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ABSTRACT 

AL-TAWALBEH, AHMAD, M., Masters : January : [2023], 

Masters of Science in Civil Engineering 

Title: Evaluation and Calibration of Dynamic Modulus Prediction Models of 

Asphalt Mixtures for Hot Climates  

Supervisor of Thesis: Okan Sirin 

The dynamic modulus (𝐸∗) of asphalt mixtures is considered a primary entry in 

Mechanistic-Empirical (ME) pavement design and analysis. Various models have been 

published and aimed to estimate the modulus on the basis of the mixture volumetrics 

and material features. This study aims to review four commonly incorporated dynamic 

modulus prediction models of Hirsch, Alkhateeb, Witzack 1-37A, Witzack 1-40D and 

validate and calibrate Hirsch and Alkhateeb models for use in Qatar. Based on the study 

outcomes, the Hirsch model showed a high prediction accuracy of asphalt mixture 

moduli before calibration with a coefficient of determination (R2) of 87.2% between 

predicted and measured values. This R2 value is improved after calibration to 89.2%. 

Alkhateeb model, on the other hand, had a R2 of 70.8% before calibration, which also 

improved to 89.2% after calibration. Based on the study results, it is recommended to 

use the calibrated Hirsch or Alkhateeb model in Qatar instead of the uncalibrated 

version of the models. The moduli predicted by the Hirsch model before and after 

calibration were employed in this study to perform a mechanistic-empirical analysis of 

typical pavement structures in Qatar. According to the findings, the percent change in 

the predicted fatigue due to the use of the calibrated Hirsch model reached more than 

50% with an average value of 17.33%, while the percent change in rutting reached 14% 

with an average value of 3.65%.  These results highlight the importance of using locally 

calibrated models to improve dynamic modulus predictions performance.  
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CHAPTER 1: INTRODUCTION 

 Overview 

Asphalt mixture dynamic modulus (𝐸∗) is one of the main factors in pavement 

design, especially in the mechanistic-empirical analysis and design method and 

estimating the layer coefficient of American Association of State Highway and 

Transportation Officials (AASHTO, 1993) empirical design method (Sakhaeifar et al., 

2015). Due to this importance, laboratory testing is needed to characterize this 

parameter to provide the designer with flexibility in the material selection. However, 

characterizing the mixture would face multiple difficulties and determinants, such as 

having different sources of aggregate properties and gradation, having multi-types of 

asphalt binders, and the need for a large testing matrix that is not available at the design 

stage of the road. In order to overcome these difficulties, researchers come up with 

prediction models that forecast the mixture 	based on asphalt mixture volumetrics and 

asphalt binder properties such as Complex Modulus (𝐺∗). These prediction models are 

generally validated based on conventional mixtures of local materials and are not aimed 

to be generalized for all types of materials and mixtures (B. Zhang et al., 2019) 

(Apeagyei, 2011). Based on the literature, Hirsch, Witzack 1-37A (1999), Witzack 1-

40D (2006), and Alkhateeb dynamic modulus prediction models are the most popular 

models studied and applied in practice among many prediction models developed 

around the world and considered as a proofed concept. However, these models vary in 

development technique, testing matrix, and calibration methods which result in 

different prediction performances due to a variety of material characteristics and 

mixture volumetrics from one region to another (Abu Abdo, 2012) (Ceylan, Schwartz, 

et al., 2009) (Mateosa & Soares, 2015).  
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Hirsch model (Christensen et al., 2003) is developed based on the mixture rule. 

It was considered in the early stages as a tool to define the sensitivity of volumetrics 

and their effect on the dynamic modulus (C. Zhang et al., 2017). As the Hirsch model 

relies on mechanistic concepts and regression results, it is considered a semi-empirical 

model and reduces the inputs compared to the entirely empirical models such as 

Witzack model (M Kim, 2010). However, the empirical part of the Hirsch model was 

built based on the conventional mixtures dataset resulting in questionable prediction 

performance of the model for the new modified type of mixtures that developed for 

other climatic conditions.  

Witzack models rely on conventional multivariate regression analysis of a large 

dataset of laboratory testing results (Ceylan & Kim, 2007). These models were revised 

and developed through the last decades to improve their prediction performance for 

several mixes. First, a popular version was developed in 1999 and known as 1-37A 

Witzack Model, and then it was reviewed in 2006 and known as Witzack 1-40D 

(Yousefdoost et al., 2013). In the Witzack 1-40D model, the 1-37A version has been 

modified by widening the original dataset and introducing the complex modulus (𝐺∗) 

and the phase angle (δ) instead of the viscosity to include the loading frequency effect 

on the modulus (J. Bari & Witczak, 2006). Several researchers demonstrated that the 1-

40D version has a good prediction performance (Ceylan, Schwartz, et al., 2009) 

(Yousefdoost et al., 2013) (J. Bari & Witczak, 2006). On the contrary, other studies 

show that the 1-40D Witzack model yields highly biased predictions (Khattab et al., 

2014) (Andrei et al., 1999). Even though Witzack 1-40D is the latest model, several 

studies proved that Witzack 1-37A has better performance (Khattab et al., 2014) 

(Solatifar, 2020) (Robbins & Timm, 2011). 
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Alkhateeb Model defined the functional rheology of the asphalt layer as a 

combination of three phases of a parallel performance (Al-Khateeb et al., 2006). The 

research dataset included modified and unmodified asphalt mixtures with a wide range 

of performance grades (Al-Khateeb et al., 2006). Multiple studies showed that the 

Alkhateeb model resulted in biased prediction at low temperatures (Yousefdoost et al., 

2013) (Far et al., 2009).  

 Problem Statement 

Qatar has witnessed exponential growth in all infrastructure sectors and broad 

expansion in road networks in the past decade.  The need to provide value-engineered 

and sustainable pavement structures has become a priority during this development. In 

Qatar, and to predict the dynamic modulus, Qatar Highway Design Manual (QHDM) 

(MOTC, 2015) and Interim Advice Note No. 101 (Public Work Authority, 2016) of the 

Public Works Authority (PWA) of Qatar have recommended using the Hirsch model 

without referring to a validation study. As this model was formed based on the USA 

mixtures (Christensen et al., 2003), the prediction performance of the Hirsch model of 

Qatar-based mixtures requires further verification and possibly recalibration in light of 

comparative study with other available models.  

 Qatar Climate 

The climate condition is an essential input in determining the properties of 

pavement materials. Qatar has a hot climate with high humidity levels during the 

summer. According to the Qatar Meteorology Department, Doha has a low average 

annual rainfall precipitation of 79mm(QMD, n.d.-a). Figure 1 shows the climatic 

temperature in Qatar for the period 1962 to 2013 collected in Doha city station (QMD, 

n.d.-b) 
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Figure 1. Climatic Temperature Normals in Qatar for the period 1962 to 2013 (Qatar 
Meteorology Department: Doha Station) 

 

There is no significant deviation in the overall terrain and environment of the 

State of Qatar; thus, the data collected from the Doha station represents the entire 

country's climate. Figure 1 shows that the lowest temperature throughout the year is 

13.5 ℃. This explains that the State of Qatar does not experience air temperatures of 4 

or 5 ℃, which are typically used in dynamic modulus testing to construct the master 

curve.     

 Objectives of the Study 

This study aims to: 

• Select the usable models in Qatar after reviewing the Hirsch, Witzack 1-

37A (1999), Witzack 1-40D (2006), and Alkhateeb dynamic modulus 

prediction models. 

• Conduct validation and calibration for the selected models based on local 

materials and testing practices. 

0

5

10

15

20

25

30

35

40

45

Jan
uar

y

Feb
rua

ry
Marc

h
Apri

l
May Jun

e
Jul

y

Aug
ust

Sep
tem

ber

Octo
ber

Nov
em

ber

Dece
mber

Te
m

pe
ra

tu
re

 (℃
)

Mean Temperature Maximum Temperature Minimum Temperature



 

5 

• Evaluate the advantage of the calibration on the predicted functional 

performance of Qatar pavement structures. 

 Report Outline 

The thesis contains five chapters. For ease of understanding, each chapter has 

an introduction that explains the chapter's content and presents the expected 

information. The chapters contents are briefly described below. 

Chapter 1: Introduction 

Chapter 1 of the thesis serves as a quick introduction and outlines its goal in 

light of the issue statement. This chapter also includes a description of the report's 

outline and the study's objectives. 

Chapter 2: Literature Review 

Chapter 2 offers an in-depth review of the Hirsch, Witzack 1-37A (1999), 

Witzack 1-40D (2006), and Alkhateeb dynamic modulus prediction models prediction 

bases, prediction performance, calibration techniques, limitations, and the latest 

technologies used to build dynamic modulus prediction models and highlight future 

developments needed to achieve better prediction performance. This chapter reviews 

sensitivity studies for the effect of dynamic modulus on the predicted functional 

operation of pavement structures. In the end, two prediction models have been chosen 

for the validation and the calibration based on their inputs after eliminating the other 

two reviewed models.  

Chapter 3: Research Methodology and Data Collection 

Chapter 3 describes the research methodology developed to accomplish the 

targeted objectives. Also, the chapter presents the collected data and explains the 

calibration technique considered in this study. Lastly, the chapter shows the statistical 

measures considered to assess the results. 
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Chapter 4: Results and Discussion 

Chapter 4 presents the validation and calibration results in statistical terms, 

discusses them, and compares them with the reviewed literature. Also, the chapter 

presents the sensitivity analysis results of the Hirsch and Alkhateeb models. In the end, 

the chapter shows the result of the functional performance testing of Qatar pavement 

structures before and after calibration to highlight the importance of the conducted 

calibration. 

Chapter 5: Conclusion and Recommendations 

Chapter 5 concludes this study's results and interconnects the outcomes with the 

study objectives. Also, the chapter includes recommendations that would be considered 

in future studies of dynamic modulus prediction models to improve the results. 
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CHAPTER 2: LITERATURE REVIEW 

Introduction 

Based on the above introduction, it is noticed that the evaluation studies for the 

four dynamic modulus prediction models resulted in contradicting results regarding the 

prediction performance. Therefore, this section gives a state-of-the-art review of the 

Hirsch, Witzack 1-37A (1999), Witzack 1-40D (2006), and Alkhateeb dynamic 

modulus prediction models to define the prediction bases, prediction performance, 

calibration techniques, limitations, and the latest technologies used to build dynamic 

modulus prediction models and highlight future developments needed to achieve better 

prediction performance. Also, this section reviews sensitivity studies on the dynamic 

modulus effect on the predicted functional performance of pavement structures and 

concludes the outcomes. 

  Models Prediction Bases 

This section presents the Hirsch, Witzack 1-37A (1999), Witzack 1-40D (2006), 

and Alkhateeb prediction models prediction bases found in the literature. The section 

presents the theory behind each model and the dataset details that were considered to 

develop it. 

Hirsch Model 

The Hirsch model constructed by (Christensen et al., 2003) is among the most 

well-liked prediction models for asphalt layers modulus. This model can be categorized 

as a semi-empirical model that is rheologically developed based on Burger’s model, 

which considers a synthesis of two mechanical responses for the material, parallel and 

series, as shown in Figure 2 (Huang, 2004)(Elseifi et al., 2002). 
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Figure 2. Burger’s Model Concept Diagram 

 

The parallel and series performance of the asphalt mixture is represented in 

Equations (1) and (2), respectively (Shu & Huang, 2008).  

                             𝐸" = 𝐸#𝑉# + 𝐸$𝑉$                                    (1) 

																														
1
𝐸%
=	
𝑉#
𝐸#
+	
𝑉$
𝐸$

 (2) 

Where:  

𝐸"	= Parallel performance modulus of the material 
𝐸% = Series performance modulus of the material 

𝐸#	and 𝐸$ = Modulus of each material 
𝑉# and 𝑉$ = Volume of each material in the mixture 

Equation (3) represents the asphalt mixture modulus based on Burger’s model 

(C. Zhang et al., 2017). 

|𝐸∗|" = 𝑥	(𝐸1𝑉1 + 𝐸2𝑉2) + (1 − 𝑥)(	
𝑉1
𝐸1

+	
𝑉2
𝐸2
)
−1

 (3) 

Where: 

𝑥 = Parallel mechanical response ratio 
|𝐸∗|& = Asphalt mixture dynamic modulus 

It is found that Hirsch Model has different versions compared with each other 

in the literature. (C. Zhang et al., 2017) found that the following version represented in 

Equations (4) and (5), known as an alternate, is the most accurate model and commonly 

referred to as Hirsch Model (K. L. Roja et al., 2020). 

 

Damper 1
Spring 1

Spring 2

Damper 2
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|𝐸∗|& = 𝑃𝑐	 -4,200,000	 2	1 −	
𝑉𝑀𝐴
100 6 + 3

|𝐺∗|' 	2
𝑉𝐹𝐴 ∗ 𝑉𝑀𝐴
10,000 6: + 

(1 − 𝑃𝑐)	[
#$$%&'((
%,'((,(((

+	 )*+
,)-+	|0∗|*

]	$#   

 

(4) 

 

Where:  

𝑃𝑐 = 	
220 +	𝑉𝐹𝐴 ∗ 	3|𝐺

∗|'	
𝑉𝑀𝐴 6

(.*+
	

650 + 2𝑉𝐹𝐴 ∗ 3|𝐺
∗|'

𝑉𝑀𝐴 6
(.*+  

 

               (5) 

Where: 

|𝐸∗|&= Predicted asphalt mixture dynamic modulus (psi) 
𝑉𝐹𝐴 = Voids filled with asphalt (%)  
𝑉𝑀𝐴 = Voids in the mineral aggregate (%)  
|𝐺∗|'	= Complex modulus of binder (psi)  

The constants (20, 0.58, and 650) are fitting parameters obtained from 

regression analysis and fitting with measured moduli of asphalt mixtures (C. Zhang et 

al., 2017). The regression constant (4,200,000) is an assumed aggregate young’s 

modulus (in psi). The constant (3) multiplied with the |𝐺∗|' is obtained by assuming 

that asphalt is an incompressible material with a Poisson’s ratio (𝑣) of 0.5 substituted 

in the elastic modulus (E) equation: E = 	2	(1 + 𝑣)|𝐺∗|', where (|𝐺∗|') is binder 

modulus (C. Zhang et al., 2017).  

Hirsch model was created using a dataset collected from several projects in the 

US. A summary of the Hirsch model dataset details is presented in Table 1 (Christensen 

et al., 2003). Hirsch model dataset physical features are exhibited in Table 2 

(Christensen et al., 2003). 
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Table 1. Summary of Hirsch Model Dataset Details 

Source Project 

Factor 

FHWA ALF* West Track MN/Road Variants Totals 

Binders  SBS Modified 
and PE- modified 

PG 64-22 120/150-
Pen 

8 

Mix Design Method  Marshall AC-5, 
10, 20 

Superpave Marshall 
AC-20 

2 

Aggregate Size and 
Gradation  

19mm Dense and 
37.5mm Fine 

19mm Fine and 
19mm Coarse 

9.5mm 
Fine 

5 

Number of Asphalt Mixes 7 6 5 18 
No. of Data Point 78 69 59 206 
* ALF: Accelerated Load Facility 

 

Table 2. Hirsch Model Dataset Physical Properties 

Criteria Value 

Air Voids (%) 5.6 to 12.2 
VMA (%) 13.7 to 21.6 
VFB (%) 38.7 to 68 
Loading Frequency (Hz) 0.1 and 5 
Dynamic Modulus (MPa) 183 to 20,900 
Complex Shear Modulus (MPa) 20 to 3,880 
Temperature (°C) 4, 21 and 38 
Phase Angle (degrees)  8 to 61 

 

Witzack 1-37A Model (1999) 

This empirical model was developed by Andrei Witzack et al. by collecting a 

database consisting of 205 asphalt mixtures tested at 2750 test points (C. Zhang et al., 

2017). Shook and Kalas originally developed the model in 1969, which was modified 

by Fonseca and Witzack in 1996 (Li et al., 2012). A database contains 1430 data points 

obtained based on 149 conventional asphalt mixes initially utilized in the Fonseca and 

Witzack model, as well as a further 1320 test points from 56 asphalt mixtures the 

contains 34 mixtures have an enhanced asphalt binder, which was used to create the 

Witzack 1-37A model. The model inputs include volumetric characteristics, asphalt 
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mix grading, viscosity, and frequency. In Equation (6), the Witzack 1-37A model is 

displayed (Andrei et al., 1999). 

𝐿𝑜𝑔	|𝐸∗|+ =	−1.249937 + 0.029232. 𝑝,-- − 0.001767	. (𝑝,--), − 0.002841. 𝑝. 

−0.058097. 𝑉/ − 	0.802208.
𝑉0122

:𝑉0122 − 𝑉/;
 

+
3.871977 − 0.0021. 𝑝. + 0.003958. 𝑝34 − 0.000017. (𝑝34), + 0.005470. 𝑝3.

1 + 𝑒(6-.8-33936-.393::9.;<=(2)6-.3?3:3,.;<=(@))
 

 

       

(6) 

Where: 

|𝐸∗|+ = Predicted Dynamic Modulus, in 0.72 MPa (105 psi) 
𝑝$(( = % Passing the sieve No.200  
𝑝, = % Retained on sieve No. 4  
𝑉- = % Air voids  
𝑝.+ = % Retained on the 9.5 mm (3/8-inch) sieve by total aggregate weight 

(cumulative) 
Vbeff = % Effective bitumen content, by volume 
𝑝., = % Retained on the sieve sized 19 mm (3/4-inch) 

𝑓= Loading frequency (Hz) 
Ƞ =  Bitumen viscosity  

A summary of the Witzack 1-37A set of data is demonstrated in Table 3 (Garcia 

& Thompson, 2007). 

 

Table 3. Summary of Witzack 1-37A Dataset Details 

Criteria Dataset 

Frequency 0.1 to 25 Hz 
Binder Types 9 Unmodified, 14 Modified 
Temperature  -17.7 to 54.4 °C  
Asphalt Mixtures 34 with modified binder, 171 with unmodified binder 
Aggregate 39 grading type 
Specimen Aging Un-aged 

 

Witzack 1-40D Model (2006) 

The Witzack 1-40D model revised the previous Witzack 1-37A by expanding 

the database and introducing the 𝐺∗ and δ instead of viscosity. This model was 
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calibrated subject to 7400 modulus test points resulting from testing 346 Hot Mix 

Asphalt (HMA). The new data when compared with the Witzack 1-37A model data 

added aged and un-aged material of wider variety in the aggregate gradation, binder 

types, and mixture types (modified and unmodified) (Javed Bari et al., 2006). 

The 1-40D model kept the same structure as the Witzack 1-37A model, but 𝐺∗ 

and δ were embedded in the equation (Robbins & Timm, 2011). The model is 

represented by Equation (7) (J. Bari & Witczak, 2006). 

 
𝐿𝑜𝑔	|𝐸∗|+ =	−0.349 + 0.754(|𝐺0∗|6-.--:,)	𝑥	(6.65 − 0.032𝑝,--

+ 0.0027𝑝,--, + 0.011𝑝. − 0.0001𝑝., + 0.006𝑝34 

−0.00014𝑝34, − 0.08𝑉/ − 1.06	 >
𝑉0122

𝑉/ + 𝑉0122
?)	 

+	
2.56 + 0.03	𝑉/ + 0.71 @

𝑉0122
𝑉/ + 𝑉0122

A + 0.012𝑝34 − 0.0001𝑝34, − 0.01𝑝3.
	

1 + 𝑒(6-.A49.6-.:A4:4: BCD|F∗|"G-.443.;<=H")
 

  

 

 

(7) 

Where: 

|𝐺∗|' = Complex modulus of the binder (in psi) 

δb = Phase angle of the binder (in degrees) 

 

Alkhateeb Model 

In addition to the Hirsch model, the Alkhateeb model (Al-Khateeb et al., 2006) 

has been applied in the practice due to its small number of inputs needed to predict the 

𝐸∗. The model was constructed based on the rule of mixtures considering a three-

component system of binder, aggregate, and air voids. (Al-Khateeb et al., 2006) 

determined the calibration parameters using mixtures from the State of Virginia in the 

USA.  The set of mixtures included aging effect and modified binders. Equation (8) 

represents the Alkhateeb model (Al-Khateeb et al., 2006). 
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(8) 

Where: 

|𝐺∗|/ = Binder glassy state shear modulus in Pa (assumed as 109 Pa) 

𝑉𝐹𝐴 = Fraction of aggregate voids filled with asphalt (%)  

𝑉𝑀𝐴 = Voids in the mineral aggregate (%)  

|𝐺∗|'	= Binder complex modulus (asphalt) (psi)  

The model was developed based on several material resources, production 

techniques, and binder types. Table 4 shows the Alkhateeb model dataset details, while 

Table 5 shows the physical properties of the Alkhateeb model dataset (Al-Khateeb et 

al., 2006). 

 

Table 4. Summary of Alkhateeb Model Dataset Details 

Mixture Production Types Compaction Types Binder Types 

Laboratory Produced Laboratory Compaction PG 70-28 air blown 
Plant Produced Field Compaction PG 70-22 unmodified 
Field Cores  PG 70-28 modified by polymers 
  PG 76-28 modified by crumb rubber 
  PG 70-34 modified by polymers 

 

Table 5. Alkhateeb Model Dataset Physical Parameters 

Mixture Properties Grading 

Sand Equivalent (%) 75 Size (mm) Percent Passing 
Bulk Saturated Surface Dry Gravity (t/m3)  2.965 37.5 100 
NMAS (mm) 12.5 9.5 84.6 
Apparent Specific Gravity (t/m3)  3.001 12.5 93.6 
LPLC* Binder Content (%) 5.3 4.75 56.7 
LPLC* and PPLC** Compaction Gyratory 2.36 34.9 
Specimen Cylinder Size(mm) 100 x 150 1.18 24.8 
Test Temperature (°C)  4, 9, 31, 46, 58 0.6 18.2 
Absorption (%) 0.6 0.3 13.1 
Air Voids - Targeted (%) 7±0.5 0.15 9.3 
Test Frequency (Hz)  0.1, 0.5, 1, 5, 10   
Bulk Dry Specific Gravity (t/m3) 2.947   
* LPLC: Lab Produced – Lab Compacted 
** PPLC: Plant Produced – Lab Compacted 
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 Models Comparison Summary 

Based on the review conducted in the previous sections, the comparative 

summary of the four models is presented in Table 6. 

 

Table 6. Comparison of the four reviewed models 

Criterion Hirsch Model Witzack 1-37A model  Witzack 1-40D model Alkhateeb model 

Prediction 
Type  

Semi-empirical (C. 
Zhang et al., 2017) 

Empirical  (Ceylan & 
Kim, 2007), (Andrei et 
al., 1999) 

Empirical (Ceylan & 
Kim, 2007), (Andrei et 
al., 1999) 

Semi-empirical 
(Al-Khateeb et al., 
2006) 

Number of 
Test points 

206 (Christensen et 
al., 2003) 

2,750 (Yousefdoost et 
al., 2013), (Andrei et al., 
1999) 

7400 (Ceylan & Kim, 
2007), (Andrei et al., 
1999) 

150 (Al-Khateeb 
et al., 2006) 

Number of 
Mixtures 

18  (Christensen et 
al., 2003) 

205 (Yousefdoost et al., 
2013), (Andrei et al., 
1999) 

346 (Ceylan & Kim, 
2007), (Andrei et al., 
1999) 

6 (Al-Khateeb et 
al., 2006) 

Type of 
Binders 

2 Unmodified and 2 
Modified 
(Christensen et al., 
2003) 

Unmodified and 
Modified (Yousefdoost 
et al., 2013), (Andrei et 
al., 1999) 

Unmodified and 
Modified (Andrei et al., 
1999) 

6 Types of 
Modified and 
Unmodified 
(Yousefdoost et 
al., 2013), (Al-
Khateeb et al., 
2006) 

Aggregate 
Gradation  

1 Dense, 3 Fine, 
and 1 Coarse 
(Christensen et al., 
2003) 

39 Types (Yousefdoost 
et al., 2013), (Andrei et 
al., 1999) 

Gap, Open, and Dense 
(Andrei et al., 1999) 

1 Dense 
(Yousefdoost et 
al., 2013), (Al-
Khateeb et al., 
2006) 

Aging Aged Un-aged (Yousefdoost 
et al., 2013), (Andrei et 
al., 1999) 

Aged and Un-aged 
(Andrei et al., 1999) 

Aged 
(Yousefdoost et 
al., 2013), (Al-
Khateeb et al., 
2006) 

Assumed 
Rheology  

Two Phases in 
parallel and series 
(Christensen et al., 
2003) 

Not Applicable Not Applicable Three phases in 
parallel (Al-
Khateeb et al., 
2006) 

 

 Models Performance Comparison 

As the above-mentioned prediction models relied on different techniques and 

datasets, the prediction performance varies from one region to another due to climatic 

and material differences. (C. Zhang et al., 2017) study evaluated the performance of the 

Hirsch model, the Witzack 1-40D model, and the modified Hirsch model proposed 
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through the study. The study also aimed to revise the Hirsch model by introducing the 

mixture's rule in addition to considering the elastic and viscoelastic properties. The 

study went through a rheological review for the Hirsch model and found that there are 

three sources of error in the model; (1) the model always assumes the aggregate 

modulus as a regression constant of 4,200,000 psi; (2) the model has been derived based 

on the assumption that asphalt mixture is elastic material so dynamic modulus was 

represented as 𝐸∗ = 2(1 + 𝑣)|𝐺∗|'; (3) the asphalt is assumed as incompressible with 

poisons ratio of 0.5. At first, the researchers conducted a sensitivity analysis to examine 

the influence of aggregate modulus on the forecasting performance of the Hirsch model 

by substituting the modulus of limestone, basalt, and tuff instead of the utilized 

4,200,000 regression constant in the model and comparing it with a control limestone 

asphalt mixture modulus. The analysis showed that using a specific aggregate modulus 

is necessary due to the significant difference in the prediction when using a regression 

constant of 4,200,000. Figure 3 explains the aggregate modulus effect on predicted 

dynamic modulus based on the study outcomes (C. Zhang et al., 2017).  
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Figure 3. Measured Vs. Hirsch Predicted Mixtures Master Curve with Several Types 
of Aggregate 

 

 Figure 3 shows that the basalt modulus comes up in the closest prediction to 

the original Hirsch model values since the regression constant of 4,200,000 is close to 

the basalt modulus of ( 34,894 MPa) 5,061,000 psi (Stowe, 1969) so the prediction 

performance does not significantly vary. Also, the limestone resulted in the closest 

predicted modulus compared to the measured values since it is used in the control 

mixture. 

(Yousefdoost et al., 2013) studied the appropriateness of the US (Alkhateeb, 

Hirsch, Witzack 1-37A, and Witzack 1-40D) models for Australian mixtures. In order 

to achieve the study goal, 28 asphalt mixtures used in Australia have been tested to 

define the modulus. The study concluded that the Hirsch, Witzack 1-37A (1999), and 

Alkhateeb models typically under-predict the dynamic modulus; meanwhile, Witzack 

1-40D (2006) exaggerates the values. Bias and fitting errors were computed for each 

model and found high in the Hirsch, Alkhateeb, and Witzack 1-40D. The study also 
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came up with the conclusion that all models' prediction accuracy is sensitive to 

temperature. The study also included sensitivity analysis to check how the asphalt mix 

properties affect the prediction accuracy. It was found that binder type is the most 

sensitive characteristic. Therefore, the conclusion was interpreted that the studied 

prediction models are not accurate enough to be considered for Australian asphalt 

mixes. Table 7 shows the Goodness-of-fit of prediction models for Australian asphalt 

mixes. 

 

Table 7. Goodness-of-fit of Prediction Models for Australian Asphalt Mixes 

Statistics Criteria 1-37A 1-40D Hirsch Alkhateeb 

 
 
 
Se/Sy 
  

5 °C 1.55 7.9 2.84 2.85 
20 °C 0.86 2.29 1.34 1.26 

35 °C 0.43 0.38 0.72 0.57 
50 °C 1 0.39 0.53 0.48 
Overall 0.49 2.29 0.88 0.87 

 
 
 
R2  

5 °C -134.00% -5998.00% -702.00% -709.00% 

20 °C 29.00% -412.00% -78.00% -58.00% 
35 °C 82.00% 86.00% 49.00% 68.00% 
50 °C 2.00% 85.00% 73.00% 77.00% 
Overall 76.00% -419.00% 1300.00% 24.00% 

 
 
 
Other 
Statistics  

SSE 1.75E+10 3.79E+11 5.59E+10 5.51E+10 
Average |E*p| 5953 16555 3812 4000 

Average Error -2007 8595 -4147 -3959 
Slope 0.618 2.688 0.342 0.332 
Intercept 1030.8 -4837.5 1090 1357.8 
Rating Good Very Poor Poor Poor 

 

(Far et al., 2009) conducted a study to evolve an Artificial Neural Network 

(ANN) dynamic modulus prediction model and evaluated Alkhateeb, Hirsch, Witzack 

1-37A, and Witzack 1-40D models. The study concluded that the Alkhateeb model has 

a significant bias at low temperatures compared to 1-40D Witzack and the Hirsch 
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models. In addition, the study modified all four models to improve the prediction 

performance. It was concluded that the newly modified Witzack and Hirsch models 

result in significant bias at high temperatures and low sensitivity of the two models to 

volumetric parameters. 

(Solatifar, 2020) conducted a study to compare the performance of six dynamic 

modulus prediction models (Hirsch, Modified Witzack, Witzack, Alkhateeb, Global, 

and Simplified Global). The study includes a published database conducted by the 

University of Maryland. The testing consists of a broad extent of frequencies and 

temperatures. To evaluate the prediction performance of the studied models, the study 

considered two Measures for Effectiveness (MOE), which are goodness-of-fit and bias. 

The study concluded that the best prediction performance is arranged as Witzack 1-

37A, Simplified Global, Global, Hirsch, Alkhateeb, and Modified Witzack 1-40D. The 

study highlighted that the Witzack 1-37A model has the best prediction performance 

because it was developed based on the same testing database utilized in this study. 

Although calibration is necessary, the study concluded that all models could be 

considered in the design and analysis process. 

To establish the use of AASHTOWare software for the Pavement Mechanistic-

Empirical (ME) design method in Saudi Arabia, (Khattab et al., 2014) analyzed 

Witzack 1-37A and 1-40D dynamic modulus prediction models. The modulus was 

measured for 25 different local mixtures. The results indicated that temperature and 

binder type impacted how well the two models worked. According to the data, MEPDG 

Level 3 binder inputs and the 1-37A Witzack model had the highest prediction 

performance and lowest biased prediction. 

(Robbins & Timm, 2011) conducted a study evaluating Hirsch, Witzack 1-37A, 

and Witzack 1-40D on asphalt mixtures in the southeastern United States by testing 18 
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HMA. The Witzack model found to had the largest deviations from the measurements 

with overestimating E* by about 61%. 

 
 Models Calibration Techniques 

Due to the importance of Dynamic Modulus (𝐸∗) prediction models in practical 

fields, several researchers focused on developing a methodology to calibrate the models 

(Goh et al., 2010). (C. Zhang et al., 2017), proposed to calibrate the Hirsch model with 

two major changes: (1) introducing Burger’s model to describe binder viscoelastic 

properties and (2) considering design-specific aggregate elastic modulus instead of the 

regression constant. The study came up with a modified Hirsch model that includes the 

δ of the mix. It was concluded that the modified Hirsch model in this study provides 

higher accuracy prediction than the original Hirsch and 1-40D Witzack models. In 

addition, it was found that the prediction performance is sensitive to the δ value. 

(Robbins & Timm, 2011) proposed the Hirsch model calibration methodology 

by substituting the actual aggregate modulus instead of the regression constant of 

4,200,000. The used aggregate modulus considered in the mix has a modulus of 

3,040,500 psi. In addition, the research proposed to use an error minimization tool in 

excel to find new regression factors instead of (20, 650, 0.58, 3). The calibration shows 

an improvement of 1.4% R2 for the Hirsch model prediction, which was considered as 

minor improvement. 

(Shen et al., 2013) proposed two calibration techniques for the Hirsch model 

based on Washington DC asphalt mixes using 42 samples. The first calibration 

technique considered replacing the 4,200,000 regression constant with an aggregate 

modulus of 4,800,000 psi and using error minimization to replace the regression 

coefficient (20, 650, and 0.58) with new values. The study resulted in a new regression 

coefficient of (0.2, 600, and 0.56), respectively. It was concluded that the quality of the 
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predictions improved but overestimated the modulus at high testing temperatures. In 

the second technique, the research proposed using asphalt mastic properties to calibrate 

the Hirsch model. The study suggested a factor of 68,947 MP (10,000,000 psi) instead 

of 4,200,000 regression constant and considered using mastic complex modulus (𝐺&∗) 

instead of binder G* and replacing the regression factors (650 and 0.58) with (10,000 

and 0.67), respectively. Figure 4 shows the newly improved prediction performance 

based on the second technique (Shen et al., 2013).  

 

 

Figure 4. Predicted and Measured E* based on Modified Hirsch Model of Shen et al. 
study 

 

The trend of the predicted vs. measured 𝐸∗ is going around the line of equality, 

and the performance appears consistent. Unfortunately, the published article did not 

present the statistical improvement of the prediction in the article. 
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 Recent Developments and Future   

New dynamic modulus prediction models have been developed with innovative 

techniques to overcome the shortcomings of conventional models (Ceylan, 

Gopalakrishnan, et al., 2009). Kim (Minkyum Kim, 2009) explained that empirical and 

semi-empirical models for predicting dynamic elastic moduli have significant 

shortcomings, especially when used for mixtures that vary significantly from those used 

to develop and calibrate the model. In the study, a proposed and experimentally 

validated a differential scheme micromechanics modeling framework for HMA 

modulus prediction was considered. Researchers have identified material 

micromechanics at the level of their individual components. After developing the new 

model, the predicted and measured E* have been compared and a good agreement was 

found with reasonable accuracy.  

(Ceylan & Kim, 2007) conducted a study to develop a simple dynamic modulus 

prediction model with less number of independent variables in comparison to the 

regression-based models such as Witzack models without negatively impacting the 

accuracy of the prediction. The Witzack 1-40D measured E* dataset was considered for 

constructing Artificial Nural Network (ANN) based models. The obtained ANN-based 

models were checked against the MEPDG models. It was concluded that the ANN 

models with a smaller number of inputs have better performance and higher accuracy 

than regression-based MEPDG models. 

(Far et al., 2009) constructed three ANN-based models based on the inputs of 

Alkhateeb, Hirsch, and 1-40D Witzack models. After validation of the three models, it 

was concluded that all three models have a high coefficient of determination (R2) and 

low bias. The ANN model with Hirsch model inputs had the best prediction for the 

modulus (Lu et al., 2009).  
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(El-Badawy et al., 2018) applied the ANN technique for dynamic modulus 

prediction based on 25 asphalt mixtures and considered the inputs of  Hirsch, Witzack 

1-37A, and Witzack 1-40D. After determining the most sensitive inputs using Global 

Sensitivity Analysis (GSA) and commercially available software, the ANN-based 

models were found to be more accurate than conventional models.  The study concluded 

that the Hirsch model needs further aggregate characteristics inputs so, the model's 

accuracy will not be negatively affected. 

(Moussa & Owais, 2020) developed a Deep Convolution Neural Networks 

(DCNNs) technique based on six convolution blocks and applied it on Witzack 1-37A 

and Witzack 1-40D. The study found that the developed models based on machine 

learning have a higher performance than conventional prediction models. In another 

research by the same researchers (Moussa & Owais, 2021), a prediction model-based 

Deep Residual Neural Networks (DRNNs) technique was developed based on 

comparing 8191 combinations of inputs. The study showed that the DRNNs model 

outperformed the conventional Witzack 1-37A, Witzack 1-40D, and Hirsch prediction 

models. 

 
 Dynamic Modulus Effect on Pavement Performance Predictions 

(Cooper et al., 2015) performed research to define dynamic modulus impact on 

pavement performance predictions. For this purpose, ten asphalt mixtures moduli were 

obtained at the design, production, and construction stages. Consequently, Mechanistic-

Empirical (ME) pavement analysis was conducted using AASHTOWare. The analysis 

showed that rutting distresses were sensitive to the modulus value. Moreover, it was 

found that the predicted alligator cracking between plant-produced laboratory-

compacted (PL) samples and field cores of the same mixture reached a 60% difference 

due to changes in the modulus value.  
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(Cheng et al., 2021) studied the sensitivity of the loading wave types on the 

modulus value and, consequently, on the pavement layers distresses. The study 

considered three loading modes and found that field strain responses differ significantly 

by changing the modulus inputs within the MEPDG method. 

 Summary and Conclusion 

Based on the above-presented literature review, it was found that all four models 

rely on modified and unmodified binders with datasets limited to a specific area region.  

In terms of models’ performance, it was concluded that the models have varying 

performances based on the temperature, frequency, and country of application.  

This section also presented recent calibration techniques found in the literature 

that opens the doors to develop prediction models with better accuracy by considering 

the effect of high and low temperatures on prediction performance.   

Based on this section, the following can be concluded: 

• Error minimization technique has been used in several studies to calibrate the 

models. 

• Witzack models have many inputs that are not usually presented in Job Mix 

Formulas (JMFs) in Qatar, such as viscosity and effective binder content by 

volume. 

• Witzack models have many regression-fitting factors that would result in 

overfitting once error minimization is applied over the model. 

• Within the Hirsch model, the regression constant of 4,200,000 replaces the 

aggregate young modulus. The error resulting from this constant decreases 

significantly if the mixture aggregate young modulus in psi unit is close to this 

constant. 
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• Artificial Neural Network (ANN) and Machine Learning (ML) techniques were 

adopted in several studies to replace conventional models such as Hirsch and 

Witzack models. However, this practice needs a comprehensive dataset and 

many testing points. 

• The effect of climate is introduced in the reviewed validation and calibration 

techniques by considering local materials and mixing practices of the targeted 

study area. 

• The literature has no general agreement on the performance of the reviewed 

prediction models. Every model shows varying performance based on the 

temperature and materials. 

• The reviewed studies evaluate the models' predictive performance solely based 

on statistical analysis. The effect of the prediction model calibration was not 

interconnected with the predicted functional performance of the pavement 

structures, such as fatigue and rutting.  

Based on the above-drawn conclusion, Witzack 1-37A and 1-40D models will 

be eliminated from the validation and calibration part due to high numbers of needed 

inputs which are usually not presented in Qatar Job Mix Formulas (JMF) (sample is 

attached to Appendix B), and due to a high number of fitting factors needed to compute 

the dynamic modulus values. Accordingly, the following sections will focus on 

evaluating and calibrating the Hirsch and Alkhateeb models for Qatar.
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CHAPTER 3: METHODOLOGY AND DATA COLLECTION 

Introduction 

This chapter describes the research methodology developed to achieve the 

stated study objectives. The chapter also goes into the considered calibration technique 

and displays the data acquired for this purpose. The chapter also shows the statistical 

metrics and their interpretations used to evaluate the results. 

 Methodology 

Based on the reviewed literature and the defined gap in this study area, the 

following methodology has been considered. 

• Collecting laboratory testing points of Qatar asphalt binder and mixtures 

modulus covering a wide range of local materials, temperatures, and 

frequencies tested based on Qatar guidelines. 

• Substitute binder and mixture properties in Hirsch and Alkhateeb model and 

find the predicted dynamic modulus.  

•  Compare the predicted dynamic modulus with the measured values. 

• Validate both Hirsch and Alkhateeb models based on bias and goodness-of-

fit measures. 

• Calibrate both models by using the error minimization tool in excel software 

and define new fitting factors. 

• Study the effect of models’ calibration on the predicted performance of 

asphalt pavement structures used in Qatar by performing mechanistic-

empirical pavement analysis. 
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 Data Collection  

The master curve equation of the binder and mixture modulus considered in this 

study is represented in Equation (9) (AASHTO, 2017).  

log	|𝑀∗| 	= δ +
⍺

1 +	𝑒"#"	Ɣ.'()	*! 
(9) 

Where |𝑀∗| is the modulus value of either the mixture or binder, (δ, ⍺, β, and 

Ɣ) are the fitting parameters, and 𝑓0 is the reduced frequency defined in Equation (10) 

(AASHTO, 2017). 

𝑓! = 𝑓. 𝑎(𝑇) (10) 

Where 𝑎(𝑇) is the temperature shift coefficient that can be calculated using 

Equation (11) (AASHTO, 2017).  

log,𝑎(𝑇)- = 𝑎",𝑇# −	𝑇!$%# - + 𝑎#,𝑇 − 𝑇!$%- (11) 

Where (𝑎#	𝑎𝑛𝑑	𝑎$) are the temperature shift factors and (𝑇	𝑎𝑛𝑑	𝑇012) are the 

actual testing temperature and curve reference temperature, respectively.  

Binder master curve parameters are collected from two studies conducted in 

Qatar (L. K. Roja et al., 2021) (L. K. Roja et al., 2022) to find the |𝐺∗|'	that needed to 

predict the binder dynamic moduli in both Hirsch and Alkhateeb models at different 

frequencies and temperatures. The collected binder types represent the country's most 

common binders used in recently constructed road projects. The dataset includes an 

unmodified binder, Polymer Modified Binder (PMB) containing styrene-butadiene-

styrene (SBS), Crumb Rubber Modified Binder (CRMB), and Reclaimed Asphalt 

Binder (RAB) with different mixing percentages mixed with unmodified PEN 60/70 

(PG64S-22) binder. All used materials are admitted for use in Qatar. The dataset 

represents a wide range of Superpave PG grading. The binder types and relevant master 

curve coefficients are presented in Table 8. 
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Table 8. Binder Types and Coefficients of Binder Master Curves   

Binder Type 
Binder 

Grade 

Master curve coefficients 

𝛅 ⍺ β Ɣ a1 a2 Tref 
(oC) 

Unmodified PEN 60/70* -0.7380 8.8480 -0.0330 0.5880 0.0010 -0.1690 46.0 
PMB PG 76E-10 -0.9450 10.4730 0.0960 0.3080 0.0007 -0.1430 46.0 
CRMB PG 76E-10 1.5470 7.3020 0.5445 0.3925 0.0008 -0.1511 21.0 
15% RAB PG 70S-22 0.0514 8.3672 0.2467 0.4401 0.0007 -0.1438 46.0 
25% RAB PG 70S-16 0.7145 7.9034 0.0001 0.4414 0.0007 -0.1437 46.0 
35% RAB PG 70S-10 0.0001 9.7364 0.0001 0.3399 0.0007 -0.1437 46.0 
* PEN 60/70 binder is equivalent to grade PG64-22 

 

Besides the binder dataset, twenty asphalt mixtures master curves are collected 

from several studies (L. K. Roja et al., 2021) (L. K. Roja et al., 2022) (Sebaaly et al., 

2020)  and construction projects in Qatar. The collected data set included mixtures used 

in the Wearing Course (WC) and Asphalt Base Course (ABC) with 19 and 25mm 

Nominal Maximum Aggregate Size (NMAS), respectively. The asphalt mixtures 

represented the materials and designs used in Qatar and were tested based on Qatar 

Construction Specification (QCS), 2014 (MOE, 2014). The binder content percentage 

(BC%) of the collected data ranges between 3.4% - 4.3%, while the Air Void ratio (Va) 

of the test specimens ranges between 5.2% - 7.0%. The master curve coefficients of the 

collected mixtures are presented in Table 9. The composition and volumetrics of the 

collected mixtures are shown in Table 10. 

It is to be noted that each binder and mixture modulus master curve was 

constructed after conducting the testing on three replicates and finding the average 

value of the modulus after assuring the low variability in the modulus value between 

the replicates as per Qatar guidelines. 
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Table 9. Coefficients of Mixture Master Curves of the Study Dataset 

HMA 

No. 

Master curve coefficients 

𝛅 ⍺ β Ɣ a1 a2 Tref (oC) 

1 1.3309 3.1640 1.1334 0.3973 0.000610 -0.164685 20 
2 1.8844 2.4852 1.0388 0.5557 0.000720 -0.164155 20 
3 1.2225 3.1417 1.2301 0.5229 0.001994 -0.216857 20 
4 -7.9430 12.8600 2.3860 0.1690 0.000831 -0.178000 21 
5 -2.1850 6.9960 1.6330 0.2560 0.000737 -0.172243 20 
6 -2.3190 6.9330 1.8690 0.2780 0.000899 -0.180347 20 
7 -2.2800 6.8980 1.7860 0.2660 0.000948 -0.174775 20 
8 -2.2210 6.8700 1.7580 0.2660 0.001050 -0.184469 20 
9 -2.2280 6.7510 2.0530 0.2750 0.000920 -0.176847 20 
10 -2.4620 7.0660 1.8630 0.2810 0.001206 -0.192653 20 
11 -2.2700 6.9550 1.8850 0.2370 0.000952 -0.176755 20 
12 -2.1560 6.8590 2.0260 0.2650 0.001154 -0.191043 20 
13 -0.3760 4.9740 1.5660 0.2910 0.000510 -0.151924 20 
14 -2.1410 6.7370 1.7590 0.2730 0.000720 -0.161181 20 
15 -2.3330 6.8840 2.0900 0.3700 0.001066 -0.178346 20 
16 -2.2560 6.8740 2.1550 0.2720 0.000691 -0.169981 20 
17 4.3980 -1.8998 -0.1937 -0.5781 0.000376 -0.137171 20 
18 4.3755 -2.0522 -0.6525 -0.5910 0.000664 -0.150427 20 
19 4.4333 -2.2062 -0.6040 -0.4591 0.000118 -0.124096 20 
20 4.4018 -1.9586 -0.7128 -0.4767 0.000263 -0.134852 20 

 

Table 10. Mixtures Composition and Volumetrics of the Study Dataset 

HMA 

No. 

Binder 

Type 

Binder 

Grade 

Mixture 

Rule 

NMAS 

[mm] 

Aggregate 

Type 

BC

% 

Va 

[%] 

VMA 

[%] 

VFA 

[%] 

1 PMB PG76E-10 ABC 25 Gabbro 4.10 6.10 16.20 62.60 
2 PMB PG76E-10 WC 19 Gabbro 4.30 6.00 15.80 61.90 
3 Unmodified PEN60/70 ABC 25 Gabbro 3.40 6.65 15.00 55.70 
4 CRMB PG76E-10 ABC 25 Gabbro 3.90 6.70 16.10 58.40 
5 Unmodified PEN60/70 WC 19 Gabbro 3.90 6.20 15.80 60.80 
6 Unmodified PEN60/70 WC 19 Gabbro 3.80 6.50 15.90 59.10 
7 Unmodified PEN60/70 WC 19 Gabbro 3.40 6.40 14.70 56.50 
8 Unmodified PEN60/70 WC 19 Gabbro 3.60 6.50 15.50 58.10 
9 Unmodified PEN60/70 WC 19 Gabbro 3.90 6.70 16.50 59.40 
10 Unmodified PEN60/70 WC 19 Gabbro 4.10 5.20 14.60 64.40 
11 PMB PG76E-10 WC 19 Gabbro 4.30 6.10 15.30 60.10 
12 PMB PG76E-10 WC 19 Gabbro 4.10 6.00 14.40 58.30 
13 PMB PG76E-10 WC 19 Gabbro 4.10 5.20 14.20 63.40 
14 PMB PG76E-10 WC 19 Gabbro 4.00 5.90 14.80 60.10 
15 PMB PG76E-10 WC 19 Gabbro 4.30 6.00 15.70 61.80 
16 PMB PG76E-10 WC 19 Gabbro 4.30 5.70 15.00 62.00 
17 Unmodified PEN60/70 ABC 25 Gabbro 3.90 6.90 14.70 53.20 
18 15 % RAB PG70S-22 ABC 25 Gabbro 3.70 6.80 14.70 53.40 
19 25 % RAB PG70S-16 ABC 25 Gabbro 3.50 6.90 14.70 53.10 
20 35 % RAB PG76S-10 ABC 25 Gabbro 3.50 6.90 15.40 55.20 
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In order to represent the aggregate grading in all 20 mixtures in this study, 

minimum and maximum percent passing at each sieve seize through the whole mixtures 

are collected and represented in Figure 5 versus grading envelop of Qatar Construction 

Specification (QCS) 2014. Based on Figure 5, it is clearly noticed that all mixtures 

follow a well-graded aggregate composition.  

 

 

Figure 5. Aggregate Grading Envelop of QCS 2014 vs. Grading Envelop in the Study 
Dataset 

 

Figure 6 below shows all PEN60/70 master curves of the collected dataset. 
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Figure 6. PEN60/70 Mixtures Master Curves of the Collected Dataset 

 

Figure 7 below shows all PG67E-10 master curves of the collected dataset. 

 

  

Figure 7. PG76E-10 Mixtures Master Curves of the Collected Dataset 
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Figure 8 below shows all PG67E-10 master curves of the collected dataset. 

 

 

Figure 8. RAB Mixtures Master Curves of the Collected Dataset 

 

Figure 9 below shows the only collected CRMB master curve of the collected 

dataset. 
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Figure 9. CRMB Mixture Master Curve of the Collected Dataset 

 Validation and Calibration Technique 

For the validation and calibration of the Hirsch and Alkhateeb models, 393 

measured dynamic moduli for 20 mixtures are used for comparison with the predicted 

values from the two models. A broad spectrum of frequencies and temperatures is 

included in the collected dataset. Table 11 shows the testing temperatures and 

frequencies of the collected dataset of mixtures. 

 

Table 11. Testing Temperatures and Frequencies of Mixtures Dataset 

Group No. HMA No.* Temperature (℃) Frequency (Hz) 

Group 1 1, 2, 3, 4 4, 20, and 45 0.1, 1.0, and 10 

Group 2 5, 6, 7, 8, 9, 10 4, 40, and 40 0.1, 0.2, 0.5, 1.0, 2.0, 
5.0, 10.0, and 20.0 

Group 3 11, 12, 13, 14, 15, 16 4, 20, and 45 0.1, 0.2, 0.5, 1.0, 2.0, 
5.0, 10.0, and 20.0 

Group 4 17, 18, 19, 20 5, 15, 25, 35, 45 0.1, 1.0, and 10.0 

* HMA numbers based on Table 9 and Table 10 
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After comparing the Hirsch and Alkhateeb models' predicted dynamic modulus 

values versus the measured ones, the coefficient of determination (𝑅$) and Se/Sy values 

were computed as goodness-of-fit measures using Equations (12), (13), and (14) 

(Yousefdoost et al., 2013). 

𝑅# = 1 −	
(𝑛 − 𝑘 − 1)
(𝑛 − 1) 5

𝑆$
𝑆&
7
#

 
(12) 

Where: 

𝑛 = Number of testing points 
𝑘 = Count of regression coefficients in the prediction model 
𝑆$ = Standard error of estimation 
𝑆& = Standard deviation of the measured values 

Where:  

𝑆+ =	=
∑ (𝐸,-∗ − 𝐸B,∗ ).		/
-01
(𝑛	 − 1)	  

(13) 

𝑆2 =	=
∑ (𝐸3-∗ − 𝐸B,-∗ ).		/
-01

(𝑛	– 	𝑘	 − 1)	  
(14) 

Where: 

𝐸&3∗  = Measured dynamic modulus value 
𝐸I&∗  = Average of dynamic modulus measured values 
𝐸"3∗  = Dynamic modulus predicted value 

In order to interpret the computed values of R2 and Se/Sy, the criterion in Table 

12 is followed (Pellinen, Kristiina, 2001). 

 

Table 12. Statistical Criterion for Association of Measured E* versus predicted E* 

Criterion R2 (%) Se/Sy 

Excellent > 90 <0.35 
Good 70-89 0.36-0.55 
Fair 40-69 0.56-0.75 
Poor 20-39 0.76-0.90 
Very Poor <19 >0.90 
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Statistical bias has also been used to determine both models' predictive 

performance by finding the slope and intercept of the linear trend line of the measured 

vs. predicted plot. The higher prediction performance would be subjected to a slope 

closer to one and an intercept closer to zero (Solatifar, 2020). 

To calibrate the models, the excel solver is utilized to minimize the error and 

maximize the fit by reducing the Route Mean Square Error (RMSE) that computed 

using formula shown in equation (15) (Cano-Ortiz et al., 2022). 

𝑅𝑀𝑆𝐸 = 	K
∑ (𝐸&3∗ −	𝐸"3∗ )4
35#

$

𝑛  
 
           (15) 
                                                        

Where: 

 RMSE =   Root Mean Square Error 

Based on the error minimization results, new fitting parameters for the Hirsch 

model (i.e., h1, h2, and h3) are found instead of 20, 650, and 0.58, respectively, in 

Equation (5). The same approach is followed for the Alkhateeb model to find k1 - k6 

coefficients instead of 3, 90, 1.45, 0.66, 1100, and 0.13, respectively, in Equation (8). 

 Methodology Summary  

The following steps represent the methodology summary that is explained in 

above sections: 

1- Substitute the volumetrics (VMA/VFA) and G* in both Hirsch (Equation (4) 

and Alkhateeb (Equation (5) models and find E* using excel. 

2- Calculate RMSE using Equation (15) after comparing predicted vs. measured 

E*. 

3- Use solver in excel in order to minimize the RMSE by changing the empirical 

fitting parameters of each model that is determined in the previous chapter. 
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4- Define the new fitting parameters after conducting the error minimization. 

5- Calculate the R2, Se/Sy, Slope, and Intercept for each scenario.  
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CHAPTER 4: RESULTS AND DISCUSSION  

Introduction 

In this chapter, the validation and calibration results and the statistical findings 

are presented, discussed, and compared to the reviewed literature. The chapter also 

includes the aforementioned sensitivity study conducted on the Hirsch and Alkhateeb 

models. The chapter's conclusion displays the findings of functional performance 

analysis done on Qatari pavement sections before and after calibration to emphasize the 

significance of the calibration. 

 Validation and Calibration  

The R2 value of prediction performance for the Hirsch model before and after 

calibration is 87.2% and 89.2%, respectively. Figure 10 and 11 show measured versus 

predicted E* before and after calibration of the Hirsch model, respectively. The R2 value 

of prediction performance for the Alkhateeb model before and after calibration is 70.8% 

and 89.2%, respectively. Figure 12 and 13 show measured versus predicted E* before 

and after calibration of the Alkhateeb model, respectively. 
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Figure 10. Predicted vs. Measured E* before Calibration – Hirsch Model 

 

 

Figure 11. Predicted vs. Measured E* After Calibration – Hirsch Model 
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Figure 12. Predicted vs. Measured E* before Calibration – Alkhateeb Model 

 

 

Figure 13.  Predicted vs. Measured E* after Calibration – Alkhateeb Model  

 

Table 13 shows the goodness-of-fit measures and their correlation for both 

Hirsch and Alkhateeb models before and after calibration. 
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Table 13. Hirsch and Alkhateeb Overall Models Goodness-of-fit Values 

Model 
Before Calibration After Calibration 

R2 Correlation Se/Sy Correlation R2 Correlation Se/Sy Correlation 

Hirsch 87.2% Good 0.36 Good 89.2% Good 0.33 Excellent 
Alkhateeb 70.8% Good 0.54 Good 89.2% Good 0.33 Excellent 

 
 

Table 14 shows bias measures for both Hirsch and Alkhateeb models before and 

after calibration. 

 

Table 14. Hirsch and Alkhateeb Overall Models Bias Measures 

Model 
Before Calibration After Calibration 

Slope Intercept Slope Intercept 

Hirsch 0.848 214.37 0.900 716.98 
Alkhateeb 0.612 1116.10 0.900 652.75 

 

As presented in Table 13 and 14, the Hirsch model shows high prediction 

performance without calibration with an R2 value of 87.2% and a slope of 0.848. After 

calibration, the R2 value improved slightly to 89.2%, and the slope improved to 0.900. 

This improvement of 2.0% in R2 value is close to the study of Robbins and Timm 

outcomes (Robbins & Timm, 2011) for the southeastern United States asphalt mixtures 

that used a similar error minimization approach to improve the Hirsch model R2 value 

from 89.7% to 91.1%. 

Alkhateeb model shows reasonable prediction performance prior to calibration 

over a wide variety of frequencies and temperatures. However, the findings show that 

the model underpredicts the E* through a significant number of testing points with 

exponential trends resulting in a low R2 value of 70.8% and a high bias at the slope of 

0.612. The calibration of the model improved the R2 value to become 89.2%. 
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The predictive performance of both the Hirsch and Alkhateeb models comes in 

contrary to Yousefdoost et al. (Yousefdoost et al., 2013) study, which concluded that 

none of the Hirsch and Alkhateeb models are suitable for use for Australian asphalt 

mixtures developed for a hot climate country. 

It to be note that both models after calibration showed almost same goodness-

of-fit and bias and this would be due to that both models derived from the rule of 

mixture and has quiet similar derivation, inputs, and assumptions.  

 Sensitivity Analysis 

Sensitivity analysis was conducted for the calibrated Hirsch and Alkhateeb models to 

investigate the sources of prediction errors and relate the results to the local Qatar 

conditions. R2 and Se/Sy were calculated for the prediction performance for both 

Hirsch and Alkhateeb models by varying one factor of binder type, temperature, or 

frequency at a time while keeping the other factors constants. Table 15 and 16 present 

the R2 values of the Hirsch and Alkhateeb models for several binder types, 

respectively. Table 17 and 18 show the R2 of the Hirsch and Alkhateeb models for 

several testing temperatures, respectively.  

Table 19 and 20 present the R2 of the calibrated Hirsch and Alkhateeb models 

for several frequencies, respectively. 

 

Table 15. Binder Sensitive Predictive Performance of the Hirsch Model 

Binder Type PEN 60/70 PG 76E-10 RAB (15, 25, 35)% 

No. of Data Points 169 164 45 

C
al

ib
ra

tio
n  

Before  
R2 94.40% Excellent 86.40% Good 63.10%  Fair 
Se/Sy 0.24 Excellent 0.37 Good 0.63  Fair 

After  
R2 94.60% Excellent 90.50% Excellent 50.90%  Fair 
Se/Sy 0.23 Excellent 0.31 Excellent 0.73  Fair 
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Table 16. Binder Sensitive Predictive Performance of the Alkhateeb Model 

Binder Type PEN 60/70 PG 76E-10 RAB (15, 25, 35)% 

No. of Data Points 169 164 45 

C
al

ib
ra

tio
n 

Before  
R2 78.6% Good 65.9% Fair 70.8% Good 
Se/Sy 0.47 Good 0.59 Fair 0.58 Fair 

After  
R2 95.1% Excellent 91.1% Excellent 41.2% Fair 

Se/Sy 0.23 Excellent 0.30 Excellent 0.83 Poor 

Table 17. Temperature Sensitive Predictive Performance of the Hirsch Model 

Temperature 4 and 5 ℃ 15, 20 and 25 ℃ 35, 40 and 45 ℃ 

No. of Data Points 122 134 137 

C
al

ib
ra

tio
n 

Before  
R2 35.6% Poor 42.8% Fair 17.5% Very Poor 
Se/Sy 0.81 Poor 0.77 Poor 0.92 Very Poor 

After  
R2 51.0% Fair 40.6% Fair 36.9% Poor 

Se/Sy 0.71 Fair 0.78 Poor 0.80 Poor 

 

Table 18. Temperature Sensitive Predictive Performance of the Alkhateeb Model 

Temperature 4 and 5 ℃ 15, 20 and 25 ℃ 35, 40 and 45 ℃ 

No. of Data Points 122 134 137 

C
al

ib
ra

tio
n 

Before  
R2 -94.8% Very Poor 53.9% Fair 15.0% Very Poor 
Se/Sy 1.41 Very Poor 0.69 Fair 0.93 Very Poor 

After  
R2 48.6% Fair 44.4% Fair 38.4% Poor 

Se/Sy 0.73 Fair 0.75 Fair 0.79 Poor 
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Table 19. Frequency Sensitive Predictive Performance of the Hirsch Model 

Frequency 

(Hz) 
n* 

Before Calibration After Calibration 

R2 Se/Sy R2 Se/Sy 

0.1 68 78.30% Good 0.48 Good 81.90% Good 0.44 Good 
0.2 39 81.70% Good 0.45 Good 84.90% Good 0.40 Good 
0.5 36 88.50% Good 0.36 Good 90.70% Excellent 0.32 Excellent 
1 68 89.00% Good 0.34 Excellent 89.90% Good 0.32 Excellent 
2 36 90.00% Excellent 0.33 Excellent 92.80% Excellent 0.28 Excellent 
5 36 89.40% Good 0.34 Excellent 92.50% Excellent 0.29 Excellent 
10 68 83.40% Good 0.42 Good 83.70% Good 0.41 Good 
20 39 84.60% Good 0.41 Good 88.90% Good 0.35 Excellent 
* n = Number of data points 

 

Table 20. Frequency Sensitive Predictive Performance of the Alkhateeb Model 

Frequency 

(Hz) 
n* 

Before Calibration After Calibration 

R2 Se/Sy R2 Se/Sy 

0.1 68 80.60% Good 0.46 Good 83.80% Good 0.42 Good 
0.2 39 80.40% Good 0.48 Good 86.50% Good 0.40 Good 
0.5 36 80.60% Good 0.48 Good 91.20% Excellent 0.33 Excellent 
1 68 78.70% Good 0.48 Good 89.00% Good 0.35 Excellent 
2 36 71.50% Good 0.59 Fair 92.60% Excellent 0.30 Excellent 
5 36 63.70% Fair 0.66 Fair 92.60% Excellent 0.30 Excellent 
10 68 59.70% Fair 0.67 Fair 81.70% Good 0.45 Good 
20 39 47.30% Fair 0.79 Poor 90.20% Excellent 0.34 Excellent 
* n = Number of data points 

 

Figure 14 below shows the HMA 9 measured master curve versus the 

predicted uncalibrated and calibrated master curves as a sample of binder PEN60/70 

mixtures.  
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Figure 14. HMA 9 Measured and Predicted Uncalibrated and Calibrated Hirsch and 
Alkhateeb Models Master Curves 

 

Figure 15 below shows the HMA 9 measured master curve versus the 

predicted uncalibrated and calibrated master curves as a sample of binder PG76E-10 

mixtures. 

 

 

Figure 15. HMA 13 Measured and Predicted Uncalibrated and Calibrated Hirsch and 
Alkhateeb Models Master Curves 
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Figure 16 below shows the HMA 20 measured master curve versus the 

predicted uncalibrated and calibrated master curves as a sample of RAB mixtures. 

 

  

Figure 16. HMA 20 Measured and Predicted Uncalibrated and Calibrated Hirsch and 
Alkhateeb Models Master Curves 
 

Figure 17 below shows the HMA 4 measured master curve versus the 

predicted uncalibrated and calibrated master curves as a sample of CRMB mixture. 
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Figure 17. HMA 4 Measured and Predicted Uncalibrated and Calibrated Hirsch and 
Alkhateeb Models Master Curves 

 

Sensitivity analysis results conclude that the calibrated Alkhateeb model shows 

equivalent performance to the calibrated Hirsch model for all types of binder mixtures. 

However, uncalibrated models offer superior performance to the Hirsch model in a 

PEN60/70 and PG 76E-10 but lower performance in RAB mixtures. This can be 

because the Alkhateeb model was developed based on a dataset of aged materials (Al-

Khateeb et al., 2006). It is noticed that the calibration reduced the prediction 

performance of both models for RAB mixtures. 

For testing frequency sensitivity, the uncalibrated Hirsch model shows superior 

performance over the Alkhateeb model, as the last has a significantly increasing bias 

toward higher frequencies. After calibration, the Alkhateeb model bias at high 

frequency is reduced significantly. 

For temperature sensitivity, both uncalibrated models show very poor predictive 

performance at high testing temperatures of 35 – 45 ℃, which has been improved after 
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calibration, which agrees with (Far et al., 2009) study that showed a noticeable bias of 

the Hirsch model at high temperatures.  Looking at Figure 12, Tables 18 and 20, it can 

be inferred that the uncalibrated Alkhateeb model has poor prediction at testing 

temperatures 4 – 5 ℃ and 10 – 20 Hz testing frequency which is improved after 

calibration, as shown in Figure 13. This result agrees with the outcomes of 

(Yousefdoost et al., 2013) which was conducted on Australian Asphalt mixtures, and 

(Far et al., 2009) study, which was conducted on a comprehensive dataset of Witzack, 

Federal Highway Administration (FHWA), and others. The Hirsch model performance 

at low temperature was higher than the Alkhateeb model, which agrees with (Far et al., 

2009) study outcome. However, the low predictability at such low temperatures is not 

a concern in Qatar because these temperatures are rare, as shown in Figure 1.  Table 21 

and 22 show the fitting parameters for Hirsch and Alkhateeb models, respectively.  

 

Table 21. Fitting Parameters for the Hirsch Model (Equation (4) 

Fitting Factor Before Calibration After Calibration 

h1 20 348 
h2 650 897 
h3 0.58 0.63 
 

Table 22. Fitting Parameters for the Alkhateeb Model (Equation (8) 

Fitting Factor Before Calibration After Calibration 

k1 3.00 6.76 
k2 90.00 92.69 
k3 1.45 2.67 
k4 0.66 0.42 
k5 1100.00 255.69 
k6 0.13 0.01 
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 Pavement Performance Analysis  

This section compares the functional distresses of pavement profiles typically 

used in Qatar, considering the modulus of the Hirsch model before and after calibration.  

This was accomplished by evaluating the rutting and fatigue cracking performance 

using the Mechanistic-Empirical Asphalt Pavement Analysis (MEAPA) web 

application developed by (Kutay & Lanotte, 2020). This web-based application 

considers the same traffic inputs of the MEPDG (NCHRP, 2004). The MEAPA 

climatological inputs are equivalent to the MEPDG Enhanced Integrated Climatic 

Model (EICM). Equation (9) presented earlier in this report is considered in the 

MEAPA application to interpret the master curve. Calculations of the loading frequency 

are based on the concepts used by the MEPDG, where the stress pulse is assumed to be 

haversine, and its duration relies on the vehicle's speed and the depth from the wearing 

course top to the point of interest. In addition, the basic propagation of the thermal crack 

length within the depth of the pavement is found based on a simplified Paris law. 

MEAPA application has several climatological profiles covering several areas and 

climates worldwide that can be chosen as preliminary analysis to have a more accurate 

site-specific simulation. 

Three pavement structures for different road hierarchies and traffic loading 

conditions are employed in the analysis to simulate the actual pavement structures used 

in Qatar.  

Figure 18 shows pavement structures for the collected three pavement sections 

for different road reliabilities of 75%, 90%, and 97% corresponding to local, arterial, 

and expressway road hierarchies, respectively, based on Qatar Highway Design Manual 

(QHDM) (MOTC, 2015). The selected three pavement structures have three different 
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traffic loading levels indicated as Equivalent Single Axle Loads (ESALs).  

Figure 19 shows a binder-type matrix for the collected pavement structures for 

the asphalt Wearing Course (WC), Asphalt Intermediate Course (AIC), and Asphalt 

Base Course (ABC) layers.  

 

Figure 18. Illustration of Three Pavement Structures 
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Figure 19. Binder Type Matrix for the Collected Pavement Structures 

 

In the MEAPA web application, the nearest available climatological profile to 

the State of Qatar was for Dammam city, located in the eastern area of Saudi Arabia.  

Dammam city is a 180 km air distance from Doha city, the capital of Qatar.  In order to 

validate the Dammam city climatological profile to represent Qatar, monthly mean 

temperatures data for Dammam was collected from the Saudi National Center for 

Meteorology  (NCM) website (NCM, n.d.) and compared with the data collected from 

the Qatar Meteorology Department website (QMD, n.d.-a). Figure 20 shows the mean 

monthly temperature normals for Doha and Dammam cities. As shown in Figure 20, 

Doha and Dammam have similar mean temperature climatological normals with only 

minor differences. Accordingly, Dammam's climatological profile is considered valid 

to represent Qatar's climate. Table 23 shows the traffic inputs used in the ME analysis 

on the MEAPA website. 
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Figure 20. Mean monthly temperatures for Doha and Dammam cities 

 

Table 23. Traffic Load Inputs for ME Analysis on the MEAPA Website 

 

Traffic Parameter 

Pavement Structure* 

Type 1 Type 2 Type 3 

AADT** (veh/day) 220 3344 6672 
Lane Factor 1.00 0.90 0.60 
Distribution Factor 0.55 0.55 0.55 
Speed (kph) 50 60 100 
Analysis Period (yrs) 20 20 20 
*     Refer to Figure 18 and Figure 19 for pavement structures and binder types  
**   AADT stands for Annual Average Daily Traffic 

 

It is to be noted that the vehicle fleet profile, monthly distribution, and other 

related entries were kept as default in the MEAPA software. Table 24 shows the 

performance results and percent change before and after calibration for pavement 

structures Type 1, 2, and 3. Detailed analysis results are attached to Appendix A. 
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Table 24. Change in the Fatigue and Rutting due to Hirsch model Calibration 

Pavement Section* Fatigue (m/km) Percent 

Change 

Rutting (cm) Percent 

Change Calibration Status Before  After Before  After 

1A 126.06 157.50 24.94% 0.51 0.58 13.73% 
1B 143.47 224.51 56.49% 0.51 0.53 3.92% 
1C 188.31 180.30 -4.25% 0.53 0.53 0.00% 
2A 662.23 892.19 34.73% 0.71 0.79 11.27% 
2B 870.40 746.44 -14.24% 0.71 0.66 -7.04% 
3A 578.69 615.22 6.31% 0.64 0.64 0.00% 
Average =   17.33%   3.65% 
* Refer to Figure 18 and Figure 19 for pavement structures and binder types  

 

As shown in Table 24, the difference in the predicted distress, whether a 

decrease or increase due to calibration, is more significant in the fatigue life predictions 

than the rutting predictions.  For the case of fatigue life, the difference due to local 

calibrations reached more than 50%, with an average value of 17.33%. This result 

agrees with (Cooper et al., 2015) study, which concluded that the predicted alligator 

cracking would change by 60% with changing the dynamic modulus value. In addition, 

this result agrees with (Cheng et al., 2021) study, which concluded that changing the E* 

value in the MEPDG analysis procedure would significantly change the predicted field 

strains. Accordingly, using locally calibrated is required to give more reliable pavement 

performance prediction and designs. 

Despite that R2 of the Hirsch model prediction performance was improved by 

around 2%, which is considered insignificant in another study (Robbins & Timm, 

2011), the new dynamic modulus values have changed the predicted distresses of 

pavement structures. This implements the importance of investigating the practical 

effect of calibration in this field.
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CHAPTER 5: CONCLUSIONS AND RECOMMENDATIONS   

 Conclusions 

The study reviewed the Hirsch, Witzack 1-37A, Witzack 1-40D, and Alkhateeb 

models and evaluated and calibrated the Hirsch and Alkhateeb models based on local 

Qatari materials representing countries with hot and humid climates. The research study 

considered the empirical calibration method and highlighted the sensitivity of the 

models’ calibration on the predicted functional pavement performance by conducting 

the MEAPA method analysis on pavement structures before and after calibration. The 

results of the investigation mentioned above lead to the following conclusions: 

• Hirsch model showed high prediction performance for Qatar asphalt mixtures 

with an R2 value of 87.2% prior to calibration. Alkhateeb model, however, 

showed lower performance with an R2 value of 70.8%. The calibration 

improved the R2 value of the Hirsch and Alkhateeb models to 89.2% for both. 

• The sensitivity analysis showed that the Hirsch and Alkhateeb models had 

higher performance in PEN 60/70 and PG 76E-10 mixtures and lower 

performance in RAB mixtures. 

• While the implemented calibration technique improved the overall performance 

of both models, more bias was introduced for RAB mixtures in both models 

after calibration. 

• Both uncalibrated Hirsch and Alkhateeb models had a low predictive 

performance at test temperatures higher than 35°C, which improved with model 

calibration. 

• Hirsch model showed consistent performance over-tested frequencies between 

0.1 and 20 Hz with an R2 value ranging between 70 and 90%. However, the 

uncalibrated Alkhateeb model showed significant bias at high frequencies. 
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• The uncalibrated Alkhateeb model showed poor performance at low 

temperatures of 4 – 5°C and a frequency of 10 – 20 Hz. This performance was 

improved as a result of the model calibration.  

• Mechanistic-Empirical analysis for pavement structures of Qatar showed 

significant change in the predicated fatigue distress, reaching more than 50% 

after considering the calibrated master curve of the asphalt mixtures with an 

average value of 17.33%. This result confirmed that using the locally calibrated 

models will give more reliable pavement performance prediction and designs. 

• While the calibration changed the R2 value of the Hirsch model only by 2%, 

there is a considerable variation in the predicted pavement performance using 

the MEAPA method. This result emphasizes the consideration of the practical 

effect of the calibration in this field. 

 Recommendations 

Through this study, several challenges were determined that should be 

considered in the future as follows: 

• It is recommended to use the calibrated Hirsch or Alkhateeb model in Qatar 

instead of the uncalibrated version of the models. 

• Dynamic modulus testing practice in hot climate countries such as Qatar should 

consider testing temperatures higher than 45°C to simulate the hot climatic 

conditions.  

• The public work authority should develop an organized database for all projects 

in the country, which will open doors for further calibration and value 

engineering studies in the region.  

•  It is recommended to introduce Artificial Neural Network (ANN) and Machine 

Learning techniques in developing dynamic modulus prediction models after 
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collecting an extensive database from hot climate countries in the region.  

• It is recommended to test the sensitivity of performed calibrations of prediction 

models on the predicted functional performance regardless of the improvement 

in the R2. Accordingly, the researcher would classify the significance of the 

calibration technique.
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Appendix A 

MEAPA Output Reports  

 

Figure A1. MEAPA Distress Summary for Section 1A – Before Calibration 

 

MEAPA
Mechanistic Empirical Asphalt Pavement Analysis

Detailed Analysis Report

Project: IRCC_-_Hirsch_Model-1 (Rev 01)

User: AlTawalbeh

Report created on: 2022-03-12

Analysis run date/time: 03/12/2022 at 12:17 PM

Distress Summary

Distress Threshold Target 
Reliability

Distress @ 20.0 
year(s)

Pass
/Fail

IRI (in/mile) 172.0 75.0% 102.3 PASS

AC Top-Down Fatigue Cracking (ft/mile) 2000.0 75.0% 665.6 PASS

AC Bottom-up Fatigue Cracking (%) 25.0 75.0% 0.8 PASS

AC Thermal Cracking (ft/mile) 1000.0 75.0% 113.3 PASS

Total Rutting (in) 0.75 75.0% 0.2 PASS

AC Rutting (in) 0.25 75.0% 0.08 PASS

AC Reflective Cracking (%) 25.0 75.0% 0.8 PASS

1A - Before Calibration 
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Figure A2. MEAPA Distress Summary for Section 1A – After Calibration 

 

 

 

 

 

 

 

 

 

MEAPA
Mechanistic Empirical Asphalt Pavement Analysis

Detailed Analysis Report

Project: 1A

User: AlTawalbeh

Report created on: 2022-06-10

Analysis run date/time: 06/10/2022 at 02:20 PM

Distress Summary

Distress Threshold Target 
Reliability

Distress @ 20.0 
year(s)

Pass
/Fail

IRI (in/mile) 172.0 75.0% 103.6 PASS

AC Top-Down Fatigue Cracking (ft/mile) 2000.0 75.0% 831.6 PASS

AC Bottom-up Fatigue Cracking (%) 25.0 75.0% 0.8 PASS

AC Thermal Cracking (ft/mile) 1000.0 75.0% 113.3 PASS

Total Rutting (in) 0.75 75.0% 0.23 PASS

AC Rutting (in) 0.25 75.0% 0.11 PASS

AC Reflective Cracking (%) 25.0 75.0% 0.8 PASS

1A - After Calibration 
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Figure A3. MEAPA Distress Summary for Section 1B – Before Calibration 

 

  

MEAPA
Mechanistic Empirical Asphalt Pavement Analysis

Detailed Analysis Report

Project: IRCC_-_Hirsch_Model-1 (Rev 01)

User: AlTawalbeh

Report created on: 2022-03-12

Analysis run date/time: 03/12/2022 at 12:50 PM

Distress Summary

Distress Threshold Target 
Reliability

Distress @ 20.0 
year(s)

Pass
/Fail

IRI (in/mile) 172.0 75.0% 102.4 PASS

AC Top-Down Fatigue Cracking (ft/mile) 2000.0 75.0% 757.5 PASS

AC Bottom-up Fatigue Cracking (%) 25.0 75.0% 0.8 PASS

AC Thermal Cracking (ft/mile) 1000.0 75.0% 113.3 PASS

Total Rutting (in) 0.75 75.0% 0.2 PASS

AC Rutting (in) 0.25 75.0% 0.08 PASS

AC Reflective Cracking (%) 25.0 75.0% 0.8 PASS

1B - Before Calibration 
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Figure A4. MEAPA Distress Summary for Section 1B – After Calibration 

 

 

 

 

 

 

 

 

MEAPA
Mechanistic Empirical Asphalt Pavement Analysis

Detailed Analysis Report

Project: 1B

User: AlTawalbeh

Report created on: 2022-06-10

Analysis run date/time: 06/10/2022 at 04:32 PM

Distress Summary

Distress Threshold Target 
Reliability

Distress @ 20.0 
year(s)

Pass
/Fail

IRI (in/mile) 172.0 75.0% 118.6 PASS

AC Top-Down Fatigue Cracking (ft/mile) 2000.0 75.0% 1185.4 PASS

AC Bottom-up Fatigue Cracking (%) 25.0 75.0% 0.8 PASS

AC Thermal Cracking (ft/mile) 1000.0 75.0% 1878.0 FAIL

Total Rutting (in) 0.75 75.0% 0.21 PASS

AC Rutting (in) 0.25 75.0% 0.09 PASS

AC Reflective Cracking (%) 25.0 75.0% 0.8 PASS

1B - After Calibration 



 

66 

 

Figure A5. MEAPA Distress Summary for Section 1C – Before Calibration 

 

 

 

 

 

 

 

MEAPA
Mechanistic Empirical Asphalt Pavement Analysis

Detailed Analysis Report

Project: IRCC_-_Hirsch_Model-1 (Rev 01 - 1C)

User: AlTawalbeh

Report created on: 2022-03-12

Analysis run date/time: 03/12/2022 at 01:25 PM

Distress Summary

Distress Threshold Target 
Reliability

Distress @ 20.0 
year(s)

Pass
/Fail

IRI (in/mile) 172.0 75.0% 103.3 PASS

AC Top-Down Fatigue Cracking (ft/mile) 2000.0 75.0% 994.3 PASS

AC Bottom-up Fatigue Cracking (%) 25.0 75.0% 0.8 PASS

AC Thermal Cracking (ft/mile) 1000.0 75.0% 113.3 PASS

Total Rutting (in) 0.75 75.0% 0.21 PASS

AC Rutting (in) 0.25 75.0% 0.09 PASS

AC Reflective Cracking (%) 25.0 75.0% 0.8 PASS

1C - Before Calibration 
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Figure A6. MEAPA Distress Summary for Section 1C – After Calibration 

 

 

 

 

 

MEAPA
Mechanistic Empirical Asphalt Pavement Analysis

Detailed Analysis Report

Project: 1C

User: AlTawalbeh

Report created on: 2022-06-10

Analysis run date/time: 06/10/2022 at 04:41 PM

Distress Summary

Distress Threshold Target 
Reliability

Distress @ 20.0 
year(s)

Pass
/Fail

IRI (in/mile) 172.0 75.0% 103.2 PASS

AC Top-Down Fatigue Cracking (ft/mile) 2000.0 75.0% 952.0 PASS

AC Bottom-up Fatigue Cracking (%) 25.0 75.0% 0.8 PASS

AC Thermal Cracking (ft/mile) 1000.0 75.0% 113.3 PASS

Total Rutting (in) 0.75 75.0% 0.21 PASS

AC Rutting (in) 0.25 75.0% 0.09 PASS

AC Reflective Cracking (%) 25.0 75.0% 0.8 PASS

1C - After Calibration 
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Figure A7. MEAPA Distress Summary for Section 2A – Before Calibration 

 

 

MEAPA
Mechanistic Empirical Asphalt Pavement Analysis

Detailed Analysis Report

Project: 2A

User: AlTawalbeh

Report created on: 2022-06-11

Analysis run date/time: 06/11/2022 at 12:41 PM

Distress Summary

Distress Threshold Target 
Reliability

Distress @ 20.0 
year(s)

Pass
/Fail

IRI (in/mile) 172.0 90.0% 121.5 PASS

AC Top-Down Fatigue Cracking (ft/mile) 2000.0 90.0% 3496.6 FAIL

AC Bottom-up Fatigue Cracking (%) 25.0 90.0% 1.5 PASS

AC Thermal Cracking (ft/mile) 1000.0 90.0% 215.3 PASS

Total Rutting (in) 0.75 90.0% 0.28 PASS

AC Rutting (in) 0.25 90.0% 0.15 PASS

AC Reflective Cracking (%) 25.0 90.0% 1.4 PASS

2A - Before Calibration 
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Figure A8. MEAPA Distress Summary for Section 2A – After Calibration 

 

 

 

MEAPA
Mechanistic Empirical Asphalt Pavement Analysis

Detailed Analysis Report

Project: 2A

User: AlTawalbeh

Report created on: 2022-06-11

Analysis run date/time: 06/11/2022 at 12:32 PM

Distress Summary

Distress Threshold Target 
Reliability

Distress @ 20.0 
year(s)

Pass
/Fail

IRI (in/mile) 172.0 90.0% 124.0 PASS

AC Top-Down Fatigue Cracking (ft/mile) 2000.0 90.0% 4710.8 FAIL

AC Bottom-up Fatigue Cracking (%) 25.0 90.0% 1.5 PASS

AC Thermal Cracking (ft/mile) 1000.0 90.0% 215.3 PASS

Total Rutting (in) 0.75 90.0% 0.31 PASS

AC Rutting (in) 0.25 90.0% 0.19 PASS

AC Reflective Cracking (%) 25.0 90.0% 1.4 PASS

2A - After Calibration 
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Figure A9. MEAPA Distress Summary for Section 2B – Before Calibration 

 

 

 

 

MEAPA
Mechanistic Empirical Asphalt Pavement Analysis

Detailed Analysis Report

Project: IRCC_-_Hirsch_Model-3 - (Rev 01)

User: AlTawalbeh

Report created on: 2022-06-09

Analysis run date/time: 06/09/2022 at 02:14 PM

Distress Summary

Distress Threshold Target 
Reliability

Distress @ 20.0 
year(s)

Pass
/Fail

IRI (in/mile) 172.0 90.0% 122.6 PASS

AC Top-Down Fatigue Cracking (ft/mile) 2000.0 90.0% 4595.7 FAIL

AC Bottom-up Fatigue Cracking (%) 25.0 90.0% 1.5 PASS

AC Thermal Cracking (ft/mile) 1000.0 90.0% 215.3 PASS

Total Rutting (in) 0.75 90.0% 0.28 PASS

AC Rutting (in) 0.25 90.0% 0.16 PASS

AC Reflective Cracking (%) 25.0 90.0% 1.4 PASS

2B - Before Calibration 
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Figure A10. MEAPA Distress Summary for Section 2B – After Calibration 

 

 

 

 

MEAPA
Mechanistic Empirical Asphalt Pavement Analysis

Detailed Analysis Report

Project: 2B

User: AlTawalbeh

Report created on: 2022-06-10

Analysis run date/time: 06/10/2022 at 05:12 PM

Distress Summary

Distress Threshold Target 
Reliability

Distress @ 20.0 
year(s)

Pass
/Fail

IRI (in/mile) 172.0 90.0% 121.2 PASS

AC Top-Down Fatigue Cracking (ft/mile) 2000.0 90.0% 3941.2 FAIL

AC Bottom-up Fatigue Cracking (%) 25.0 90.0% 1.4 PASS

AC Thermal Cracking (ft/mile) 1000.0 90.0% 215.3 PASS

Total Rutting (in) 0.75 90.0% 0.26 PASS

AC Rutting (in) 0.25 90.0% 0.13 PASS

AC Reflective Cracking (%) 25.0 90.0% 1.4 PASS

2B - After Calibration 
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Figure A11. MEAPA Distress Summary for Section 1C – Before Calibration 

 

 

 

MEAPA
Mechanistic Empirical Asphalt Pavement Analysis

Detailed Analysis Report

Project: IRCC_-_Hirsch_Model-1 (Rev 01 - 1C)

User: AlTawalbeh

Report created on: 2022-03-12

Analysis run date/time: 03/12/2022 at 01:25 PM

Distress Summary

Distress Threshold Target 
Reliability

Distress @ 20.0 
year(s)

Pass
/Fail

IRI (in/mile) 172.0 75.0% 103.3 PASS

AC Top-Down Fatigue Cracking (ft/mile) 2000.0 75.0% 994.3 PASS

AC Bottom-up Fatigue Cracking (%) 25.0 75.0% 0.8 PASS

AC Thermal Cracking (ft/mile) 1000.0 75.0% 113.3 PASS

Total Rutting (in) 0.75 75.0% 0.21 PASS

AC Rutting (in) 0.25 75.0% 0.09 PASS

AC Reflective Cracking (%) 25.0 75.0% 0.8 PASS

1C - Before Calibration 
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Figure A12. MEAPA Distress Summary for Section 1C – After Calibration 

 

 

 

 

 

MEAPA
Mechanistic Empirical Asphalt Pavement Analysis

Detailed Analysis Report

Project: 1C

User: AlTawalbeh

Report created on: 2022-06-10

Analysis run date/time: 06/10/2022 at 04:41 PM

Distress Summary

Distress Threshold Target 
Reliability

Distress @ 20.0 
year(s)

Pass
/Fail

IRI (in/mile) 172.0 75.0% 103.2 PASS

AC Top-Down Fatigue Cracking (ft/mile) 2000.0 75.0% 952.0 PASS

AC Bottom-up Fatigue Cracking (%) 25.0 75.0% 0.8 PASS

AC Thermal Cracking (ft/mile) 1000.0 75.0% 113.3 PASS

Total Rutting (in) 0.75 75.0% 0.21 PASS

AC Rutting (in) 0.25 75.0% 0.09 PASS

AC Reflective Cracking (%) 25.0 75.0% 0.8 PASS

1C - After Calibration 
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Appendix B 

Job Mix Formula Sample Report 

 

Figure B1. JMF Testing Plan  

 

Page 1 
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Figure B2. Technical References and Applicable Standards 
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Figure B3. Material Source Properties 
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Figure B4. JMF Gradation Chart 
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Figure B5. Stockpile Aggregate Phyiscal Propoerites  
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Figure B6. Hot-Bin Aggregate and Trial Gradations 
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Figure B7. Superpave Design Binder Content Verfication  

Page 7 



 

81 

 

Figure B8. Asphalt Binder Properties - 1 
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Figure B9. Asphalt Binder Properties - 2 
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Figure B10. Mix Design Volumitric Data - 1 
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Figure B11. Mix Design Volumitric Data - 2 
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Figure B12. Mix Design Volumtric Data Curves 
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Figure B13. Design Binder Content Verification  
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Figure B14. Tensile Strength Ratio (AASHTO T283) 

Page 14 



 

88 

 

Figure B15. Dynamic Modulus of Lab Mix (AASHTO TP79) 
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