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following the method of maximum likelihood principle. Weibull is selected as a baseline to propose
an odd Muth-Weibull distribution with some useful properties. In order to confirm that our results
converge with minimized mean squared error and biases, a simulation study has been performed.
Additionally, a plan acceptance sampling design is proposed in which the lifetime of an item follows
an odd Muth-Weibull model by taking median lifetime as a quality parameter. Two real-life data
applications are presented to establish practical usefulness of the proposed model with conclusive
evidence that the model has enough flexibility to fit a wide panel of lifetime data sets.

Keywords: group acceptance sampling plan; maximum likelihood method; Muth-G family; quality
parameter; T-X family
Mathematics Subject Classification: 62E15, 62E05, 62E10

http://www.aimspress.com/journal/Math
http://dx.doi.org/ 10.3934/math.2023331


6560

1. Introduction

In real-life circumstances, there is always an element of uncertainty which always makes the applied
researchers have jitters regarding the selection of an appropriate model. Thus, in order to be on the
safe side, applied practitioners always prefer classical distributions such as the Exponential, Weibull
or Gamma distribution. To add to the misery, theoreticians generally propose generalizations and
modifications of such classical models in order to resolve discrepancies among them. There is an
abundance of generalizations of such orthodox distributions as it the discretion of researchers to select
the model which they want to explore both theoretically and in applied form.

Despite their importance in the literature, there are a number of distributions that have yet to be
fully investigated. The functional complexity of the models may be the most plausible rationale,
with the improvement of computational capabilities and numerical optimization techniques such as
MATLAB, Python and the R language, this claim is easily refuted. In our perspective, the statistical
literature should include these overlooked models that are seldom employed. For distributions that
are not regularly discussed in the literature, the authors in [1] provided a comprehensive list. This
motivated us to investigate such models or suggest long-overlooked generalizations based on such
models. One such model is the Muth distribution, with the name pioneered by the authors in [1]. For a
continuous univariate distribution, a random variable X is said to follow a Muth distribution such that
X ∼ Muth(a) with the following distribution function:

G(x) = 1 − exp
{
a x −

1
a

[exp(a x) − 1]
}
, x > 0, (1.1)

where parameter a ∈ (0, 1). According to the authors in [2], it was Tessiér (1934) who initially
studied this distribution in the context of an animal ageing mechanism. However, Muth (1977) pointed
out instances where it appears as a good model to study the stochastic nature of the variable under
consideration as compared to established models. In [3], the authors studied the scaled version of the
Muth distribution and established its superiority over the existing distribution by using meteorology
data. A few other works related to the Muth distribution have been esented in [2–7]. The reader is
referred to [2], in which an excellent review of the Muth distribution in chronological order has been
conducted by the authors.

In this article, we propose a generalization of the Muth distribution. Regarding the generalization
of conventional models, the Transformed-transformer T-X approach, introducted in [8], is an integral
part for the construction of generalized families of distributions. The distribution function (cdf) of the
T–X family is defined by

FT−X(x) =

∫ W
(
G(x;ξ)

)
a

r(t) dt = R
[
W

(
G(x; ξ)

)]
.

The pdf corresponding to (1) is

fT−X(x) = r
[
W

(
G(x; ξ)

)] d
dx

W
(
G(x; ξ)

)
,

where the pdf of any baseline distribution is g(x; ξ).
To the best of our knowledge, very few generalizations of the Muth distribution have been

proposed in the literature. These include the Muth-G family by Almarashi and Elgarhy [9] using
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the T-X methodology, the Transmuted Muth-G class of distributions by [10] using quadratic rank
transformation and the New Truncated Muth generated (NTM-G) family of distributions [31] in the
context of a unit distribution. This further intrigued us to formulate a generalization of the Muth
distribution via an odd random variable, denoted as odd Muth-G (OMG for short), in Eq (2.1) and
study its mathematical properties. Similar generalizations based on odd ratios are odd Weibull-G
in [11], odd generalized-exponential-G in [12], alternate odd generalized exponential-G in [13], odd
gamma-G in [14], odd Lindley-G in [15], odd Burr-G in [16], odd power-Cauchy-G in [17], odd half-
Cauchy in [18], odd additive Weibull-G [19], odd power-Lindley-G [20], odd Xgamma-G [21], etc.
For a comprehensive review on generalized families, the reader is referred to [22, 23].

For a more apt background of the T-X approach, readers are referred to [8]. Further motivations to
propose the OMG class include the following: The inverse distribution function, median, moment
generating function and characteristic function of the Muth distribution are not mathematically
tractable, though these properties exist for the OMG family; when the shape parameter a→ 0, the Muth
distribution converges to the exponential family. Thus, there exists a relation between the OMG and
exponential families such as exponentiated-G (EG) by [24] and exponentiated generalized-G (EGG)
by [25]; the OMG class improves the flexibility of the tail properties of the baseline distribution in
terms of improving the goodness of fit statistical criterion and the ability to fit symmetric as well as
asymmetric real life phenomena; the Muth distribution is applied for the first time in the context of
quality control, which is an integral part of reliability analysis.

The manuscript is structured as follows. In Section 2, the odd Muth-G family and its reliability
properties are defined. The general properties of the proposed family are depicted in Section 3.
Parameters estimation of the proposed family is illustrated in Section 4. A special model called odd
Muth-Weibull (OMW) is presented in Section 5 with some essential properties. Section 6 is based on
simulation analysis, while Section 7 showes the mathematical and numerical illustration of the group
acceptance sampling plan (GASP). The application to real-life data is presented in Section 8. Section 9
ends the manuscript with some concluding remarks.

2. Layout of the proposed family

In this section, the odd Muth-G (OMG) family of distributions and its reliability properties are
defined.

The following are the expressions of cdf, pdf, reliability function (rf), hazard rate function (hrf) and
cumulative hazard rate function (chrf) of the OMG family, respectively:

F(x) =

∫ G(x;ξ)
Ḡ(x;ξ)

0

[
exp (a x) − a

]
exp

{
a x −

1
a

[exp(a x) − 1]
}
dx

= 1 − exp
{

a G(x; ξ)
Ḡ(x; ξ)

−
1
a

[
exp

(
a G(x; ξ)
Ḡ(x; ξ)

)
− 1

]}
, (2.1)

f (x) =
g(x; ξ)

Ḡ(x; ξ)2

{
exp

(
a G(x; ξ)
Ḡ(x; ξ)

)
− a

}
exp

{
a G(x; ξ)
Ḡ(x; ξ)

−
1
a

[
exp

(
a G(x; ξ)
Ḡ(x; ξ)

)
− 1

]}
. (2.2)

r(x) = exp
{

a G(x; ξ)
Ḡ(x; ξ)

−
1
a

[
exp

(
a G(x; ξ)
Ḡ(x; ξ)

)
− 1

]}
, (2.3)
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h(x) =
g(x; ξ)

Ḡ(x; ξ)2

{
exp

(
a G(x; ξ)
Ḡ(x; ξ)

)
− a

}
(2.4)

and

H(x) =
a G(x; ξ)
Ḡ(x; ξ)

−
1
a

[
exp

(
a G(x; ξ)
Ḡ(x; ξ)

)
− 1

]
. (2.5)

3. Proposed family and its properties

Here, we derive some basic properties of the OMG family.

3.1. The expression of quantile function

The following expression shows the quantile function (qf) of the OMG:

QX(u; a) = G−1

1 +

1
a

log(1 − u) −
1
a

W−1

 u − 1
a exp(1

a )

 − 1
a2


−1
−1

. (3.1)

The above expression contains the Lambert-W function of the negative branch.

3.2. Densities expansion

In this section, we present a useful expansion for Eq (2.1) by using exponential series expansions,
as

e−b z =

∞∑
i=0

(−1)ibi

i!
zi

and

exp(b z) =

∞∑
i=0

bi

i!
zi.

By using the above exponential series on Eq (2.1), it reduces to

F(x) = exp(
1
a

)
∞∑

i=0

∞∑
j=1

(−1)i+1a j−i(i + 1) j

i! j!
G(x; ξ) j 1[

Ḡ(x; ξ)
] j . (3.2)

Using reciprocal power series expansion (see [26], p. 239) on Eq (3.2), we are given the following
result:

1
F(z)

=

∞∑
k=0

Lkzk,

where L0 = 1/b0 when k = 0, and

Lk = −
1
b0

k∑
m=1

bmLk−m, k ≥ 1.
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After incorporating results in Eq (3.2), the expression for linear representation will become

F(x) =

∞∑
j=1

j∑
k=0

$ j,kG(x; ξ) j+k, (3.3)

where

$ j,k =

∞∑
i=0

(−1)i+1

i! j!
exp(

1
a

)a j−i(i + 1) jck,

ck =

 1
b0
, k=0,
− 1

b0

∑k
m=1 bmck−m, k≥1,

and bk = (−1)k
(

j
k

)
.

The expression for the density function after taking the derivative of Eq (3.3) will become

f (x) =

∞∑
j=1

j∑
k=0

$ j,k h j, k, (3.4)

where h j, k = ( j + k)g(x) G(x; ξ) j+k−1 is a linear combination of the exp-G family, and one can obtain
the various properties by taking into account Eq (3.4).

3.3. Moments

By using Eq (3.4), the rth ordinary or raw moment of the OMG family is given by

E(Xr) =

∞∑
j=1

j∑
k=0

$ j, k E(Yr
j, k). (3.5)

By using Eq (3.5), one can get the actual moments and cumulants for X as

µr =

n∑
s=0

(−1)s

(
r
s

)
µ′s1 µ

′
r−s and κr = µ′n

r−1∑
s=1

(
r − 1
s − 1

)
κs µ

′
r−s

respectively, where κ1 = µ′1. By using the relationship between actual moments and ordinary moments,
one can get the measures of skewness and kurtosis. The rth incomplete moment of OMG can be
expressed as

Ir(x) =

∫ t

0
xr f (x) dx, =

∞∑
j=1

j∑
k=0

$ j, k E(Ir
j, k(x)), (3.6)

where Ir
j, k(t) =

∫ t

0
xrh(i j, k) dx, and the incomplete moments are vital in order to compute the well-

known namely Bonferroni and Lorenz curves.
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3.4. The expression of probability weighted moment

The expression of (r, q)th probability weighted moment (PWM) can be founded as

ρr,q =

∫ ∞

0
xr F(x)q f (x)dx. (3.7)

Inserting Eqs (2.1) and (2.2) in Eq (3.7), and using the generalized binomial series expansion, ρr,q can
be expressed as

ρr,q =

∞∑
c=0

(−1)c

(
q
c

)
exp

(
(c + 1)

a

) ∫ ∞

0
xr g(x; ξ)

Ḡ(x; ξ)2

{
exp

(
a G(x; ξ)
Ḡ(x; ξ)

)
− a

}
exp

(
a(c + 1) G(x; ξ)

Ḡ(x; ξ)

)
× exp

(
−

c + 1
a

exp
(
a G(x; ξ)
Ḡ(x; ξ)

))
dx.

Applying the power series expansion defined in Section 4 on Eq (3.8), it will become

ρr,q =

∞∑
c,i=0

(−1)c+i

i!

(
q
c

) (
c + 1

a

)i

exp
(
(c + 1)

a

) ∫ ∞

0
xr g(x; ξ)

Ḡ(x; ξ)2(
exp

(
a(c + i + 2)

[
G(x; ξ)
Ḡ(x; ξ)

])
− a exp

(
a(c + i + 1)

[
G(x; ξ)
Ḡ(x; ξ)

]))
︸                                                                             ︷︷                                                                             ︸

A

dx. (3.8)

Applying a power series expansion on quantity A, it will reduce to

exp
(
a(c + i + 2)

[
G(x; ξ)
Ḡ(x; ξ)

])
− a exp

(
a(c + i + 1)

[
G(x; ξ)
Ḡ(x; ξ)

])
=

∞∑
j=0

a j

j!

[
G(x; ξ)
Ḡ(x; ξ)

] j {
(c + i + 2) j − a (c + i + 1) j

}
.

The expression for ρr,q after incorporating the result of quantity A, can be expressed as

ρr,q =

∞∑
c,i, j=0

(−1)c+ia j

i!

(
q
c

) (
c + 1

a

)i

e
(c+1)

a
[
(c + i + 2)j − a (c + i + 1)j

] ∫ ∞

0
xr g(x; ξ)

G(x; ξ) jḠ(x; ξ)−( j+2)dx. (3.9)

Using generalized binomial series expansion on the above equation,

(1 − z)−q =

∞∑
p=0

Γ[q + p]
Γ[q]p!

zp, q > 0.

After incorporating the result of the above equation, the expression for ρr,q can be expressed as

ρr,q =

∞∑
j,p=0

V j,p ( j + p + 1)
∫ ∞

0
xr g(x; ξ)G(x; ξ) j+p dx. (3.10)

Integrating (3.10), we can obtain the expression of PWMs, where

V j,p =

∞∑
c,i=0

(−1)c+i a j−i(c + 1)i(p + 1) Γ[ j + 2 + p]
j! i!p! Γ[ j + 2]( j + p + 1)

(
c
q

)
exp(

c + 1
a

)
[
(c + i + 2) j − a (c + i + 1) j

]
.
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3.5. Entropy

The entropy measure is important to underline the uncertainty variation of a rv; let X be a rv having
pdf f (x). The Rényi entropy can be found by the following expression:

I(δ) =
1

1 − δ
log [I(δ)], (3.11)

where δ > 0, δ , 1, and I(δ) =
∫
<

f δ(x) dx.

Inserting Eq (2.2) in f δ(x), gives

f δ(x) =

[
g(x; ξ)

Ḡ(x; ξ)2

{
exp

(
a G(x; ξ)
Ḡ(x; ξ)

)
− a

}
exp

{
a G(x; ξ)
Ḡ(x; ξ)

−
1
a

[
exp

(
a G(x; ξ)
Ḡ(x; ξ)

)
− 1

]}]δ
.

Applying a power series yieldes

f δ(x) =

∞∑
k,p=0

Vk,p g(x; ξ)δG(x; ξ)k+p dx. (3.12)

After incorporating the result in Eq. (3.11), the expression for Rényi entropy will reduce to

Iδ( f ) =
1

1 − δ
log

 ∞∑
k,p=0

Vk,p

∫ ∞

0
g(x; ξ)δG(x; ξ)k+p dx.

 , (3.13)

where Vk,p =
∑∞

i, j=0
(−1)i+ j+δΓ(2δ+k+p)

i! j! p!Γ(2δ+k)

(
δ
j

)
aδ+k− j−1(i + j + 1)k.

4. Estimation

Here, we demonstrate the estimation of parameters by taking into account the maximum likelihood
approach. The log-likelihood (LL) function `(Ω) for the vector of parameters Ω =

(
a, ξ

)> can be
expressed as

L(Ω) =

n∑
i=1

log
[
g (xi, ξ)

]
+

n∑
i=1

1 − exp
(

a G(x;ξ)
Ḡ(x;ξ)

)
a

+
aG (xi, ξ)
Ḡ (xi, ξ)

 +

n∑
i=1

log
{

exp
(
a G(x; ξ)
Ḡ(x; ξ)

)
− a

}

−2
n∑

i=1

log
[
Ḡ (xi, ξ)

]
. (4.1)

The first partial derivatives of Eq (4.1) with respect to a and ξ are

∂L
∂a

=

n∑
i=1

−1 − exp
(

a G(x;ξ)
Ḡ(x;ξ)

)
a2 −

G (xi, ξ) exp
(

a G(x;ξ)
Ḡ(x;ξ)

)
aḠ (xi, ξ)

+
G (xi, ξ)
Ḡ (xi, ξ)

 +

n∑
i=1

G (xi, ξ) exp
(

a G(x;ξ)
Ḡ(x;ξ)

)
Ḡ (xi, ξ)

− 1


×

{
exp

(
a G(x; ξ)
Ḡ(x; ξ)

)
− a

}−1

,
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∂L
∂ξ

=

n∑
i=1

gξi
g (xi, ξ)

− 2
n∑

i=1

Gξ
i

Ḡ (xi, ξ)
+

n∑
i=1

[
exp

(
a G(x; ξ)
Ḡ(x; ξ)

)
− a

]−1 {a exp
(

a G(x;ξ)
Ḡ(x;ξ)

)
Gξ

i

Ḡ (xi, ξ)
+ a

× exp
(
a G(x; ξ)
Ḡ(x; ξ)

)
G (xi, ξ) Gξ

i(
Ḡ (xi, ξ)

)2

}
+

n∑
i=1

{
aGξ

i

Ḡ (xi, ξ)
−

1
a

[
aGξ

i e
aG(xi ,ξ)
Ḡ(xi ,ξ)

Ḡ (xi, ξ)
+

aG (xi, ξ) exp
(

a G(x;ξ)
Ḡ(x;ξ)

)
Gξ

i(
Ḡ (xi, ξ)

)2

]

+
aG (xi, ξ) Gξ

i(
Ḡ (xi, ξ)

)2

}
,

where gξi = ∂
∂ξ

g(xi; ξ) and Gξ
i = ∂

∂ξ
G(xi; ξ) are derivatives of column vectors of the same dimension

of ξ.

5. The OMW distribution

Here we consider Weibull as a baseline model with cdf and pdf, respectively, given as G(x; ξ) =

1 − e−αxβ and g(x; ξ) = β α xβ−1e−αxβ , where α > 0 is a scale, and β > 0 is a shape parameter. Then, the
cdf, pdf, rf, hrf and chrf of the proposed OMW model, respectively, are given by

F(x) = 1 − exp
a

1 − e−αxβ

e−αxβ

 − 1
a

exp
a 1 − e−αxβ

e−αxβ

 − 1
 , (5.1)

f (x) = βαxβ−1e−αxβ
[

exp
a 1 − e−αxβ

e−αxβ

 − a
]

exp
{

a
(
1 − e−αxβ

e−αxβ

)
−

1
a

[
exp

a 1 − e−αxβ

e−αxβ

 − 1
]}
, (5.2)

r(x) = exp
a

1 − e−αxβ

e−αxβ

 − 1
a

exp
a 1 − e−αxβ

e−αxβ

 − 1
 ,

h(x) = βαxβ−1e−αxβ
[

exp
a 1 − e−αxβ

e−αxβ

 − a
]
,

and

H(x)) = a
1 − e−αxβ

e−αxβ

 − 1
a

exp
a 1 − e−αxβ

e−αxβ

 − 1
 .

The graphical illustrations of pdf and hrf based on some selected parametric values of OMW are
depicted in Figure 1 and reveal that the OMW model has flexibility in both pdf and hrf.
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Figure 1. Graphical illustrations of pdf (a) and hrf (b) of OMW model for some parametric
values.

6. Properties of OMW model

First, we will derive a linear expression of the OMW density to get the useful mathematical
properties of this new model.

Following Eq (3.4), the OMG density will become

f (x) =

∞∑
j=1

j∑
k=0

$ j,kα β( j + k) xβ−1 e−αxβ
[
1 − e−αxβ

] j+k−1
, (6.1)

f (x) =

∞∑
p=0

vp π(x;α(p + 1), β), (6.2)

where vp = (−1)p
(

j+k−1
p

)∑∞
j=1

∑ j
k=0 $ j,k( j + k) , and π(x;α(p + 1), β) is the Weibull density.

Several properties of the OMW model can be yielded by using Eq (6.2) because it is a linear
combination of Weibull densities.

The qf of the OMW distribution is given as

QX(u) =

−1
α

log

1 −
1 +

{
1
a

log(1 − u) −
1
a

W−1

(
u − 1

ae
1
a

)
−

1
a2

}−1−1


1
β

. (6.3)
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The expression of rth moments is given by

µ′r = Γ

(
r
β

+ 1
) ∞∑

p=0

vp

αr/β(p + 1)r/β+1 . (6.4)

The graphical illustrations of skewness and kurtosis are depicted in Figure 2 for the OMW distribution.
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Figure 2. Graphical illustrations of Skewness and Kurtosis of OMW model at varying
parametric values.

The expression for the rth incomplete moment can be written as

mr(z) =

∞∑
p=0

vp

αr/β(p + 1)r/β γ
(

r
β

+ 1, (p + 1)α zβ
)
, (6.5)

where γ(s, x) =
∫ ∞

0
xs−1 exp(−x)dx.

The expression for the PWMs can be written as

ρr,q = Γ

(
r
β

+ 1
) ∞∑

s=0

ts

αr/β(s + 1)r/β+1 , (6.6)

where ts = (−1)s
(

j+p
s

)∑∞
j,p=0 V j,p( j + p + 1) .

The expression for Rényi entropy can be written as

Iδ( f ) =
1

1 − δ
log

 ∞∑
n=0

ωnα
δβδ−1(α(δ + v))

δ−1
β −δΓ

(
(β − 1)δ + 1

β

) , (6.7)

where ωn = (−1)n
(

k+p
n

)∑∞
k,p=0 Vk,p.
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6.1. Estimation

Let there be a sample of size n from the OMW model given in Eq (5.2). The LL function ` = `(θ)
for the vector of parameters θ = (α, β, a)> is

` = n log(α β) + (β − 1)
n∑

i=1

log (xi) + α

n∑
i=1

xβi +

n∑
i=1

log
{

e
a
(
1−e−αxβi

)
eαxβi

− a
}

(6.8)

+

n∑
i=1

{
1 − e

a
(
1−e−αxβi

)
eαxβi

a
+

a
(
1 − e−αxβi

)
e−αxβi

}
. (6.9)

Equation (6.8) can be easily maximized using the computational software R or Mathematica. The
components of the score vector U(θ) are

Uα =
n
α

+

n∑
i=1

xβi +

n∑
i=1


axβi eαxβi e

a
(
1−e−αxβi

)
eαxβi

e
a
(
1−e−αxβi

)
eαxβi

− a

 −
n∑

i=1

xβi eαxβi

{
e

a
(
1−e−αxβi

)
eαxβi

− a
}
,

Uβ =
n
β

+

n∑
i=1

log (xi) + α

n∑
i=1

xβi log (xi) +

n∑
i=1


aαxβi log (xi) eαxβi e

a
(
1−e−αxβi

)
eαxβi

e
a
(
1−e−αxβi

)
eαxβi

− a


−

n∑
i=1

αxβi eαxβi log (xi)
{

e
a
(
1−e−αxβi

)
eαxβi

− a
}
,

Ua =

n∑
i=1


eαxβi e

a
(
1−e−αxβi

)
eαxβi

− e
a
(
1−e−αxβi

)
eαxβi

− 1

e
a
(
1−e−αxβi

)
eαxβi

− a

 +

n∑
i=1

1
a2

{
e

a
(
1−e−αxβi

)
eαxβi

−a
[
e

a
(
1−e−αxβi

)
eαxβi

− aeαxβi

] (
1 − e−αxβi

)
− 1

}
.

One can yield MLEs by setting these equations equal to zero and solving simultaneously.

7. Simulation study

This section is mainly based on simulation analysis, in order to understand the behavior of MLEs
of the OMW distribution at varying sample sizes. We perform simulation analysis by considering
N=1000 and n=50, 100, 200, 400, 500. Three sets of different parameter values are used to perform
the simulation study: (1): α = 0.6, β = 0.09 and a = 0.7; (2): α = 0.4, β = 0.2 and a = 0.5; (3):
α = 0.04, β = 0.02 and a = 0.05. The simulation analysis biases, mean square errors (MSEs), coverage
probability (CP) and average width (AW) show in Tables 1–3 that as sample size increases both biases
and MSEs are reduced.
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Table 1. Biases, MSEs, CPs and AW for set-1.

n = 25 n = 50 n = 100
α β a α β a α β a

Bias -0.045 0.028 -0.193 -0.031 0.017 -0.118 -0.020 0.010 -0.075
MSE 0.011 0.002 0.092 0.006 0.001 0.076 0.004 0.001 0.069
CP 0.940 0.990 1.000 0.94 0.950 0.940 0.910 0.870 0.830
AW 0.391 0.166 1.426 0.278 0.117 1.080 0.204 0.087 0.857

n = 200 n = 400 n = 500
α β a α β a α β a

Bias -0.015 0.007 -0.057 -0.012 0.006 -0.045 -0.009 0.004 -0.035
MSE 0.002 0.001 0.053 0.002 0.000 0.035 0.001 0.000 0.028
CP 0.870 0.830 0.800 0.870 0.840 0.810 0.890 0.850 0.820
AW 0.156 0.068 0.696 0.119 0.053 0.559 0.110 0.050 0.529

Table 2. Biases, MSEs, CPs and AW for set-2.

n = 25 n = 50 n = 100
α β a α β a α β a

Bias -0.031 0.033 -0.070 -0.022 0.022 -0.051 -0.016 0.015 -0.043
MSE 0.0110 0.006 0.064 0.007 0.003 0.059 0.005 0.003 0.057
CP 0.930 0.980 0.990 0.930 0.960 0.960 0.890 0.900 0.870
AW 0.442 0.319 1.436 0.349 0.243 1.163 0.269 0.184 0.914

n = 200 n = 400 n = 500
α β a α β a α β a

Bias -0.011 0.010 -0.033 -0.006 0.006 -0.013 -0.003 0.003 -0.005
MSE 0.004 0.002 0.046 0.003 0.001 0.033 0.002 0.001 0.030
CP 0.860 0.860 0.830 0.840 0.840 0.810 0.850 0.850 0.840
AW 0.214 0.145 0.745 0.169 0.114 0.599 0.157 0.105 0.559

Table 3. Biases, MSEs, CPs and AW for set-3.

n = 25 n = 50 n = 100
α β a α β a α β a

Bias 0.027 -0.002 0.211 0.022 -0.002 0.163 0.013 -0.001 0.102
MSE 0.003 0.000 0.090 0.002 0.000 0.066 0.001 0.000 0.032
CP 0.980 0.960 0.970 0.980 0.960 0.960 0.990 0.980 0.980
AW 0.356 0.038 2.191 0.276 0.030 1.777 0.192 0.023 1.372

n = 200 n = 400 n = 500
α β a α β a α β a

Bias 0.006 0.000 0.056 0.004 0.000 0.041 0.004 0.000 0.040
MSE 0.000 0.000 0.011 0.000 0.000 0.005 0.000 0.000 0.005
CP 0.990 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
AW 0.106 0.014 0.847 0.072 0.010 0.589 0.067 0.009 0.551
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8. Group acceptance sampling plan (GASP)

This section is based on the illustration of GASP under the assumption that the lifetime distribution
of an item follows an OMW model with known parameters α and β having cdf in Eq (8.2). In
a GASP, say, n is the randomly selected sample size and distributed to g groups, and r for a
preassigned time r items in a group are tested. If more than c failures occur in any group during
the experiment time, the performed experiment is truncated. The reader is referred to Aslam et al. [29]
and Khan and Alqarni [30] for a simple illustration of GASP and an application to real data. Designing
the GASP reduced both the time and cost. Several lifetime traditional and extended models are
used [10, 29, 33–35] in designing the GASP by taking into account the quality parameter as mean
or median; usually, for skewed distributions median is preferable [29].

The GASP is simply the extension of the ordinary sampling plans i.e., the GASP reduces to the
ordinary sampling plan by replacing r = 1, and thus n = g [32].

GASP is based on the following process. First, select g (the number of groups) and allocate
predefined r (group size) items to each group so that the sample of size of the lot will be n = r × g.
Second, select c and t0 (the experiment time), respectively. Third, do experiment simultaneously for g
groups and record the number of failures for each group. Finally, a conclusion is drawn either accepting
or rejecting the lot. The lot is accepted if there no more than c failures occur in each and every group
and otherwise the lot is rejected. The probability of accepting the lot is represented by the following
expression:

pa(p) =

 c∑
i=0

(
r
i

)
pi [1 − p

]r−i

g

, (8.1)

where the probability that an item in a group fails before t0 is denoted by p and yielded by inserting (6.3)
in (8.2). Let the lifetime of an item or product follow an OMW with known parameters α and β, with
cdf given by for t > 0 for convenient we used G (t) = 1 − exp

[
− (t/α)β

]
F(t) = 1 − exp

a
(
1 − e[−(t/α)β]

)
e[−(t/α)β]

−
1
a

exp

 a
(
1 − e[−(t/α)β]

)
e[−(t/α)β]

 − 1


 , (8.2)

the qf of OMW model using (3.1) is given by and if p=0.5 yielded the median of the lifetime
distribution of the product is not smaller than the specified median value.

m = α

− log

1 −

1 +

1
a

log(1 − u) −
1
a

W−1

 u − 1
aexp(1

a )

 − 1
a2


−1
−1




1/β

, (8.3)

and by taking η as

η =

− log

1 −

1 +

1
a

log(1 − u) −
1
a

W−1

 u − 1
aexp(1

a )

 − 1
a2


−1
−1




1/β

, (8.4)

Eq (8.3) is obtained by writing α = m/η and t = a1m0. The ratio of a of product mean lifetime, the
specified life time m/m0 can be used to express the quality level of the product. Replacing the α = m/η
and t = m0a1 in Eq (8.2) yields the probability of failure, given by
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p = 1 − exp


a

1 − e

[
−

(
a1η

m/m0

)β]
e

[
−

(
a1η

m/m0

)β] −
1
a

exp

a

1 − e

[
−

(
a1η

m/m0

)β]
e

[
−

(
a1η

m/m0

)β] − 1




. (8.5)

From Eq (8.2), for taking the values of a and β, p can be determined when a1 and r2 are specified,
where r2 = m/m0. Here, we define the two failure probabilities, say, p1 and p2 corresponding to the
consumer risk and producer risk, respectively. For given specific values of the parameters a , β, r2,
a1, β∗ and γ, we need to determine the values of c and g that simultaneously satisfy the following two
equations:

p
a
(
p1 |

m
m0

=r1

) =

 c∑
i=0

(
r
i

)
pi

1
[
1 − p1

]r−i

g

≤ β∗, (8.6)

and

p
a
(
p2 |

m
m0

=r2

) =

 c∑
i=0

(
r
i

)
pi

2
[
1 − p2

]r−i

g

≥ 1 − γ, (8.7)

where the mean ratio at consumer’s risk and at producer’s risk, respectively denoted by r1 and r2 and
the probability of failure to be used in the above expression as follows

p1 = 1 − exp

a
(
1 − e[−(a1η)β]

)
e[−(a1η)β]

−
1
a

exp

 a
(
1 − e[−(a1η)β]

)
e[−(a1η)β]

 − 1


 , (8.8)

and

p2 = 1 − exp


a

1 − e

[
−

(
a1η
r2

)β]
e

[
−

(
a1η
r2

)β] −
1
a

exp


a

1 − e

[
−

(
a1η
r2

)β]
e

[
−

(
a1η
r2

)β]
 − 1




. (8.9)

Tables 4 and 5 are based on arbitrary values of parameters to underline the effect of design
parameters. When r = 5, from Table (4), with β∗ = 0.1, a1=0.5, r2=4, there should be 185 items
needed for testing (37*5=185). On the other hand, under the same condition when r=10, there should
be 60 units tested. So, here, we should prefer when r=10, which significantly reduces the number of
units that need to be tested.
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Table 4. GASP under OMW, when a = 0.5, β = 1, showing minimum g and c.

r = 5 r = 10
a1 = 0.5 a1 = 1 a1 = 0.5 a1 = 1

β r2 g c p(a) g c p(a) g c p(a) g c p(a)
0.25 2 – – – 44 4 0.9843 38 4 0.9604 3 5 0.9787

4 22 2 0.984 3 2 0.9805 4 2 0.9703 1 3 0.9908
6 5 1 0.9635 1 1 0.9698 4 2 0.9909 1 2 0.9826
8 5 1 0.9794 1 1 0.9832 2 1 0.9655 1 2 0.9925

0.1 2 – – – 73 4 0.9742 321 5 0.9727 3 5 0.9647
4 37 2 0.9732 4 2 0.9741 6 2 0.9558 2 3 0.9817
6 37 2 0.9922 4 2 0.9928 6 2 0.9864 1 2 0.9826
8 8 1 0.9673 2 1 0.9667 6 2 0.9942 1 2 0.9925

0.05 2 – – – 95 4 0.9665 417 5 0.9647 7 5 0.9509
4 48 2 0.9653 5 2 0.9677 22 3 0.9875 2 3 0.9817
6 48 2 0.9900 5 2 0.9910 8 2 0.9820 2 2 0.9654
8 10 1 0.9593 2 1 0.9667 8 2 0.9923 2 2 0.9851

0.01 2 – – – – – – – – – – – –
4 627 3 0.9899 7 2 0.9551 34 3 0.9807 3 3 0.9727
6 73 2 0.9848 7 2 0.9874 12 2 0.9731 2 2 0.9654
8 73 2 0.9937 3 1 0.9504 12 2 0.9884 2 2 0.9851

Remark: A large sample size is required cells contains hyphens (–).

Table 5. GASP under OMW, when a = 0.5, β = 1, showing minimum g and c.

r = 5 r = 10
a1 = 0.5 a1 = 1 a1 = 0.5 a1 = 1

β r2 g c p(a) g c p(a) g c p(a) g c p(a)
0.25 2 101 2 0.9611 3 2 0.9596 61 3 0.9846 1 3 0.9774

4 12 1 0.9819 1 1 0.9888 4 1 0.9739 1 1 0.9552
6 12 1 0.9935 1 1 0.9966 4 1 0.9906 1 1 0.9858
8 12 1 0.9968 1 1 0.9985 4 1 0.9953 1 1 0.9934

0.1 2 – – – 12 3 0.9895 101 3 0.9746 2 3 0.9553
4 20 1 0.9700 2 1 0.9778 6 1 0.9612 1 1 0.9555
6 20 1 0.9893 2 1 0.9933 6 1 0.9859 1 1 0.9858
8 20 1 0.9947 2 1 0.9970 6 1 0.9929 1 1 0.9934

0.05 2 – – – 15 3 0.9869 131 3 0.9672 2 3 0.9553
4 26 1 0.9611 2 1 0.9778 28 2 0.9939 1 1 0.9552
6 26 1 0.9861 2 1 0.9933 8 1 0.9812 1 1 0.9858
8 26 1 0.9931 2 1 0.9970 8 1 0.9906 1 1 0.9934

0.01 2 – – – 23 3 0.9800 – – – 5 4 0.9829
4 335 2 0.9936 3 1 0.9669 42 2 0.9908 2 2 0.9917
6 40 1 0.9786 3 1 0.9899 12 1 0.9719 2 1 0.9717
8 40 1 0.9894 3 1 0.9954 12 1 0.9859 2 1 0.9869

Remark: A large sample size is required cells contains hyphens (–).
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9. Empirical investigation

The practical implementation of the proposed model is carried out in this section by considering
two real-life data sets. The first and second data sets are taken from [27, 28], respectively.

Data 1: Aircraft Windshield Data:
The first real-life data set deals with the failure times of Aircraft Windshields. The data set is as
follows: 0.0400, 1.8660, 2.3850, 3.4430, 0.3010, 1.8760, 2.4810, 3.4670, 0.3090, 1.8990, 2.6100,
3.4780, 0.5570, 1.9110, 2.6250, 3.5780, 0.9430, 1.9120, 2.6320, 3.5950, 1.0700, 1.9140, 2.6460,
3.6990, 1.1240, 1.9810, 2.6610, 3.7790, 1.2480, 2.0100, 2.6880, 3.9240, 1.2810, 2.0380, 2.820,3.0000,
4.0350, 1.2810, 2.0850, 2.8900, 4.1210, 1.3030, 2.0890, 2.9020, 4.1670, 1.4320, 2.0970, 2.9340,
4.2400, 1.4800, 2.1350, 2.9620, 4.2550, 1.5050, 2.1540, 2.9640, 4.2780, 1.5060, 2.1900, 3.0000,
4.3050, 1.5680, 2.1940, 3.1030, 4.3760, 1.6150, 2.2230, 3.1140, 4.4490, 1.6190, 2.2240, 3.1170,
4.4850, 1.6520, 2.2290, 3.1660, 4.5700, 1.6520, 2.3000, 3.3440, 4.6020, 1.7570, 2.3240, 3.3760,
4.6630.

Data 2: Fiber Strength Data:
The second real-life data set consists of 46 data points representing the strength of 15 cm glass fiber.
The data set is as follows: 0.37, 0.40, 0.70, 0.75, 0.80 ,0.81 ,0.83, 0.86, 0.92, 0.92,0.94, 0.95, 0.98, 1.03,
1.06, 1.06, 1.08, 1.09, 1.10, 1.10,1.13, 1.14, 1.15, 1.17, 1.20, 1.20, 1.21, 1.22, 1.25, 1.28,1.28, 1.29,
1.29, 1.30, 1.35, 1.35, 1.37, 1.37, 1.38, 1.40,1.40, 1.42, 1.43, 1.51, 1.53, 1.61. The six well-known
models exponentiated Weibull (EW), gamma Weibull (GaW) [36], Kumaraswamy Weibull (KwW),
exponentiated generalized Weibull (EGW), beta Weibull (BW) and Weibull (W) are applied to these
data sets.

The analysis of both data sets revealed that the proposed OMW model outperforms the comparative
models, as per the least information criterion and higher P-values. The estimated parameters along with
standard errors are depicted in Tables 6 and 8, whereas the accuracy measures are given in Tables 7
and 9. The graphical illustrations from Figures 3 and 4 are showing good agreement between the actual
and fitted results.

The probability density functions of the comparative models are as follows:

fEW(x) = aαβxβ−1e−αxβ
(
1 − e−αxβ

)a−1
,

fGaW(x) =
αβ

Γ(a)
xβ−1eaαxβ

(
1 − e−αxβ

)a−1
e−

[
eαxβ−1

]
,

fBW(x) =
αβ

B(a, b)
xβ−1e−bαxβ

(
1 − e−αxβ

)a−1
,

fKwW(x) = abαβxβ−1e−αxβ
(
1 − e−(αx)β

)a−1 [
1 −

(
1 − e−(αx)β

)a]b−1
,

fEGW(x) = abαβxβ−1e−aαxβ
(
1 − e−aαxβ

)b−1
,

fW(x) = 1 − e−αxβ .

AIMS Mathematics Volume 8, Issue 3, 6559–6580.



6575

Table 6. Summary of the estimated parameters along with SEs of aircraft windshield data.

Distribution α β a b

OMW 0.3201 0.7953 0.9255 -
(0.0477) (0.1205) (0.1147) -

EW 0.0068 3.9182 0.4675 -
(0.0053) (0.5002) (0.0947) -

GaW 0.0813 2.3903 0.9938 -
(0.1235) ( 0.4308) (0.8264) -

BW 0.4328 2.8272 0.4044 0.0974
(0.0059) (0.0040) (0.0015) (0.0106)

KwW 0.0094 4.1470 0.4196 0.5545
(0.0106) (0.7399) (0.1204) (0.3833)

EGW 0.2123 3.2033 0.0987 0.6111
(0.0880) (0.0799) (0.0416) (0.0826)

W 0.0803 2.3932 - -
(0.0222) (0.2099) - -

Table 7. Summary of the goodness of fit statistic for the aircraft windshield data.

Distribution ˆ̀ AIC CAIC BIC HQIC

OMW 127.9968 261.9935 262.2898 269.3215 264.9410
EW 129.1012 264.2024 264.4987 271.5303 267.1499
GaW 131.2885 268.5769 268.8732 275.9049 271.5244
BW 128.5337 265.0674 265.5674 274.8380 268.9974
KwW 128.9533 265.9066 266.4066 275.6773 269.8367
EGW 129.6350 267.2700 267.7700 277.0406 271.2000
W 131.2884 266.5769 266.7232 271.4622 266.5419

Table 8. Summary of the estimated parameters along with SEs of Fiber strength.

Distribution α β a b

OMW 0.5360 1.5825 0.9812 -
(0.0651) (0.4504) (0.2323) -

EW 0.0439 9.5690 0.3948 -
(0.0778) (3.8564) (0.2175) -

GaW 0.0247 10.2708 0.3663 -
(0.0487) (4.108) (0.1977) -

BW 9.0643 2.9154 2.2958 0.0723
(0.0025) (0.0025) (1.0773) (0.0110)

KwW 4.4880 4.3916 1.0727 0.0948
(0.0025) (0.0025) (0.0991) (0.0140)

EGW 12.3826 2.1211 0.1159 3.7782
(0.0396) (0.0084) (0.0159) (0.8978)

W 0.3450 5.1474 - -
(0.0784) (0.6188) - -
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Table 9. Summary of the goodness of fit statistic for the Fiber strength data.

Distribution ˆ̀ AIC CAIC BIC HQIC

OMW 1.9689 9.9378 10.5093 15.4237 11.9929
EW 2.0814 10.1627 10.7342 15.6487 12.2178
GaW 2.0673 10.1346 10.7061 15.6206 12.1897
BW 10.3151 28.6301 29.6057 35.9447 31.3702
KwW 3.7901 15.5803 16.5559 22.8949 18.3204
EGW 8.4238 24.8475 25.8231 32.1621 27.5876
W 3.3494 10.6988 10.9778 15.8561 12.0688
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Figure 3. Plots of estimated density, estimated cdf, estimated hrf and P-P for the Aircraft
Windshield Data.
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Figure 4. Plots of estimated density, estimated cdf, estimated hrf and P-P for the Fiber
strength data.

When r = 5, from Table 10, with β∗ = 0.1, a1=0.5, r2=4, there should be 860 items needed for
testing (172*5=860). On the other hand, under the same condition, when r=10 there should be 240
units tested. So, here, we should prefer when r=10, which significantly reduces the number of units
that need to be tested.

From Tables 11 and 12, when the true median life increases, the number of groups decreases, and
operating characteristics values increases. For data 1 when β∗ = 0.05, a1 = 1, r=10, α = 0.3201 and
β = 0.7953 and for data 2 when β∗ = 0.05, a1 = 1, r=5, α = 0.5360 and β = 1.5825 are the proposed
GASP, when a lifetime of an item follows a OMW model.
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Table 10. GASP based on MLEs aircraft windshield data.
r = 5 r = 10

a1 = 0.5 a1 = 1 a1 = 0.5 a1 = 1
β r2 g c p(a) g c p(a) g c p(a) g c p(a)

0.25 2 624 3 0.9809 7 3 0.9846 28 3 0.9707 1 3 0.9501
4 8 1 0.9705 1 1 0.9771 3 1 0.9536 1 2 0.9882
6 8 1 0.9886 1 1 0.9923 3 1 0.9816 1 1 0.9684
8 8 1 0.9941 1 1 0.9963 3 1 0.9903 1 1 0.9843

0.1 2 – – – 12 3 0.9737 46 3 0.9524 3 4 0.9708
4 13 1 0.9526 2 1 0.9547 12 2 0.9901 1 2 0.9882
6 13 1 0.9816 2 1 0.9846 4 1 0.9755 1 1 0.9684
8 13 1 0.9904 2 1 0.9926 4 1 0.9871 1 1 0.9843

0.05 2 – – – 15 3 0.9672 303 4 0.9802 4 4 0.9612
4 112 2 0.9917 2 1 0.9547 16 2 0.9869 2 2 0.9766
6 17 1 0.9760 2 1 0.9846 5 1 0.9695 1 1 0.9784
8 17 1 0.9874 2 1 0.9926 5 1 0.9838 1 1 0.9843

0.01 2 – – – 23 3 0.9501 466 4 0.9696 5 4 0.9517
4 172 2 0.9873 7 1 0.9917 24 2 0.9803 2 2 0.9766
6 26 1 0.9635 3 1 0.9770 8 1 0.9516 2 2 0.9952
8 26 1 0.9808 3 1 0.9889 8 1 0.9743 2 1 0.9688

Remark: A large sample size is required cells contains hyphens (–).

Table 11. GASP based on MLEs fiber strength data.
r = 5 r = 10

a1 = 0.5 a1 = 1 a1 = 0.5 a1 = 1
β r2 g c p(a) g c p(a) g c p(a) g c p(a)

0.25 2 97 1 0.9790 1 2 0.9857 24 1 0.977 1 2 0.994
4 7 0 0.9724 1 0 0.9767 4 0 0.9685 1 0 0.9540
6 7 0 0.9896 1 0 0.9920 4 0 0.9881 1 0 0.9841
8 7 0 0.9930 1 0 0.996 4 0 0.9920 1 0 0.9920

0.1 2 160 1 0.9656 2 1 0.9715 40 1 0.9619 1 2 0.994
4 12 0 0.9531 1 0 0.9767 6 0 0.9531 1 0 0.9540
6 12 0 0.9822 1 0 0.9920 6 0 0.9822 1 0 0.9841
8 12 0 0.9881 1 0 0.9960 6 0 0.9881 1 0 0.9920

0.05 2 208 1 0.9555 2 1 0.9715 52 1 0.9508 2 2 0.9881
4 208 1 0.9987 1 0 0.9767 52 1 0.9985 1 0 0.9540
6 15 0 0.9777 1 0 0.9920 8 0 0.9763 1 0 0.9841
8 15 0 0.9851 1 0 0.9960 8 0 0.9841 1 0 0.9920

0.01 2 – – – 3 1 0.9576 771 2 0.9907 2 2 0.9881
4 319 1 0.9980 2 0 0.9540 80 1 0.9977 1 0 0.9540
6 23 0 0.9661 2 0 0.9841 12 0 0.9646 1 0 0.9841
8 23 0 0.9773 2 0 0.9920 12 0 0.9763 1 0 0.9920

Remark: A large sample size is required cells contains hyphens (–).
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Table 12. Proposed GASP under OMW model.

Data-1 Data-2
r2 2 4 6 8 r2 2 4 6 8
g 4 2 1 1 g 2 1 1 1

OC 0.9612 0.9766 0.9784 0.9843 OC 0.9715 0.9767 0.992 0.996

10. Conclusions

We introduced the new odd Muth-G family of distributions with essential properties. A special
model called the odd Muth-Weibull is presented with some useful properties. Further, a design of a
group acceptance sampling plan is proposed under the OMW model by considering median life as a
quality parameter. Real data application revealed that the proposed model yielded better fits compared
to some commonly well known models.
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