RESEARCH ARTICLE
 Correlation between the three-dimensional maxillomandibular complex parameters and pharyngeal airway dimensions in different sagittal and vertical malocclusions

${ }^{1,2,3}$ Majedh Abdo Ali Al-Somairi, ${ }^{2}$ Yi Liu, ${ }^{4}$ Abeer A. Almashraq, ${ }^{3,5}$ Bushra S. Almaqrami, ${ }^{1}$ Lina H. Alshoaibi, ${ }^{1,2,3}$ Enas S. Alyafrusee, ${ }^{1}$ Barakat Al-Tayar, ${ }^{1}$ Xiaoli An and ${ }^{6,7}$ Maged S. Alhammadi
${ }^{1}$ Department of Orthodontics, School of Stomatology, Lanzhou University, Lanzhou, China; ${ }^{2}$ Department of Orthodontics, School of Stomatology, China Medical University, Shenyang, China; ${ }^{3}$ Department of Orthodontics and Dentofacial Orthopedics, Faculty of Dentistry, Ibb University,, Ibb, Republic of Yemen; ${ }^{4}$ Department of Pre-Clinical Oral Health Sciences, College of Dental Medicine, QU Health, Qatar University, Doha, Qatar; ${ }^{5}$ Department of Orthodontics, Ningbo Dental Hospital, Ningbo, Zhejiang, China; ${ }^{6}$ Orthodontics and Dentofacial Orthopedics, Department of Preventive Dental Sciences, College of Dentistry, Jazan University, Jazan, Saudi Arabia; ${ }^{7}$ Postgraduate Orthodontic Program, Department of Orthodontics, Pedodontics and Preventive Dentistry, Faculty of Dentistry, Sana'a University, Sana'a, Republic of Yemen

Objectives: This study aimed to determine the three-dimensional (3D) correlation between maxillomandibular complex parameters and pharyngeal airway dimensions in different sagittal and vertical malocclusions.
Methods: This retrospective cross-sectional study included the CBCT scans of 368 patients with a mean age of 23.81 ± 3.01 years. The patients were classified into three groups (skeletal Class I, II, and III). Each class group was divided into three subgroups based on vertical growth patterns (hypo-, normo-, and hyperdivergent). The maxillomandibular complex was evaluated in the three planes using 16 skeletal measurements. Naso-, oro-, hypo-, and total pharyngeal airway spaces were assessed in terms of width, volume, surface area, and minimum constricted area (MCA). Two-way ANOVA followed by the Bonferroni post-hoc test were used.
Results: The nasopharyngeal airway space was significantly lowest regarding sagittal and lateral widths in the skeletal Class III patients, the lowest volume and surface area were in hyperdivergent patients, and MCA was the highest in Class II and hypodivergent patients. The oro- and hypopharyngeal sagittal width, volume, surface area, and MCA were the lowest in the hyperdivergent patients, and oropharyngeal lateral width and hypopharyngeal sagittal width were the highest in skeletal Class III. The total pharyngeal volume, surface area, and MCA were the lowest in the hyperdivergent patients, and skeletal Class II patients had the lowest MCA.
Conclusions: The pharyngeal airway dimensions differ with various sagittal and vertical malocclusions. These differences could apply to diagnosis, treatment planning, and possible changes following orthodontic/orthopedic or surgical treatment.
Dentomaxillofacial Radiology (2023) 0, 20220346. doi: 10.1259/dmfr. 20220346
Cite this article as: Al-Somairi MAA, Liu Y, Almashraq AA, Almaqrami BS, Alshoaibi LH, Alyafrusee ES, et al. Correlation between the three-dimensional maxillomandibular complex parameters and pharyngeal airway dimensions in different sagittal and vertical malocclusions. Dentomaxillofac Radiol (2023) 10.1259/dmfr. 20220346.

Keywords: Cone-beam computed tomography; Growth; Malocclusion; Pharynx

[^0]
Introduction

The upper airway is a hollow space surrounded by hard and soft tissue structures. This complex and highly dynamic structure contributes to various actions like breathing, swallowing, and speaking; thus, it is critical to assess this dynamic space properly. ${ }^{1}$

Craniofacial growth and development involve complex mechanisms and multifactorial structures. Since the early 20th century, researchers have studied the relationship between craniofacial structures and respiratory functions. ${ }^{1}$ The most widely accepted theory for craniofacial growth and development is Moss's functional matrix theory, which notes that most craniofacial growth and development is devoted to regulating the functional behavior of the surrounding soft tissues. ${ }^{2}$ Angle et al ${ }^{1}$ proposed that the function and anatomy of the pharyngeal airway strongly influence craniofacial growth and development. Consequently, any discrepancies in normal respiration through active craniofacial development can result in speech abnormalities, abnormal craniofacial development, and dental malocclusion. Previous studies have linked skeletal malocclusion to airway morphology changes and vice versa. ${ }^{3}$ Therefore, pharyngeal airway evaluation is important in diagnosing positional and structural dentofacial patterns.

Through the extensive use of CBCT and advancement in medical care, pharyngeal airway evaluation has recently received much attention in the orthodontics. ${ }^{4}$ Several studies have evaluated airway measurements and their effects on craniofacial growth and development; some of these studies rely on lateral cephalogram (LC) analysis, ${ }^{3,5-9}$ while some are based on many CBCT radiographic images. ${ }^{10-23}$ CBCT allows the three-dimensional (3D) visualization and measurement of complex pharyngeal airway anatomy with less exposure to radiation and highly precise multiplanar and volumetric measurements of the pharyngeal airways. ${ }^{24}$

Figure 1 The 3D coordinate system. (a) The midsagittal plane constructed by the nasion and basion point and incisive foramen. (b) The horizontal plane: constructed by the right and left porions and the right orbitale. (c) The vertical plane constructed by the basion point and perpendicular to the horizontal and midsagittal plane.

CBCT studies in this context have yielded inconsistent and contradictory findings. ${ }^{10-16,18-22}$ The primary reasons for these discrepancies include inconsistent methodologies, variations in airway measurement sites, and study sample diversity. ${ }^{25}$ Differences in such studies when assessing the airway during variable growth periods, ${ }^{12,19}$ taking malocclusion into account, disregarding the impact on airway measurements, ${ }^{14,22}$ or there are limited CBCT studies to evaluate sagittal and vertical craniofacial dimensions and ignoring the transverse dimension, ${ }^{12,19}$ two multiplanar image-based segmentation ${ }^{14}$ and airway saturation value was not being considered. ${ }^{26}$ The associations between the maxillary and mandibular sagittal and vertical positions significantly impact the pharyngeal airway, with few reports about the detailed offending dimension in the 3D complex region. ${ }^{21}$

The current study aimed to minimize these variations by making a comprehensive case selection, presentation, and pharyngeal airway assessment; this study aimed to determine the 3D correlation between the maxillomandibular complex parameters and the pharyngeal airway dimensions in different sagittal and vertical malocclusions.

Methods

Sample selection

This retrospective cross-sectional study was approved by the ethics committee of the Hospital of Stomatology, Lanzhou University (No: LZUKQ-2019-056), and written informed consent was obtained from all participants upon registration in the institutional database. The inclusion criteria were as follows: (1) aged 18-28 years old, (2) normal nasal breathing, (3) normal body mass index (BMI), (4) craniocervical inclinations were limited from 90° to 110° to minimize the head posture impact on pharyngeal airway measurements, and (5) good quality CBCT images. The exclusion criteria included: (1) history of temporomandibular joint disorders symptoms, (2) previous orthodontic treatment or orthognathic surgery, and (3) skeletal abnormalities in the craniofacial region.

Sample size

The sample size was determined using the G^{*} power 3.0.10 software with an α level of 0.05 and a power level equal to 90%. The estimate is based on the study by Paul et al, ${ }^{27}$ where the mean oropharyngeal volume was 13240.1 ± 5112.1 and $7816.9 \pm 2767.0 \mathrm{~mm}^{3}$ for skeletal Class I and II, respectively. A study by Wang et al ${ }^{28}$ revealed that the mean glossopharyngeal volume was 5997.06 ± 1674.9 and 4412.97 ± 972.9 mm^{3} for average and high growth patterns, respectively. The resulting sample size was 11 and 14 patients in each group. The minimum number of subjects included in this study in any subgroup was 40 .

Three-dimensional CBCT protocol

CBCT images were acquired using the I-CAT Image System (Imaging Sciences International Inc. Hatfield)

Table 1 Definitions of anatomical landmarks, reference lines and planes, and pharyngeal airway borders

	Name	Abbreviation	Definition
Anatomical	Nasion	N	That represents of nasofrontal structure in the midline
Landmarks	Sella	The midpoint of the sella turcica	
Basion	The most inferoposterior of the foramen magnum is in the midline of the		
skull base			

Table 1 (Continued)

	Name	Abbreviation	Definition
Pharyngeal airway borders	The anterior border of the NP		Passed through the PNS point perpendicular to the FH
	The inferior border of the NP		Parallel to the FH through the PNS and perpendicular to the sagittal plane
	The superior border of the OP		The inferior border of the NP
	The inferior border of the OP		Parallel to the palatal plane intersecting the most anteroinferior point of the second cervical vertebrae (C2a)
	The superior border of the HP		The inferior border of the OP
	The inferior border of the HP		Parallel to the palatal plane intersecting the most anteroinferior point of the third cervical vertebrae (C3a)
	The posterior border		The posterior wall of the pharyngeal

with the following acquisition parameters: field of view $(17.0 \times 13.0 \mathrm{~cm}) ; 120 \mathrm{kV} ; 18.54 \mathrm{MAs}, 8.9$ exposure time, and the image voxel size was 0.3 mm . The scanning was done with maximum intercuspation, standardized head position, the Frankfort plane parallel to the floor, and no swallowing. The patients were instructed to swallow once before each exposure and hold their breath during the scan. The DICOMs (Digital Imaging and Communications in Medicine) of the CBCT images were collected and then imported into InVivo 6.0.3 (Anatomage, San Jose, CA) for skeletal measurements (maxilla and mandible). In contrast, the Dolphin 11.8 system (Dolphin Imaging and Management Solutions, Chatsworth, CA) was used for pharyngeal airway segmentation and measurements. The CBCT images were reoriented using coordinate system orientation, as shown in Figure 1, depending on the central landmarks chosen by Nasion, Incisive Foramen, and Basion; Orbital and Porion determined the horizontal landmarks, and the vertical landmark was according to the Basion point. ${ }^{29,30}$

Skeletal measurements

The skeletal anatomical landmarks, reference lines, and planes are shown in Table 1 and the skeletal measurements are shown in Table 2. The subgroup distribution was evaluated using four measurements depending on Chinese norms; ${ }^{31,32}$ the ANB° and AF-BF mm, to determine whether the patient classified as skeletal Class I, II, and III malocclusions where $0.7^{\circ} \leq \mathrm{ANB} \leq 4.7^{\circ}$ and $0.8 \mathrm{~mm} \leq \mathrm{AFB}$ $\leq 6.4 \mathrm{~mm}$ were considered skeletal Class I, ANB $>4.7^{\circ}$ and AF-BF $>6.34 \mathrm{~mm}$ were considered skeletal Class II, and $\mathrm{ANB}<0.7^{\circ}$ and $\mathrm{AF}-\mathrm{BF}>0.8 \mathrm{~mm}$ were considered as skeletal Class III. For determination of vertical pattern; GoGnSN° and $\mathrm{SGo} / \mathrm{NMe}^{\%} \%$ were used to determine whether the patient belonged to hypo-, normo-, and hyperdivergent groups where $27.3^{\circ}<\mathrm{GoGnSN}<37.7^{\circ}$ and $62 \%<\mathrm{SGo} /$ NMe $<68 \%$ considered normodivergent, GoGn-SN \geq 37.7° and $\mathrm{SGo} / \mathrm{NMe} \leq 62^{\%}$ considered hyperdivergent, and GoGn-SN $\leq 27.3^{\circ}$ and $\mathrm{SG} / \mathrm{NMe} \geq 68 \%$ considered hypodivergent growth patterns.

Pharyngeal airway measurements

The pharyngeal anatomical landmarks, reference lines and planes, pharyngeal airway borders are shown in
are shown in Table 1, and pharyngeal airway space measurements are summarized in Table 2. The naso-, oro-, hypo-, and total pharyngeal airway space measurements are shown in Figures 2-5, respectively. A sinus/ airway module was used for the segmentation protocol, and the slice was chosen so that the optimum airway view coincided with the midsagittal plane. ${ }^{18}$ The pharyngeal airway area was then marked with seed points used to expand the airway. As recommended in previous studies, the sensitivity was set at 72 or $73 .{ }^{27,33}$ The chipping boundaries were added to restrict this extension. This method combines automated and manual segmentation and exploits the strengths of each segment.

54 CBCTs were chosen randomly and measured independently by two examiners over two 2-week periods to ensure the reading's reliability. All measurements were performed under the supervision and guidance of oral and maxillofacial radiologists with more than 10 years of experience.

Statistical analysis

The IBM SPSS Statistics, v. 24 for Windows (IBM Corp., Armonk, NY) was used to analyze the data. The intraclass correlation coefficient (ICC) and absolute and relative technical measurement errors (TEM and rTEM) were used to evaluate the reproducibility and reliability of skeletal and pharyngeal airway measurements. The skewness test was used to determine the normality of the data. Descriptive statistics were calculated and presented, including each variable's standard and mean deviations. Two-way ANOVA was used, and the Bonferroni post-hoc test was used when significant. $p \leq 0.05$ was chosen as the statistical significance level.

Results

In total, 368 patients were involved in the study. Table 3 shows the chosen patients' age, sagittal and vertical skeletal relationship characteristics. Intra- and interexaminer reliability were high, where both intra- and interobserver R and ICC values were higher than 0.95 , presented in Table 4.

Table 2 The skeletal and pharyngeal airway measurements used in this study

Measurements		Name
Jaws relationship	Sagittal	Definition
	ANB	The angle between three points, A, N, and B points
Vertical	AF-BFmm	The line between the A-FH and B-FH

${ }^{\circ}{ }^{\circ}$ (degree), $\%$ (ratio measurements), mm (millimeters), mm^{2} (square millimeters), and mm^{3} (cubic millimeters)

The descriptive analysis and statistical significance value for the skeletal, naso-, oro-, hypo-, and total pharyngeal airway space measurements are presented in Tables 5-9, respectively.

Table 6 shows there were statistical differences for nasopharyngeal measurements; the sagittal NP (A-P) mm and lateral NP (L-R) mm widths were the lowest in the skeletal Class III of $25.64 \pm 3.10 \mathrm{~mm}$ and 36.64

Figure 2 Nasopharyngeal airway. (a) Surface area (sagittal view). (b) Surface area (coronal view). (c) Surface area (axial view). (d) Airway area (multiplanar view) and minimal constricted area. (e) Airway volume (sagittal view). (f) Airway volume (coronal view). (g) Airway volume (axial view). (h) Sagittal width of nasopharyngeal NP (A-P). (i) Lateral width of nasopharyngeal NP (L-R).
$\pm 5.49 \mathrm{~mm}$ respectively; the volumetric measurements NP-V mm ${ }^{3}$ and surface area NP-A mm^{2} were the lowest in the hyperdivergent group of 6398.83 ± 1327.42 mm^{3}, and $246.40 \pm 44.16 \mathrm{~mm}^{3}$ respectively, and minimum constriction area MCA mm^{2} was the highest in Class II and hypodivergent patients of $36.43 \pm 17.57 \mathrm{~mm}^{2}$ and $24.85 \pm 13.43 \mathrm{~mm}^{2}$ respectively.

Concerning the oropharyngeal measurements in Table 7, oropharyngeal sagittal width OP (A-P) mm, lateral width OP (L-R) mm, volume OP-V mm, ${ }^{3}$ surface area OP-A mm, ${ }^{2}$ and minimum constriction area MCA mm^{2} were significantly lower in the hyperdivergent patients than the relative's groups of, $12.12 \pm 2.36 \mathrm{~mm}$, $28.94 \pm 4.95 \mathrm{~mm}, 14255.67 \pm 3238.50 \mathrm{~mm}^{3}, 517.87 \pm$ $113.80 \mathrm{~mm}^{2}$, and $49.06 \pm 18.31 \mathrm{~mm}^{2}$ respectively, and sagittal width OP (A-P) mm was significantly higher in patients with skeletal Class III malocclusion of $13.71 \pm$ 2.93 mm .

For the statistically different hypopharyngeal measurements presented in Table 8, sagittal width HP (A-P) mm, volume HP-V mm^{3}, surface area HP-A mm^{2}, and minimum constriction area MCA mm^{2} were the lowest in the hyperdivergent patients of $14.86 \pm$ $2.24 \mathrm{~mm}, 4813.95 \pm 1239.28 \mathrm{~mm}^{3}, 180.43 \pm 33.25 \mathrm{~mm}^{2}$ and $36.28 \pm 16.32 \mathrm{~mm}^{2}$ respectively, and lateral width was highest in skeletal Class III malocclusion of 33.42 $\pm 3.62 \mathrm{~mm}$.

Figure 3 Oropharyngeal airway. (a) Surface area (sagittal view). (b) Surface area (coronal view). (c) Surface area (axial view). (d) Airway area and minimum constricted area (multiplanar view). (e) Airway volume (sagittal view). (f) Airway volume (coronal view). (g) Airway volume (axial view). (h) Sagittal width of oropharyngeal OP (A-P). (i) Lateral width of oropharyngeal OP (L-R).

Figure 4 Hypopharyngeal airway. (a) Surface area (sagittal view). (b) Surface area (coronal view). (c) Surface area (axial view). (d) Airway area and minimum constricted area (multiplanar view). (e) Airway volume (sagittal view). (f) Airway volume (coronal view). (g) Airway volume (axial view). (h) Sagittal width of hypopharyngeal OP (A-P). (i) Lateral width of hypopharyngeal OP (L-R).

Table 9 showed there were statistically significant differences in total pharyngeal airway space volume $\mathrm{TP}-\mathrm{V} \mathrm{mm}{ }^{3}$ and surface area TP-A mm^{2}; both were lowest in the hyperdivergent group, 26003.60 ± 5343.68 mm^{3}, and $944.36 \pm 127.64 \mathrm{~mm}^{2}$ respectively, and minimum constriction area MCA mm^{2} was the lowest in the hyperdivergent and Class II patients of $42.60 \pm$ $13.01 \mathrm{~mm}^{2}$ and $41.13 \pm 11.50 \mathrm{~mm}^{2}$ repectively.

Discussion

Breathing is based on the airway's anatomical dimensions. Several studies have shown that changes in skeletal patterns may predispose individuals to upper airway space obstruction. ${ }^{34}$ Therefore, evaluating patients, airway dimensions among various sagittal/vertical craniofacial structures is critical to achieve orthodontic/ orthognathic treatment objectives, esthetics, and function during treatment.

Previous studies are inconclusive regarding the effect of craniofacial patterns; thus, we aimed to improve field awareness by controlling for known variables. Many studies have reported that head posture influences airway size and morphology. ${ }^{35}$ To decrease the impact of head posture, all patients' craniocervical inclinations were between 90° and $110^{\circ} .15,36$

Figure 5 Total pharyngeal airway (a) Surface area (sagittal view). (b) Surface area (coronal view). (c) Surface area (axial view). (d) Airway area and minimal constricted area (multiplanar view). (e) Airway volume (sagittal view). (f) Airway volume (coronal view). (g) Airway volume (axial view).

Table 3 The study sample distribution among groups

		Group I	Group II	Group III	
Age	Facial growth	Class I Mean \pm SD	Class II Mean \pm SD	Class III Mean \pm SD	Total Mean \pm SD
	Hypodivergent	$\begin{aligned} & 24.03 \pm 2.73 \\ & \mathrm{~N}=(42) \end{aligned}$	$\begin{aligned} & 24.15 \pm 2.81 \\ & \mathrm{~N}=(40) \end{aligned}$	$\begin{aligned} & 22.86 \pm 3.47 \\ & \mathrm{~N}=(40) \end{aligned}$	$\begin{aligned} & 23.69 \pm 3.05 \\ & \mathrm{~N}=(122) \end{aligned}$
	Normodivergent	$\begin{aligned} & 23.35 \pm 2.87 \\ & \mathrm{~N}=(42) \end{aligned}$	$\begin{aligned} & 23.96 \pm 3.17 \\ & \mathrm{~N}=(41) \end{aligned}$	$\begin{aligned} & 23.26 \pm 3.21 \\ & \mathrm{~N}=(41) \end{aligned}$	$\begin{aligned} & 23.52 \pm 3.08 \\ & \mathrm{~N}=(124) \end{aligned}$
	Hyperdivergent	$\begin{aligned} & 24.53 \pm 2.67 \\ & \mathrm{~N}=(40) \end{aligned}$	$\begin{aligned} & 24.06 \pm 2.97 \\ & \mathrm{~N}=(42) \end{aligned}$	$\begin{aligned} & 25.23 \pm 1.85 \\ & \mathrm{~N}=(40) \end{aligned}$	$\begin{aligned} & 24.60 \pm 2.57 \\ & \mathrm{~N}=(122) \end{aligned}$
ANB°	Total	$\begin{aligned} & 23.96 \pm 2.78 \\ & \mathrm{~N}=(124) \end{aligned}$	$\begin{aligned} & 24.05 \pm 2.96 \\ & \mathrm{~N}=(123) \end{aligned}$	$\begin{aligned} & 23.78 \pm 3.09 \\ & \mathrm{~N}=(121) \end{aligned}$	$\begin{aligned} & 23.93 \pm 2.94 \\ & \mathrm{~N}=(368) \end{aligned}$
	Hypodivergent	2.53 ± 1.08	6.11 ± 0.92	-1.07 ± 1.57	2.52 ± 3.16
	Normodivergent	3.02 ± 0.96	6.12 ± 1.20	-1.15 ± 1.72	2.67 ± 3.26
	Hyperdivergent	2.82 ± 0.85	6.10 ± 0.93	-0.76 ± 1.40	2.78 ± 3.02
AF-BF mm	Total	2.79 ± 0.98	6.11 ± 1.02	-1.00 ± 1.56	2.65 ± 3.14
	Hypodivergent	2.90 ± 1.52	7.62 ± 1.04	-3.27 ± 2.60	2.43 ± 4.99
	Normodivergent	3.37 ± 1.47	8.26 ± 1.53	-2.96 ± 2.70	2.89 ± 4.99
GoGn-SN ${ }^{\circ}$	Hyperdivergent	3.51 ± 1.47	8.40 ± 1.25	-2.88 ± 2.46	3.10 ± 4.98
	Total	3.26 ± 1.50	8.10 ± 1.33	-3.03 ± 2.57	2.81 ± 4.92
	Hypodivergent	23.93 ± 2.43	26.45 ± 0.98	24.29 ± 0.98	24.88 ± 0.98
	Normodivergent	32.81 ± 2.17	32.85 ± 2.05	31.62 ± 2.15	32.43 ± 2.18
	Hyperdivergent	39.63 ± 1.64	40.07 ± 2.38	39.58 ± 2.18	39.76 ± 2.09
S-Go/N-Me \%	Total	32.00 ± 6.77	33.23 ± 5.90	31.83 ± 6.60	32.36 ± 6.44
	Hypodivergent	72.52 ± 2.71	71.19 ± 1.51	71.84 ± 2.53	71.86 ± 2.36
	Normodivergent	65.64 ± 1.45	65.73 ± 1.34	65.58 ± 1.96	65.65 ± 1.59
	Hyperdivergent	59.64 ± 1.64	60.36 ± 1.52	60.43 ± 1.33	60.15 ± 1.54
	Total	66.04 ± 5.63	65.67 ± 4.67	65.95 ± 5.07	65.88 ± 5.13
OPT/SN ${ }^{\circ}$	Hypodivergent	97.61 ± 4.64	99.85 ± 5.26	98.04 ± 5.55	98.48 ± 5.20
	Normodivergent	101.49 ± 6.11	100.335 .35	97.50 ± 6.15	99.79 ± 6.07
	Hyperdivergent	102.06 ± 4.79	101.75 ± 4.49	99.16 ± 4.38	101.00 ± 4.70
BMI Kg/m2	Total	100.36 ± 5.55	100.66 ± 5.06	98.23 ± 5.42	99.76 ± 5.44
	Hypodivergent	21.87 ± 2.52	22.53 ± 3.93	24.21 ± 2.68	22.85 ± 3.23
	Normodivergent	24.70 ± 2.29	25.20 ± 2.17	24.20 ± 1.97	24.70 ± 2.17
	Hyperdivergent	23.16 ± 1.87	23.97 ± 1.94	25.46 ± 2.29	24.19 ± 2.24
	Total	23.24 ± 2.52	23.91 ± 2.99	24.62 ± 2.38	23.92 ± 2.70

*SD: Standard deviation, N : Number of the subject, $-{ }^{\circ}\left(\right.$ degree), $\%$ (ratio measurements), mm (millimeters), mm ${ }^{2}$ (square millimeters), mm ${ }^{3}$ (cubic millimeters), and $\mathrm{Kg} / \mathrm{m}^{2}$ (kilograms per square meter).

In this study, skeletal Class III showed statistically smaller nasopharyngeal sagittal and lateral widths than skeletal Class III, which may manifest in skeletal Class III patients with a retruded and small maxilla, resulting in narrowing and decreasing of the nasopharyngeal airway dimensions. Also, we found that nasopharyngeal volume, surface area, and MCA were significantly smaller in the hyperdivergent group. This may be related to a patient with a hyperdivergent facial growth pattern having maxillary retrusion and decreased maxillary length and width.

According to Ucar et al, ${ }^{7}$ the nasopharyngeal airway space in skeletal Class II subjects was larger in low-angle subjects than in high-angle subjects. A study by Joseph et al ${ }^{5}$ noted that hyperdivergent subjects had a smaller sagittal pharyngeal dimension, particularly at the nasopharynx's hard palate level and the soft palate mandible
tip level in the oropharynx, and this support the finding of this study. Another study by Memon et al ${ }^{8}$ reported that smaller airway dimensions might be correlated with some skeletal features in hyperdivergent patients, such as maxillary and mandibular retrusion or vertical maxillary excess. The nasopharyngeal volume finding in this study is supported by Alhmmadi et al, ${ }^{18}$ who showed no statistical significance in the volume between skeletal Class II and I; still, skeletal Class II was higher than skeletal Class I.

Gungor and Turkkahraman ${ }^{37}$ evaluated the literature on the relationship between respiratory function and maxillary growth patterns and reported maxillary morphological differences between subjects with airway problems and control groups, indicating a possible etiological involvement of the airway in these subjects. Systematic review agree that maxillary expansion

Table 4 Reliability analysis of all measurements used in this study.

Measurements	Intraobserver reliability				Interobserver reliability			
	ICC	TEM	rTEM	R*	ICC	TEM	rTEM	R*
ANB ${ }^{\circ}$	0.9955	0.2901	7.4146	0.9864	0.9906	0.3495	9.0526	0.9801
AF-BF mm	0.9968	0.3011	6.3786	0.9936	0.9985	0.2030	4.3124	0.9971
$\text { GoGn- } \mathrm{SN}^{\circ}$	0.9982	0.2826	0.8750	0.9963	0.9977	0.3148	0.9749	0.9954
SGo /NMe \%	0.9917	0.4665	0.7080	0.9829	0.9911	0.4787	0.7266	0.9820
OP/SN ${ }^{\circ}$	0.9956	0.4644	0.4627	0.9911	0.9953	0.4839	0.4821	0.9904
SNA ${ }^{\circ}$	1.000	0.2210	0.2676	0.9939	0.9959	0.2578	0.3125	0.9914
A-NV mm	0.9937	0.1963	6.6903	0.9948	0.9962	0.2558	8.5279	0.9907
Co-A mm	0.9963	0.3253	0.3408	0.9920	0.9958	0.3336	0.3499	0.9916
JL-JR mm	0.9941	0.3540	0.5374	0.9863	0.9940	0.3291	0.5004	0.9882
A-FH mm	0.9922	0.3669	1.2013	0.9840	0.9918	0.3758	1.2305	0.9832
SNB°	0.9970	0.2354	0.2992	0.9939	0.9970	0.2331	0.2965	0.9940
B-NV mm	0.9968	0.0823	-4.642	0.9997	0.9982	0.1486	-8.456	0.9989
Gn-Go mm	0.9880	0.6470	0.7581	0.9755	0.9877	0.6546	0.7671	0.9748
Co-Gn mm	0.9969	0.4249	0.3525	0.9926	0.9969	0.4190	0.3476	0.9928
GoR-GoL mm	0.9988	0.3535	0.3811	0.9967	0.9987	0.3578	0.3858	0.9967
B-FH mm	0.9904	0.7712	1.1030	0.9811	0.9904	0.7692	1.1003	0.9812
NP (A-P) mm	0.9991	0.2118	0.7584	0.9952	0.9975	0.2939	1.0516	0.9907
NP (L-R) mm	0.9988	0.2527	0.6519	0.9971	0.9954	0.4672	1.2048	0.9903
NP-V mm ${ }^{3}$	1.000	14.987	0.2178	0.9999	1.000	40.635	0.5914	0.9995
NP-A mm ${ }^{2}$	0.9970	5.3854	2.0787	0.9888	0.9923	6.8898	2.6518	0.9824
NP-MCA mm ${ }^{2}$	0.9795	3.4442	9.4880	0.9589	0.9797	3.9636	11.2225	0.9457
OP (A-P) mm	0.9949	0.3220	2.2246	0.9900	0.9942	0.3610	2.5106	0.9874
OP (L-R) mm	0.9977	0.4213	1.3291	0.9938	0.9968	0.4465	1.4111	0.9930
OP-V mm ${ }^{3}$	1.000	73.8340	0.4473	0.9998	0.9966	75.388	0.4569	0.9997
OP-A mm ${ }^{2}$	0.9984	6.1951	1.0837	0.9962	0.9984	6.7489	1.1787	0.9955
OP-MCA mm ${ }^{2}$	1.000	0.9865	1.6672	0.9984	1.000	0.7811	1.3247	0.9990
HP(A-P)mm	0.9965	0.2776	1.6498	0.9926	0.9966	0.2631	1.5594	0.9934
HP(L-R)mm	0.9973	0.3369	1.0349	0.9932	0.9979	0.2961	0.9100	0.9948
HP-V mm ${ }^{3}$	1.000	31.456	0.5152	0.9997	0.9998	38.839	0.6358	0.9996
HP-A mm ${ }^{2}$	0.9916	6.7736	3.1628	0.9817	0.9914	6.9822	3.2560	0.9806
HP-MCA mm ${ }^{2}$	1.000	1.0519	2.0442	0.9985	1.000	2.4561	4.6811	0.9918
TP-V mm ${ }^{3}$	1.000	79.360	0.2650	0.9998	0.9990	298.89	0.9996	0.9978
TP-A mm ${ }^{2}$	0.9967	12.9964	1.2606	0.9932	0.9956	14.5614	1.4094	0.9914
TP-MCA mm ${ }^{2}$	0.9865	2.6727	18.0851	0.9337	0.9728	0.3351	3.4967	0.9981

*ICC: Intraclass correlation coefficient TEM and rTEM indicate an absolute and relative technical error of measurement. ${ }^{\circ}$ (degree), $\%$ (ratio measurements), mm (millemeters), mm^{2} (square millemeters), mm^{3} (cubic millimeters) and $\mathrm{Kg} / \mathrm{m}^{2}$ (kilograms per square meter).
can improve the nasal airway volume and obstructive sleeping apnea in both growing and non-growing patients in the short term. Maxillary expansion is one of the treatment options for patients with obstructive sleeping apnea. ${ }^{38}$ As such, increasing maxillary width directly correlates to increased airway volume and functional improvement. ${ }^{39}$

This study showed that the oropharyngeal airway sagittal width, volume, surface area, and MCA were lower in the hyperdivergent group than in other groups. This result is related to most patients with hyperdivergent growth patterns having a component of mandibular deficiency and rotating downward and backward, thus decreasing the oropharyngeal airway dimensions. ${ }^{3}$ This is in contrast to the hypodivergent group having a larger mandible body length and anticlockwise rotation
than other groups. The oropharyngeal lateral widths were significantly higher in the skeletal Class III group. This is manifested in abnormal respiratory function being observed more frequently in skeletal Class II patients due to mandible deficiency. ${ }^{40}$ This finding is consistent with Yanagita et al, ${ }^{41}$ who reported oropharyngeal volume positively correlated with the mandibular body length and sagittal position of the mandible, and also supported by Hong et al, ${ }^{42}$ who noted higher oropharyngeal airway dimensions in skeletal Class III patients than in skeletal Class I and II patients; however, this difference was not statistically significant. Similarly, several studies found a smaller oropharyngeal volume in subjects with skeletal Class II than skeletal Class I or skeletal Class III malocclusion. ${ }^{11,19}$ Other studies had

Table 5 Descriptive statistics and results of two-way ANOVA test for comparison between the offending jaw/s measurements of patients with different skeletal classes and facial growth patterns

*:Significant at $p \leq 0.05$
$-^{\circ}$ (degree) and mm (millimeters)
A, B, C superscripts in the same row indicate statistically significant difference between classes, a, b, c superscripts in the same column indicate statistically significant difference between facial growth.
reported low or negligible correlations between craniofacial and oropharyngeal airway parameters. ${ }^{12,19,21,42}$

The present findings agreed with Palomo et al, ${ }^{21}$ who measured the effective mandible length between the condylion and the mention, suggesting that mandible
length contributes more to oropharynx size and volume than its position relative to the cranial base. This result was consistent with Trenouth and Timms, ${ }^{43}$ who found that the oropharyngeal airway correlated positively with mandibular length. Mandibular width was related to

Table 6 Descriptive statistics and results of two-way ANOVA test for comparison between the nasopharyngeal airway measurements of patients with different classes and facial growth patterns.

Measurements	Facial growth	Class I $\text { Mean } \pm S D$	$\begin{aligned} & \text { Class II } \\ & \text { Mean } \pm S D \end{aligned}$	$\begin{aligned} & \text { Class III } \\ & \text { Mean } \pm S D \end{aligned}$	Total $M e a n \pm S D$	Class	Facial growth	Class ${ }^{*}$ Facial growth
NP (A-P) mm	Hypodivergent	28.11 ± 3.56	27.60 ± 3.82	26.69 ± 2.73	$27.48 \pm 3.43^{\text {a }}$		0.028^{*}	0.238
	Normodivergent	28.16 ± 2.47	28.33 ± 3.26	25.64 ± 3.29	$27.38 \pm 3.24^{\text {a }}$			
	Hyperdivergent	26.99 ± 2.85	27.96 ± 2.19	24.60 ± 2.98	$26.54 \pm 3.02^{\text {b }}$			
	Total	$27.77 \pm 3.02^{\text {A }}$	$27.97 \pm 3.14{ }^{\text {A }}$	$25.64 \pm 3.10^{\text {B }}$	27.14 ± 3.25	0.000*		
NP (L-R) mm	Hypodivergent	38.40 ± 6.29	36.42 ± 3.41	36.98 ± 5.05	37.28 ± 5.11		0.145	0.092
	Normodivergent	38.73 ± 3.91	39.28 ± 4.27	37.41 ± 5.52	38.48 ± 4.65			
	Hyperdivergent	38.83 ± 4.95	38.89 ± 3.45	35.51 ± 5.83	37.76 ± 5.04			
	Total	$38.65 \pm 5.11^{\text {A }}$	$38.22 \pm 3.91{ }^{\text {A }}$	$36.64 \pm 5.49^{\text {B }}$	37.84 ± 4.95	$0.003{ }^{\text {* }}$		
NP-V mm ${ }^{3}$	Hypodivergent	7617.50 ± 1589.27	7230.92 ± 1555.83	7514.32 ± 1597.14	$7456.92 \pm 1576.43^{\text {a }}$		0.000^{*}	0.232
	Normodivergent	7029.29 ± 1855.22	7511.88 ± 1909.81	7013.87 ± 1979.70	$7183.76 \pm 1913.54{ }^{\text {a }}$			
	Hyperdivergent	6204.74 ± 1369.09	6809.61 ± 1352.10	6161.62 ± 1180.04	$6398.83 \pm 1327.42^{\text {b }}$			
	Total	6962.54 ± 1708.30	7180.71 ± 1633.75	6897.57 ± 1702.93	7014.10 ± 1681.74	0.338		
NP-A mm²	Hypodivergent	290.33 ± 59.99	254.12 ± 51.98	275.28 ± 53.00	$273.52 \pm 56.74{ }^{\text {a }}$		0.001 *	0.006*
	Normodivergent	261.55 ± 62.39	281.07 ± 67.09	256.25 ± 67.86	$266.25 \pm 66.13^{\text {a }}$			
	Hyperdivergent	239.62 ± 46.42	258.04 ± 45.98	240.97 ± 38.08	$246.40 \pm 44.16^{\text {b }}$			
NP-MCA mm ${ }^{2}$	Total	264.22 ± 60.10	264.44 ± 56.50	257.49 ± 55.83	262.08 ± 57.45	0.562		
	Hypodivergent	33.50 ± 15.89	48.69 ± 15.69	38.60 ± 18.00	$40.15 \pm 17.64{ }^{\text {a }}$		0.000*	0.011*
	Normodivergent	30.99 ± 14.52	33.57 ± 14.21	39.81 ± 17.47	$34.21 \pm 15.72^{\text {b }}$			
	Hyperdivergent	23.38 ± 12.91	27.53 ± 15.69	23.49 ± 11.05	$24.85 \pm 13.43^{\text {c }}$			
	Total	$29.39 \pm 15.02^{\text {B }}$	$36.43 \pm 17.57 \mathrm{~A}$	$33.45 \pm 17.30 \mathrm{~A}$	33.08 ± 16.84	0.001 ${ }^{\text {* }}$		

*Significant at $p \leq 0.05$
-mm (millimeters), mm^{2} (square millimeters), and mm^{3} (cubic millimeters)
A, B, C superscripts in the same row indicate statistically significant difference between classes, a, b, c superscripts in the same column indicate statistically significant difference between facial growth.
the dimensions of the oropharyngeal. This finding is consistent with Nejaim et al, ${ }^{17}$ who reported a positive correlation between mandibular width and oropharyngeal volume.

The current study considered more in skeletal Class II and III than in skeletal Class I malocclusion; this
consideration is more important in patients undergoing mandibular surgery because more negative/positive changes in the pharyngeal airway space dimensions may occur. Because the mandible is associated with the hyoid bone, tongue, and soft palate by muscles, any movement in the mandible can affect the size of the airway space.

Table 7 Descriptive statistics and results of two-way ANOVA test for comparison between the oropharyngeal airway measurements of patients with different skeletal classes and facial growth patterns

Measurements	Facial growth	$\begin{aligned} & \text { Class } I \\ & \text { Mean } \pm S D \end{aligned}$	$\begin{aligned} & \text { Class II } \\ & \text { Mean } \pm S D \end{aligned}$	$\begin{aligned} & \text { Class III } \\ & \text { Mean } \pm S D \end{aligned}$	Total Mean $\pm S D$	Class	Facial growth	Class"facial growth
OP (A-P) mm	Hypodivergent	13.68 ± 2.95	13.23 ± 3.65	14.49 ± 2.84	$13.80 \pm 3.18^{\text {a }}$		0.000^{*}	0.898
	Normodivergent	14.10 ± 3.26	13.31 ± 2.73	14.24 ± 3.28	$13.88 \pm 3.10^{\text {a }}$			
	Hyperdivergent	12.49 ± 2.72	11.49 ± 2.08	12.40 ± 2.17	$12.12 \pm 2.36^{\text {b }}$			
	Total	$13.44 \pm 3.04^{\text {A }}$	$12.66 \pm 2.98^{\text {B }}$	$13.71 \pm 2.93{ }^{\text {A }}$	13.27 ± 3.01	$0.016{ }^{*}$		
OP (L-R) mm	Hypodivergent	31.07 ± 5.42	30.98 ± 3.95	31.11 ± 5.68	$31.05 \pm 5.04{ }^{\text {a }}$		0.000^{*}	0.580
	Normodivergent	31.33 ± 4.63	31.63 ± 3.78	30.63 ± 4.52	$31.20 \pm 4.31^{\text {a }}$			
	Hyperdivergent	29.41 ± 5.05	28.03 ± 5.00	29.43 ± 4.77	$28.94 \pm 4.95^{\text {b }}$			
	Total	30.62 ± 5.07	30.19 ± 4.54	30.40 ± 5.02	30.40 ± 4.87	0.813		
OP-V mm ${ }^{3}$	Hypodivergent	15318.02 ± 3888.89	15415.82 ± 3357.97	15683.99 ± 4324.78	$15470.08 \pm 3848.57^{\text {a }}$		0.008 ${ }^{\text {* }}$	0.969
	Normodivergent	15548.48 ± 4232.78	15307.62 ± 3805.97	16097.33 ± 4235.44	$15650.32 \pm 4077.49^{\text {a }}$			
	Hyperdivergent	14476.87 ± 3876.62	13846.26 ± 2845.39	14464.34 ± 2953.69	$14255.67 \pm 3238.50^{\text {b }}$			
	Total	15124.74 ± 3998.61	14843.81 ± 3405.43	15420.86 ± 3921.50	15128.21 ± 3781.19	0.510		
$\mathrm{OP}-\mathrm{A} \mathrm{~mm}{ }^{2}$	Hypodivergent	556.79 ± 104.68	558.82 ± 102.73	561.64 ± 102.56	$559.05 \pm 102.51^{\text {a }}$		0.004*	0.467
	Normodivergent	555.42 ± 100.39	557.74 ± 97.20	550.59 ± 96.50	$554.59 \pm 97.31^{\text {a }}$			
	Hyperdivergent	537.29 ± 97.15	489.90 ± 144.55	527.83 ± 86.27	$517.87 \pm 113.80^{\text {b }}$			
	Total	550.03 ± 100.41	534.93 ± 120.64	546.72 ± 95.60	543.90 ± 106.06	0.530		
OP-MCA mm ${ }^{2}$	Hypodivergent	61.86 ± 33.57	59.93 ± 21.69	62.41 ± 16.58	$61.41 \pm 24.96^{\text {a }}$		0.000*	0.955
	Normodivergent	59.46 ± 26.46	61.10 ± 18.88	60.95 ± 27.43	$60.50 \pm 24.39^{\text {a }}$			
	Hyperdivergent	48.89 ± 21.93	46.65 ± 18.66	51.74 ± 13.39	$49.06 \pm 18.31^{\text {b }}$			
	Total	56.86 ± 28.16	55.79 ± 20.69	58.39 ± 20.51	57.01 ± 23.38	0.693		

*Significant at $p \leq 0.05$
-mm (millimeters), mm^{2} (square millimeters), and mm^{3} (cubic millimeters)
A, B, C superscripts in the same row indicate statistically significant difference between classes, a, b, c superscripts in the same column indicate statistically significant difference between facial growth

Table 8 Descriptive statistics and results of two-way ANOVA test for comparison between the hypopharyngeal airway measurements of patients with different skeletal classes and facial growth patterns

*Significant at $p \leq 0.05$
-mm (millimeters), mm^{2} (square millimeters), and mm^{3} (cubic millimeters)
A, B, C superscripts in the same row indicate statistically significant difference between classes, a, b, c superscripts in the same column indicate statistically significant difference between facial growth.

This current study showed smaller statistical significance in the hypopharyngeal airway sagittal width, volume, surface area, and MCA in the hyperdivergent group and a statistically significant difference in lateral width with a higher value in the Class III group. The patients with skeletal Class II and hyperdivergent growth patterns exhibited a retruding mandible and verse versa
in Class III, which means the sagittal position of the mandible affects the hypopharyngeal airway. Thus, we need to take into account control of the mandibular position during the manipulation of the jaws because any movement is accompanied by a change in position of the hyoid bone. This is clearly explained by Jiang et $a 1,{ }^{44}$ who concluded that hyoid bone moved superiorly

Table 9 Descriptive statistics and results of two-way ANOVA test for comparison between the total pharyngeal airway measurements of patients with different skeletal classes and facial growth patterns

Measurements	Facial growth	$\begin{aligned} & \text { Class I } \\ & \text { Mean } \pm S D \end{aligned}$	$\begin{aligned} & \text { Class II } \\ & \text { Mean } \pm S D \end{aligned}$	$\begin{aligned} & \text { Class III } \\ & \text { Mean } \pm S D \end{aligned}$	Total $M e a n \pm S D$	Class	Facial growth	Class*Facial growth
TP-V mm ${ }^{3}$	Hypodivergent	29567.53 ± 6540.35	28188.31 ± 5268.73	29595.60 ± 7205.71	$29124.53 \pm 6372.45^{\text {a }}$		0.000*	0.684
	Normodivergent	29341.18 ± 6286.89	29669.52 ± 5289.99	28402.72 ± 7135.84	$29139.45 \pm 6254.87^{\text {a }}$			
	Hyperdivergent	26370.76 ± 6701.32	25406.26 ± 3445.08	26263.66 ± 5533.25	$26003.60 \pm 5343.68^{\text {b }}$			
	Total	28459.65 ± 6616.36	27732.08 ± 5022.91	28089.93 ± 6760.14	28094.90 ± 6171.73	0.682		
TP-A mm ${ }^{2}$	Hypodivergent	1058.52 ± 161.24	1001.39 ± 136.95	1066.73 ± 179.96	$1042.48 \pm 161.66^{\text {a }}$		0.000*	0.437
	Normodivergent	1031.99 ± 146.78	1036.76 ± 166.36	1012.92 ± 173.10	$1027.26 \pm 161.34^{\text {a }}$			
	Hyperdivergent	948.48 ± 159.96	930.98 ± 98.41	954.28 ± 120.29	$944.36 \pm 127.64{ }^{\text {b }}$			
TP-MCA mm ${ }^{2}$	Total	1014.04 ± 161.69	989.14 ± 142.48	1011.33 ± 165.30	1004.82 ± 156.75	0.405		
	Hypodivergent	47.72 ± 16.19	50.57 ± 13.39	53.31 ± 21.90	$50.49 \pm 17.50{ }^{\text {a }}$		0.000*	0.238
	Normodivergent	44.41 ± 12.08	41.38 ± 11.88	52.25 ± 14.04	$46.00 \pm 13.40^{\text {a }}$			
	Hyperdivergent	41.48 ± 12.31	36.20 ± 9.49	45.94 ± 10.66	$41.13 \pm 11.50{ }^{\text {b }}$			
	Total	$44.59 \pm 13.80^{\text {B }}$	$42.60 \pm 13.01{ }^{\text {B }}$	$50.52 \pm 16.40^{\text {A }}$	45.87 ± 14.81	0.000*		

*Significant at $p \leq 0.05$
-mm (millimeters), mm^{2} (square millimeters), and mm^{3} (cubic millimeters)
A, B, C superscripts in the same row indicate statistically significant difference between classes, a, b, c superscripts in the same column indicate statistically significant difference between facial growth.
and forward in the mandibular advancement group, causing the widening of the hypopharyngeal airway.

The total pharyngeal volume, surface area, and MCA were the smallest statistically significant in hyperdivergent patients; MCA was the smallest statistically significant in skeletal Class II patients. This is supported by Abbas Shokri et al, ${ }^{45}$ who found the anteroposterior jaws relation influences airway measurements. In general, this effect should be considered during orthognathic surgery; specifically, in the mandibular setback or advancement surgery in skeletal Class III or II malocclusion patients. These procedures can cause negative or positive alterations in the pharyngeal airway.

In summary, according to the present study's findings, comparing the pharyngeal airway space in patients with normal nasal breathing revealed a significant difference between different craniofacial growth patterns.

Conclusion

Based on this study's findings, the following could be concluded:
(1) Skeletal Class II malocclusion was significantly associated with greater nasopharyngeal sagittal width and MCA, and hypodivergent patients had a significantly greater nasopharyngeal volume, surface area, and MCA.
(2) The hyperdivergent patients had a significantly smaller oropharyngeal sagittal width, volume, surface area, and MCA, and skeletal Class III had the greatest sagittal width.
(3) The hyperdivergent patients had a significantly smaller hypopharyngeal sagittal width, volume, surface area, and MCA, and skeletal Class III had the greatest lateral width.
(4) The hyperdivergent group had the smallest total pharyngeal airway volume, surface area, and MCA significantly; skeletal Class II patients had the lowest MCA.

REFERENCES

1. Angle EH. Treatment of Malocclusion of the Teeth: Angle's System. In: Greatly Enl. and Entirely Rewritten, with Six Hundred and Forty-one Illustrations: SS White dental manufacturing Company.; 1907.
2. Moss ML. Functional analysis of human mandibular growth. The Journal of Prosthetic Dentistry 1960; 10: 1149-59. https://doi. org/10.1016/0022-3913(60)90228-6
3. Sprenger R, Martins LAC, Dos Santos JCB, de Menezes CC, Venezian GC, Degan VV. A retrospective cephalometric study on upper airway spaces in different facial types. Prog Orthod 2017; 18: 25. https://doi.org/10.1186/s40510-017-0180-2
4. Kuang W, Zheng J, Li S, Yuan S, He H, Yuan W. Threedimensional analysis of the pharyngeal airway volume and craniofacial morphology in patients with bilateral cleft lip and palate. Cleft Palate Craniofac J 2021; 58: 332-39. https://doi.org/10.1177/ 1055665620946982

Generally, the knowledge of pharyngeal airway differences caused by sagittal and vertical could help diagnose pharyngeal airway pathologies and be considered during clinical diagnosis and planning for craniofacial orthopedics and orthognathic surgical treatment.

Acknowledgments

We thank the Stomatological Hospital of Lanzhou University staff for their support and cooperation.

Competing interests

The authors declare any conflicts of interest.

Funding

This work was supported by the project of the National Natural Science Foundation of Gansu Province, China (No. 20JR5RA264) and the study funds of Stomatology, School of Stomatology, Lanzhou University, Gansu Province, Lanzhou 730000, PR China (lzukqky-2020-t04)

Consent for publication

Not applicable.

Ethics approval and consent to participate

The ethical committee of clinical scientific research of the school of stomatology of Lanzhou University approved this study (No: LZUKQ-2019-056). Moreover, every participant provided their informed consent.

[^1]9. Uslu-Akcam O. Pharyngeal airway dimensions in skeletal class II: a cephalometric growth study. Imaging Sci Dent 2017; 47: 1-9. https://doi.org/10.5624/isd.2017.47.1.1
10. Iwasaki T, Hayasaki H, Takemoto Y, Kanomi R, Yamasaki Y. Oropharyngeal airway in children with class III malocclusion evaluated by cone-beam computed tomography. Am J Orthod Dentofacial Orthop 2009; 136: 318. https://doi.org/10.1016/j. ajodo.2009.02.017
11. El H, Palomo JM. Airway volume for different dentofacial skeletal patterns. Am J Orthod Dentofacial Orthop 2011; 139: e511-21. https://doi.org/10.1016/j.ajodo.2011.02.015
12. Oh K-M, Hong J-S, Kim Y-J, Cevidanes LSH, Park Y-H. Threedimensional analysis of pharyngeal airway form in children with anteroposterior facial patterns. Angle Orthod 2011; 81: 1075-82. https://doi.org/10.2319/010711-8.1
13. Abdelkarim A. A cone beam CT evaluation of oropharyngeal airway space and its relationship to mandibular position and dentocraniofacial morphology. Journal of the World Federation of Orthodontists 2012; 1: e55-59. https://doi.org/10.1016/j.ejwf.2012.06.001
14. Claudino LV, Mattos CT, Ruellas Ac, Sant' Anna EF. Pharyngeal airway characterization in adolescents related to facial skeletal pattern: a preliminary study. Am J Orthod Dentofacial Orthop 2013; 143: 799-809. https://doi.org/10.1016/j.ajodo.2013. 01.015
15. Indriksone I, Jakobsone G. The influence of craniofacial morphology on the upper airway dimensions. Angle Orthod 2015; 85: 874-80. https://doi.org/10.2319/061014-418.1
16. Brasil DM, Kurita LM, Groppo FC, Haiter-Neto F. Relationship of craniofacial morphology in 3-dimensional analysis of the pharynx. Am J Orthod Dentofacial Orthop 2016; 149: 683-91. https://doi.org/10.1016/j.ajodo.2015.11.021
17. Nejaim Y, Aps JKM, Groppo FC, Haiter Neto F. Evaluation of pharyngeal space and its correlation with mandible and hyoid bone in patients with different skeletal classes and facial types. Am J Orthod Dentofacial Orthop 2018; 153: 825-33. https://doi.org/10. 1016/j.ajodo.2017.09.018
18. Alhammadi MS, Almashraqi AA, Halboub E, Almahdi S, Jali T, Atafi A, et al. Pharyngeal airway spaces in different skeletal malocclusions: a CBCT 3D assessment. Cranio 2021; 39: 97-106. https://doi.org/10.1080/08869634.2019.1583301
19. Grauer D, Cevidanes LSH, Styner MA, Ackerman JL, Proffit WR. Pharyngeal airway volume and shape from cone-beam computed tomography: relationship to facial morphology. Am J Orthod Dentofacial Orthop 2009; 136: 805-14. https://doi.org/10.1016/j. ajodo.2008.01.020
20. Gungor AY, Turkkahraman H, Yilmaz HH, Yariktas M. Cephalometric comparison of obstructive sleep apnea patients and healthy controls. Eur J Dent 2013; 07: 048-054. https://doi.org/10. 1055/s-0039-1698995
21. El H, Palomo JM. An airway study of different maxillary and mandibular sagittal positions. Eur J Orthod 2013; 35: 262-70. https://doi.org/10.1093/ejo/cjr114
22. Golchini E, Rasoolijazi H, Momeni F, Shafaat P, Ahadi R, Jafarabadi MA, et al. Investigation of the relationship between mandibular morphology and upper airway dimensions. J Craniofac Surg 2020; 31: 1353-61. https://doi.org/10.1097/SCS. 0000000000006341
23. Lenza MG, Lenza M de O, Dalstra M, Melsen B, Cattaneo PM. An analysis of different approaches to the assessment of upper airway morphology: a CBCT study. Orthod Craniofac Res 2010; 13: 96-105. https://doi.org/10.1111/j.1601-6343.2010.01482.x
24. Guijarro-Martínez R, Swennen GRJ. Three-dimensional cone beam computed tomography definition of the anatomical subregions of the upper airway: a validation study. Int J Oral Maxillofac Surg 2013; 42: 1140-49. https://doi.org/10.1016/j.ijom.2013.03.007
25. Guijarro-Martínez R, Swennen GRJ. Cone-beam computerized tomography imaging and analysis of the upper airway: a systematic review of the literature. Int J Oral Maxillofac Surg 2011; 40: 1227-37. https://doi.org/10.1016/j.ijom.2011.06.017
26. Di Carlo G, Polimeni A, Melsen B, Cattaneo PM. The relationship between upper airways and craniofacial morphology studied
in 3D. A CBCT study. Orthod Craniofac Res 2015; 18: 1-11. https://doi.org/10.1111/ocr. 12053
27. Paul D, Varma S, Ajith VV. Airway in class I and class II skeletal pattern: a computed tomography study. Contemp Clin Dent 2015; 6: 293-98. https://doi.org/10.4103/0976-237X. 161856
28. Wang T, Yang Z, Yang F, Zhang M, Zhao J, Chen J, et al. A three dimensional study of upper airway in adult skeletal class II patients with different vertical growth patterns. PLoS One 2014; 9(4): e95544. https://doi.org/10.1371/journal.pone. 0095544
29. Green MN, Bloom JM, Kulbersh R. A simple and accurate craniofacial midsagittal plane definition. Am J Orthod Dentofacial Orthop 2017; 152: 355-63. https://doi.org/10.1016/j.ajodo.2016.12.025
30. Ricketts RM, Schulhof RJ, Bagha L. Orientation-sella-nasion or frankfort horizontal. Am J Orthod 1976; 69: 648-54. https://doi. org/10.1016/0002-9416(76)90147-0
31. Kui FM, Ping LH HW. Textbook of orthodontics. 1st ed. Taylor \& Francis; 2007.
32. Almaqrami BS, Alhammadi MS, Cao B. Three dimensional reliability analyses of currently used methods for assessment of sagittal jaw discrepancy. J Clin Exp Dent 2018; 10: e352-60. https://doi.org/10.4317/jced. 54578
33. Alhammadi MS, Elfeky HY, Fayed MS, Ishaq RAR, Halboub E, Al-Mashraqi AA. Three-dimensional skeletal and pharyngeal airway changes following therapy with functional appliances in growing skeletal class II malocclusion patients: A controlled clinical trial. dreidimensionale veränderungen der skelettalen und pharyngealen atemwege nach therapie mit funktionellen geräten bei heranwachsenden patienten mit einer skelettalen klasse-II-malokklusion: eine kontrollierte klinische studie. J Orofac Orthop 2019; 80: 254-65. https://doi.org/10.1007/s00056-019-00185-7
34. Zhong Z, Tang Z, Gao X, Zeng XL. A comparison study of upper airway among different skeletal craniofacial patterns in nonsnoring chinese children. Angle Orthod 2010; 80: 267-74. https://doi.org/10.2319/030809-130.1
35. Muto T, Takeda S, Kanazawa M, Yamazaki A, Fujiwara Y, Mizoguchi I. The effect of head posture on the pharyngeal airway space (PAS). Int J Oral Maxillofac Surg 2002; 31: 579-83. https:// doi.org/10.1054/ijom. 2002.0279
36. Kongsong W, Waite PD, Sittitavornwong S, Schibler M, Alshahrani F. The correlation of maxillomandibular advancement and airway volume change in obstructive sleep apnea using cone beam computed tomography. Int J Oral Maxillofac Surg 2021; 50: 940-47. https://doi.org/10.1016/j.ijom.2020.11.017
37. Gungor AY, Turkkahraman H. Effects of airway problems on maxillary growth: a review. Eur J Dent 2009; 3: 250-54.
38. Abd El-Ghafour M, Aboalnaga AA, Mostafa YA. Is maxillary expansion effective in treatment of obstructive sleep apnoea syndrome? A systematic review of systematic reviews. Evid Based Dent 2022. https://doi.org/10.1038/s41432-022-0283-6
39. Pirelli P, Fiaschetti V, Fanucci E, Giancotti A, Condo' R, Saccomanno S, et al. Cone beam CT evaluation of skeletal and nasomaxillary complex volume changes after rapid maxillary expansion in OSA children. Sleep Med 2021; 86: 81-89. https:// doi.org/10.1016/j.sleep.2021.08.011
40. Nath M, Ahmed J, Ongole R, Denny C, Shenoy N. CBCT analysis of pharyngeal airway volume and comparison of airway volume among patients with skeletal class I, class II, and class III malocclusion: a retrospective study. Cranio 2021; 39: 379-90. https://doi. org/10.1080/08869634.2019.1652993
41. Yanagita N, Terajima M, Kanomi R, Takahashi I. Threedimensional analysis of pharyngeal airway morphology in japanese female adolescents. Orthodontic Waves 2017; 76: 89-96. https://doi.org/10.1016/j.odw.2017.01.004
42. Hong JS, Oh KM, Kim BR, Kim YJ, Park YH. Three-dimensional analysis of pharyngeal airway volume in adults with anterior position of the mandible. Am J Orthod Dentofacial Orthop 2011; 140: e161-9. https://doi.org/10.1016/j.ajodo.2011.04.020
43. Trenouth MJ, Timms DJ. Relationship of the functional oropharynx to craniofacial morphology. Angle Orthod 1999; 69: 419-23. https:// doi.org/10.1043/0003-3219(1999)069<0419:ROTFOT>2.3.CO;2
44. Jiang C, Yi Y, Jiang C, Fang S, Wang J. Pharyngeal airway space and hyoid bone positioning after different orthognathic surgeries in skeletal class II patients. J Oral Maxillofac Surg 2017; 75: 1482-90. https:// doi.org/10.1016/j.joms.2017.02.021
45. Shokri A, Mollabashi V, Zahedi F, Tapak L. Position of the hyoid bone and its correlation with airway dimensions in different classes of skeletal malocclusion using cone-beam computed tomography. Imaging Sci Dent 2020; 50: 105-15. https://doi.org/10.5624/isd.2020. 50.2.105

[^0]: Correspondence to: Xiaoli An, E-mail: anx1@lzu.edu.cn
 Received 21 October 2022; revised 23 December 2022; accepted 26 December
 2022; published online 24 January 2023

[^1]: 5. Joseph AA, Elbaum J, Cisneros GJ, Eisig SB. A cephalometric comparative study of the soft tissue airway dimensions in persons with hyperdivergent and normodivergent facial patterns. J Oral Maxillofac Surg 1998; 56: 135-39. https://doi.org/10.1016/s0278-2391(98)90850-3
 6. de Freitas MR, Alcazar N, Janson G, de Freitas KMS, Henriques JFC. Upper and lower pharyngeal airways in subjects with class I and class II malocclusions and different growth patterns. Am J Orthod Dentofacial Orthop 2006; 130: 742-45. https://doi.org/10.1016/j.ajodo.2005.01.033
 7. Ucar FI, Uysal T. Orofacial airway dimensions in subjects with class I malocclusion and different growth patterns. Angle Orthod 2011; 81: 460-68. https://doi.org/10.2319/091910-545.1
 8. Memon S, Fida M, Shaikh A. Comparison of different craniofacial patterns with pharyngeal widths. J Coll Physicians Surg Pak 2012; 22: 302-6.
