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In recent years, the increased demand for and regional variability of available water
resources, along with sustainable water supply planning, have driven interest in the
reuse of produced water. Reusing produced water can provide important economic,
social, and environmental benefits, particularly in water-scarce regions. Therefore,
efficient wastewater treatment is a crucial step prior to reuse to meet the
requirements for use within the oil and gas industry or by external users.
Bioremediation using microalgae has received increased interest as a method for
produced water treatment for removing not only major contaminants such as
nitrogen and phosphorus, but also heavy metals and hydrocarbons. Some
research publications reported nearly 100% removal of total hydrocarbons, total
nitrogen, ammonium nitrogen, and iron when using microalgae to treat produced
water. Enhancing microalgal removal efficiency as well as growth rate, in the
presence of such relevant contaminants is of great interest to many industries to
further optimize the process. One novel approach to further enhancing algal
capabilities and phytoremediation of wastewater is genetic modification. A
comprehensive description of using genetically engineered microalgae for
wastewater bioremediation is discussed in this review. This article also reviews
random and targeted mutations as a method to alter microalgal traits to produce
strains capable of tolerating various stressors related to wastewater. Other methods
of genetic engineering are discussed, with sympathy for CRISPR/Cas9 technology.
This is accompanied by the opportunities, as well as the challenges of using
genetically engineered microalgae for this purpose.
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1 Introduction

Microalgae are photosynthetic microscopic organisms, either
prokaryotic or eukaryotic that could live in all bodies of water and
utilize sunlight and carbon dioxide (CO2) as their sole energy and
carbon sources to produce organic compounds via photosynthesis
(Zhu et al., 2016; Deviram et al., 2020). This, together with their fast
growth rates, and ability to produce high value metabolites of interest
for many industrial applications, make microalgae an attractive
subject for researchers in the field of sustainable production
(Saadaoui et al., 2019; Arias et al., 2020; Rasheed et al., 2020;
Saadaoui et al., 2019; Veiga et al., 2020; Saadaoui et al., 2019;
Varaprasad et al., 2021; Bounnit et al., 2022; Bello et al., 2022).
Furthermore, microalgae have also been found to be able to
efficiently remove contaminants from various types of wastewater
effluents, including pharmaceutical (Singh et al., 2020), agricultural
(Leite et al., 2019), and industrial (Al-Jabri et al., 2021). In the tertiary
treatment stage, they can eliminate macro-nutrients from the water
mainly nitrogen and phosphorus, as well as heavy metals (Molazadeh
et al., 2019). Even in particularly contaminated wastewaters, such as
produced water from the oil and gas industry, microalgae have
demonstrated the ability to degrade specific components as a
treatment step toward clean water (Graham et al., 2017; Rahman
et al., 2020; Alsarayreh et al., 2022). Overall, cultivation of microalgae
on different types of wastewaters is considered a sustainable
technology for bioremediation due to its capacity to thrive by
consuming present contaminants (Mehariya et al., 2021). Non-
etheless, due to immature technologies, instabilities of wastewater
components, and required improvements of bioremediation
efficiencies, microalgae are not yet widely applied for wastewater
treatment (Feng et al., 2020; Li et al., 2022).

Various methods can be applied to enhance the bioremediation
efficiencies of microalgae, including advanced cultivation systems,
consortiums, and genetic modification. Microalgal cells are
transformable; their genomes can be redesigned to include a
desired feature by employing the proper delivery system to
introduce DNA for transformation (Gimpel et al., 2015).
Transformation of different microalgal species using multiple
genetic engineering tools has been successfully applied to enhance
metabolite production for biofuels (Radakovits et al., 2010) as well as
for other products (Ibuot et al., 2017; Rahman et al., 2020). Genetic
engineering is a powerful tool to enhance the ability of many
microorganisms’ to bioremediate wastewater. For example (Huang
et al., 2015), inserted the arsenite S-adenosylmethionine
methyltransferase gene obtained from the red microalgae
Cyanidioschyzon merolae into Bacillus subtilis. The transformed
Bacillus was able to methylate the inorganic arsenic. Such studies
provide proof for concept of using transformed microbes for treating
different kinds of contaminants.

This review provides the status of microalgal-based
bioremediation of produced water, as well as the most recent
microalgal applicable genetic engineering tools: zinc finger
nucleases (ZFNs), Transcription activator-like effector nucleases
(TALENs), and clustered regularly interspaced short palindromic
repeats (CRISPR/Cas9). Previous reviews of this field have
particularly focused on multiple wastewater treatment such as
agricultural or municipal, or on genetic engineering as a tool to
enhance efficiency the efficiency of microalgae to serve different
purposes. This review is the first of its kind to develop a critical

overview and explore about the importance of genetic engineering in
enhancing algae phytoremediation efficiency. Combining the two
topics allows us a forward look at genetic engineering strategies to
enhance microalgal efficiency in phytoremediation of produced
wastewater.

2 Microalgae: Promising alternative for
produced water bioremediation

Produced water (PW) is the highest volume of liquid waste
generated and discharged during the production of oil and gas.
The worldwide volume of produced water generated is
approximately 1.3 times that of hydrocarbon production (Gray,
2020). PW varies in composition and volume from one formation
to another, and predominant constituents include total dissolved
solids (TDS), such as natural salts and minerals, as well as
dissolved and volatile organic compounds, oil and grease, heavy
metals, dissolved gases, bacteria, naturally occurring radioactive
materials (NORM, radionuclides such as radium), and the additives
used in hydrocarbon production (Al-Ghouti et al., 2019). In recent
years, the increased demand for and regional variability of available
water resources, along with sustainable water supply planning, have
driven interest in the reuse of produced water. As freshwater supplies
become scarcer, produced water can be a crucial source of water after
suitable treatment. There has been an increased focus on reclaiming,
reusing, and recycling water that is usually wasted to meet the
communities’ needs for freshwater sources (Gray, 2020).

In recent times, a greater focus has appeared on using biological
systems, including microalgae, for treating produced wastewater
effluents (Graham et al., 2017; Rahman et al., 2020; Alsarayreh
et al., 2022). Application of microalgae in wastewater treatment
even shows competitive advantages over other treatment methods
to improve water quality, due to its high treatment efficiency as well as
carbon capture and biomass valorization opportunities (Molazadeh
et al., 2019; Leng et al., 2020; Alsarayreh et al., 2022).

It is not surprising that algae have a high potential for PW
treatment. For decades, researchers have studied their general
wastewater treatment capabilities, optimizing their treatment
efficiencies and growth on different types of wastewaters. Salgueiro
et al. (2016) for example demonstrated that Chlorella vulgaris was able
to remove 99.2% of phosphorus from artificial wastewater containing
glucose, ammonium chloride, urea, monopotassium phosphate and
reduce the chemical oxygen demand (COD) by 71.1%. Likewise (El-
Kassas and Mohamed, 2014), showed that Chlorella vulgaris was able
to treat textile wastewater, with COD and color removal percentages of
69.9% and 76.32%, respectively. Furthermore (Wang et al., 2019),
investigated the use of the marine diatom Phaeodactylum tricornutum
to treat municipal wastewater mixed with seawater. The results
revealed that the diatom was able to remove up to 89.9% of COD,
86.7% of Total Nitrogen (TN), 84.2% of ammonium, and 97.0% of
total phosphorus. Moreover, the strains were able to produce a high
amount of lipids, which could potentially be applied for biodiesel
production (Jayakumar et al., 2021). Produced water, on the other
hand, can be more challenging, due to potential toxicity and the
presence of heavy metals, hydrocarbons, surfactants, and anti-
corrosives. Non-etheless, various studies have shown that
bioremediation of PW using microalgae has shown a high
potential. For example (Das et al., 2019), demonstrated the ability
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of Chlorella sp. (QUCCCM10) to bioremediate pretreated PW, after
pH adjustment and removal of suspended matter. The microalga was
found to be able to reduce the concentration of various elements, such
as arsenic, cadmium, iron, nickel, and potassium, as well as remove
92% and 94.2% of TN and Total Organic Carbon (TOC), respectively.
In a more recent study (Rahman et al., 2021), showed that Galdieria
sulphuraria was able to grow in PW concentrations of up to 50%, with
biomass productivities of up to .72 g L−1·d−1, and 99.6% and 74.2%
nitrogen and phosphorus removal rates, respectively, without the
addition of extra micronutrients. Similarly (Ammar et al., 2018),
inoculated two marine microalgae species, Nannochloropsis oculata
and Isochrysis galbana, with different concentrations of PW obtained
from an oil field located in Iraq. Although higher PW loadings were
found to have a negative impact on biomass productivities; successive
adaptation biomass yields of .31 g L−1 were still achieved for both
strains at 50% PW loading. Optimal contaminant removal however
occurred at lower PW loadings of 10% and 25%, at which
Nannochloropsis oculata was able to remove up to 89% and 81%
oil content and 90% and 72% COD, respectively.

The ability of microalgae to remove pollutants from wastewater is
due to different mechanisms they can perform. First, microalgae have
the ability to take advantage of mixotrophic modes of nutrition.Which
means it can switch their metabolism from using only CO2 as a carbon
source to using organic matter based on its availability in the growth
medium (Alalawy et al., 2019). (Devi et al., 2022) cultivated
Scenedesmus sp. DDVG strain in municipal wastewater under
mixotrophic condition to test the strain availability to survive and
remove major contaminants form the water. The results showed that
Scenedesmus efficiently removed ≈75% of COD and ≈100% of total
nitrogen with a biomass of nearly 3.4 gL−1 after 10 days of cultivation.

Microalgal removal of organic compounds from the wastewater
can be credited to biodegradation and biosorption processes.
Biodegradation is known to be the most effective method by which
microalgae use different enzymes to eliminate organic micropollutants
from the aqueous environment (Nguyen et al., 2021). Biosorption is
defined as the physical-chemical process in which substances are
removed from solution using biological matter. Due to the negative
charge of the cell wall in microalgae, cationic pollutants can efficiently
adhere to the surface. However, it is less efficient in term of pollutants
removal compared to biodegradation (Nguyen et al., 2021).
Biodegradation and biosorption of different contaminants including
organic compounds are extensively studied by Pathak et al. (2018).

Microalgae have enormous potential not only for bioremediation
of produced water, but also for biomass reutilization in a variety of
applications. Algae cultivated in wastewater are rich source of primary
and secondary metabolites that could benefit in producing many
valuable bioproducts such as biofuels, biofertilizers, and feed
supplements (Shahid et al., 2020). Combining algae-based
wastewater treatment with producing high-value compounds will
greatly reduce the economic cost of the process. For instance
(Japar et al., 2021), successfully increased the biomass production
and lipid content of Chlorella vulgaris and Chlorella sorokiniana
UKM3 grown in industrial wastewater by acclimatization process. .
Since wastewater can be used as a sustainable growth medium, a
variety of wastewater types have been proposed to increase algal
biomass (Srimongkol et al., 2022). In this context, biomass
generated from produced water treatment can be a promising
source for valuable metabolite production for numerous
applications. In Table 1, more detailed information is shown on

these and other recent studies investigating algal-mediated PW
treatment, including the different strains, experimental and
cultivation conditions applied.

To summarize, utilizing microalgae for PW bioremediation can be
advantageous and efficient owing to i) its capability of removing heavy
metals, hydrocarbons, and other pollutants, ii) its ability to produce
high-value bioproducts such as biofuels (Cho et al., 2011), iii) its ability
to reduce the need for fresh water and nutrients for algae cultivation
(Rahman et al., 2020; Ahmad et al., 2021) and iv) its potential for
carbon capture and utilization (CCU) from industrial point-sources
(Kalra et al., 2021). Non-etheless, some obstacles and complications
still arise when applying this technology, which will need to be
mitigated for it to be applied on a large scale. Such concerns
include the requirement for long residence times for efficient
contaminant removal, the risk of contamination, the existence of
contaminants that may inhibit the algae growth, and the cost of
nutrients added and for biomass harvesting (Ahmad et al., 2021;
Watanabe and Isdepsky, 2021).

3 Genetic engineering as promising tool
to enhance bioremediation efficiencies

A possible option to improve the application of algae in industrial
processes, such as PW treatment, could be strain improvement
through genetic engineering (Ahmad et al., 2022). Even though
advanced tools for genetic engineering have emerged at a great
pace, they remain underutilized for microalgae as compared to
other microorganisms. This is despite the demonstrated benefits of
improving yields and overcoming challenges of high production costs
(Bajhaiya et al., 2017; Kumar et al., 2020). In this section, we go over
the different types of genetic modification which can be applied to
algae, as well as how they can be used to improve PW bioremediation
efforts.

3.1 Random mutagenesis

One of the powerful trait alteration tools for microalgae is random
mutagenesis (Manandhar-Shrestha and Hildebrand, 2013; Arora et al.,
2020). Obtaining mutants through random mutagenesis is
accomplished through various methods, ranging from chemical,
nuclear irradiation, plasmas, and ultraviolet (UV) mutagenesis.
This, combined with a strong selective selection pressure, has
proven to be a reliable strategy for producing strains with
improved stress tolerances, resistance to contaminants, increased
productivities (Cabanelas et al., 2016), but also higher metabolite
production rates (Lai et al., 2004; Cordero et al., 2011; Doan and
Obbard, 2012). Recently (Qi et al., 2018), developed a mutant of
Scenedesmus obliquus for the purpose of increasing the CO2 bio-
fixation and enhancing biomass production under elevated CO2 levels.
The mutants with genetic stability as well as potential for increased
CO2 tolerance were found through UV mutagenesis, as well as
applying a low pH as a selective pressure. The authors found that
the mutant strain was able to achieve higher biomass productivities
and light conversion efficiencies under elevated CO2 concentrations
compared to the parent strains, as well as contain 37% and 25% higher
carbohydrate and lipid contents, respectively. Applying radon
mutagenesis to algae strains such as those investigated by (Ammar
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TABLE 1 Selected recent literature on algal bioremediation of PW.

Strain Wastewater type Cultivation conditions Highest
biomass
yield (g·L−1)

Pollutants
removed

Highest
removal
efficiency (%)

Reference

1 Chlorella sp produced water from a Qatari
local petroleum company

In a temperature-controlled room,
a glass bottle was agitated with
compressed air and illuminated
with an light intensity of 600 µmol
photons·m−2·s−1

1.72 TOC 73 Das et al. (2019)

total Nitrogen 92

2 Chlorella vulgaris Produced water from an oil
and gas facility in
United States.

Tissue Culture Roller Drum
Apparatus inside an incubator with
a constant level of CO2 of 2%–3%
(v/v), a temperature of 28°C with
16:8 h light:dark cycle and an
illumination of ~4000 lux

3.1 ± 0.5 total Nitrogen 100 Rahman et al.
(2021)

phosphorus ≈74.2

3 Chlorella vulgaris PW from dumping site
generated by oil wells in
Colombia

fluorescent light at an irradiance of
36.8 ± 4.2 μmol photons m−2 s−1 at
the surface of the culture medium,
temperature at 20 °C and
permanent aeration supplied by a
blower

— Total
hydrocarbons

≈100 Calderón-delgado
et al. (2019)

4 Chlorella
pyrenoidosa

PW from oilfield in Algeria outdoor, under sunlight radiation,
using an open system sited in the
desert area in the winter season.
The temperatures fluctuated from

26 to 31°C during the day

1.15 COD 89.67% Rahmani et al.
(2022)

Ammonium
nitrogen

100%

total Nitrogen 57.14%,

total
Phosphorus

75.51%

Copper 73.39

Lead 72.80

Cadmium 48.42

5 Nannochloropsis
oculata

Produced water from oil field
in Iraq

Florescence light (2000 lux) at and
a light photoperiod of 18:6 h light:
dark, 25°C±1°C, continuous filtered
air at a constant flow rate via two
aquarium air pumps

1.13 Oil 66.5 Ammar et al.
(2018)

COD 54

6 Nannochloropsis
oculata

Produced water from a
TOTAL operating site in
France

14/10 h light/dark periods, by LED
lamps, temperature at (21 ± 1°C),
autotrophic conditions with air.
CO2 was added in pulse, 5 s each
20–40 min and pH between
7.5 and 9

— Ammonium
nitrogen

≈100 Parsy et al. (2020)

COD 70

Iron 100

7 Nannochloropsis
oculata

Produced water from an oil
field in Brazil

Aerated photobioreactors (3 L
min−1), cold white LED lamps with
light intensity of 57 μmol m−2·s−1,
photoperiod of 12:12 h.
Temperature controlled at
21°C±.9°C. The pH was fixed at 7

— PAHs 94 Marques et al.
(2021)

NAP 96

APT 95

FLU 91

PHE 83

BbF 95

DA 90

BaP 95

Iron 96.80

8 Galdieria
sulphuraria

Produced water from an oil
and gas facility in
United States.

Tissue Culture Roller Drum
Apparatus inside an incubator CO2

level was kept constant at 2%–3%
(v/v), temperature 42°C with 24 h
of continuous illumination
(~4000 lux)

5.12 ± .28 total Nitrogen ≈100 Rahman et al.
(2021)

(Continued on following page)

Frontiers in Bioengineering and Biotechnology frontiersin.org04

Hassanien et al. 10.3389/fbioe.2022.1104914

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2022.1104914


et al., 2018), followed by exposure to high PW loadings, could
potentially result in strains’ abilities to bioremediate PW without
dilution, increasing its industrial and economic feasibility as a
treatment option. Nevertheless, although interesting, the technology
also exhibits some weaknesses, such as the fact that mutants may lose
the mutation of interest within a number of generations, thus losing
their enhanced trait, as well as the fact that experiments can have a
long time span (Arora and Philippidis, 2021), making their application
cumbersome.

3.2 Targeted genetic engineering

Besides random mutagenesis, using targeted genetic modification
methods for heterologous expression of foreign genes is very
promising for enhancing specific algae traits. Recently, genetic
engineering has gained momentum because new and strong genetic
tools are progressively offered and redesigning and improving
metabolic pathways reveal new opportunities for the industrial
development of microalgae (Ng et al., 2017). In the past decade,
gene-editing tools such as (TALEN), (ZFN) (CRISPR/Cas9)
technologies have emerged as the most popular recombinant DNA
technologies that have been applied on a variety of different
microorganisms, including microalgae (Fajardo et al., 2020; Kumar
et al., 2020).

3.2.1 Zinc-finger nucleases (ZFN)
(Nain et al., 2010) describe zinc-finger nucleases (ZFNs) as a

powerful tool that reshapes the boundaries of biological research. It is
composed of programmable modules that bind to a specific DNA
sequence. Excitingly, ZFN enables a wide range of genetic
modifications by allowing DNA double-strand breaks that
stimulate error repairs at specific genomic sites (Jabalameli et al.,
2015; Kanchiswamy et al., 2015). The specificity of ZFNs arises from
their versatility and ability to recognize a customized DNA binding
location (Gaj et al., 2013) (Figure 2C). ZFNs have been used multiple
times for chosen modifications of microalgal genomic DNA. It works
by creating a cleavage site where insertions or deletions (INDELs) can
take place (Jeon et al., 2017). ZFN technology was successfully applied
to the model microalga Chlamydomonas reinhardtii in 2013 (Sizova

et al., 2013). The ZFNs were created to target the COP3 gene using
paromomycin-resistance as a marker activity. Furthermore, this work
proves that transient ZFN expression is not toxic for the cells as it
results in stable transformed colonies. Similarly (Greiner et al., 2017),
used ZFNs to reliably edit genes by homologous recombination in
multiple strains of Chlamydomonas, including the wild type. This
work also reported that promising results were achieved when the ZFN
protocol was changed to replace glass beads with electroporation.
Regardless of the numerous benefits of editing DNA with ZFNs, some
issues may arise when it is applied. For example, there are limited sites
to be targeted for nuclease selection. Also, there is a potential that
double strand breaks may occur at an off-target site (Gupta and
Musunuru, 2014). A simplified workflow of ZFN process is illustrated
in (Figure 1).

3.2.2 Transcription activator-like effector nucleases
(TALEN)

Transcription activator-like effector nucleases (TALEN) are one of
the first developed molecular editing tools (Zhang et al., 2016). TALEs
are proteins that exist in nature in Xanthomonas bacteria (Malzahn
et al., 2017), and are distinguished by their ability to recognize and
bind to single base pairs of a DNA sequence (Gaj et al., 2013). When
TALE proteins fuse with FokI nuclease, a double strand break is
induced in the DNA, which enables knocking out genes or introducing
mutations (Jeon et al., 2017) (Figure 1B). TALEN has many
advantages, most importantly: i) it can be engineered to target a
specific site in the genome; ii) it is much easier to design compared to
ZFNs; iii) it is available commercially, as well as a TALEN-based
library has been constructed; iv) it is not limited by the length of
sequence it can bind to; v) fewer obstacles appear when selecting the
binding site (Gupta and Musunuru, 2014). On the other hand, some
constraints must be taken into consideration when applying TALEN.
As such, compared to ZFNs, it appears to be much larger in size,
knowing that the large size makes it less specific. Also, the larger the
TALENs, the harder it becomes to deliver them to cells. Moreover, the
host plasmid vector of the TALEN sequence tends to rearrange after
transduction (Kumar et al., 2020). Several studies have reported the
modification of the genomes of different microalgae. TALENs were
used to enhance lipid metabolic pathways in the genome of the diatom
Phaeodactylum tricornutum, according to (Daboussi et al., 2014) and

TABLE 1 (Continued) Selected recent literature on algal bioremediation of PW.

Strain Wastewater type Cultivation conditions Highest
biomass
yield (g�L−1)

Pollutants
removed

Highest
removal
efficiency (%)

Reference

9 Isochrysis galbana Produced water from oil field
in Iraq

Florescence light (2000 lux), and a
photoperiod of 18:6 h light: dark,
25°C±1°C, continuous filtered air at
a constant flow rate via two
aquarium air pumps

1.01 Oil 68 Ammar et al.
(2018)

COD 56

10 Dunaliella
tertiolecta

Produced water from an oil
production facility in the
Permian Basin of southeast
New Mexico

Temperature controlled at 24°C in
a growth chamber with fluorescent
illumination of 100 μmol photons
m−2 s−1. agitation was set at at
140 rpm with a 16-h light/8-h dark
cycle

≈0.3 nitrate ≈99.6 Hopkins et al.
(2019)

Phosphate ≈99.6

PAHs, polycyclic aromatic hydrocarbons; NAP, naphthalene; AP, acenaphthylene; FLU, fluorene; PHE, phenanthrene; BbF, benzo(b)fluoranthene; DA, dibenzo (a, h) anthracene; BaP, benzo(a)

pyrene.
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(Hao et al., 2018). Likewise (Takahashi et al., 2018), enhanced the lipid
content in the green microalga Coccomyxa sp. Another example of
successful utilization of the platinum TALENs is efficiently mutating
the nitrate reductase and acyltransferase genes in Nannochloropsis
oceanica (Kurita et al., 2020). The process of applying TALEN in
microalgae is shown in (Figure 1).

3.2.3 CRISPR/Cas9
Due to its simplicity and versatility, CRISPR/cas9-mediated

genome-editing is one of the most promising novel techniques for
gene editing and has been shown to be successful in a variety of living
organisms (Bortesi and Fischer, 2015; Xu M. et al., 2020). It offers an
excellent time and labor efficient system (Doudna and Charpentier,
2014; Zhang et al., 2020) and multiple mitigation strategies succeeded
in significantly reducing off-target effects (Han et al., 2020). Moreover,
implementing a plasmid-free CRISPR-Cas9 system has resulted in
very stable ribonucleoproteins (RNPs) in the studied cells (Song et al.,
2019). To use genetically manipulated algae on an industrial scale,
transformed cells need to demonstrate a stable gene expression on
long term. Therefore, large scale algal cultivation require fully
integrated gene cassettes within the genome the transformed strain
(Patel et al., 2019). Many cases of CRISPR/Cas9 genetically
manipulated microalgae have reported stable mutants, which may
alleviate the problem of unsettled mutations (Nymark et al., 2016;

Slattery et al., 2018). ((Nymark et al., 2016; Slattery et al., 2018). The
mechanism of designing the CRISPR/Cas9 system to manipulate
microalgae genome is expressed in (Figure 1) while its structure is
shown in (Figure 2A)

The first successful application of CRISPR/Cas9 in microalgae was
demonstrated in 2014, by (Jiang et al., 2014) on Chlamydomonas
reinhardtii, although improvements were needed to reduce the
cytotoxic effect of Cas9 on the algae strain (Baek et al., 2016; Shin
et al., 2016). Since then, Chlamydomonas transformation using
CRISPR system was accomplished multiple times, e.g., for
increasing lipids and pigments content (Song et al., 2022),
increasing triacylglycerol productivity (Lee et al., 2022); lipid
accumulation (Nguyen T. H. T. et al., 2020); and for understanding
CO2 sequestration mechanism (Asadian et al., 2022).

Due to its role in biofuel production; several studies have been
conducted on algal cells for increasing lipid content through CRISPR/
Cas9 genetic modification (D’Alessandro and Antoniosi Filho, 2016;
Shokravi et al., 2020). For instance, a recent study by (Lin and Ng,
2020) investigated the improvement of the lipid content of Chlorella
vulgaris, through targeted editing of the omega-3 fatty acid desaturase
gene (fad3). Results showed that the genetically modified strain was
able to reach up to 46% higher lipid content and 20% higher biomass
concentrations, as compared to the wild type of strain. Other studies
suggested that knocking out genes involved in the process of fatty acid

FIGURE 1
Simplified workflow for ZFN, TALEN and CRISPR/Cas9 mediated microalgae genome editing. (A) ZFN, (B) TALEN and (C) CRISPR/Cas9. The 3 tools have
4 steps (1) using bioinformatic tools to identify the targeted sequence and design accordingly, (2) construct the delivery method by choosing the vector, (3)
select the delivery method to insert the plasmid into themicroalgae cell, (4) subculture the microalgae on a selective medium and determine the efficiency of
gene editing.
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degradation could induce increased lipid yields in different microalgal
species (Nguyen A. D. et al., 2020; Chang et al., 2020). Several other
studies were also successful in implementing CRISPR/Cas9 to increase
the production of different carotenoids in Dunaliella salina (Hu et al.,
2021); and in Chlamydomonas reinhardtii (Baek et al., 2016), to
improve the thermal tolerance of Tetraselmis suecica (Xu J. et al.,
2020), and to investigate gene function in Phaeodactylum tricornutum
(Hao et al., 2022; Llavero-Pasquina et al., 2022). Overall, CRISPR/
Cas9 has been successfully applied on many other algae species to
improve their biomass productivities, tolerances to abiotic stressors, or
increase lipid content, or that of other biomolecules and value-added
products (Kumar et al., 2020; Jeon et al., 2021; Wang et al., 2021).

In summary, microalgae are emerging and thriving as sustainable
base for biotechnology in general and produced wastewater treatment.
Yet, it is not currently viable on the industrial scale due to many obstacles.
Therefore, it is considered practical to use genetic engineering to enable
the use of microalgae on a bigger scale. Furthermore, genome editing
techniques may be used to further our understanding of the mechanisms
behind the genes that enable microalgae to survive in such harmful
environments. ZFNs, TALENs, and CRISPR/Cas9 were successfully
implemented in enhancing various applications of microalgae
including production of pharmaceutical products lipid, carotenoids,
and protein (Grama et al., 2022). Several reviews summarized the

major differences between these technologies stating the advantages
and disadvantages of each individually (Jeon et al., 2017; Liu et al.,
2022). These new approaches are of great interest to optimize specific
traits of microalgae to boost their effectiveness in phytoremediation.

3.3 Applying CRISPR/Cas9 for improving PW
treatment: Target genes

Although the application of CRISPR/Cas9 to enhancemanymicroalgal
traits, productivities, and production of primary metabolites has been
increasing, there are very few studies that report the use of CRISPR/Cas9 to
enhancemicroalgal applications in wastewater treatment (Patel et al., 2019;
Feng et al., 2020). In general, there are a plethora of candidate genes that
can alter metabolic pathways in favor of bioremediation of wastewaters,
with the potential to improve bioremediation and biomass production
(Balzano et al., 2020). To enhance microalgal PW treatment through
genetic engineering, two strategies can be applied: (a) improving strain
tolerance and degradability of certain pollutants, such as hydrocarbons or
heavy metals, or (b) expressing and producing of degradation aiding
molecules, such as surfactants or antifouling ingredients (Feng et al.,
2020). In both cases, the first step is the identification of target genes
for transformation into selected microalgae strains.

FIGURE 2
Genetic engineering tools-induced genome editing in Microalgae. The double-stranded breaks (DSBs) introduced at the target site by CRISPR/Cas or
TALEN or ZFN complexes stimulates the endogenous DNA repair machineries, non-homologous end joining (NHEJ) in the absence of the donor template or
the homology-directed repair (HDR) in presence of the donor template. The NHEJ is generally associated with the introduction of insertions and/or deletions
(indels) of varying lengths at the DSB site, often leading to the disruption of the reading frame of the target gene. The HDR pathway results in a precise
insertion or deletion at the DSB site by homologous recombination. The preferred tool is the CRISPR/Cas9 which is highlighted in red as it is very accurate,
easy, and fast.
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3.3.1 Tolerance and accumulation of heavy metals
Various wastewaters contain hazardous and toxic pollutants that pose

a significant environmental risk, including heavy metals (Gray, 1998).
Furthermore, the removal of heavy metals from wastewater is a serious
issue and can be challenging in many cases (Kaur and Roy, 2021).
However, numerous algal strains have been found to be capable of
sequestering metals through the use of extracellular polysaccharides
(EPS) and intracellular polyphosphates, which chelate metal ions
(Opeolu et al., 2010). Additionally, the potential use of genetically
engineered microalgae for metal bioremediation is paving the way for
more evaluations and selections of novel genes that are involved in metal
accumulation (Cheng et al., 2019).

The most common genetic manipulation techniques for algal-based
metal recovery are overexpression of genes and introducing exogenous
DNA by constructing transgenic algal strains (Cheng et al., 2019).
Interestingly, it is worth mentioning that numerous authors have
discussed and studied the introduction of foreign DNA fragments to
different organisms for the purpose of increasing their heavy metal
tolerance, such as plants and bacteria; only few have highlighted this
genetic manipulation strategy for microalgae. One such example in
bacteria comes from (Sriprang et al., 2003), who introduced genes for
phytochelating synthase (PCSAt) in Mesorhizobium huakuiiwhich.
PCSAt is a protease-like enzyme that catalyzes the synthesis of
peptides, which in turn chelate metals (Rigouin et al., 2013). It was
reported that the transformation resulted in a transgenic strain that
accumulated Cd+2 9–19-fold more than the strain that did not contain
the PCSAt. In another study, ACC deaminase and iaaM genes were
introduced into the Petunia hybrida Vilm plant via agrobacterium-
mediated transformation, and the transgenic plants were continuously
treated with Copper (II) sulfate CuSO4 and Cobalt (II) chloride CoCl2 to
test for heavy metal tolerance (Zhang et al., 2008). The authors planted
the transgenic Petunia in heavily heavy metal contaminated soil and
found that the mutant plant had double the growth of the wild-type
plant. Also, they grew bigger, healthier, and faster in the heavy metal
contaminated soil, most likely related to the increased tolerance to cobalt
that resulted from the co-expression of both introduced genes. Other
genes that could potentially improve heavy metal tolerance and
accumulation were identified by (Peng et al., 2020) in the plant
Kandelia obovate. This study showed that KoCBF1 and KoCBF3
genes were highly expressed in the presence of lead (Pb (NO3)

2),
implying that they are involved in growth and heavy metal
accumulation. One of the few examples found in literature
demonstrated that wild-type C. reinhardtii could not survive in the
presence of Cadmium (Cd) in the cultivation media, whereas a
transgenic strain with high expression level of the CrMTP4 gene was
able to grow well under the metal stress (Ibuot et al., 2017).

3.3.2 Hydrocarbon degradation
It is well known that the composition of wastewater, including

PW, varies greatly based on its origin, also applying to the level of
TOC, including hydrocarbons. As an example, TOC in PW collected
from a petroleum industrial site in Qatar was found to be 720.33 mg
L−1 (Das et al., 2019), however, values of up to 2430 mg L−1 have also
been reported (Shaikh et al., 2020).

Microbial degradation of hydrocarbons is a common phenomenon,
although its applications in bioremediation are still limited (Ławniczak
et al., 2020). These microorganisms can however be the source of relevant
genes that are in control of hydrocarbon degradation and organic carbon
digestion which could be applied in microalgae. For example (Luo et al.,

2015), constructed the pCom8 vector to express alkane hydroxylase in
Escherichia. coli (E. coli) DH5α, after which it was inoculated in diesel
containing media to induce gene expression and perform biodegradation
assays. Furthermore, applying a consortium of Acinetobacter and the
transgenic E. coli strain improved diesel biodegradation by up to 49%
compared to the control. Another study conducted by (Kang et al., 2017)
cloned a two-component flavin-diffusible monooxygenase gene (cph)
from Arthrobacter chlorophenolicus for enzyme overexpression. This
enzyme is responsible for the degradation and removal of 4-
chlorophenol (4-CP) and transformed strains could remove up to
82.7% of 4-CP from the media.

Besides the introduction of genes involved in hydrocarbon
degradation, increasing biosurfactant production to aid degradation
can be of great interest (Ochsner et al., 1994). Several microalgae and
cyanobacteria were tested for their capability of producing biosurfactant.
Dunaliella salina and Porphyridium cruentum, two marine microalgal
species that produce extracellular polymeric substances that can be used as
emulsifiers to metabolize oil hydrocarbons (Sukla et al., 2019). Also
(Radmann et al., 2015), stated that Arthrospira sp. and other
cyanobacteria and microalgae can produce biosurfactant as a by-
product in the presence of certain organic carbon. In this context,
genetic engineering can be helpful to increase the potential of
microalgae to secrete biosurfactant. Numerous research efforts were
made to understand their production on the molecular level, and the
different genes involved in enhancing it were discovered. For instance, the
Emt1,Mmc1,Mac1,Mac2 genes inUstilago maydiswere studied for their
association with the expression of Mannosylerythritol Lipids (MELs),
which are class of biosurfactant (Markande et al., 2021). These lipids are
also expressed in different microalgae (Luca et al., 2021). Moreover, using
wastewater as a substrate for Pseudozyma tsukubaensismade it possible to
successfully increase the production of MELs (Andrade et al., 2017).An
overview of these and other reported genes that influence heavymetal and
hydrocarbon degradation is given in Table 2. Using gene-editing
technologies like CRISPR to apply such genes to microalgae could
potentially increase the feasibility of using it for producedwater treatment.

In summation, microalgae can ideally contribute to the
bioremediation of heavily contaminated water with heavy metals or
organic pollutants. Owing to its fast adaptability to use these
contaminants to thrive. Additionally, the role of genetic
engineering to develop and understand the mechanism in which
microalgae consume such pollutants cannot be ignored. Thus, to
overcome the growing environmental threat of produced water on
the sustainable development; an increased focused research is acquired
to strengthen the large-scale use of genetically engineered microalgae
and to fill the knowledge gap in this field.

3.4 Challenges and limitations of genetic
engineering for enhancing bioremediation
efficiencies

Many water treatment methods depend on using microbes that
degrade pollutants. Recently, there has been a great focus on
genetically modifying such microorganisms to augment their
ability for bioremediation. Nevertheless, there are limitations and
challenges linked to redesign microorganisms’ DNA related to gene
expression efficiency and the stability of introduced genes according
to (Fajardo et al., 2020) and (Tran and Kaldenhoff, 2020); the success
of genetic transformation is highly dependent on the species
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selection. Some diatoms and microalgal species are known for their
low stability after nuclear transformation such as Thalassiosira
weissflogii, Ulva lactuca, and Gracilaria changii (Fajardo et al.,
2020). Another major concern is the presence of off-target effects
of CRISPR/Cas9(Zhang et al., 2015). Additionally, genome-editing
techniques can be very expensive and involve complex procedures
with some technical challenges, such as TALEN (Khan, 2019).
Furthermore, in order to manipulate the genome of microalgae to
improve its removal of a specific contaminant, such as heavy metals,
a complete understanding of the cells’ metabolism and structure
during metal stress is required to ensure the maximum effectiveness
of those engineered cells for bioremediation (Ranjbar and Malcata,
2022).

Other limitations of using genetically enhanced microalgae on a
large-scale, include environmental concerns and issues related to
public health (Janssen and Stucki, 2020; Kumar et al., 2020). Thus,
the environmental impact assessments and other assessments that
comprise biosafety must be performed prior to using a genetically
modified organism (GMO) (Sayler and Ripp, 2000). Nevertheless,
several successful studies were conducted about releasing transgenic
organisms into the environment. For instance, the field trials of
genetically engineered mosquitos in North America (Neuhaus,
2018), and the release of Pseudomonas fluorescens HK44 in a
controlled field in the US (Ripp et al., 2000). Also (De Leij et al.,
1995), spread transgenic Pseudomonas fluorescens in a wheat field in
1995. Using GMOs in bioremediation poses a risk of horizontal gene
transfer as well as regulatory and ecological complications (Singh et al.,
2011).

Thus, even though this technology has the potential for future
use, its sustainability and large-scale use are still in question.
Optimization for a more sustainable use on a large scale should
be considered. Finally, microalgae have great potential for many
biotechnological applications, but to date, the development and
improvement of industrial production using CRISPR/Cas9 or
other biotechnologies has yet to be conducted and tested for
feasible and satisfying outcomes.

4 Conclusion and recommendations

This review discussed the potential of using the genetic
engineering tools ZFNs, TALENs, and CRISPR/Cas9 to manipulate

the genome of microalgae. It is believed that they have a great
opportunity to improve the tolerance of microalgae to toxic
mediums like the produced water. As well as to enhance its ability
to remove existing contaminants. Deeper investigation of these
technologies is crucial the potential genes and understand their
mechanism and function for bioremediation. However, CRISPR/
Cas9, the latest and most promising tool for genome modification
is believed to hold applicational advantages over the other
technologies as it offers more stability to the introduced gene; and
it consumes less time and effort with fewer technical issues.

Therefore, it is highly recommended to extend the research on
CRISPR/Cas9 application to serve the purpose of bioremediation of
produced water using microalgae given that they are efficient and
economically feasible candidate to make the PW reusable and lower its
negative impact on the environment. Finally, more research effort is
required to overcome the problems that arise when CRISPR/Cas9 is
being applied such as the off-target effects.
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TABLE 2 Candidate genes for heavy metal tolerance and accumulation and hydrocarbon degradation.

Gene Plasmid Promotor Application Reference

PCSAt pBBR1MCS-2 pMP220 nifH Accumulation of Cd+2 Sriprang et al. (2003)

KoCBF3 Accumulation of Pb Peng et al. (2020)

ACC deaminase pBI-iaaM/ACC CaMV 35S Accumulation of copper and cobalt Zhang et al. (2008)

iaaM pBI-iaaM GRP Accumulation of copper and cobalt Zhang et al. (2008)

CrMTP4 CrMTP4gDNA-pH2GW7 Not mentioned Increase Mn and Cd content in the cell Ibuot et al. (2017)

alkane hydroxylase (alkB) pCom8 Not mentioned Degrading diesel oil Luo et al. (2015)

cph pET-24a Not mentioned Removal of 4-chlorophenol Kang et al. (2017)

mat1 pET15b — Biosurfactant Hewald et al. (2006)
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