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A B S T R A C T   

Colorectal Cancer (CRC) is one of the leading causes of cancer-related deaths worldwide. Despite the notable 
advances achieved over the last few decades, CRC remains a hard-to-treat deadly disease in many patients. This is 
attributed mainly to chemo- and immuno-resistance, which frequently emerge soon after treatment with con-
ventional therapeutics. Systemic treatments are also constrained by their many undesired and serious side ef-
fects. More recently, nanomedicine has emerged as an attractive modality that can overcome issues of 
therapeutic resistance, improper delivery, or suboptimal targeting of tumor cells. Many nanomaterials, having 
already been examined in pre-clinical and clinical studies, are now considered biocompatible and relatively safe. 
Indeed, around 50 nano-formulations have so far been approved as diagnostic and therapeutic agents in humans. 
Here, in this review, we describe a set of imperative nanoparticles (NPs) involved in diagnosing and treating 
CRC. In particular, we discuss the theragnostic roles of quantum dots, iron oxide NPs, Polylactide-co-glycolic acid 
(PLGA) NPs, dendrimer NPs, carbon nanotubes, liposomes, and gold NPs. We dissect the molecular and clinical 
evidence supporting the use of these NPs in CRC. We also highlight their implications in targeted drug delivery as 
well as their anti-tumorigenic properties and effects on the cardinal hallmarks of CRC. We conclude by high-
lighting the notion that nanomedicine is emerging as an attractive approach to address the unmet needs in 
managing several diseases, including CRC.   

1. Introduction 

Colorectal cancer (CRC) remains a highly morbid disease affecting a 
significant proportion of the global population. According to the world 
health organization (WHO), CRC is the third most common cancer 
worldwide after breast and lung cancers [1]. It affects both genders and 
is the third most common cause of cancer-related deaths [1]. 

CRC is instigated by several environmental and genetic factors and is 
often rarely encountered in non-genetically predisposed individuals 
before the age of 50 years [2,3]. Obesity, alcohol misuse, smoking, low 
physical activity, increased red and processed meat consumption, and 
low dietary intake of fruits and vegetables represent the top significant 
modifiable factors associated with an increased CRC incidence [3] 
(Fig. 1). On the other hand, among the non-modifiable risk factors which 
include age, male gender and a positive family history of CRC, age 

remains the pivotal factor. Early-onset CRC, accounting for up to 10% of 
all cases, is often encountered in patients with genetic disorders mainly 
hereditary non-polyposis colorectal cancer (HNPCC, Lynch syndrome) 
and familial adenomatous polyposis (FAP) [3]. Moreover, compared to 
the general population, inflammatory bowel disease patients and those 
with a history of abdominal radiation are at a significantly higher risk 
[3–7]. 

CRC often originates from a neoplastic polyp arising from cancerous 
stem cells which harbor accumulating mutations in tumor suppressor 
genes or oncogenes [3,8,9]. These cells are the inciters of tumor devel-
opment and the fuel of disease maintenance and progression. Their 
enhanced rate of proliferation makes them a target for most available 
therapies. At the molecular level, CRC emanates from multiple pathways 
that may occur simultaneously or disjointly [10,11]. Chromosomal 
instability is the main pathway leading to CRC development. This 
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pathway predisposes to loss-of-function tumor suppressor gene muta-
tions and/or gain-of-function oncogene mutations that occur in around 
70% of all cases [10,11]. The rest of the cases are caused mainly by two 
other pathways: (1) the microsatellite instability pathway affecting DNA 
mismatch repair genes, and (2) the CpG island methylation pathway 
characterized by genetic hypermethylation and the subsequent silencing 
of tumor-related genes [10,11]. A cascade of tumorigenic events ensues 
because of these genetic mutations, especially in the presence of a 
contributory tumor microenvironment,. These events, denoted by tumor 
survival, growth, vascularization, invasion and metastasis, are the main 
target of any CRC treatment [10,11]. 

CRC detection is prompted either by development of symptoms or 
incidental discovery on routine screening with colonoscopy. Depending 
on the size (small/large), onset (early/late), and location (right colon/ 
left colon/rectum) of the lesions as well as on the grade (low/high or 
poorly/well differentiated) and the stage (local/ metastatic) of the dis-
ease, patients may display different sets of symptoms ranging from no 
symptoms to rectal bleeding, fatigue, weight loss, anemia, constipation/ 
diarrhea, and/or bowel abstraction [12–16]. The overall prognosis and 
survival are also based on the anatomic and histopathologic character-
istics of the tumor [12–16]. 

Parameters that influence symptom development or severity are 
themselves the key determinants of treatment selection. Non-metastatic 
CRC is often managed surgically, and the need for adjuvant systemic 
chemotherapy or radiotherapy is later assessed based on pathology 
findings [3]. However, both resectable and non-resectable metastatic 
CRC often require treatment with systemic chemotherapy [3]. Selection 
of the proper treatment regimen is driven by a multitude of parameters 
and is often personalized based on the molecular subtype of the disease 
and its responsiveness to specific therapies. 

The main chemotherapeutics used in managing metastatic CRC are 
capecitabine, fluorouracil, irinotecan, and oxaliplatin (Fig. 2) [3, 
17–19]. They are often used together and in combination with biologics 
and immunotherapeutics like anti-VEGF, anti-EGFR, anti-PD-1, BRAF 

inhibitors, and MEK inhibitors [3,20,21]. However, the acquirement of 
resistance to conventional therapeutics and the development of serious 
side effects, such as bone marrow suppression, infections, infertility and 
neuropathy remain the caveats to treatment success and quality of life 
improvement in the majority of patients [3,22–24]. These limitations 
can be circumvented using novel, biocompatible, and amenable drug 
delivery systems that allow tunable and targeted local release of the 
delivered therapeutics at the tumor site [22,25–27]. In this context, 
nanomedicine has emerged as an attractive approach to address the 
unmet needs of cancer treatment [22,25–27]. 

Over the past decades, nanomedicine applications have attracted 
increased attention in the fields of cardiology, microbiology, and 
oncology, among others [28–33]. However, its emergence and first 
successful application was in cancer patients. Doxil, a nano-preparation 
of doxorubicin, was the first U.S. Food and drug administration 
(FDA)-approved nanomedicine [29,34–36]. Its efficacy, tolerability, and 
pharmacodynamics were assessed initially in murine studies and then in 
a clinical trial of sixteen patients with ovarian cancer in 1991 [36,37]. In 
these studies, as compared to free doxorubicin, Doxil had a longer 
half-life and a slower clearance rate, and was associated with higher 
doxorubicin concentrations at the tumor site and its interstitial space. 
On the contrary, free doxorubicin induced a significantly less efficient 
tumor localization and was associated with more systemic side effects 
[36,37]. After this first clinical trial, Doxil was investigated in larger 
human studies and is now approved for patients with Kaposi’s sarcoma, 
multiple myeloma, ovarian cancer, and metastatic breast cancer [29, 
36–38]. Its use has dramatically diminished the cardiac side effects 
associated with the original drug, doxorubicin, while offering an 
equivalent therapeutic efficacy [36]. 

Roughly 10 years after the advent of Doxil, Abraxane was introduced 
as an effective nano-formulation of paclitaxel, and was then granted 
FDA approval for use in patients with metastatic breast cancer [29]. 
According to two recent meta-analyses, Abraxane has been examined by 
various clinical studies as a mono- or combined-therapy [39,40]. Its 

Fig. 1. CRC is mediated by a set of environmental and genetic factors that include modifiable and non-modifiable. CRC lesions frequently originates from benign 
polyps and transform into malignant tumors after the accumulation of mutations at the level of oncogenes and tumor suppressor genes. It then progresses from 
confined local lesions to metastatic ones. 
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efficacy and safety have been compared to conventional paclitaxel in a 
multitude of randomized controlled clinical trials [40]. Abraxane was 
found as efficacious as conventional paclitaxel in most studies, and was 
superior to the original formulation in east Asian patients and in those 
pre-treated with other regimens [40]. Evidence regarding Abraxane 
toxicity is controversial with some studies reporting a favorable toxicity 
profile [39,40]; and others reporting an increased incidence of periph-
eral neuropathy among patients treated with Abraxane instead of solu-
ble paclitaxel [40]. In sum, both Abraxane and Doxil are approved by 
FDA and the European medicines Agency (EMA) and are currently used 
in clinic. 

These nano-inventions, among others, have revolutionized the field 
of cancer management and encouraged the innovation of novel nano- 
carriers and nano-formulations. Here, in this review, we aspire to 
examine the role of nanomedicine in improving CRC treatment, in 
general, and in boosting the delivery of the available chemotherapeutics 
to the lesional and metastatic sites, in particular. We first provide a 
synopsis of the available biocompatible nanoparticles (NPs) that can be 
employed in achieving this. We also highlight their use either as 

therapeutic or as carriers of available chemotherapeutics. 

2. Nanoparticles for CRC management 

NPs’ use in cancer diagnostics and therapeutics has been heavily 
explored during the past four decades [41–43]. Their diversity and ease 
of manipulation have granted them different structural and biological 
properties, making them suitable for various application in CRC man-
agement that include diagnosis, staging, and treatment [44] (Fig. 3). 

NPs can enhance a drug’s solubility and biostability while enabling 
its targeted and controlled release (Fig. 4). Taken together, these attri-
butes allow for higher efficacy, reduced toxicity and improved safety 
profile of utilized drugs complexed within NPs. In addition, NPs can 
reverse acquired drug resistance by delivering their cargo directly to 
their intracellular targets, inside the cytoplasm or nucleus [45,46]. 

Here, we focus on seven different NPs that exhibit validated and 
potent efficacy against CRC. These particles comprise three classes 
namely organic, metal-based, or polymerized NPs. Each class has unique 
properties inferring a different set of advantages and uses. 

Fig. 2. CRC treatment involves surgical resection and/or radiotherapy and/or chemo- / immuno-therapy. The selection of the treatment is based on both the stage 
and the grade of the tumor. The main limitations to treatment success include (1) the lack of efficient targeted therapies, (2) the development of drug resistance, and 
(3) the associated systemic toxicities that follow the administration of most systemic treatments. 
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Fig. 3. Various NPs have so far been utilized in cancer medicine. They consist of organic or inorganic materials, and are subdivided according to their size and shape. 
The biocompatibility, biostability, and function of these NPs can be modified via the incorporation of biocompatible molecules and the manipulation of the 
NP chemistry. 

Fig. 4. NPs offer unique means for targeting specifically CRC cells and even cancer stem cells (CSC). This is achievable because these molecules can be easily 
modified and tagged with anti-CRC markers and anti-CSC targets. 
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2.1. Quantum dots 

Quantum dots (QDs) are semiconductor nanocrystals that fluoresce 
upon excitation by ultraviolet energy. They emit light at different 
wavelengths particularly in the near-infrared (NIR) region 
(700–900 nm) and are resistant to photo-bleaching [47,48]. QDs’ ability 
to emit NIR light makes them ideal fluorescent labels for biomedical 
imaging where NIR light is needed to ensure adequate tissue penetration 
[49]. Owing to these optical properties, QDs have been perceived as 
promising tools in the diagnosis of CRC [50]. 

Multiple studies have established QDs’ role in CRC diagnosis. QD- 
based immunohistochemistry (QH-IHC) offers several advantages over 
conventional IHC in detecting CRC antigens in tissue biopsies. Indeed, as 
compared to conventional IHC, QD-IHC is a simple operation that pro-
vides higher sensitivity, less human interference, and more accurate 
detection of CRC markers [51]. Moreover, targeting tumor-specific 
markers with biocompatible amenable molecules like NPs can help in 
diagnosing CRC and predicting its prognosis. For instance, 
QDs-bevacizumab nanoprobes were able to target CRC specific markers 
in vitro and in vivo, thereby improving detection of tumor cells on im-
aging [52]. QDs have also been used to identify Aldo-keto reductase 
family 1 member B10 (AKR1B10) in the serum, which improved early 
detection of colorectal cancer [53]. Others have utilized dual-emission 
radiometric fluorescent QD nanohybrid to visually differentiate CRC 
cells [54]. Rather impressively, these QD nanoprobes were also capable 
of distinguishing cells in the G2 phase from ones in other cell cycle stages 
[54]. 

Other studies have employed QDs to detect surface proteins like 
glucose transporter 1 (Glut1) on CRC cells. Glut1 is highly expressed by 
tumor cells because of their high metabolic rate [55], and an increased 
Glut1 expression is linked with high-grade CRC and distant metastasis 
[55,56]. Interestingly, QD-based nanoprobes composed of a fluorescent 
QD core and a gadolinium-based surface have been tagged with 
anti-Glut1 antibodies [56]. Using MRI, these QD-based nanoprobes 
facilitated the localization of diseased tissues through the tracking of in 
vivo Glut1 expression [56]. They showed excellent colloidal stability in 
both acidic and basic media and were not only stable in vivo but also in 
vitro. They were also used to optimize tissue biopsy since they can serve 
as fluorescent probes in IHC [56]. Additionally, in another preclinical 
study, QDs were utilized to target vascular endothelial growth factor 
receptor 2 (VEGFR2), which is considered an adequate predictor of 
prognosis upregulated in advanced CRC [57]. Moreover, QDs bio-
conjugated with anti-VEGF2 antibodies have been used as contrast agent 
in fluorescence-based imaging [58], which allowed significant differ-
entiation between malignant and normal colon cells. Together, these 
studies support the use of these NPs in CRC diagnosis. 

Besides being adequate tools for bioimaging, QDs can also act as 
carrier for chemotherapies and may potentiate the anti-cancer activity 
of these medications. Fine porous zinc oxide (ZnO) QD NPs (ZnO QD 
NPs) appear to exhibit a promising potential in the fight against cancer. 
Indeed, ZnO QD NPs have been shown to suppress viability and promote 
apoptosis in cultured CRC cells [59]. They were also used to deliver a 
new anticancer class named unsymmetrical bisacridine derivatives 
(UAs) [60]. Interestingly, QDs were shown to increase cellular uptake of 
UAs, arrest cell cycle, and induce apoptosis in CRC cells [61]. Similarly, 
QDs appear to potentiate the antiproliferative effect of certain drugs in 
CRC but not in normal cells [62]. 

Radiotherapy in mice bearing human CRC cells has been shown to be 
boosted by a novel silver nanocomposite constituting of combined 
PEGylated graphene QDs and silver nanoprisms [63]. These composites 
appear to radiosensitize CRC cells and inhibit the growth of tumor cells 
more efficaciously than radiation alone. Indeed, it is this coating of silver 
NPs with pegylated QDs that imparts the superior outcomes, largely 
because QDs preserve the shape of silver NPs and enhance their efficacy 
[63]. Taken together, these applications and others provide compelling 
evidence for the usefulness of these NPs as improved, sensitive, and 

accurate cancer diagnostic tools. Further pre-clinical animal and clinical 
human studies are needed to elucidate the exact role of QDs in CRC 
management as well as their potential toxicities. 

2.2. Iron oxide NPs 

Because of their magnetic and photothermal properties, iron oxide 
NPs have been approved by the FDA as MRI contrast agents and cancer 
hyperthermia therapy [28,64–68]. They are also approved for iron 
deficiency anemia since they can serve as a potent iron source after 
being degraded by the reticuloendothelial system (Table 1) [69]. 
Furthermore, they can be safely applied in humans and are known to 
have a well-tolerated cytotoxic profile [28], in addition to being easily 
processed and cleared by the human body [28]. Their magnetic prop-
erties are utilized for drug delivery rendering them employable for se-
lective targeting. Indeed, by helping in selective delivery of 
anti-tumorigenic medications, the contents of these NPs can be 
released exclusively at the target site following the application of a 
magnetic field that triggers their burst [70]. Consistent with this, 
superparamagnetic iron oxide-based NPs have been recently shown to 
be effective for multimodal cancer therapy [71]. 

The magnetism of iron oxide NPs also plays a role in CRC diagnosis, 
as the example of Lectin-Fe2O3 AuNPs shows [97]. These nano-
complexes are produced by joining lectins with iron oxide (Fe2O3) and 
gold NPs (AuNPs) via bifunctional polyethylene glycol (PEG) NHS (an 
amino derivative of PEG) ester disulfide linkers. It was subsequently 
shown that these agents play a role in CRC imaging by targeting tumor 
cells where they can be detected by dual-mode MRI, X-ray, or CT [97]. 
Furthermore, for aggressive cancers with a high stroma content, diag-
nostic imaging utilizing contrast agents conjugated with a peptide 
having a high affinity to extracellular matrix (ECM) proteins is thought 
to be very promising and vital. Importantly, superparamagnetic 
iron-oxide NPs have been utilized for selective targeting, and thus im-
aging, of specific extracellular proteins in the tumor environment [98]. 

As for their therapeutic potential, iron oxide NPs appear to be viable 
drug vehicles adequate for preventing the undesired degradation of 
drugs during transport, all while enabling selective targeting of diseased 
tissues. This then enhances the efficacy of the drug and minimizes the 
associated side effects. In this context, cell penetrability and cytotoxicity 
of iron-oxide NPs with doxorubicin conjugates (Dox-NPs) are signifi-
cantly higher than those of free doxorubicin (Dox) in human CRC cells 
(HT-29) [99]. Hence, a particular dose of free Dox can be potentially 
substituted by a lower dose of Dox-NPs while ensuring equivalent effi-
cacy. Dox-NPs application in vivo is also feasible and can be ensured via 
the application of a magnetic field. Similarly, paclitaxel-loaded super-
paramagnetic iron oxide NPs were applied to murine CRC models [100]. 
To optimize selective targeting of the tumor, an external magnet was 
placed adjacent to the tumor site. Importantly, tumor growth was 
significantly lower in animals treated with paclitaxel-loaded iron oxide 
NPs compared to free docetaxel [100]. The iron oxide NPs-based mag-
netic carrier of paclitaxel served also as a contrast agent for the MRI 
visualization of tumors (Fig. 5) [100]. In line with these reports, the 
distinctive theragnostic properties of iron oxide NPs have also been 
highlighted by other animal studies, further supporting their use [67, 
101]. 

By virtue of their photothermal properties, an additional anticancer 
effect of iron oxide NPs has also been reported. For instance, iron oxide 
core NPs have been shown to potentiate the anti-tumor effect of 5-fluo-
rouracil loaded polylactide-co-glycolic acid NPs (PLGA) [102]. The ef-
fect was accomplished by increasing the negative influence of 
hyperthermia on HT-29 CRC cell lines, thus establishing a role for iron 
oxide NPs in CRC treatment [102]. More recently, iron oxide NPs were 
also shown to be able to sensitize Apo2L/TRAIL (Tumor necrosis 
factor-related apoptosis-inducing ligand)-resistant CRC cells by target-
ing the tumor cells and generating ROS. This subsequently triggered 
c-Jun N-terminal kinase activation which caused autophagy-assisted 
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DR5 upregulation [103]. More recently, iron oxide NPs have been used 
in synthesizing gold nano-cubes that, in combination with photothermal 
therapy, offer superior results, albeit in liver cancer cells [104]. Whether 
the same can be reproduced in CRC remains to be established. 

It is important to mention that iron oxide NPs have been shown to 
overcome problems associated with nanoparticle-sensitized photo-
poration, a process that requires contact between NPs and cells. This 
contact indeed renders this process relatively difficult to translate into 
the clinical setting. However, light-sensitive iron oxide NPs embedded in 
biocompatible nanofibers have been shown to facilitate photothermally 
effected membrane permeabilization without needing these NPs to be in 
direct contact with cells [105]. These nanofibres did successfully deliver 
biomolecules to cancer cells, and more importantly, were able to cause 
in vivo tumor regression [105]. Similarly, activated iron 

oxide-hydroxide nanospindles have been shown to “light up” CRC cells, 
rendering them suitable for MRI-guided photothermal therapy [106]. 
Interestingly, these nanospindles appear to be highly biosafe in a murine 
model even after a 3-month duration of treatment [106]. Collectively, 
iron oxide NPs are important CRC theragnostic as they offer an oppor-
tunity to overcome issues of drug resistance and systemic toxicities, 
while allowing the use of lower drug doses and ensuring an efficacy 
equivalent to that of the free drug. 

2.3. Polylactide-co-glycolic acid (PLGA) NPs 

PLGA NPs are biodegradable carriers used to transport proteins, 
peptides, vaccines, and drugs in the human body. They offer several 
advantages that include controlled drug release and strong tissue 

Table 1 
Table discussing the advantages and disadvantages of each NPs type and highlighting the availability of FDA approved formulations.  

NPs Type FDA-approved in Human Advantages Disadvantages/Toxicities Ref. 

Quantum Dots In 2011, C dots, a QD-based agent, was approved as 
a diagnostic probe added to PET scan in patients 
with metastatic melanoma to allow targeted 
imaging.  

1. Biocompatible and photostable  
2. Emit light at different wavelengths  
3. Adequate for deep tissue imaging  

1. Slowly metabolized  
2. May accumulate in tissues  
3. Have a Low aqueous solubility  
4. Need to be coated/modified to 

improve solubility and biostability  
5. Complex structure/chemistry  
6. Not biodegradable 

[72,73] 

Iron oxide NPs Multiple iron oxide NPs-based formulations were 
approved as iron deficiency anemia treatment, MRI 
contrast agents, and cancer hyperthermia therapy.  

1. Biocompatible  
2. Amenable to modification  
3. Can be manipulated using an external 

magnetic field  
4. Adequate for hyperthermal therapy  
5. Can be cleared by the body  
6. Can serve as a source of iron  

1. Have a Low aqueous solubility  
2. Need to be coated with organic 

polymers to improve solubility and 
biostability  

3. May cause anaphylaxis or 
hypersensitivity  

4. May cause oxidative damage 

[74–80] 

Polylactide-co- 
glycolic acid 
(PLGA) NPs 

Currently, a multitude of PLGA NPs-conjugates are 
approved as drug delivery systems and/or 
diagnostic probes.  

1. Biocompatible  
2. Biodegradable  
3. Have a low potential for toxicity and 

hypersensitivity  
4. Can be easily modified and 

synthesized in different sizes/shapes  
5. Offer a high drug loading capacity  
6. Allow tunable release of loaded drugs  

1. Negatively charged  
2. Serve as contrast agents only if coated 

with inorganic metals 

[74,77,78, 
81,82–84] 

Dendrimers Up till now, only one dendrimer-based therapeutic 
is approved.  

1. Biocompatible  
2. Biodegradable  
3. Amenable to modification  
4. Offer a high drug loading capacity  
5. Can easily penetrate tissues and 

biological barriers  
6. Owns anti-microbial properties  
7. Water-soluble  

1. Serve as contrast agents only if coated 
with inorganic metals  

2. Cytotoxic 

[77,85] 

Carbon Nanotubes No therapeutic or diagnostic formulations are yet 
approved.  

1. Have a large surface area  
2. Chemically stable  
3. Display adequate thermal 

conductivity  

1. Not biodegradable  
2. Insoluble in aqueous media  
3. Need to be coated with organic 

polymers to improve solubility and 
biostability  

4. May induce an inflammatory response 
and cause liver and lung toxicity 

[86–88] 

Liposomes Many liposome-encapsulated anti-cancer 
medications have been approved with Doxil being 
the first one.  

1. Biocompatible  
2. Biodegradable  
3. Amenable to modification  
4. Allow a wide range of drug delivery 

(can transport hydrophobic and 
hydrophilic molecules).  

5. Offer a high drug loading capacity  
6. Allow tunable release of loaded 

drugs  
7. Have a low potential for toxicity and 

hypersensitivity  
8. Amenable to modification  
9. Thermosensitive  

10. Non-immunogenic  

1. Early degradation and premature 
leakage of loaded drugs  

2. Short half-life  
3. High cost of production  
4. Have a Low aqueous solubility 

[74,77,78, 
89,90,91] 

AuNPs A few AuNPs are currently approved as diagnostics/ 
therapeutics for human.  

1. Biocompatible  
2. Possess favorable optical properties  
3. Amenable to modification  
4. Can absorb near-infrared light  
5. Adequate for deep tissue imaging  

1. May cause oxidative damage  
2. Not biodegradable  
3. Need to be coated with organic 

polymers to improve solubility, 
biostability, and biodegradability 

[74,77, 
92–96]  
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penetrability, in addition to their low potentials for toxicity and hy-
persensitivity [107]. Importantly, these drug carriers can be limited by 
their stability and particle size, which can be modified by modulating 
the consistent polymer or altering the chemical structure and properties 
[107]. Besides, their biodegradability makes them ideal therapeutic 
candidates in the management of any cancer, including CRC [108]. For 
instance, despite the overwhelming anticancer effects of curcumin, its 
use has been limited by its poor bioavailability. Interestingly, 
curcumin-loaded PLGA NPs resulted in higher curcumin uptake by CRC 
cells compared to pure curcumin solution [109]. This improvement in 
curcumin delivery is attributed to the enhanced colloidal stability of 
PLGA NPs in gastrointestinal fluids, their smaller size, and their sus-
tained release [109]. Similarly, the use of mangostin alone is limited by 
its poor stability, bioavailability, targeted accumulation in tumor cells, 
and its hydrophobic nature. However, when encapsulated with PLGA 
nanoparticles, these limitations were overcome, and noticeable 
improvement in therapeutic benefits and efficacy of mangostin were 
reported [110]. 

PLGA NPs have also been employed to improve efficacy of commonly 
used drugs like 5-fluouracil (5-FU). Indeed, 5-FU-loaded PLGA NPs 
induced CRC cell death and provided an improved well-tuned release of 
5-FU compared to free 5-FU [111]. Contextually, 5-FU and an oxygen 
carrier (perfluorocarbon) were combined with PLGA NPs modified with 
epidermal growth factor (EGF) [112]. This combination allowed for 
selective targeting of tumor cells expressing high levels of EGF receptor 
(EGFR). Expectedly, this selective targeting improved efficacy, as it 
induced significantly higher rates of apoptosis and cytotoxicity, and 
lower rates of tumor expansion and growth. Additionally, the coupling 
of perfluorocarbon to this composite overcame the problem of tumor 
hypoxia associated with the development of 5-FU resistance [112]. 
Furthermore, reduced efficacies resulting from 5-FU resistance and short 

life span appear to be circumvented by virtue of the selective targeting 
and sustained release ensured by the nanocarrier. 

These nanocarriers have also been used to increase cytotoxicity of 
irinotecan against human CRC cells [113]. Irinotecan is a drug that in-
hibits the S-phase by hyperstabilizing DNA topoisomerase I complex, a 
cellular enzyme overexpressed in many types of tumors including CRC. 
By doing so, it inhibits re-ligation of DNA strands, eventually leading to 
the formation of lethal DNA breaks [114]. The use of irinotecan in the 
clinic is limited by its systemic toxicities that include severe neutropenia 
and diarrhea [114]. Hence, it was hypothesized that the delivery of this 
drug using biodegradable, safe, and stable polymers like PLGA NPs can 
potentially overcome these toxicities while improving irinotecan effi-
cacy. Delivering irinotecan with a PLGA nanocarrier can be modulated 
to target selectively the diseased tissues while sparing the healthy tissues 
from the systemic effects of irinotecan [113]. Additionally, a potential 
therapeutic effect can be achieved with a lower dose of irinotecan, 
which in turns imparts a favorable toxicity profile. Congruently, a 
PLGA-based nanomicelle was introduced as an excellent candidate for 
delivery of irinotecan to human cancer cells and was shown to induce 
higher cytotoxicity than free irinotecan [113]. Its in vivo use will pre-
vent the uptake of irinotecan by the reticuloendothelial system and 
improve its delivery, while providing higher targeted toxicity against 
cancer cells [113]. Indeed, very recently, PEG-PLGA NPs have shown 
efficacy in boosting immunotherapy of colon cancer in mice [115]. 
Similarly, PLGA NPs entrapped to folic acid were proposed to selectively 
deliver a chemotherapeutic agent to targeted colon cancer cells [116]. 
These implications may be applicable to other drugs of similar profile 
unlocking many new avenues in drug delivery. Nonetheless, further 
human studies are needed to validate the efficacy of these carriers and to 
assess their safety. 

Furthermore, cholesterol-coated PLGA NPs have also been used to 
co-carry retinoic acid and oxaliplatin [117]. Importantly, these NPs 
potentiated the in vitro and in vivo efficacies of these drugs, and induced 
a significant reduction in drug resistance and tumor metastasis [117]. 
Congruently, there is promise in treating and monitoring CRCs by pro-
ducing carcinoembryonic antigen (CEA)-targeting PGLA NPs. These NPs 
can detect the level of soluble CEA and thus can monitor CRC remission 
and relapse when tagged with high affinity ligands suitable for binding 
soluble CEA. Rather impressive, when tagged with low affinity ligands, 
these molecules can bind preferentially to the tumor cells and serve as 
therapeutic carriers [118]. Not surprisingly, PLGA NPs are now 
FDA-approved drug carriers that can serve as tools for improving and 
revolutionizing CRC treatment. 

2.4. Dendrimers 

Dendrimers are polymeric NPs with unique structural properties. 
They have a three-dimensional structure consisting of a central core 
molecule surrounded by branched layers consecutively added to the 
core [119]. These dendrimers can acquire a variety of functional groups 
on their outer surface, making them excellent tools for drug delivery and 
monitoring of treatment success [119]. For instance, polyamidoamine 
dendrimer NPs (PAMAM) modified with cholesteryl chloroformate and 
alkyl-PEG were used to co-deliver doxorubicin and TRAIL plasmid to 
C26 CRC cells [120]. These NPs potentiated the effects of their cargo in 
both in vivo and in vitro experiments [120]. Interestingly, their ease of 
modification and manipulation has rendered them ideal candidates for 
encapsulating and delivering a wide array of drugs [121]. In addition to 
their ability to carry high dosages and deliver a combined regimen of 
drugs, they are well-tolerated biocompatible NPs that can be metabo-
lized and eliminated by the renal system [121]. 

Due to its mechanism of action entailing DNA damage, capecitabine 
affects negatively multiple organs, particularly those having increased 
rates of cell division: hair, liver, blood, and bone marrow cells. 
Dendrimer-conjugated capecitabine exhibited higher efficacy than free 
capecitabine in murine CRC models [122]. Indeed, the 

Fig. 5. Metal-based NPs, like iron oxide NPs and AuNPs, are outstanding 
theragnostic molecules known for their biocompatibility, photothermal and 
magnetic properties as well as their ease of synthesis, manipulation, and 
application. They offer simultaneous diagnostic and therapeutic benefits in the 
context of solid cancers like CRC. Their unique magnetic properties enable their 
magnetic-guided delivery to the tumor site. Location of these NPs and of the 
tumor site can be further detected using MRI, offering thus diagnostic 
applications. 
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dendrimer-conjugated drug showed superiority in reducing tumor size 
and also in diminishing the toxic effects on blood and liver cells [122]. 
Another anti-cancer drug currently employed in the clinical setting and 
limited by its narrow therapeutic index is irinotecan [123]. The conju-
gation of the active metabolite of irinotecan with dendrimers was 
capable of increasing its selectivity to tumor cells while reducing its 
effect on healthy cells. This also resulted in a higher efficacy and reduced 
toxicity [123]. 

Another important application of these NPs is the incorporation of 
antibody conjugates on the surface of dendrimers that capture circu-
lating tumor cells (CTCs). For instance, surface-active dendrimers can be 
manipulated to target a CRC biomarker Slex (Sialyl Lewis X), an antigen 
incorporated in CRC cells extravasation and metastasis [124]. These 
dendrimers were superior in selectively detecting and downregulating 
colon CTCs, giving them both diagnostic and therapeutic roles. More-
over, PAMAM NPs conjugated with AuNPs and a peptide called circular 
heptapeptide GX1 were able to selectively home to the vascular endo-
thelium of the tumor [125]. This nanoplatform was effective in detecting 
the CRC lesions and also in delivering the FAM172A gene, a gene 
involved in inducing the apoptosis and restraining the proliferation of 
the cancer cells, to the tumor cells [125,126]. The cytotoxicity of this 
platform was significant in the presence of photothermal therapy (PTT); 
a significant reduction in tumor size was noted in HCT-8 tumor-bearing 
mice after 14 days of treatment. This effect was particularly noticeable 
in the group receiving both the FAM172A gene via the nanoplatform in 
addition to PTT [125]. Collectively, these flexible biocompatible NPs 
provide important theragnostic CRC applications. However, further 
studies are needed to validate their safety since it was postulated that 
dendrimers can exhibit cytotoxic effects on their own (Table 1). That 
said, it is important to stress here that PAMAM dendrimers do not evoke 
a strong immune response, and are thus considered nonimmungenic. 
This makes them relatively safer than viral or nonviral vectors used in 
gene delivery for cancer treatment. Moreover, dendrimers have the 
ability to bind to charged DNA or siRNA, and the tertiary amine groups 
in their interior possesses a strong pH buffering ability that allows for 
easier escape from endosomal damage [127]. Altogether, these features 
make dendrimers effective and attractive alternatives to vector therapy 
of cancer [128]. 

2.5. Carbon nanotubes (CNTs) 

CNTs are cylindrical allotropes of carbon with rolled graphene sheets 
fewer than 1 µm in diameter and a few nanometers in length [129]. 
Their high surface area, heat conductivity, chemical stability, and 
needle-like structure make them viable tools in antitumor drug delivery, 
amid other uses [130–132]. In fact, these NPs have been used in carrying 
a battery of drugs that include chemotherapeutics, immunomodulators, 
and gene therapies. They are also important sensitizers of PTT and 
photodynamic therapy (PDT) [132]. 

Single-walled carbon nanotubes (SWCNTs) conjugated with a syn-
thetic polyampholyte were used to deliver paclitaxel to Caco-2, a colon 
cancer cell line, showing greater efficacy in comparison to paclitaxel 
alone [133]. Modified single-walled carbon nanotubes (SWCNT) fitted 
with TRAIL, which precipitates ligand-induced apoptosis, exhibited 
ten-fold higher efficacy than TRAIL alone [134]. Similarly, SWCNTs 
hybridized with type-II nanocrystalline cellulose potentiated the anti-
cancer effects of capecitabine against a CRC cell line, though the hybrid 
itself elicited interesting anticancer effects and imaging benefits making 
it a potential theragnostic [135]. 

Recently, gemcitabine-loaded hyaluronic acid conjugated PEGylated 
multi-walled carbon nanotubes (MWCNTs) effectively targeted colon 
cancer cells. In addition, these MWCNTs released gemcitabine at higher 
rates in acidic conditions (pH 5.3) in comparison to physiological con-
ditions, thus decreasing toxicity while effectively reducing tumor vol-
ume [136]. Recently, MWCNTs were used to encapsulate paclitaxel and 
thus to achieve a higher loading of this anticancer drug [137]. 

CNTs also play a role in PDT, where for instance hyaluronic acid and 
a photosensitizer, chlorin e6 (ce6), coated the walls of single-walled 
CNTs. This synthesized nano-biocomposite then resulted in increased 
efficacy of PDT on cancer cells as opposed to ce6 alone [138]. Moreover, 
CNTs can facilitate tumor localization and trace CRC metastasis to 
lymph nodes during surgery [139,140]. This was achieved after CNTs 
were infused into the surrounding of the tumor, absorbed exclusively by 
lymphatics, and tracked in surrounding lymph nodes. More recently, it 
was also shown that intratumoral CNT-CpG complex inhibits local and 
metastatic CRC tumors [141]. Taken together, accumulating evidence 
provides the basis for the proposition that CNTs are suitable for over-
coming multidrug resistance in CRC, improving local tumor targeting, 
tracing CRC metastasis, and facilitating its surgical resection. Nonethe-
less, up till now, no CNT-based nanoformulation is approved by the FDA 
due to their potential hepatic and respiratory toxicities (Table 1). This 
indicates that further studies are needed to examine the safety and the 
theragnostic benefit of these NPs. 

2.6. Liposomes 

Liposomes are lipid-based vesicles with a small aqueous spherical 
core, and they act as artificial drug carriers. Their half-life is largely 
determined by vesicle size, which can vary from 0.025 µm to 2.5 µm. In 
addition, their membranes can be single or double-layered. Depending 
on the size and number of their layers, liposomes are either multi-
lamellar or unilamellar vesicles [142]. Their small size, carrier proper-
ties, and phospholipid bilayer make them a very effective drug delivery 
system with minimal side effects [143]. Indeed, the notion that they are 
biodegradable, biocompatible, relatively non-toxic, and can carry both 
lipophilic and hydrophilic drugs makes them very attractive. The FDA 
had already approved a liposome formulation carrying doxorubicin in 
1995, and later also approved Marqibo, a liposomal formulation of 
vincristine [144–146]. 

A bifunctional liposome with oxaliplatin-prodrug conjugated to 
phospholipid and alkylated NLG919 (an IDO1 inhibitor) was used to 
target cancer cells and to limit their immunosuppressive capabilities 
mediated by indoleamine 2,3-dioxygenase 1 (IDO1). These liposomes 
were found to have a long blood circulation time and were able to 
synergistically target cancer cells by the dual release of oxaliplatin and 
IDO1 inhibition [147]. 

Liposomes appear to limit CRC metastasis and angiogenesis, as 
shown by a study examining liposomes loaded with pigment epithelium- 
derived factor (PEDF). These PEDF-DNA-loaded liposomes inhibited 
invasion and migration of CRC cells and induced pro-apoptosis effects in 
vitro. When applied to a mouse model, they were found to reduce 
metastasis of tumor nodules and prolong survival time [148]. Others 
have used pH-sensitive liposomes to deliver multiple anticancer drugs 
some of which may impart photodynamic therapeutic effects as well 
[149]. In some instances, surface modification of liposomes may be 
required to improve selectivity, and thus potentially reduce toxic side 
effects [150]. It is important to mention here that recently, hybrid ve-
sicular systems of liposomes and polymersomes, also known as lip-
opolymersomes, are being developed as they provide minimal 
disadvantages compared to either liposomes and polymersomes alone. 
These systems combine the advantages of both entities (liposomes and 
polymersomes) and provide the combined benefits of improved struc-
tural integrity of the bilayer and increased serum stability, while also 
preserving the soft nature of liposomes and the increased encapsulation 
efficiency of cargos in the bilayer partition [151]. Indeed, these plat-
forms exhibit rather impressive efficiency in delivering camptothecin in 
CRC, both in vitro and in vivo [151]. In line with these results, a very 
recent paper showed that a unique multifunctional liposome (MFL) 
enhanced absorption and release of cytotoxic drugs into colon cancer 
cells, thereby inducing apoptosis and suppressing metastasis [152]. 

More recent evidence further cements the premise the liposomes can 
indeed improve drug delivery to colon cancer cells, and consequently 
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the management of CRC. For instance, lipid-encapsulation of irinotecan 
has significantly improved the ultimate response to this drug in colon 
cancer, while also limiting this drug’s toxicity in in vivo systems [153, 
154]. Indeed, compared to the free drug, this liposomal preparation of 
irinotecan exhibited a higher antitumor effect as well as a longer dura-
tion of action against CRC, making it an attractive approach in the 
management of this disease [153]. Importantly, liposomes not only help 
in targeted delivery and reduced toxicity of certain drugs, but also in 
resolving solubility issues associated with certain therapeutic agents. 
For instance, a liposomal nanoformulation of zina (ZnL(AcO)) showed 
significant superiority over the free zinc complexes in suppressing tumor 
progression and reducing the tumor burden to a level similar to the 
standard drug used in CRC treatment, namely 5-FU [155]. More 
importantly, the tumor volume reduction achieved by these liposomal 
complexes was elicited at a lower dose, thereby indirectly reducing the 
potential adverse effects [155]. Together, the results obtained in this 
study strongly suggest that liposomes can solve solubility issues of some 
metal-based complexes [155]. In CRC, liposomes and liposome-based 
formulations have also been shown to play an important role in cir-
cumventing resistance, which remains a major hurdle in the fight 
against this disease [156–158]. Indeed, it was recently shown that 
aptamer-conjugated nanoliposomal formulations robustly sensitized 
colon cancer cells to chemotherapeutic agents, thereby aiding in over-
coming chemoresistance [159]. Similarly, liposomes have been shown 
to be instrumental in sensitizing colon cancer cells to 5-FU [160]. 
Bifunctional liposomes appear to reduce the potential resistance to 
doxurubucin in CRC cells [161]. Taken together, these findings explains 
the increasing interest in liposomes as promising tools in the fight 
against chemotherapeutic resistance. 

2.7. Gold nanoparticles (AuNPs) 

AuNPs are biocompatible nanocarriers employed in a variety of 
medical fields including cancer [162–164]. Their exceptional physi-
ochemical and optical properties have made them suitable for both 
targeted (active) and non-targeted (passive) delivery. Their use as drug 
vehicles is also endorsed by their ease of synthesis and amenability to 
surface modification [162–164]. Indeed, these NPs are adequate carriers 
for a wide range of drugs including nucleic acids (e.g. 5-FU), antibodies 
(e.g. anti-EGFR), and proteins, among others. 

Despite having an adequate biostability that renders them optimal 
for in vivo use, AuNPs’ biostability can be further enhanced by selective 
coating with polymers like polyethylene glycol and dextran [162,165]. 
This can overcome the premature clearance of these molecules by the 
reticuloendothelial system and prevent their uptake by macrophages. 
Additionally, their size and shape are critical determinants of effective 
drug delivery, cellular uptake, and biostability [162–165]. These pa-
rameters are usually manipulated to optimize therapeutic efficacy of 
various agents. 

In CRC, AuNPs have been heavily investigated in animal and human 
studies. Indeed, they enjoy the lion’s share of nanotechnology research. 
They have been used to favorably modulate various CRC hallmarks 
including apoptosis, angiogenesis, proliferation, and metastasis. Their 
use in delivering various anti-CRC treatments, particularly cisplatin, 5- 
FU, and anti-EGFR, has been well-documented and supported [164, 
166,167]. Similarly, they were shown to be effective in improving tumor 
responsiveness to radiotherapy [168,169], and in localizing and staging 
CRC using imaging like MRI, CT scan, and photoacoustic imaging [170]. 

Because caspases are crucial mediators and executioners of 
apoptosis, drugs that activate them would be important in the fight 
against cancer. For instance, 17-allylamino-17-demethoxygeldanamycin 
(17-AAG), an inhibitor of heat shock protein 90, efficiently activates 
caspases and induces apoptosis in cancer cells [171,172]. In a 
pre-clinical trial, a combination of 17-AAG with irradiation (IR) and 
AuNPs resulted in higher cytotoxic effects on cancer cells compared to 
17-AAG alone. Combining 17-AAG with AuNPs and IR increased 

Caspase-3 expression and activation, precipitated apoptosis and resulted 
in enhanced cytotoxicity [173]. Similarly, adding tiopronin-coated 
AuNPs (Tio-AuNPs) to X-ray radiations robustly suppresses CRC sur-
vival [174]. Moreover, AuNPs can be regarded as radiosensitizers as 
they contributed to higher cytotoxic effects on HT-29 CRC cells exposed 
to megavoltage x-rays energy [175]. The mechanism for their 
radio-sensitization properties could be due to their ability to evoke 
oxidation of the mitochondrial membrane and trigger its depolarization 
[176,177]. Together, these and other studies support the notion that 
supplementation and modification of other therapeutic agents with 
AuNPs increase their apoptotic effect. 

Suppressing the proliferation of CRC cells is another important 
phenotype to target. Because they often overexpress EGFR, cancer cells 
become suitable targets for anti-proliferative drugs targeting EGFR 
[178]. When AuNP-coated anti-EGFR antibodies were added with the 
classic drug, 5-FU, a potentiated impairment in CRC cell proliferation 
was noted [179]. This cements the argument that NPs, particularly 
AuNPs, can potentiate the efficacy of anti-proliferative drugs and 
improve their selectivity to tumor cells. 

AuNPs have been shown to be instrumental in drug delivery ap-
proaches that enhance targeted specificity and help reduce cancer cell 
resistance to essential drugs like doxorubicin (DOX) [180,181]. Pedrosa 
et al. combined cetuximab, an anti-EGFR antibody, with an anti-tumor 
Zinc-based nano-system composed of multifunctional AuNPs to target 
EGFR-overexpressing CRC cells and induce death of the DOX-resistant 
cancer cells [181]. Indeed, Zn(II) coordination compounds (Zn 
(DION)2Cl2) ( ZnD) were delivered to DOX-resistant CRC cells with the 
help of multi-functional AuNPs, and cetuximab was used to specifically 
target resistant cells that overexpress EGFR. ZnD increased caspase 3/7 
activity and consequently apoptosis ensued, while cetuximab exerted 
anti-proliferative and anti-angiogenic effects in addition to the suc-
cessful targeting of the tumor cells [181]. This application of AuNPs 
potentiated targeting of DOX-resistant CRC cells through the delivery of 
ZnD using AuNPs and cetuximab [181]. These results emphasize the 
major role of AuNPs in addressing drug-resistant CRC. 

Moreover, AuNPs can be also employed in CRC diagnosis. AuNPs 
loaded with specific tumor antibodies, such as the anti-plasma mem-
brane heat shock protein 70 (Hsp70) antibody, have been shown to be 
contrast agents suitable for detecting the primary tumor along with its 
metastasis [170]. Interestingly, AuNPs have the potential to be easily 
modified and coupled with an array of CRC specific antibodies. This 
characteristic along with their unique physiochemical properties 
endorse their use in the field of cancer imaging. In addition, given their 
unique photo-thermal and photo-acoustic properties, AuNPs can act as a 
mean for combining photothermal therapy with immuno- or chemo-
therapy which can result in turn in superior therapeutic outcomes [182, 
183]. Together, AuNPs are outstanding theragnostic nanoelements 
adequate for improving both CRC treatment and diagnosis. 

3. Concluding remarks 

Nanotechnology is widening the horizon of therapeutic options for 
cancer, including CRC. Increasing evidence supports the notion that NPs 
not only improve efficient delivery of drugs into their target cancer cells, 
but also modulate the intrinsic tumorigenic properties of these cells 
[176,177]. Furthermore, nanomedicine is emerging as a promising tool 
against the overwhelming obstacles of CRC diagnosis and treatment. It 
offers a solution to the growing issue of CRC resistance to conventional 
chemo- and immuno-therapeutics, and facilitates the conquest of the 
unremitting hallmarks of CRC. Altogether, it is apparent that nano-
medicine is becoming an attractive approach for allowing personalized 
management, and consequently for significantly improving CRC sur-
vival and prognosis. The implementation of this approach is evident by 
the existence of dozens of FDA-approved nanoformulations that can be 
modified and applied in various biomedical applications. Hence, we 
postulate that the incorporation of nanomedicine to CRC management is 
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an inevitable advent. Nonetheless, additional pre-clinical and clinical 
studies of higher quality are urgently needed to endorse the safety of this 
approach and generate safe and effective CRC targeted formulations. 
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[69] E. Alphandéry, Biodistribution and targeting properties of iron oxide 
nanoparticles for treatments of cancer and iron anemia disease, Nanotoxicology 
13 (5) (2019) 573–596. 

[70] C.Y. Kuo, T.Y. Liu, T.Y. Chan, S.C. Tsai, A. Hardiansyah, L.Y. Huang, M.C. Yang, 
R.H. Lu, J.K. Jiang, C.Y. Yang, C.H. Lin, W.Y. Chiu, Magnetically triggered 
nanovehicles for controlled drug release as a colorectal cancer therapy, Colloids 
Surf. B Biointerfaces 140 (2016) 567–573. 

[71] M. Zuk, W. Gaweda, A. Majkowska-Pilip, M. Osial, M. Wolski, A. Bilewicz, 
P. Krysinski, Hybrid radiobioconjugated superparamagnetic iron oxide-based 
nanoparticles for multimodal cancer therapy, Pharmaceutics 13 (11) (2021). 

[72] E. Phillips, O. Penate-Medina, P.B. Zanzonico, R.D. Carvajal, P. Mohan, Y. Ye, 
J. Humm, M. Gönen, H. Kalaigian, H. Schöder, H.W. Strauss, S.M. Larson, 
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