32]. Conduction and valance bands’ densities of states are taken to 
be 2.2x1018 cm� 3 and 1.8x1019 cm� 3 [29]. The Center of the bandgap is 
set for defect energy level and distributed in Gaussian, having an 
appropriate energy level to be 0.1eV [29]. For getting absorption coef-
ficient α ¼ A(hc-Eg)0.5 for perovskite, pre-factor A is taken 1x105 

cm� 1eV� 0.5 [30]. The thermal velocities of electrons and holes are taken 
as 1x107 cms� 1 [29]. The bandgap of the perovskite absorber CH3NH3Pb 
(I1-xBrx)3 can be varied with bromide (Br) content [33]. Therefore, in 
this simulation, the bandgap of perovskite is expressed according to the 
literature [16]. The electron affinity of perovskite was set according to 
χ(x)¼(3.9-0.55x) [34]. For numerically reproducing the experimental 
J-V characteristics of the fabricated PSCs, the simulation was performed 
according to fabricated structure, and their associated parameter values 
are given in Table 1. Fig. 1 (c) displays the experimental and numerically 
reproduced J-V characteristics of the experimentally designed PSCs. The 
energy band diagram of the simulated device under 0 V bias is shown in 
Fig. 1(d), here EC and EV are denoting the conduction band minimum 
and valance band minimum, respectively. 

Fig. 3. (a) Effect of HTL doping on HTL/perovskite interface electric field (b) Effect of HTL doping on the Energy band diagram for (c) Effect of HTL doping on the 
photovoltaic parameters. 
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3. Results and discussion 

3.1. Effect of doping concentrations of ETL and HTL 

ETL and HTL play a central role in the collection of generated charge 
carriers in PSCs. When light falls on the perovskite absorber, excitons 
(adjacent electron hole pairs) are produced [35]. These excitons have 
low binding energy and high diffusion lengths [35]. Therefore, they 
reach the ETL/perovskite interface and are dissociated due to the space 
charge layer (SCL) electric field at the interface. Consequently, electrons 
are transported to ETL, and holes transportation is blocked, simulta-
neously. Similarly, at the HTL/perovskite interface, holes are trans-
ported to the HTL layer due to the electric field, and electrons are 
correspondingly blocked due to barrier formation. These separated 
charge carriers move towards the respective electrodes and go into the 
external circuit through the metal contacts. Fig. 2 (a) shows the effect of 
ETL doping concentrations on the photovoltaic performance of the PSCs. 
Open-circuit voltage (Voc), short-circuit current density (Jsc), fill factor 
(FF), and PCE (η) improve with an increasing doping concentration of 
the ETL layer. The doping concentration of each layer is varied from 
1017 cm� 3 to 1022 cm� 3. High doping concentrations of ETL cause high 
electron conductivity and provide low resistance to the flow of electrons 
that are swept away from the perovskite absorber layer due to the 
presence of a strong built-in electric field as shown in Fig. 2 (b). A steep 
increase in the open-circuit voltage in Fig. 2(a) is due to the increased 
separation of the Quasi Fermi levels in non-equilibrium conditions. As 
depicted in Fig. 2(c) and (d), for low doping value of ETL Quasi Fermi 

levels are closer, whereas, for a high amount of doping, they are more 
separated from each other. A high doping concentration of ETL produces 
deep energy levels at the heterojunction interfaces that reduce the 
non-radiative recombination at the interface and improves the cell 
performance [36]. At high doping concentration, a strong electric field is 
produced, which effectively collects the electrons and strongly repels the 
minority carriers away from the ETL/perovskite interface, thus reducing 
interface recombination [36]. From Fig. 2 (a), it is evident that the 
values of all the parameters tend to saturate at higher doping concen-
trations. Therefore, an ETL concentration of 1021 cm� 3 would be an 
optimum value. 

Similarly, high doping of HTL produces a strong electric field at the 
HTL/perovskite interface that blocks the flow of minority electrons to-
wards the interface, thus reducing the interface recombination, as 
shown in Fig. 3 (a). A higher doping concentration of HTL moves the 
Fermi level of HTL towards the valence band, thus forming an ohmic 
contact with the back-metal electrode (Au) that subsequently leads to an 
efficient collection of holes at the contact [34]. At low doping concen-
tration of HTL, a barrier is formed against the holes at the 
metal-semiconductor contact that causes their combination loss. This is 
explained via the energy band diagram shown in Fig. 3 (b). The same 
effect was also observed in the literature where it was established that 
the decreased work function of a contact layer systematically leads to an 
increasing Schottky barrier against the holes at the top interface of solar 
cells [37–39]. As illustrated in Fig. 3 (c), Jsc, Voc, and Fill Factor (FF) are 
increasing with a corresponding increase in the HTL doping concen-
tration. This improvement is saturated after a specific value of doping; 

Fig. 4. (a) J-V characteristics for different Absorber layer thickness. (b) Effect of absorber layer thickness on the built-in electric field and (c) Effect of absorber layer 
thickness on the photovoltaic parameters. 
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therefore, the feasible value for HTL doping concentration is found to be 
1020 cm� 3. 

3.2. Effect of perovskite absorber layer thickness 

As evident from Fig. 4 (a) (perovskite absorber layer studied by 
varying it from 100 nm to 1000 nm), it can be noticed that a thin 
absorber layer is not beneficial for a solar cell as poor light absorption 
entails lower Jsc and η values. Similarly, a thicker absorber is also not 
suitable as it introduces a more significant route to transfer the photo-
generated charge carriers that lead to high recombination. Therefore, 
optimum perovskite absorber thickness selection is necessary for an 
efficient PSC. Fig. 4 (b) illustrates the effect of absorber layer thickness 
on the built-in electric field using the 600 nm and 1000 nm perovskite 
absorber layer thickness. As compared to the 600 nm, the 1 μm thick 
perovskite layer produces a weaker electric field, which reduces the 
charge separation ability of the PSC and causes increased charge 
recombination. Fig. 4 (c) depicts the effect of absorber layer thickness on 
the photovoltaic parameters. The Jsc is rising rapidly with increased 
absorber thickness. The reason for Jsc rise is the increased rate of gen-
eration of charge carriers. Voc initially shows an increment; however, 
after a certain point, it saturates and tends to a slight decrease. FF of the 
device is continuously decreasing with the increasing thickness that 
could be associated with the reduced shunt resistance and increased 
series resistance (as depicted from the J-V characteristics presented in 
Fig. 4 (a)). PCE of PSC shows a steady rise until 600 nm thick absorber 
layer, even though it starts decreasing afterward. Here it is important to 

note that with the increase in the thickness of the absorber layer, the 
rates of both carrier generation and recombination rise (as shown in 
Fig. S1). Using the SCAPS-1D simulation, a 600 nm thick absorber layer 
is optimum for an efficient PSC using the CH3NH3Pb(I1-xBrx)3 perovskite 
precursor. 

3.3. Effect of different ETL materials on PSC performance 

In order to evaluate the performance of CH3NH3Pb(I1-xBrx)3) based 
PSC, different ETL materials have also been considered. Materials such 
as Zinc oxide (ZnO), Zinc selenium (ZnSe), Zinc oxysulfide (ZnOS), 
cadmium sulfide (CdS), cadmium zinc sulfide (CdZnS), phenyl butyric 
acid methyl ester (PCBM), and tin dioxide (SnO2) were studied and the 
results were compared with TiO2 based ETL. The selection of these 

Fig. 5. (a) J-V characteristics of the simulated PSCs using different ETL materials, (b) Effect of CBO on the PSC performance, due to interface recombination (c) 
Comparison of ZnOS and CdZnS for þ CBO (d) Energy band diagram for different ETL materials investigated in this study. 

Table 2 
Output performance parameters of PSC due to different ETL materials.  

ETL Materials Voc (V) Jsc (mA/cm2)  FF (%) η (%) 

TiO2 1.1696 20.6580 83.15 20.09 
ZnO 1.1695 20.6530 83.12 20.90 
ZnSe 1.1681 20.6173 82.76 19.93 
ZnOS 1.2061 20.7057 88.28 22.05 
CdS 1.1546 20.5167 80.87 19.16 
CdZnS 1.2436 23.3594 86.29 25.20 
PCBM 1.2043 20.3143 87.93 21.51 
SnO2 1.1861 20.6541 86.56 21.21  
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materials for the ETL was made based on the previous reports on these 
materials. Fig. 5 (a) shows the J-V characteristics for each ETL material, 
and their simulation parameters are given in Table S1 taken from 
literature. The parameters of TiO2, ZnO, ZnSe, and ZnOS were taken 
from Ref. [27,30,40], whereas the parameters for CdZnS, CdS, PCBM 
and SnO2 are adopted from references [26,41–44]. The corresponding 
key performance factors for each ETL are summarized in Table 2. The 
results demonstrate that CdZnS offers higher efficiency as compared to 
the others investigated ETL materials. These results can be explained 
with reference to the conduction band offset between ETL/perovskite 
absorber interface and bandgap alignment. The energy level diagram of 
different ETL materials is shown in Fig. 5 (d). Here the conduction band 
offset (CBO) is defined as the difference of electron affinities of ETL and 
perovskite absorber (CBO ¼ χperovskite -χETL) [45]. An energy band dia-
gram representation of CBO for ETL is given in Fig. S2. If CBO between 
the ETL/absorber interface is negative, then there is a cliff formed at the 
interface that supports the flow of electrons from perovskite to ETL due 
to the high electric field at the interface and results in high Jsc [29,43]. 
However, the higher negative value decreases the activation energy (Ea) 
for recombination at the ETL/perovskite interface; therefore, it reduces 
Voc and hence the performance of the cell. CBO of different ETLs given in 
Table S2. In the case of CdZnS, Jsc and Voc value are the highest among 

all ETL investigated materials, which may be due to its þ CBO of 0.15 
and higher carrier mobility. It has large activation energy (Ea) of 
recombination at the interface. In the case of CdS, the CBO is � 0.54 that 
results in a cliff formation at the absorber/ETL interface, and the Ea is 
smallest among all the investigated ETL materials, as illustrated in Fig. 5 
(b). Due to this large cliff formation and smaller Ea, it produces low Voc 
and PCE. PCBM has smallest negative CBO of � 0.05 but due to low 
carrier mobilities of (2x10� 1 cm� 2/V) it gives low Jsc and efficiency than 
CdZnS. 

As CBO gets more negative, the activation energy (Ea ¼ Eg - |CBO|) of 
recombination lowers, which increases the probability of recombination 
of transferring electrons at the absorber/ETL interface. This results in 
reducing the Voc due to substantial interface recombination. Whereas, in 
the case of þCBO, Ea gets large, which reduces the interface recombi-
nation and improves the Voc and PCE. CdZnS gives the highest Jsc, Voc, 
and efficiency due to þ CBO. However, as CBO gets more positive, it 
introduces a small spike at the ETL/absorber interface, which reduces 
the cell efficiency a bit due to barrier in the path of transferring electrons 
as it has been observed in the case of ZnOS (with CBO of þ0.26). As 
depicted in Fig. 5 (c), the value of activation energy for ZnOS and CdZnS 
is high and close to each other due to which they have low interface 
recombination and resultantly high Voc and PCE. Though ZnOS has a 

Fig. 6. (a) Effect of variation of ETL (CdZnS) doping concentration on photovoltaic parameters (b) Effect of variation of ETL (CdZnS) layer thickness from 40 nm to 
800 nm (b)J-V characteristics of the optimized doping of ETL (1x1021 cm� 3) and HTL (1x1020 cm� 3), absorber thickness (600 nm) and ETM (CdZnS) based n-i-p 
perovskite solar cell. 
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greater value of þCBO as compare to CdZnS, it has less PCE due to the 
formation of the spike at the absorber/ETL interface, which hinders the 
flow of electrons. Thereby large values of þCBO are also not suitable for 
charge transportation in PSCs. 

The effect of the doping concentration of CdZnS was also evaluated 
on the performance of the optimized PSCs. As illustrated in Fig. 6 (a), Jsc, 
Voc, and FF are increasing with a corresponding increase in the CdZnS 
doping concentration. This improvement is saturated after a specific 
value of 1021 cm� 3; therefore, the feasible value for CdZnS doping 
concentration is found to be 1021 cm� 3. Furthermore, the thickness of 
CdZnS was also varied to see its effect on cell performance. It was 
observed from the simulation that as the thickness of CdZnS was 
increased from 40 nm to 800 nm, the cell efficiency had started drop-
ping, as shown in Fig. 6 (b). This might be due to increased light ab-
sorption in the ETL layer, which causes fewer photons to reach to actual 
perovskite absorber layer [43]. It might also be due to increased series 
resistance of the PSC due to increased ETL thickness, thereby 40 nm is 
the optimal value for CdZnS. In Fig. 6 (c), the final optimized planar 
perovskite solar cell J-V characteristics are shown. Here, the baseline 
fabricated PSC device was optimized through step by step process of 
doping concentration of ETL and HTL, absorber layer thickness, and ETL 
materials optimization. A comparison of results is also given in Table S3. 

4. Conclusion 

In summary, the perovskite solar cell structure ITO/ETL/CH3NH3Pb 
(I1-xBrx)3/Spiro-OMeTAD/Au has been numerically simulated using 
SCAPS-1D software. It has been observed that the PSC performance is 
profoundly affected by the doping concentrations of ETL and HTL. By 
increased doping of these charge transport layers (CTLs), Voc and PCE of 
the PSC improve due to, more energetic built in the field, increased 
conductivity and quasi fermi levels separation. The optimal thickness for 
mixed halide perovskite absorber has been obtained to be 600 nm. It has 
been found that CBO between the ETL/absorber interface plays a crucial 
role in cell performance. When the CBO has a negative value, then the 
activation energy (Ea) of interface recombination becomes small; as a 
result, Voc and cell efficiency decreases. However, positive CBO has a 
large activation energy of interface recombination; thus, it gives large 
values of Voc and better cell performance. In the comparative study of 
different ETLs based on CBO, CdZnS has produced the highest Jsc 
(23.3594 mA/cm� 2), Voc (1.2436 v), and efficiency (25.20%). This nu-
merical work implies that proper energy level alignment of ETL, CBO, 
doping of CTLs, and absorber thickness are a primary requirement to 
achieve the high efficiency of the PSCs. This work could be helpful for 
the design and optimization of Br–I based mixed halide perovskite solar 
cells. 
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