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SIRT1, a novel transcriptional
downstream target of CD44,
linking its deacetylase activity to
tumor cell invasion/metastasis

Salma M. S. Ahmad, Maryam Al-Mansoob and Allal Ouhtit*

Biological Sciences Program, Department of Biological & Environmental Sciences, College of Arts
and Science, Qatar University, Doha, Qatar
Our tetracycline-off-inducible CD44 expression system previously established in

mouse model, revealed that activation of CD44 with its major ligand hyaluronan

(HA) promoted breast cancer (BC) metastasis to the liver. To identify the

mechanisms that underpin CD44-promoted BC cell invasion, microarray gene

expression profiling using RNA samples from (Tet)-Off-regulated expression

system of CD44s in MCF7 cells, revealed a set of upregulated genes including,

nuclear sirtuin-1 (SIRT1 also known as NAD-dependent deacetylase), an enzyme

that requires NAD+ as a cofactor to deacetylate several histones and transcription

factors. It stimulates various oncogenic pathways promoting tumorigenesis. This

data suggests that SIRT1 is a potential novel transcriptional target of CD44-

downstream signaling that promote BC cell invasion/metastasis. This review will

discuss the evidence supporting this hypothesis as well as the mechanisms linking

SIRT1 to cell proliferation and invasion.
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Background

Breast Cancer (BC) is the most common malignant tumor in women worldwide

including the state of Qatar, which may arise either as a result of family history or

exposure to harmful environmental factors such as radiation, high alcohol consumption,

and lifestyle (1–3). Unfortunately, malignant tumors has the capability to metastasize,
Abbreviations: APC, Adenomatous polyposis coli; AKT, Protein kinase B; BC, Breast cancer; CAM, Cell

adhesion molecule; CD44, Cluster of differentiation 44; DNMT1, DNA Methyltransferase 1; ECM,

Extracellular matrix; EMT, Epithelial-mesenchymal transition; ERK, Extracellular-signal-regulated

kinase; HA, Hyaluronic acid; NAD, Nicotinamide Adenine Dinucleotide; SIRT1, Sirtuin1; PI3K,

phosphoinositide 3-kinase; Tet, Tetracycline; TGF-b2, Transforming growth factor-beta 2.
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which involves both migration and invasion of cancer cells (4).

The process of metastasis begins when cancerous cells detach

from the primary tumor found in a specific organ or tissue and

start invading through the extracellular matrix to the blood

vessels. Cancerous cells will keep circulating in blood vessels

unless it is detected by immune cells for degradation or until it

finds a suitable organ with a good blood supply to invade into,

forming a secondary tumor (5). The process of invasion

encompasses three major components including, cell adhesion

molecules (CAMs) (6, 7) found on the cell surface to help

invading cells adhere to the surrounding extracellular matrix

(ECM) (8).

Since CAMs play a vital role in invasion, our own work has

concentrated since 2006 on a CAM protein family known as

CD44 (9–14). CD44 is a cell surface receptor for its main ligand

hyaluronic acid (HA) (15, 16) which stimulates various

oncogenic signaling pathways (e.g. Rho GTPases, PI3K/AKT,

and MAPK signaling pathways) resulting in tumor cell survival,

proliferation, migration and invasion (17). A better

understanding of the various CD44-downstream mechanisms

promoting metastasis will ultimately help in developing effective

anti-metastatic therapeutic strategies. Consequently, to further

investigate CD44 mechanisms associated with the process

of invasion, we have previously developed a tetracycline

(Tet)-Off-regulated expression system of CD44 in both

in vitro (9) and in vivo (18). A microarray analysis was further

carried out to identify CD44-transcriptional target genes.

Based on the microarray results we have previously validated

three target genes along with their signaling pathways

(Cortactin, Survivin and TGF-b2) as novel downstream target

genes that underpin CD44-promoted breast tumor cell invasion

(9, 10, 19). From the same microarray data, Sirtuin 1 (SIRT1),

was selected for further validation studies as potential target of

CD44 because of its involvement in cell proliferation, invasion,

and metastasis.

SIRT1 is one of the seven members of the Sirtuins family

belonging to the third class of histone deacetylase enzymes, that

require a significant co-factor known as nicotinamide adenine

dinucleotide (NAD+) (20). Nuclear SIRT1 was reported to

catalyze the deacetylation of lysin residues found within histone

proteins including H1, H3, and H4; It deacetylates several

oncogenes and transcription factors thereby affecting their

function (21, 22). Furthermore, recent studies demonstrated

that cytoplasmic SIRT1 plays a significant role in cell

proliferation, cell cycle, apoptosis, energy metabolism, and DNA

repair, suggesting that SIRT1 plays a key role in tumorigenesis,

development, and drug resistance (21). This review focuses on

discussing the literature data supporting SIRT1 as a potential

novel target of CD44-downstream signaling underlying the

process of BC cell invasion.
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Structure of SIRT1

SIRT1 is encoded by a gene located on the long arm of

chromosome 10 (10q21.3), that is composed of 747 amino acids

forming four regions, the nuclear localization signal 41-46 amino

acids found at the N-terminal, the allosteric side located from 184

to 243 amino acid, the preserved catalytic domain, where

deacetylation occur at the centre of the domain, and the C-

terminal region located from 631 to 365 amino acid. The N-

terminal region is significant as it is where the nuclear reading

occurs allowing SIRT1 to translocate to the nucleus (23, 24).

The catalytic domain is composed of 277 residues consisting

of a larger NAD+-binding subdomain containing a Rossmann-

fold, and a smaller subdomain that is created by two insertions in

the NAD+-binding domain: i) a helical module (residues 269 to

324) and ii) a Zn2+-binding module (residues 362-419). The

NAD+-binding domain consists of six-stranded parallel b sheets

and eight a helices. However, the Zn2+-binding domain is

composed of 3 b strands and a single a helices. SIRT1 C-

terminal regulatory segment was found to form a quaternary

complex with NAD+-binding domain, by binding to its lower

edge to match the central parallel b sheet of its Rossmann fold

(25). SIRT1 transfers the acetyl group from e-N-acetyl lysine
amino acids on the histones that wraps the DNA, controlling the

transcription of genes in a NAD+-dependant manner (24).
Functions of SIRT1

Physiologically, SIRT1 is expressed in both normal and

malignant cells. The following sections will discuss the role of

SIRT1 in both normal and malignant cells.
Physiological functions of SIRT1 in
normal cells

SIRT1 was found to be upregulated in the body during fasting

and calorie restriction, as it is a key regulator of metabolism. Its

overexpression controls mitochondrial biogenesis, stimulating

the catabolism of fat and cholesterol found in the liver, skeletal

muscle, and adipose tissues. Moreover, upregulation of SIRT1 will

induce the expression of gluconeogenic gene, the activation of

fatty acid oxidation and the suppression of glycolytic genes, by

controlling the transcription of PGC-1a (20). Moreover, SIRT1

doesn’t only coordinate with PGC-1a, but also enhances the

expression of SIRT6 and SIRT5. SIRT6 enhances the production

of metabolic intermediates by regulating the mitochondrial

activity. On the other hand, SIRT5 is involved in the apoptotic

pathways, as it deacetylates cytochrome c (20). Furthermore,
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SIRT1 is also found to be expressed in pro-opiomelanocortin

neurons, which are significant in controlling normal body weight

by regulating glucose homeostasis. The knock-down of SIRT1 in

these neurons causes hypersensitivity and anterior pituitary cell

defects failing to regulate changes in pituitary signaling (20, 26).

In addition, SIRT1 acts as a positive regulator monitoring insulin

secreted by the pancreas. The presence of SIRT1 enhances glucose

tolerance in pancreatic b-cells by improving the process of insulin

secretion. Nevertheless, suppression of SIRT1 damages insulin

secretion process stimulated by glucose (26).
Functions of SIRT1 in cancer cells and its
association with CD44

Previous studies have stated that SIRT1 expression was

overexpressed in BC compared to its expression in normal

cells. Overexpressing SIRT1 in MCF-7 cells has promoted their

proliferation, migration, and invasion (21). Moreover, SIRT1 has

an oncogenic activity in BC cells as it inhibits the expression of

the tumour suppressor gene p53 via activation of Mdm2,

interfering with cell proliferation, cell cycle, apoptosis, and

DNA repair, predisposing breast cells to neoplastic

transformation (21, 27). Further studies have shown that

SIRT1 is upregulated in BC cells, promoting cell proliferation

and cell cycle progression through its interaction with PI3K/

AKT oncogenic pathway (28). Likewise, silencing SIRT1

inhibited the activation of PI3K/AKT pathway (29). On one

hand, we have previously demonstrated that CD44 activates

PI3K/AKT pathway to promote cellular migration, invasion, and

survival (12, 13). On the other hand, PI3K/AKT activates SIRT1

(30), all this data put together suggest that CD44 might activate

SIRT1 via PI3K/AKT.

Cytoplasmic SIRT1 directly interact with MAPK/Ras/ERK

pathways promoting neuronal differentiation and survival.

Furthermore, the suppression of SIRT1 decreased the

phosphorylation of JNK/ERK/MAPK signalling pathways in

cerebral ischemia in both rats and humans (31). Similarly, CD44

activates ERK phosphorylation, activating both extracellular and

intracellular signals to promote cell proliferation and migration

(32). In addition, CD44 also phosphorylates ERK/MAPK and

RAS/MAPK signalling pathway to promote tumour angiogenesis,

migration, and invasion (12, 33, 34).

Cytoplasmic SIRT1 was also found to directly interact with

cytoplasmic cortactin promoting cell migration, invasion, and

metastasis, through IGF-1 activation in non-small cell lung

cancer. Several studies stated that cortactin was upregulated in

various human cancers such as breast, head, oesophagus, and

hepatic cancers (35). Our previous studies showed that CD44

activates cortactin via the transcription factor NF-kB (9); This

data suggest that CD44 might activate SIRT1 via activation of

cortactin or its associated signalling pathways. SIRT1 also plays a
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significant role in activating Wnt signaling acting as tumour

promoter in colorectal cancer. First, Adenomatous polyposis coli

(APC) regulate Wnt Signaling pathway by translocating b-
catenin from the cytoplasm into the nucleus activating several

oncogenic pathways. The cytoplasmic SIRT1 colocalizes dsh

protein in the cytoplasm and enhances the expression of DNA

Methyl-transferase 1 (DNMT1) that promote DNA

hypermethylation in the promoter domain of APC, thereby

inhibiting its tumour suppressor function. The Dsh protein

will inhibit the phosphorylation of b-catenin allowing its

accumulation in the nucleus, upregulating the transcription

factors TCF/LEF (T-cell factor/Lymphoid enhancer factor).

Nuclear SIRT1 will bind to the LEF1 lysine residue to

deacetylate the present histones regulating the transcription of

the downstream targets such as cyclin D1, C-Myc, and surviving,

thereby inducing tumour proliferation and migration (24).

Moreover, the activation of Wnt signaling activates SIRT1 to

interact with Dsh forming a complex that will phosphorylate and

activate PI3K/AKT signaling pathway, that will also result in the

translocation of b-catenin into the nucleus to activate its

downstream targets promoting cell migration in colon and BC

cells (24, 36, 37). Correspondingly, the activation of Wnt/b-
catenin pathway will activate the direct interaction of CD44 with

cortactin and will enhance the transcription of CD44 and c-myc

in indicating positive feedback of Wnt signaling-CD44 loop

promoting cell adhesion, migration, and invasion of BC and

melanoma (9, 38). In addition, overexpression of CD44

upregulates the expression of cyclin D1 through the activation

of ERK pathway that will promote tumour proliferation and

migration of BC, ovarian cancer, and squamous cell carcinoma

(32). Our previous study has proven that activated HA/CD44

has activated PI3K signalling pathway to phosphorylate the

transcription factor E2F1 promoting the expression of

Survivin, resulting in breast tumour invasion (10).

Furthermore, using bioinformatics tools, various transcription

factors were identified including, C-Myc/Max, NFAT2, SREBP1,

EGR-1 and USF1, that can bind the promoter of SIRT1 via

induction of MAPK/ERK and PI3K/AKT signalling pathways as

shown in Figure 1 (39).

In summary and as shown in Figure 1, SIRT1 is activated by

the WNT cell surface transmembrane receptor known as frizzled

to inhib i t the express ion of P53 through MDM2

phosphorylation, either by direct phosphorylation of MDM2

or by activating PI3K/AKT pathway. Moreover, CD44 activates

PI3K//AKT pathway allowing the translocation of SIRT1 to the

nucleus and its binding to b-catenin and LEF1 to transcribe

C-myc, Cyclin D1, and Survivin. Furthermore, CD44 activate

the MAPK/ERK pathway which enhance the transcription of

SIRT1 by activating C-myc, MAX, NFAT2, SREBP1, Egr1 and

USF1 transcription factors. Put together, all the evidence

collected from the literature support our hypothesis that SIRT1

is a novel downstream transcriptional target of CD44/HA
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regulating pro-metastatic signalling pathways that are involved

in tumour proliferation, migration, and invasion.
Potential therapeutic strategies
targeting SIRT1

Several studies have been performed to develop suitable

inhibitors targeting SIRT1 to guide the design of applicable

therapeutic strategies against BC. Splitomicin, Sirtinol and

ILS-JGB-1741 are the inhibitor drugs used to inhibit the

expression of SIRT1 in BC cells, which have been shown to

inhibit cell proliferation, induce cell cycle arrest and apoptosis

(20, 24).
Conclusion

SIRT1 shows a significant role in the development and

metastasis of breast tumours, but its underlying mechanisms

are still poorly understood. SIRT1 interferes with various

signalling pathways that promote breast tumour cell

proliferation, migration, and invasion. SIRT1 inhibits the

expression of P53, interfering with apoptosis leading to

survival and tumor cell proliferation. To summarize, it is clear

that CD44 activates SIRT1 most likely via two intermediate

players PI3K/AKT and MAPK/ERK signalling pathways. These

findings support our hypothesis suggesting that SIRT1 is a novel

downstream target that underpin CD44/HA enhancing tumour

cell development and metastasis.
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FIGURE 1

Validated (!) and proposed (– – – !) mechanisms linking CD44 activation by hyaluronan to induce SIRT1 transcription promoting tumor cell
progression and metastasis.
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