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1. Introduction

The gravity model of international trade predicts that the trade flows
between two countries depend mainly on their economic sizes (measured
by the gross domestic product, GDP) and the distance between them.
Broadly speaking, the gravity equation is built around a nonlinear rela-
tionship between trade flows and a set of explanatory variables. The
strong theoretical foundations of the gravity model (e.g., Anderson,
1979; Anderson and van Wincoop, 2003) mean that it is adequate for
explaining between-country trade flows. Nevertheless, some estimation
practices have been subject to criticism. For instance, for estimation
purposes, the gravity equation is usually log-linearized and then esti-
mated by ordinary least squares (OLS). This technique suffers from two
major issues: the way the log-linearized models treat zero bilateral trade
values and the potential Jensen’s inequality bias. For instance, Lin (2013)
shows that the failure of OLS estimation of log-linearized gravity models
to correct for the Jensen’s inequality issue and the omission bias have led
to a counter intuitive result of increasing negative impact of distance on
trade over time.

Two methods have been widely used to deal with the first issue: (i)
using censored data, in which only observations with non-zero trade
flows are used for the estimation; or (ii) augmenting the dependent
variable (i.e., trade) by 1 to avoid undefined cases of the log of zero.
Excluding zero values could represent a substantial loss of information, as
it would imply a significant reduction in the sample size, which can reach
more than 50% in some cases. Obviously, augmenting the dependent
variables by 1 could yield biased and inefficient estimators caused by
model misspecification.

The second issue is related to the Jensen’s inequality bias that could
potentially arise when estimating the log-linearized version of the gravity
model. Jensen’s inequality suggests that the expected value of the loga-
rithm of any random variable will not equal the logarithm of its expected
value, but it will depend on the random variable’s mean and variance.
Hence, if the variance of the error term of the multiplicative gravity
equation is correlated with the regressors, the estimation will be biased.
In other words, OLS would yield unbiased results only if the trade con-
ditional variance is proportional to the square of the mean.? However, if
the trade variance is proportional to the mean, for example, or to any
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other combination of the mean and its square, estimating the gravity
model with the standard techniques that use log-transformed data could
yield significantly biased results.

Santos Silva and Tenreyro (2006) (hereafter called SST (2006)) crit-
icized the conventional estimation practices of log-linearized gravity
trade models and proposed solutions for dealing with heteroscedasticity
and zero trade values. Broadly, SST (2006) stated that the gravity
equation should be estimated in its multiplicative form via a Poisson
pseudo-maximum-likelihood (PPML) technique. SST (2006) showed that
this method was robust to different patterns of heteroscedasticity and
dealt with Jensen’s inequality. The work of SST (2006) raised important
questions about the findings of many seminal studies (e.g., Anderson and
van Wincoop, 2003) that the predicted coefficients of GDP to be close to
one. The improvements of gravity models by the PPML method made it
more tractable and therefore, the PPML has been used extensively for
estimating gravity equations (Bosquet and Boulhol, 2015; Egger and
Tarlea, 2015; Dai et al., 2014; Lin, 2013; Yotov, 2012; de Sousa, 2012;
Egger and Larch, 2011; Head et al., 2010; Shepherd, 2010; Fitzgerald,
2008; Tenreyro, 2007; among others).3

Despite the robustness of the PPML, some issues may persist. Firstly,
as mentioned by SST (2006), although PPML yields consistent estimates
regardless of the heteroscedasticity pattern, it is only efficient when the
trade variance is proportional to the trade mean. Thus, inefficiency issues
would partially persist if the true trade variance is not perfectly in line
with the previous assumption. Secondly, although PPML allows esti-
mating data with zero trade values, it does not explicitly model them.
This makes PPML susceptible to mis-specification and sample selection
bias particularly if zero trade values are correlated with gravity equation
regressors. In this paper, we consider a set of nonlinear estimators that
attempt to deal with the prevalence of zero values and heteroscedasticity,
and we examine the performance of these estimators for situations with
and without censoring. In addition to the PPML, our estimators include
nonlinear Heckman Two-Step Least Squares (Heckman 2stp), and
Nonlinear Least Squares (NLS). We also propose new generalized forms
of NLS and Heckman 2stp estimators (GNLS and GHeckman 2stp,
respectively). These generalized estimators allow for different trade
variance processes: constant, proportional to the trade mean, propor-
tional to the square of the trade mean or a combination of those sce-
narios. When correctly implemented, the new GNLS should, in principle,
outperform the PPML, as the former allows for different variance process
scenarios, whereas the latter is only optimal with the case where variance
is proportional to the trade mean. The new GNLS can be viewed as an
iterative version of the normal family Quasi-Generalized Pseudo-Max-
imum Likelihood introduced by Gourieroux et al. (1984).

To the best of our knowledge, previous studies using the Heckman
two-step least squares technique to estimate the gravity model had to log-
linearize the gravity model and estimate it linearly. In this paper, in
addition to dealing with heteroscedasticity, we estimate the Heckman
two-step least squares in a nonlinear manner (multiplicative form) and
hence avoid the Jensen’s inequality bias that would arise from the log-
linearization of the gravity model. Moreover, using Heckman two-step
technique should resolve, or at least minimize, any censoring bias that
could arise when truncation is correlated with gravity model’s explana-
tory variables. One could argue that, in such case, we can simply estimate
the whole sample (including zero trade values) with the standard PPML.
Yet, results can still be biased if zero trade observations correspond to
pairs for which estimated trade values are small but not very close to
zZero.

In light of the performance of all the nonlinear estimators, we discuss
their efficiency and their success in dealing with the issues highlighted
earlier. For instance, by estimating the multiplicative form of the gravity
equation (e.g., PPML, NLS, etc.), we can avoid Jensen’s inequality bias

3 According to Google Scholar, SST (2006) paper has been cited 4856 times,
as of January 2020.
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but the estimators will not be fully efficient, given that heteroscedasticity
is not fully addressed.

The simulation results suggest that the PPML yields unbiased and
efficient estimates only when the simulated data do not include structural
zeros. The results also show that the new GNLS slightly outperforms the
PPML when data generator does not produce structural zeros. Finally,
and most importantly, according to our Monte Carlo simulations,
GHeckman_2stp estimator turns to be the best among all nonlinear esti-
mators considered in this study. In fact, GHeckman_2stp was remarkably
efficient in correcting for the sample selection bias as well as in reducing
the standard deviations of the nonlinear Heckman estimates.

After evaluating the performance and efficiency of the nonlinear es-
timators, the next step in our methodology consists in estimating the
gravity model with the real data and comparing the estimates of our new
nonlinear estimators with those of PPML. The empirical results suggest
that previous studies might have overestimated the contribution of many
variables in the bilateral trade between countries.

This paper is structured as follows. Section 2 provides a brief review
of the literature and Section 3 introduces the new nonlinear estimators
and describes our approach for reporting robust standard errors. In sec-
tion 4, we describe our data generating processes and report the Monte
Carlo simulation results. Section 5 provides new estimates of the gravity
equation and Section 6 concludes the paper.

2. Brief literature review

Estimating the coefficients of a gravity model has led to alternative
methods based on linear and nonlinear least squares (OLS and NLS), a set
of pseudo-maximum likelihood models and the Heckman two-step pro-
cedure. Here, we review the previous literature on gravity models and
discuss the proposed estimation methods, the main findings and the
drawbacks.

Arvis and Shepherd (2013) argued that, in addition to handling het-
eroscedasticity and zero trade flows, the PPML is the only estimator that
produces estimates such that the total actual trade flows equals the sum
of the fitted values. This finding confirms the superiority of the PPML
over other gravity equation estimators. Although the PPML estimator
outperformed those obtained with traditional methods (OLS, NLS etc.), it
has been subjected to some criticism for problems of overdispersion and
excess zero flows (Martin and Pham, 2019; Burger et al., 2009; Marti-
nez-Zarzoso, 2013; Krisztin and Fischer; 2015). Many alternative esti-
mation methods to the PPML have been proposed (the gamma
pseudo-maximum likelihood (GPML), feasible generalized least
squares, Eaton-Tamura Tobit, the negative binomial pseudo-maximum
likelihood (NBPML) model, the zero-inflated Poisson pseudo-maximum
likelihood  model, the zero-inflated negative binomial
pseudo-maximum likelihood model, etc.).

Krisztin and Fischer (2015) claimed that using PPML to estimate the
gravity equation produces consistent but biased parameter estimates if
spatial dependence between origin—destination pairs is ignored. On the
basis of Monte Carlo simulations, Martinez-Zarzoso (2013) compared the
PPML estimator with GPML, a NLS estimator and a feasible generalized
least squares estimator by using three different datasets. Marti-
nez-Zarzoso (2013) found that PPML was less affected by hetero-
scedasticity but did not outperform the other estimators in terms of bias
and standard error. She concludes that for any application, the selection
of the most appropriate estimator requires a number of tests and depends
on the characteristics of each dataset.

Gomez-Herrera and Baleix (2010) reviewed the literature on the
methods of specifying and estimating the gravity equation. They used a
gravity equation based on Anderson and van Wincoop (2003) and dis-
cussed the fit of different estimation procedures (panel regressions with
fixed and random effects, OLS, and simple and panel Poisson method-
ologies) applied to a large dataset of bilateral exports for 47 countries
over 1980-2002. They found that none of the estimators outperformed
the others in all aspects.
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Xiong and Chen (2014) estimated the gravity equation in the presence
of sample selection and heteroscedasticity by using a two-step method of
moments (TS-MM) estimator. Their Monte Carlo experiment showed that
the TS-MM estimates were robust to several combinations of sample se-
lection and heteroscedasticity. Additionally, the TS-MM estimator per-
formed reasonably well even when the data generation process deviated
from the standard TS-MM assumptions. However, it is important to note
that the simulations conducted by Xiong and Chen (2014) to confirm the
outperformance of TS-MM over other estimators were based on a DGP
where zeros are generated in a perfectly consistent way with the selection
equation of the TS-MM. Hence, it is not surprising that their proposed
estimator would outperform other candidates including PPML. However,
as we will discuss later, structural zeros in our simulations are generated
via a microfounded DGP that is different from our Heckman selection
equation. This would increase the credibility of our comparative effi-
ciency evaluation of the estimators being investigated.

Sukanuntathum (2012) performed two-step gravity model estima-
tions under heteroscedasticity and data censoring with several estima-
tors. He showed that the NBPML was robust to different forms of
heteroscedasticity and is well able to manage zero flows. Burger et al.
(2009) estimated a gravity model by using a set of modified PPML models
(NBPML, zero-inflated, zero-inflated Poisson pseudo-maximum likeli-
hood, and the zero-inflated negative binomial). Their zero-inflated esti-
mation technique provided a good alternative to log-normal and standard
Poisson specifications of the gravity model under assumptions of heter-
oscedasticity. Gomez-Herrera (2013) compared methods of estimating
Anderson and van Wincoop’s (2003) model (truncated OLS, OLS (1+X),
Tobit, Probit, Heckman, panel fixed, panel random and PPML) and found
that the ad hoc methods were not suitable for estimating the gravity
equation because they provide inefficient and biased estimates.

Assane and Chiang (2014) found that the OLS and Heckman two-step
procedure models produce coefficient estimates for distance and other
trade cost parameters that were higher than those of the PPML estimator,
consistent with SST (2006). They concluded that although the Heckman
two-step and PPML models are appropriate for zero trade flows, the
PPML estimator is the only estimator that deals with heteroscedasticity
problems.

The gravity model has been used in other applications where the
estimation issues related to zero data values and heteroscedasticity
coexist. For instance, Santana-Gallego et al. (2016) extend Helpman et al.
(2008) framework to investigate the impact of tourism on trade. Using a
data set with around 70% of the observations take the value of zero,
Nguyen et al. (2020) test several empirical specifications and estimation
methods to explain bilateral FDI flows between 31 Asian countries. They
find that PPML is among the appropriate estimators in this context.
Dorakh (2020) argued that one drawback of the current practice of
estimating an FDI model is the presence of zero and negative values in the
FDI data, concluding that PPML is a more appropriate method. Mallick
and Marques (2017) use two-stage Heckman model to analyze the export
pricing behavior of Indian and Chinese firms when zero values are due to
selection issues into exporting. Their results indicate systematic differ-
ences in pricing strategies of Chinese and Indian exporters whilst
discovering a selection bias in exports to high-income countries.

3. Nonlinear estimators of the gravity equation

Consider the econometric formulation of the traditional gravity
equation:

Wi
yi=ho (lDﬂj> Mijs

where y; represents the trade flows from country i to countryj; x; and x;
represent the GDP for countries i and j, respectively; Dj is the distance
from country i to country j; f;, f, and p; are unknown parameters and 7;

(€Y
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is an error term with an expectation, E (;117 |xi,xj,Dl-j), of one that is assumed
to be statistically independent of the regressors.

To estimate this model, traditional approaches in the trade literature
start by log-linearizing Equation (1), then estimating the parameters of
interest through least squares with Equation (2):

®))

Two major issues are associated with this approach. First, complica-
tions associated with observations for the dependent variable with zero
trade values can arise. Second, estimating Equation (2) with OLS can
produce biased estimators if var(i;) is correlated with the regressors. In
other words, OLS would produce unbiased results only in the special case
where the variance of bilateral trade is proportional to the square of the
trade mean. However, if the trade variance is an increasing function of
the trade level but not necessarily proportional to the square of the mean,
the variance of the error terms (In 57;) and regressors (x;, X;, or Dy) in

ln(y[/-) =Inf, + pInx; + fyln x; — B3In Dy + In i,

Equation (2) would be correlated. In this case, OLS results will be
certainly biased. Unfortunately, many studies neglect this fact, leading to
a bias related to Jensen’s inequality.

Many estimators have been proposed to estimate the traditional
gravity equation. In the remainder of this section, we present a set of
selected classical nonlinear estimators: PPML and NLS. We also introduce
the nonlinear Heckman two-step (Heckman_2stp) and our new general-
ized nonlinear versions of NLS and Heckman_2stp, namely, GNLS and
GHeckman_2stp.

3.1. NLS and PPML

Following SST (2006), the multiplicative gravity equation can be
written as the following exponential function:

Vij = exp [lnﬂ[] + piin x; + Pyln x; — Bsln D,»j] s 3)

where 7; is a log-normal random variable with a mean of 1 and a vari-
ance of 2.

The objective function of the NLS estimator can be formulated as
follows:

B= argmﬂin Z [y — exp(x:)]%, @
i=1
The FOC derived from this objective function can be written as:
Z bi— CXP(X:'/?)]CXP(X:'/A’))X:' =0, (5)
i=1

Clearly, NLS is optimal only when the trade variance is constant.
However, trade variance is very likely to be an increasing function of the
trade level. In this case, NLS will be overweighting nosier observations.
Thus, we can conclude that although NLS estimates of the gravity
equation are asymptotically consistent, they may be very inefficient.

SST (2006) argued that we can get an estimator that is more efficient
if we follow McCullagh and Nelder (1989) and by estimating the pa-
rameters of interest with a Poisson pseudo-maximum likelihood esti-
mator (PPML). In addition to be optimal when the conditional variance is
in proportion to exp(x;$), SST (2006) argue that PPML is robust to many
other variance scenarios. The proposed estimator of SST (2006) consists
of dividing the NLS FOC by the conditional variance, which yields the
following FOC:

> i — exp(xB)]xi =0, O]
i=1

The advantages of the PPML can be summarized as follows. First,
PPML avoids the Jensen’s inequality bias, as it estimates the nonlinear
form and allows the inclusion of zero observations. Second, the
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simulation exercises of SST (2006) and subsequent empirical in-
vestigations (including the present study) show that PPML is relatively
robust to different variance process scenarios.” Third, the fact that PPML
is already available in many econometric software packages (STATA, for
instance) makes it a very attractive workhorse estimator for estimating
gravity models.

3.2. The nonlinear Heckman two-step

Tobin (1958) had shown that zero values of the dependent variable
could create potentially large biases in parameter estimates, even in
linear models, if the estimator used does not allow for this feature of the
data generating process. Hurd (1979) shows that estimations of gravity
models with truncated data (exclusion of zero values) would result in
large biases. Many studies attempted to deal with the prevalence of zero
values. However, the most influential and significant work was con-
ducted by Heckman (1979). Broadly speaking, Heckman (1979) gener-
alized Tobin’s (1958) approach to estimation in the presence of this
problem based on non-random sample selection. A nonlinear version of
Heckman’s formulation in the context of our gravity model is presented
as:

yli = exp(x;f3) + uy;, (7 and 8)
Voi = X0 + Uy,
=y if y5 >0, 9
yi=0if y,, <0, (10)

{ul {0} 0% o1
Uy 01" 6pp 1
Where x;; is a vector of exogenous regressors, f and aare Kx 1 vector of
parameters. According to Heckman, Equation (7) is a behavioral equa-
tion of interest and Equation (8) is a sample selection rule (could be
Probit type that describes the propensity to trade) that determines
whether observations have a non-zero value. In principle, y; and y, are
unobserved while y; is.
The error terms u; and uy can be expected to be positively correlated
and they are commonly assumed to have bivariate normal distribution.
We estimate our sample selection model using Heckman two-step
approach. In the first step, we estimate a Probit selection equation via
maximum likelihood and we compute the Inverse Mills Ratio (IMR) for
each country pair, denoted J; (also known as Heckman’s lambda) based
on the Probit estimates. Formally, for the probability of trade, the Probit
regression can be written as follows:

[a

Prob(T = 1|x) = ®(xa), an
where T is a dummy for the occurrence of trade (T = 1 if trade occurs and
T = 0 otherwise), x is a vector of explanatory variables, a is a vector of
unknown parameters and @ is the cumulative distribution function of the
standard normal distribution. Estimation of this model yields the so-
called Inverse Mill Ratio, A:

_ g(xa)

Axa) =5y

12

Where ¢ is the probability density function of the standard normal dis-
tribution.

In the second step, to correct for the non-random selection, we
include Heckman’s lambda as additional regressor in the estimation of

4 When data generators do generate structural zeros.
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the gravity equation:

v =exp(x;B) + A(x;a)0 + vy, 13)
6 is a vector of unknown parameters. Presented this way, sample selec-
tion can be viewed as a form of omitted-variables bias, conditional on
both x and 4 as if the sample is randomly selected. As long as u; has a
normal distribution and v; is independent from 1, Heckman’s two-step
estimator is consistent (Puhani, 2000). Hence, Heckman_2stp allows to
estimate the multiplicative form of the gravity equation, which avoids
the Jensen inequality bias that could arise from the log-linearization.
Equation (13) is estimated by minimizing the following sum of squared
residuals:

) n N )
argmin ; 1s — exp(xB) — A(x@)0).

To the best of our knowledge, most of the previous studies that
adopted Heckman two-step technique to estimate the gravity model had
to log-linearize it. Although Helpman et al. (2008) used nonlinear least
squares to estimate a two-step Heckman, the estimated equation was a
log-linearized version of the gravity equation with an additional
nonlinear term (equivalent to IMR) capturing the fraction of firms that
participate in the bilateral trade.” Even though Xiong and Chen (2014)
estimate a nonlinear Heckman model, their proposed estimator, TS-MM,
does not allow for different variance processes as our Generalized
Heckman_2sls that we will introduce in the next section. Moreover, the
TS-MM is a standard method of moments estimator where the exogenous
matrix (Q) of the moment condition (equation (9) in Xiong and Chen
(2014)) consists simply of the gravity equation regressors (x) and the
IMR (4).° Obviously, there is nothing to guarantee that the choice of Q
would lead to an efficient estimator. In fact, the FOC’s of TS-MM can be
viewed as an augmented version of the PPML FOC’s, where IMR is added
linearly as an extra explanatory variable.”

3.3. Generalized nonlinear estimators

In addition to the PPML and NLS (complete and censored data, i.e.
y > 0) and the Heckman_2stp, we also estimate new generalized versions
of NLS and Heckman_2stp.®

Consider the gravity model where errors terms are entered additively:
yi=f(x,5,0) + ¢, i=1,....,n (14)
where ¢; has a mean zero and a conditional variance: h? .

For NLS, f(x;, 3,6) = exp(x;3), while for Heckman 2stp, f(x;,f,0) =
exp(x;8) + 64 (x;@), where A(x;@) is the IMR already calculated from es-
timates of the Probit model in the first step.

We first estimate the constant trade variance model and we store the

5 Santos Silva and Tenreyro (2015) argued that the Helpman et al. (2008)
model is only valid under the assumption of constant variance. These criticisms
do not apply to our nonlinear Heckman two-step.

6 These moment conditions are obviously different from those of our proposed
Heckman estimator described in equation (13) where the FOC’s for g are

ib’n’ —exp(xi8) —A(x;@)0]x; exp(x;4) = 0 and those of 9 are ib’n — exp(xif) —
i-1 i-1

ﬂ(x{d)e]i(xﬁ) =0.

7 Even in the case where the trade variance is proportional to the trade mean
(< exp(xp)), we doubt that the TS-MM would be optimal. The reason is that the
variance of the adjusted error term (y —exp(xf) —wA) for the lowest positive
trade values (close to zero such that 2 is different from 0) would be asymptot-
ically different from the variance of the original gravity equation error.(y —
exp(xp)).

8 Estimation was performed in Matlab, given the efficiency and the flexibility
of the software in dealing with nonlinear optimization. Codes are available upon
request.
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estimated coefficients (B, 5) and the residuals €, where:

(B,0) argmmZb —f(x. 8,0 and &=y, —f(x.5,0), (15)

The generalized versions are then obtained by running the following
loong

i. Run a regression of squared residuals (?2) against a constant term,
exp(xp) and the square of exp(xf):

& =|wo| + |1 [exp(xB) + |wa|[exp(xB)]” + v, (16)

Where wg, w1,0, are the variance process coefficients expressed in
absolute value to avoid negative predicted variance levels. y is an
error term.

ii. Use Equation (16) to estimate the individual conditional variance

Hi, such that:

hi=|@s |+ |@; lexp(xiff) + @3] [exp(xiB)], 17

iii. Estimate the new coefficients$ and # by minimizing the following
sum of squared variance-corrected residuals:
(ﬁ é rgmmz |:},* xnﬁv ):| , (18)

=p;0=>0and & =y, — f(x; p.0).
v. Repeat steps (i-iv) until (3, 8) converge to (3,0).

iv. Update estimates: ﬁ

These generalized estimators allow for different trade variance pro-
cesses: constant, proportional to the trade mean, proportional to the
square of the trade mean or a combination of these scenarios. Note that
since our new GNLS is comparable to the feasible generalized least
squares, the variance coefficients estimators (g, @;and @;)are asymp-

totically consistent when # and 0 are consistent estimators of the true
B and 6 (Davidson and Mackinnon, 2003; Amemiya, 1973). It is worth
noting that our GNLS is similar to the GLS introduced by Delgado (1992)
and Delgado and Kniesner (1997). However, the latter is based on
nonparametric Nearest Neighbor (NN) estimates of the conditional
variance process. One major drawback of this nonparametric generalized
least squares estimator is the problem of choosing the number of nearest
neighbors in an optimal way. Moreover, as highlighted by SST (2006),
the implementation of this estimator to estimate the gravity equation is
very challenging given the high number of regressors.'°

This estimation of the generalized versions constitutes one of the
main contributions of this paper. In fact, the new GNLS should, in prin-
ciple, outperform the PPML as the former allows for more variance
process scenarios than the latter, which is only optimal when the vari-
ance is proportional toexp(xf). It is interesting to note that the new GNLS
is an iterative version of the normal family Quasi-Generalized Pseudo-
Maximum Likelihood method introduced by Gourieroux et al. (1984).
Table 1 describes all nonlinear estimators considered in this paper.

2 To estimate these variance equations, we need to use a nonlinear least
squares procedure, as the coefficients are in terms of absolute value. A signifi-
cant challenge was to find good starting values in order to avoid convergence
issues. The Matlab function “fminsearch” was very efficient at getting very good
initial values.

10 gince the nonparametric weights would depend on the Euclidean distance
between regressors.
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Table 1
Nonlinear estimators.

Estimator Notation

Nonlinear Heckman two-step least squares
Generalized Nonlinear Heckman two-step least squares

Heckman_2stp
GHeckman_2stp

Nonlinear least squares NLS
Nonlinear least squares — censored NLS_C
Generalized nonlinear least squares GNLS
Generalized nonlinear least squares — censored GNLS_C
Poisson pseudo-maximum likelihood PPML
Poisson pseudo-maximum likelihood - censored PPML_C

3.4. Robust standard errors

In this section, we explain how we compute heteroskedasticity-robust
standard errors for our new nonlinear estimators. Recall that the esti-
mation of NLS and Heckman_2stp consists in minimizing the following

= z i — £ (xi, 5,0

GNLS and GHeckman 2stp, the criterion function to be minimized is
n
=
i=1
estimated standard deviation of the i®observation. Given that all these
nonlinear estimators are obtained by minimizing a sum-of-squares
function, a consistent estimate of the covariance matrix of (4, 6) can be
computed by the means of Gauss-Newton regression (GNR). Following
Davidson and Mackinnon (2003), we can show that a reasonable way of
estimating a heteroscedasticity-consistent covariance matrix (HCCME)
estimator of (f,0) is to use the sandwich covariance matrix (HC1):

sum-of-squared residuals (SSR) function:Q(f) . For

simply the weighted SSR function: Q(f) {w

2
} , where h; is the

i

PSR DU
(x x> X Qx(x'x)™", 19)
where Q is a n x n diagonal matrix with the squared weighted residual

n
n—k

N\ 2
(5‘) as thet™ diagonal element, where - is included to correct for
hi

the typically small size least-squares residuals. Xis a n x K matrix with a

typical (i, j)th element corresponding to an estimate of the derivative of
f(x:,8,0)with respect to g;(or also with respect to 6 for the Heckman _2stp

and GHeckman_2stp) and divided by the estimated standard deviation Ry
for the case of generalized versions.'!

4. Simulations
4.1. Data generation processes

We conducted different experiments to allow for different data gen-
eration processes (DGPs). We considered three dimensions in each DGP:
the distribution of the errors (normal vs. log-normal), the frequency of
censoring (different values of k) and five different patterns of hetero-
scedasticity. For all experiments, we adopt the multiplicative model used
by SST (2006):

Elyilx] = exp(xif) = exp(By + prx1i + Poxai); i =1, 10000, (20)

......

where xy; is the standard normal variable that captures the behavior of
continuous explanatory variables (e.g., income levels and distance),
whereas xy; is a binary dummy that captures variables such as border and
free trade agreements, and equals 1 with a probability of 0.4. A set of
observations for each variable is generated in each replication as 8, = 0,
p1 =P, = 1. Data on bilateral trade, y, are generated from the following

1 For GNLS, X; ] is equal to M while for the GHeckman_2stp, X; j is equal
hi
Xij exn(xt )
hx

A(xl @)
h(

to or to
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Table 2

Simulation results of the Eaton Tamura Data Generating Process under Different Forms of Heteroscedasticity and Censoring Levels.

Distribution Normal Errors Log-Normal Errors
Variance of p Estimator k=0 k=1 k=0 k=1
p1 p2 p1 p2 p1 p2 p1 p2
bias s.d. bias s.d. bias s.d. bias s.d. bias s.d. bias s.d. bias s.d. bias s.d.

Case 1: 1/(exp(.))? NLS —0.009475 0.010192 -0.012855 0.017917 0.149097 0.011213 0.153677  0.024106 0.000092  0.009777 —0.001151 0.020299 0.156634 0.011474 0.162301  0.024918
GNLS —0.013532 0.010768 —0.016049 0.018323 0.193703 0.021461 0.198924 0.031888 0.000346 0.009862 —0.000904 0.020582 0.178746 0.026331 0.183997 0.035827
NLS_C —0.023135 0.009798 -0.028622 0.017497 0.117217 0.011373 0.116009  0.023531 0.000092  0.009777 —0.001151 0.020299 0.125074 0.011964 0.125549  0.02464
GNLS_C —0.033355 0.011166 —0.038335 0.018225 0.128466  0.013116 0.126289  0.024757 0.000346  0.009862 —0.000904 0.020582 0.129395 0.015062 0.129379  0.026382
Heckman_ 2stp  0.000261 0.010139 -0.000137 0.020185 0.12708 0.011912 0.127514 0.023972 0.000092 0.009777 —0.001151 0.020299 0.139065 0.013628 0.14201 0.025236
Gheckman_2stp —0.000121 0.010249 —0.000645 0.020465 0.147301  0.014717 0.147528  0.025587 0.000346  0.009862 —0.000904 0.020582 0.146573  0.016835 0.148969  0.027213
PPML —0.063867 0.01418 —0.059943 0.022566 0.231669  0.016629 0.24572 0.03269 —0.00114 0.019069 —0.000966 0.030545 0.273547  0.028834 0.290752  0.0465
PPML_C —0.124253 0.011482 —0.123557 0.019616 0.086472  0.015449 0.085241  0.02941 —0.00114 0.019069 —0.000966 0.030545 0.098231  0.033798 0.099699  0.048577

Case 2: 1/exp(.) NLS —0.006163 0.031655 —0.016842 0.053782 0.142418 0.037905 0.145455 0.073001 0.002652 0.031416 —0.000507 0.058176 0.158032 0.038225 0.161758 0.075359
NLS_C —0.031302 0.031374 -0.046018 0.051724 0.081452  0.039031 0.078523  0.069632 0.002652  0.031416 —0.000507 0.058176 0.113988  0.040893 0.110003  0.074869
GNLS —0.029088 0.02051 —0.033244 0.036461 0.229963  0.034358 0.235574  0.063682 0.000707  0.01985 —0.002491 0.044471 0.230651  0.034965 0.236076  0.067296
GNLS_C —0.091823 0.023176 —0.099798 0.033625 0.075017 0.022999 0.068921 0.049679 0.000707 0.01985 —0.002491 0.044471 0.118574 0.031737 0.110773 0.061754
Heckman_ 2stp —0.013369 0.036735 —0.016955 0.060524 0.084405 0.044126 0.081808  0.073303 0.002652  0.031416 —0.000507 0.058176 0.125617  0.043994 0.123536  0.077602
Gheckman_2stp —0.056072 0.022896 —0.061612 0.041653 0.087218  0.027448 0.081922  0.052258 0.000712  0.019848 —0.002459 0.044425 0.160714  0.037427 0.157816  0.066022
PPML —0.033014 0.019035 —0.035683 0.035582 0.254988 0.023664 0.263316 0.056814 0.000708 0.019592 —0.001869 0.043993 0.286378 0.028359 0.298563 0.06583
PPML_C —0.091769 0.016682 —0.099448 0.03369 0.073418 0.022434 0.067722 0.048877 0.000708 0.019592 —-0.001869 0.043993 0.08716 0.030707 0.07874 0.062515

Case 3: 1 NLS 0.027737  0.121464 0.000588  0.17327 0.144665 0.141628 0.152544  0.216254 0.01983 0.145841 0.007972  0.21133 0.175338  0.183032 0.174121  0.269021
NLS_C 0.016051  0.104809 0.002177  0.147055 0.073983  0.115998 0.07955 0.173924 0.01983 0.145841 0.007972  0.21133  0.08462 0.195316 0.076484  0.269281
GNLS 0.004126 0.035453 —0.002013 0.064972 0.307932 0.114812 0.313139 0.134037 —0.004681 0.043149 -0.010916 0.08117 0.30151 0.101093 0.301984 0.147965
GNLS_C 0.001052  0.033243 0.00044 0.052456 0.150864  0.052426 0.151866  0.074261 —0.004681 0.043149 -0.010916 0.08117 —0.000349 0.081262 -0.017527 0.129727
Heckman 2stp  0.010259  0.12742 0.009494  0.171189 0.05202 0.152695 0.056064  0.202497 0.047786  0.323882 0.024478  0.276366 0.086508  0.207032 0.085054  0.283903
Gheckman_2stp 0.000273 0.040058 0.000611 0.0524 0.080191 0.056622 0.079576 0.077325 —0.004541 0.044072 -0.01145 0.082331 0.055103 0.100984 0.037045 0.141603
PPML 0.006084  0.045189 —0.004222 0.076038 0.26401 0.055522 0.27362 0.109295 0.002928  0.056386 —0.006466 0.098592 0.292494  0.072739 0.294846  0.143516
PPML _C 0.002121  0.040207 —0.00141 0.062162 0.111266  0.051526 0.11393 0.086712 0.002928  0.056386 —0.006466 0.098592 0.037693  0.085354 0.021038  0.139457

Case 4: 1/exp(.) + NLS 0.024339  0.166932 0.153192  0.203628 0.106065 0.187123 0.308853  0.239775 0.013927  0.194697 —0.002161 0.261645 0.177659  0.346839 0.160177  0.349581

exp(x2) NLS_C 0.005691  0.13363 0.275843  0.162113 0.034585  0.150482 0.350621  0.18896 0.013927 0.194697 -0.002161 0.261645 —0.018859 0.308919 0.081082  0.352854

GNLS —0.037065 0.04408 0.107976  0.071066 0.194854 0.07865 0.421702  0.114398 —0.013274 0.065926 —0.020706 0.121002 0.210839  0.113896 0.245534  0.183971
GNLS_C —0.065012 0.042287 0.200504  0.064193 0.042947  0.042948 0.353521  0.070287 —0.013274 0.065926 —0.020706 0.121002 —0.234909 0.230711 -0.05584 0.210848
Heckman_ 2stp 0.002217  0.167117 0.284995 0.196706 0.030968  0.190879 0.343026  0.233789 0.01251 0.19237 —0.00742 0.260508 0.005874  0.33923 0.101992  0.371598
Gheckman_2stp —0.029991 0.053761 0.22024 0.06917  0.03079 0.058947 0.339595  0.083248 —0.013542 0.06808 —0.020179 0.122767 —0.079348 0.188153 0.084279  0.211043
PPML —0.026391 0.055338 0.113823  0.085288 0.166316  0.065501 0.392535 0.114948 0.000236  0.083652 —0.013409 0.135289 0.227392  0.10589 0.257798  0.179698
PPML _C —0.05097 0.046071 0.211297 0.06603 0.033451 0.057857 0.346193 0.089176 0.000236 0.083652 —0.013409 0.135289 -0.1323 0.125993 0.01562 0.177909

Case 5: 1/(exp(.))* + 1 NLS 0.013136  0.121606 —0.014804 0.171009 0.127802 0.14166 0.133166  0.213375 0.020262  0.144409 0.002267 0.217364 0.16592 0.177973 0.164562  0.268095
NLS_C —0.011834 0.106787 —0.027664 0.146532 0.051168  0.116053 0.053809  0.172384 0.020262  0.144409 0.002267 0.217364 0.064407 0.196657 0.057107  0.271371
GNLS —0.082596 0.074447 —0.083107 0.087122 0.173574 0.110114 0.182916 0.122883 —0.00351 0.059653 —0.015613 0.095815 0.239703 0.08454 0.234614 0.146029
GNLS_C —0.136441 0.079877 —0.131686 0.077654 —0.083536 0.201532 —0.062999 0.174836 —0.00351 0.059653 —0.015613 0.095815 —0.178339 0.308172 -0.19144 0.309387
Heckman_2stp 0.014609  0.121959 0.013174 0.167363 0.061534 0.15176  0.06579 0.20526  0.0198 0.144135 0.003068  0.217906 0.102449  0.216071 0.09841 0.294665
Gheckman_2stp —0.009806 0.116451 —0.00176 0.106332 0.099058 0.226382 0.083459 0.489654 —0.008053 0.100406 —0.022835 0.125567 0.065668 0.175797 0.056253 0.204103
PPML —0.058604 0.046058 —0.066132 0.074044 0.172506 0.054858 0.177775 0.104043 0.002144 0.05843 —0.01199 0.103886 0.239796 0.074936 0.239873 0.14516
PPML_C —0.102954 0.042171 -0.10567 0.061305 0.02475 0.049408 0.022625 0.08272 0.002144  0.05843 —0.01199 0.103886 —0.049592 0.08949 —0.070367 0.142749
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Table 3

Simulation results of the Head and Mayer Data Generating Process under Different Forms of Heteroscedasticity and Censoring Levels.

Distribution Normal errors Log-normal errors
Variance of p Estimator k=05 k=1.25 k=05 k=1.25
p1 p2 p1 p2 p1 p2 p1 p2
bias s.d. bias s.d. bias s.d. bias s.d. bias s.d. bias s.d. bias s.d. bias s.d.

Case 1: 1/(exp(.))? NLS 0.030872  0.010055 0.033348  0.020026 0.071138 0.010807 0.078251  0.021493 0.036494 0.01031 0.039191  0.021521 0.073587  0.011055 0.081308  0.02206
NLS_C —0.027348 0.010023 -0.031616 0.018485 -0.028538 0.010643 —0.033613 0.019195 -0.015237 0.010448 -0.018389 0.020811 -0.024494 0.011175 -0.028781 0.0205
GNLS 0.033241  0.010743 0.035576  0.020654 0.085454  0.018611 0.092499  0.02742 0.037744  0.011455 0.040291  0.022114 0.077921  0.016253 0.08551 0.025426
GNLS_C —0.031092 0.010951 —-0.035549 0.019206 —0.03147 0.011635 -0.036773 0.01982 —0.015393 0.010424 -—0.01859 0.020866 —0.024576 0.011137 -—-0.028875 0.020515
Heckman 2stp  0.002772  0.010608 0.00124 0.020374 0.00365 0.011066 0.002995  0.021289 0.00029 0.011386 —0.002056 0.020976 0.002703  0.013013 0.001817  0.022714
Gheckman _2stp 0.00273 0.010779 0.001056  0.020605 0.003732  0.011108 0.002972  0.021514 0.000244  0.011426 —0.002132 0.021139 0.00273 0.013041 0.001818  0.022797
PPML 0.085155 0.017084 0.087718  0.030952 0.203966  0.017909 0.213294  0.035608 0.113716  0.022776 0.115949  0.037657 0.211753 0.026047 0.22378 0.042452
PPML_C —0.121526 0.013696 —0.123897 0.023785 -0.110729 0.014617 -0.118718 0.025064 —0.064338 0.024769 —0.065535 0.035166 —0.098656 0.030377 —0.104149 0.040662

Case 2: 1/exp(.) NLS 0.02997 0.032122 0.030569  0.056424 0.067211  0.032935 0.072146  0.059206 0.037829  0.031624 0.038455 0.060755 0.071812  0.032793 0.07678 0.060324
NLS_C —0.04159 0.034412 —0.048531 0.054339 —0.044916 0.036944 —0.052623 0.056839 —-0.01366 0.034092 —0.0189 0.060016 —0.027233 0.037103 —0.034234 0.059593
GNLS 0.079662 0.022852 0.080365  0.047996 0.150488  0.033763 0.15817 0.057888 0.081719  0.026509 0.081174  0.051939 0.134811 0.034382 0.143076  0.058483
GNLS_C —0.130313 0.03823 —0.134604 0.047686 —0.138288 0.044837 —0.147483 0.055383 —0.048279 0.026306 -0.054107 0.047738 -0.075525 0.033552 -0.083941 0.054863
Heckman 2stp  —0.014937 0.037414 —0.018387 0.060832 —0.014304 0.039257 —0.017551 0.06304 0.001255 0.035536 —0.001179 0.062385 0.001764  0.038285 —0.000618 0.06556
Gheckman 2stp —0.061925 0.023557 —0.068884 0.0451 —0.061945 0.027049 —-0.069213 0.049959 -0.009183 0.023649 —0.013558 0.049297 —-0.011494 0.028564 —0.016053 0.054378
PPML 0.096657  0.021289 0.096662  0.046829 0.205958  0.023374 0.212657  0.052432 0.117201  0.022692 0.115939  0.051133 0.212527  0.026112 0.221895  0.055246
PPML_C —0.112361 0.020225 —0.119062 0.038861 —0.116658 0.023549 —0.127706 0.042572 —0.059724 0.024228 —0.06438 0.048209 —0.096925 0.028928 —0.105011 0.051788

Case 3: 1 NLS 0.044822 0.156767 0.04002 0.217665 0.077982 0.158468 0.077695  0.225973 0.048663 0.149161 0.038251 0.212786 0.091337  0.198495 0.081692  0.239368
NLS_C —0.007755 0.105299 -0.014652 0.147805 -0.016302 0.112728 -0.024424 0.155316 —0.003547 0.159314 -0.018679 0.214639 —0.018906 0.170412 —0.037168 0.225042
GNLS 0.135869  0.067746 0.129963  0.100637 0.238594  0.095877 0.238475  0.125065 0.14396 0.078773 0.1347 0.10893 0.238694  0.104029 0.237772  0.131575
GNLS_C —0.06105 0.031977 —0.058642 0.052342 —0.091052 0.039365 —0.094136 0.060652 —0.099345 0.055289 -0.098126 0.091178 -0.170685 0.074673 —0.174198 0.10917
Heckman 2stp  0.013748  0.134028 0.013752  0.176147 0.013223 0.139739 0.013294  0.183565 0.047896  0.349383 0.030236  0.298963 0.045924  0.351654 0.02851 0.306683
Gheckman_2stp —0.024973 0.038981 —0.025182 0.055888 —0.048362 0.04768 —0.050697 0.062914 —0.040969 0.056242 —0.050995 0.092073 —0.070919 0.070382 —0.084294 0.105459
PPML 0.098594  0.063267 0.095479  0.107228 0.198622  0.066905 0.20185 0.116742 0.118087  0.06154 0.112859  0.106497 0.212765 0.065189 0.215622  0.116961
PPML_C —0.035508 0.0469 —0.039719 0.071364 —0.054047 0.054877 —0.062498 0.080243 —0.057709 0.071303 -0.065064 0.10739 —0.096144 0.083156 —0.110063 0.121044

Case 4: 1/exp(.) + NLS 0.054049  0.272773 0.052558  0.305227 0.08127 0.26667 0.090288  0.30817 0.041063  0.207323 0.031265 0.267677 0.076727  0.223887 0.073655  0.281307

exp(x2) NLS_C —0.021391 0.139217 0.256561 0.166969 —0.027309 0.147513 0.250556  0.176249 —0.009338 0.229345 -0.022135 0.286642 —0.029598 0.247347 —0.045379 0.297235

GNLS 0.083692  0.072925 0.123127  0.128709 0.184153  0.095521 0.231189  0.147509 0.1081 0.099063 0.107178  0.139522 0.185153  0.121691 0.197202  0.162899
GNLS_C —0.145847 0.047504 0.11565 0.067014 —0.164749 0.053141 0.096438  0.073251 -0.139782 0.107057 -0.126574 0.146295 -0.242296 0.159999 -0.221778 0.182288
Heckman 2stp  0.009758  0.176397 0.295281  0.203195 0.010183  0.181614 0.297824  0.211219 0.093097  0.544207 0.056481  0.427599 0.089549  0.545221 0.054255  0.434528
Gheckman 2stp —0.057416 0.058018 0.199657  0.07421 —0.077329 0.064525 0.184099  0.080755 —0.052001 0.088895 —0.058287 0.13694 —0.082514 0.112665 —0.085961 0.15248
PPML 0.052432  0.097872 0.077404  0.148852 0.146683 0.102357 0.188374  0.157744 0.100822  0.092026 0.099473  0.143466 0.187077  0.097313 0.198648  0.154309
PPML_C —0.077133 0.055177 0.185574 0.076686 —0.088686 0.064138 0.173362  0.086501 —0.078905 0.108589 —0.082686 0.148948 —0.134554 0.12781 —0.139274 0.166984

Case 5: 1/(exp(.))* + 1 NLS 0.037883  0.157358 0.032268  0.217146 0.07195 0.158742 0.070582  0.225352 0.053556  0.195005 0.040447  0.233175 0.079593  0.153475 0.072149  0.220221
NLS_C —0.029495 0.106378 —0.03835 0.146537 —0.033916 0.113335 —0.043698 0.154299 0.000996 0.204957 —0.016955 0.23639 —0.023926 0.171275 -0.04151 0.225496
GNLS 0.069584  0.061659 0.070627  0.100871 0.190227  0.079252 0.191826  0.115273 0.120459  0.0794 0.113463  0.114221 0.207143  0.108367 0.144585  1.386992
GNLS_C —0.302273 0.187291 -0.271865 0.1618 —0.275647 0.150376 —0.260418 0.136717 —0.126998 0.092059 -0.124622 0.127504 -0.250682 0.242606 —0.235877 0.255517
Heckman 2stp  0.018273 0.128118 0.018539 0.1724 0.017263 0.134953 0.017858  0.180072 0.050171 0.358768 0.032276  0.303604 0.050166  0.358977 0.033185  0.310259
Gheckman 2stp —0.021186 0.267953 —0.010039 0.165875 —0.027282 0.090899 -0.027415 0.102749 —0.034175 0.073007 —0.044087 0.115777 —0.064013 0.105415 -—0.072968 0.137927
PPML 0.059634  0.063798 0.05735 0.107328 0.167221  0.067024 0.16876 0.116745 0.104198  0.063369 0.099324  0.110006 0.193281  0.067887 0.196142  0.120722
PPML_C —0.111641 0.048026 —-0.11665 0.070722 -0.111262 0.055487 —0.12214 0.079701 -0.075535 0.074073 —0.081826 0.111602 —0.12659 0.087714 —0.139934 0.126485
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main equation:

yi =exp(xip)n;, 21
where 7; is a log-normal random error with a mean of 1 and a variance of
2. Equivalently, data can be also normally simulated and generated as:
yi = exp(x;f) + €, where ¢; is normally distributed with a mean of 0 and a
variance of (exp(xi/}))zaiz.12 Negative values of y that can be potentially
generated in this case are replaced with 0.

In addition to the four patterns of heteroscedasticity used by SST
(2006), we introduce an additional pattern in our sensitivity analysis.
The five cases are:

i. Case 1: 67 = [exp(xf)] % Vx| = 1.
ii. Case 2: 62 = [exp(xif)] 3 Vyilx] = exp(x;f).
iii. Case 3: 62 =1; V[yilx] = [exp(x:8)]>.
iv. Case 4: 62 = [exp(x;p)] " + exp(xx); Vyilx] = exp(x;p) +

exp(x2i) % [exp(xif)]°.

. Case 5: 07 =1+ [exp(xif)] % Vyilx] =1+

1
exp(xip)®

We design two data generating processes. The first one is consistent
with the threshold Tobit of Eaton and Tamura (1994); while the second
data generating process is in line with Head and Mayer (2014).

4.1.1. The Eaton and Tamura data generating process

The Eaton-Tamura DGP (ET, hereafter) consists in adding a negative
constant term, —k to equation (21) to ensure the prevalence of a signif-
icant number of zero trade values:

yi=exp(xp)n; — k, (22)

Obviously, trade occurs only if a threshold level of potential trade is
exceeded. In our simulations, we consider all possible combinations be-
tween the values of k = (0,1) and the distribution of the error terms
(normal vs. log-normal). For normally simulated data, Equation (22) is
equivalent to: y; = exp(x;f) — k+ ¢&. Negative values of y that can be
generated even when k = 0 are replaced with 0. Obviously, when k > 0,
the ET becomes inconsistent with the gravity equation specification.
However, there are two reasons for considering this data generating
process in our simulations. First, unlike the second DGP (described
below), the ET allows us to generate data without structural zeros, when
k is set to 0 and y is log-normally distributed. Second, reporting simu-
lations results for ET with k = 1, would confirm that using this type of
data generating process, already used in literature (see, for example,
Martin and Pham, 2019), where positive trade values are generated from
an equation that is not consistent with the standard gravity model, is not
very useful in assessing the performance of estimators since all of these
estimators would be mis-specified, by construction.

4.1.2. The Head and Mayer data generating process
Our second DGP is consistent with Head and Mayer (2014) (HM,
hereafter), where data are generated via the following specifications:

yi1 =exp(xp)n;, (23)

yiz =exp(xff) — k + p;, 24

12 Let’s assume that n; = 1+ v;, where v; has a mean 0 and variance (f?, then
¥i = exp(xif)(1 +v;) = exp(x;f) + exp(x;f)vi. Hence, y; can be written as: y;
exp(x;f) + €, where & = exp(x;$)v;, with a zero mean and a variance equal to

(exp(x,—/}))zaiz. We choose to adopt the second presentation of the DG for the
normally distributed simulations to avoid generating too many negatives
simulated values of y. Obviously, this was not an issue for the lognormal case
given the nature of the lognormal distribution where all values are by con-
struction positive.
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Yi=Yi, Yi2 >0

yi=0,5,<0" 29

and {

Where y; is normally distributed with mean 0 and variance 6. We allow
the error terms of the measure and selection equations to be correlated
with each other (i.e., corr(n,u) = p). Different values for k are considered
(0.5 and 1.25).

Clearly, the HM is perfectly consistent with the multiplicative form of
the gravity equation. Moreover, the selection equation of the HM allows
to generate structural zeros when the simulated potential trade mean is
below a certain average thresholdk. This is in line with Head and Mayer
(2014), where exporting firms face market-specific entry costs so that
zeros are generated if the predicted aggregate trade falls below a
market-specific threshold. Hence, k in our HM can be interpreted as an
average exporting fixed costs, and y; as the destination-specific random
component of these costs.

4.2. Simulation results

Tables 2 and 3 provide the results of the ET and HM when the error
terms follow normal and log-normal distributions for the five cases of the
variance processes and considering different values of the parameter k. In
each table, we report the bias of the two parameters of interest (4, and
p,) and the standard deviation of the estimators.

4.2.1. The ET results

Our first task was to match the results of Cases 1 to 4 of the experi-
ments conducted by SST (2006) and to confirm their findings in relation
to the superiority of PPML. Table 2 summarizes the simulation results of
the ET.

As expected, when k = 1, all estimators yield significantly biased
results. As highlighted earlier, this version of ET is inconsistent with the
specification of the traditional gravity equation that does not include the
parameter k.'® It follows that this type of data generator might not be
appropriate for assessing the performance of gravity equation estimators.

In the cases where simulated data do not include any zero values
(lognormal errors with k = 0), all estimators yield unbiased results. GNLS
performance is very similar to PPML, but with slightly lower standard
deviations for variance cases 1, 2 and 3. One remarkable result of the ET
simulations is the efficiency of the generalized estimators (GHeck-
man_2stp and GNLS) in significantly reducing the standard deviations of
the estimates compared to Heckman_2stp and NLS, in particular for se-
vere heteroskedasticity cases (3, 4 and 5). Moreover, for cases 3 and 5,
the magnitude of the NLS and Heckman_2stp bias, although small, was
further reduced with generalized versions.

It is interesting to note that although NLS yields relatively small bias,
the standard deviations become relatively larger for severe hetero-
scedasticity of y (cases 3, 4 and 5). It is worth noting that in SST (2006)
and others, although they report similar results for less severe hetero-
scedasticity cases, their NLS yields extremely large bias and standard
deviations for more severe heteroscedasticity. We believe that the main
reason behind this discrepancy is the impact of unrealistically large co-
efficients estimates on the reported average bias.!? These extreme out-
liers are associated with convergence problems only encountered with
NLS estimations in case of severe heteroscedasticity of y. This is not
surprising since NLS assumes constant conditional variance of y. It seems
that in many other papers, authors did not drop these extreme outliers in
their NLS simulations exercise as we do here. In fact, when we do not

13 According to the simulations results of OLS and log-linearized Heckman

Two-Step Least Square estimations (not reported here, but available up on

request), this issue becomes more pronounced when the estimation requires a

logarithmic transformation, as the bias reaches high levels.

14 Unrealistically large estimates refer to cases where ﬁl is, for example,
equal to 1000 for a true f,equal to 1.
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Table 4
Estimation of the gravity equation.
Estimator NLS GNLS NLS_C GNLS_C PPML PPML_C Heckman_2stp GHeckman_2stp Probit
Variable
Constant —45.0989%** —30.1638%** —45.085%** —28.7579%** —32.3261*** —31.5296%** —45.081%** —29.0386*** —16.583%***
(3.3792) (1.4602) (3.3832) (1.4803) (2.0595) (2.161) (3.3851) (1.8458) (0.7616)
Log of exporter’s GDP 0.7378%*%* 0.734%** 0.7376%** 0.7188%*** 0.7325%** 0.7213%*** 0.7376%** 0.7056%** 0.4572%%*
(0.0384) (0.0253) (0.0384) (0.0242) (0.0268) (0.0268) (0.0384) (0.0304) (0.0081)
Log of importer’s GDP 0.8619%*** 0.7397%** 0.8617+** 0.7277%%* 0.7411%** 0.7319%** 0.8617*** 0.7177%** 0.3289%**
(0.041) (0.0244) (0.041) (0.0237) (0.0274) (0.0279) (0.041) (0.0302) (0.0074)
Log of exporter’s per 0.3957%*%* 0.1775%%* 0.3953%*** 0.1805%** 0.1567*** 0.1544%%* 0.395%** 0.1651*** 0.1005%**
capita GDP (0.1157) (0.049) (0.1158) (0.0465) (0.0533) (0.0527) (0.1158) (0.0588) (0.01)
Log of importer’s per —0.0325 0.1638%** —0.0325 0.165%** 0.135%** 0.1327%%* —0.0325 0.1605%** 0.109%**
capita GDP (0.0619) (0.0419) (0.0619) (0.0397) (0.0449) (0.0445) (0.0619) (0.0506) (0.0102)
Log of distance —0.9237%** —0.8188 —0.9234***  —0.8166%*** —0.7838%** —0.7763%** —0.9233%** —0.8136%** —0.4495%**
(0.0725) (0.0443) (0.0725) (0.0438) (0.0546) (0.0553) (0.0725) (0.0499) (0.0224)
Contiguity dummy —0.0813 0.1783 —0.0811 0.1768 0.1929* 0.2024* —0.081 0.1705 —0.467***
(0.1004) (0.1345) (0.1005) (0.1358) (0.1043) (0.1052) (0.1005) (0.1379) 0.1)
Common-language 0.6894+** 0.8582%** 0.6894+** 0.8872%** 0.746%** 0.7513%** 0.6894*** 0.9325%** 0.3295%**
dummy (0.085) (0.1498) (0.0851) (0.148) (0.1347) (0.1342) (0.0851) 0.17) (0.0372)
Colonial-tie dummy 0.0358 —0.097 0.0355 —0.1224 0.025 0.02 0.0355 —0.1944 0.1587%***
(0.1254) (0.1559) (0.1255) (0.1534) (0.1498) (0.15) (0.1255) (0.1802) (0.0395)
Landlocked exporter —1.3671%** —0.7355%** —1.367*** —0.7328%%** —0.8635%** —0.8724%** —1.3667*** —0.8932%** 0.0529
dummy (0.2022) (0.1176) (0.2023) (0.1127) (0.1572) (0.1573) (0.2023) (0.1462) (0.0361)
Landlocked importer —0.4715** —0.7287%** —0.4716** —0.7412%** —0.6964*** —0.7035%** —0.4716%* —0.7964*** —0.0661*
dummy (0.1838) (0.1082) (0.1839) (0.1044) (0.1408) (0.1409) (0.1839) (0.134) (0.0362)
Exporter’s remoteness 1.1878%** 0.5461** 1.1876%** 0.5089%** 0.6598%** 0.6472%%* 1.1875%** 0.5673%*** 0.1249%*
(0.1158) (0.1822) (0.114) (0.1338) (0.1352) (0.1823) (0.1359) (0.0537)
Importer’s remoteness 0.433 1.0094%** 0.3961 0.5615%** 0.5493*** 1.0093*** 0.4541 —0.0574
(0.1541) (0.1036) (0.1542) (0.1022) (0.1185) (0.1197) (0.1542) (0.1186) (0.0531)
Trade agreement 0.4425%** 0.0304 0.4426%*** 0.0071 0.1811** 0.1794** 0.4426%** 0.0374 1.2488%**
dummy (0.109) (0.0724) (0.1091) (0.073) (0.0886) (0.0903) (0.1091) (0.0771) (0.142)
Openness dummy 0.928%** —0.3121%%** 0.927%%* —0.3766%** —0.1068 —0.1394 0.9268%** —0.3161** 0.2917%*%*
(0.1912) (0.1085) (0.1915) (0.1062) (0.1312) (0.1329) (0.1915) (0.1329) (0.0276)
Inverse Mill Ratio (A) 5915.8445 —1596.1116*
(5921.4483) (857.0481)

All reported standard errors (in parentheses) are corrected for heteroskedasticity. *p > 0.1, **p > 0.05, *

drop the extreme values (representing less than 3% of the NLS simulation
results), we get very similar results (extremely large bias and standard
deviations) to what is usually reported in the literature.

As for the set of experiments with normally distributed errors (k = 0),
results are relatively different. For this version of the ET, althoughk is set
to zero, a certain degree of censoring is still implied given the possible
negative simulated values that are converted to zeros. This explains why
censored and non-censored versions of the same estimator yield slightly
different results. Despite the low censoring rate, except for case 3, PPML
and PPML, C estimates are biased, even in the case where PPML is sup-
posed to be optimal (case 2). As for the other estimators, they perform
reasonably well with significantly lower bias than PPML. In particular,
GHeckman_2stp turns to be the best estimator in terms of bias and
standard deviation.

4.2.2. The HM results

Table 3 summarizes the simulation results of the HM.!® Although
most of estimators yield biased results in one or more of the scenarios of
the cases of heteroscedasticity and/or the distribution of the error terms,
some estimators are more efficient than others. In fact, GHeckman_2stp
seems to yield the best results in terms of bias and standard deviation.

15 Since that the selection equation of the HM (y;2 = exp(x;f) — k+ p;) is not
consistent with the Heckman first stage equation (y;i = X;a@ + Uy;), we decide not
to report the Probit estimates. However, we should note that most of the Probit
estimates (a ) are consistent with their counterparts of the gravity equation
(/?)in terms of sign and significance. As for the coefficient on the IMR, unre-
ported simulations results show that for the first heteroskedasticity scenario, is
significantly positive with an average magnitude close to the correlation coef-
ficient p (0.5). However, as the heteroskedasticity becomes more severe, the
average estimate of @ significantly decreases (especially for case 3).
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p > 0.01.

Although NLS C yields relatively low bias for most of the cases, the
corresponding standards deviations are very large. It is important to
notice that for all estimators, the truncated versions yield significantly
better results than the versions estimating the whole samples, especially
for high degree of censoring. In the same line, we can clearly notice that
when k increases from 0.5 to 1.25, the bias of PPML and NLS increases to
substantially higher magnitudes, while for PPML_C and NLS_C, the bias
increases at significantly lower rates. This could mean that the mis-
specification bias is more severe than the selection bias.

Moreover, HM results show that both PPML and PPML_C produce
significantly biased estimates for all simulations scenarios. A closer look
at those results can reveal that PPML tends to overestimate the true co-
efficients (positive mis-specification bias), while PPML _C tends to un-
derestimate them (negative selection bias). This confirms that PPML
technique can yield inconsistent results when the true data generator
produces structural zeros.

As for the performance of the nonlinear Heckman estimators, the
results confirm that Heckman_2stp and GHeckman_2stp were very suc-
cessful in correcting for the sample selection bias, especially when the
variance of simulated data is constant. Indeed, for heteroskedasticity
pattern 1, the bias of both Heckman_2stp and GHeckman_2stp is very
close to zero with very low standard deviations. Consistently with the ET
findings, GHeckman_2stp was very efficient in reducing the standard
deviations of the nonlinear Heckman estimates for severe hetero-
scedasticity cases (3, 4 and 5). However, GNLS and GNLS_C performed
really badly, and had higher bias and standards deviations than those of
NLS and NLS_C, respectively. It turns out that when the frequency of
structural zeros is relatively high, GNLS, like PPML, becomes inconsistent
and inefficient.

Finally, it is interesting to notice that the estimation bias seems to be
quite affected by the data distribution function (normal vs lognormal),
which means that the performance of the estimators is sensitive to the
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error distribution. This might indicate that a more accurate estimation of
the gravity equation would probably require a maximum likelihood
technique.

By way of review, the results of the ET and MH indicate that nonlinear
Heckman estimators are very successful in correcting for the sample se-
lection bias. Moreover, GHeckman_2stp, data even with high frequency
of structural zeros. Although, none of the estimators yields perfectly
unbiased efficient results when the data are censored, GHeckman_2stp
seems to perform reasonably well and outperform all other estimators.
PPML yields very good results only when there is no censoring and the
error terms are log-normally distributed. Even in this case, the new GNLS
seems to yield more efficient results than PPML for several variance
scenarios.

5. Empirical results

In this section, we report the results of the nonlinear estimators that
we propose and compare them with the main empirical findings in the
literature, namely those of SST (2006). We start with a brief description
of the data, and then we discuss the results.

5.1. Data

As our paper proposes refinements of the existing gravity equation
estimators, mainly PPML, using the database of SST (2006) would be
essential for comparison purposes. The data consist of a cross-section of
bilateral export flows for 136 countries in 1990. A detailed description of
the data, including the list of countries, variables, sources, etc., can be
found in SST (2006). Briefly, the dependent variable is ‘bilateral exports’,
and the explanatory variables are ‘exporter’s GDP/, ‘importer’s GDP/,
‘real GDP per capita’, ‘distance’, and ‘remoteness’. Moreover, the
explanatory variables include a set of dummy variables for contiguity,
common-language, colonial-tie, landlocked, ‘preferential trade agree-
ments’, and ‘openness.’16

5.2. Estimates of the coefficients

Table 4 presents the results of the traditional nonlinear estimators
widely used in the literature, namely NLS and PPML, and the newly
introduced nonlinear estimators, GNLS, Heckman 2stp and GHeck-
man_2sp. We also present the Probit estimates for the first stage of the
Heckman models (Heckman 2stp & GHeckman 2stp). NLS, GNLS,
Heckman_2stp, GHeckman_2stp and PPML are estimated with the whole
sample (including country pairs with zero bilateral trade flows), whereas
NLS_C, GNLS_C and PPML, C represent the censored versions of the cor-
responding models.'”

As expected, our estimates of NLS and PPML match those of SST
(2006). We can also notice that GNLS and GNLS_C yield estimates that
are relatively close to those of PPML and PPML C, respectively. It is
interesting to note that the Heckman estimate of the coefficient of the
IMR, 6,'® is not statistically significant, which explains why Heck-
man_2stp yields almost the same estimated coefficients as those of NLS_C,

16 Gee SST (2006) for a detailed description of the data sources and the vari-
ables’ summary statistics.

17 Results of OLS and log-linearized Heckman Two-Step Least Square estima-
tions (not reported here, but available up on request) are consistent with pre-
vious empirical studies.

18 For GHeckman_2stp, the estimate of @ is only significant at 0.1 level. The
negative sign on the IMR would mean that some unobservable factors that make
two countries more likely to trade with each other seem also to negatively affect
their expected bilateral trade. However, it is important to note that the IMR
coefficient was not significant for the standard Heckman and was only weakly
significant for the GHeckman_2sls. Moreover, the estimates of the GHeckman_
2sls were very close to those of the GNLS_C, which technically means that the
selection bias is not a significant issue for the actual dataset.
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especially for the key variables. In fact, if the sample selection is random
(or not significant), # should be asymptotically equal to 0. In this case, the
nonlinear Heckman two-step would simply consist in estimating the same
nonlinear equation that NLS_C estimates. Hence, the estimates of NLS_C
and Heckman_2stp should be asymptotically equivalent. Having said
that, we should expect some numerical discrepancy with finite samples
estimations since IMR coefficient is not going to be exactly equal to 0.
Moreover, results show that there is no significant difference between the
estimates of the full sample PPML and NLS, and their corresponding
truncated subsample versions. Hence, we can conclude that for the actual
bilateral trade database, including or excluding zero trade values does
not seem to dramatically affect the estimation results, at least when
heteroskedasticity is not estimated.®

Another interesting point to notice is that NLS, NLS_C and Heck-
man_2stp’s estimated coefficients of log of importer’s GDPs (~0.86) are
significantly higher than those reported by PPML and the generalized
estimators (between 0.71 and 0.74). This suggests that estimating the
gravity equation with estimators that assume constant-trade variance
(i.e. NLS, NLS_C and Heckman_2stp) can potentially lead to an over-
estimation of the contributions of importer’s GDP in explaining the
bilateral trade flows, at least for the data used in this paper.?’ Remark-
ably, GHeckman_2stp yields the lowest estimated coefficients of the log
of importer’s and exporter’s GDPs. This indicates that, even when sample
selection seems to be random, estimating the gravity equation with
nonlinear estimators that explicitly model zero trade values and, most
importantly, allow for different conditional trade variance processes (i.e.
GHeckman_2stp), may result in relatively low coefficient estimates of the
main key variables of the traditional gravity equation.

Coefficients of other variables such as the distance, exporter’s and
importer’s per capita GDP, common language, landlocked exporter and
importer, openness, and remoteness continue to be significant, especially
for the generalized versions, but with some differences in the magni-
tudes, as compared to the PPML. For instance, the GNLS and GHeck-
ma_2stp estimates of the exporters’ and importers’ remoteness
coefficients are lower than their counterparts in the PPML with difference
clustered around 0.1 and 0.11, respectively. The same holds true for the
estimates of the openness but with larger differences in magnitude of
around 0.2. In the same vein, PPML estimates for distance, exporter’s and
importer’s per capita GDP, landlocked exporter and importer coefficients
are higher than our generalized estimates but the divergence is small.
This suggests that the PPML, which does not fully address the issue of
heteroscedasticity, might tend to overestimate most of the regressors’
coefficients of the gravity equation.

Finally, we report the first-stage Probit estimation, shared by both
Heckman estimators. As expected, most of key variables seem to affect
the extensive margin of trade (probability of doing a trade) in a similar
way they affect the intensive margin of trade (volume of trade). Inter-
estingly, colonial ties and preferential trade agreements, which do not
seem to affect the trade volume according to our main estimators,>! have
significantly positive coefficients in the Probit regression. In other words,
while sharing colonial past and/or being a part of preferential trade
agreement do not affect the level of bilateral trade between two coun-
tries, they do play an important role in determining whether these
countries would trade with each other.??

19 Possibly explained by non-random selection and very small potential trade
for zero trade observations. However, zero trade values issues can potentially
arise with different bilateral trade databases that might not necessarily share the
same features as those of SST (2006)’s database.

20 same applies for trade friction variables (trade agreement and openness).

2! Including the PPML for the case of colonial ties.

22 Unlike the PPML that predicts a significant positive impact of trade agree-
ments on the intensive margin of trade.
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6. Conclusion

The prevalence of zero trade values and the presence of hetero-
scedasticity have raised many questions about the estimation methods of
the gravity model. In this paper, we revisit the theoretical principles and
estimation practices of many specifications of the gravity equation and
show that improving the consistency and efficiency of the estimates is
possible. Moreover, we propose new nonlinear estimators that deal with
heteroskedasticity and correct for potential selection bias. In particular,
we introduce a new nonlinear Heckman two-step (Heckman_2stp) esti-
mator that corrects for the selection bias and avoid Jensen inequality. We
also introduce generalized versions of the NLS and the Heckman two-step
(GNLS and GHeckman 2stp) estimators that allow for different trade
variance processes. We use Monte Carlo simulations to assess the per-
formance of our proposed estimators and to compare them with the other
popular nonlinear estimators, namely the NLS and PPML. Simulation
results indicate that GHeckman_2stp was very successful in correcting for
the sample selection and in reducing the standard errors of the estimates,
even with high frequency of structural zeros. Overall, the generalized
nonlinear Heckman two-step estimator seems to perform reasonably well
and outperform all other estimators. According to the simulation results,
PPML yields very good results only when there is no censoring and when
error terms are log-normally distributed. Moreover, the new generalized
NLS outperforms PPML for several variance scenarios.

Our empirical results suggest that estimating the gravity equation
with estimators that assume constant-trade variance can lead to an
overestimation of the contributions of importer’s GDP in explaining the
bilateral trade flows, at least for the database used in this paper. More-
over, when heteroskedasticity is not estimated, including or excluding
zero trade values, does not seem to dramatically affect the estimation
results. Finally, the GHeckman_2stp, our best estimator candidate, yields
the lowest coefficient estimates for almost all gravity equation variables,
especially for GDP elasticities of both importer and exporter.

In future work, we plan to introduce a new maximum likelihood
nonlinear Heckman that endogenously models the occurrence of zero
observations and estimates the heteroscedasticity.

Declaration of competing interest
None.
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