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Summary
Large-scale gene sequencing studies for complex traits have the potential to identify causal genes with therapeutic implications. We per-

formed gene-based association testing of blood lipid levels with rare (minor allele frequency< 1%) predicted damaging coding variation

by using sequence data from >170,000 individuals from multiple ancestries: 97,493 European, 30,025 South Asian, 16,507 African,

16,440 Hispanic/Latino, 10,420 East Asian, and 1,182 Samoan. We identified 35 genes associated with circulating lipid levels; some

of these genes have not been previously associated with lipid levels when using rare coding variation from population-based samples.

We prioritize 32 genes in array-based genome-wide association study (GWAS) loci based on aggregations of rare coding variants; three

(EVI5, SH2B3, and PLIN1) had no prior association of rare coding variants with lipid levels. Most of our associated genes showed evidence

of association among multiple ancestries. Finally, we observed an enrichment of gene-based associations for low-density lipoprotein

cholesterol drug target genes and for genes closest to GWAS index single-nucleotide polymorphisms (SNPs). Our results demonstrate

that gene-based associations can be beneficial for drug target development and provide evidence that the gene closest to the array-based

GWAS index SNP is often the functional gene for blood lipid levels.
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Introduction

Blood lipid levels are heritable complex risk factors

for atherosclerotic cardiovascular diseases.1 Array-based

genome-wide association studies (GWASs) have identified

>400 loci as associated with blood lipid levels, explaining

9%–12% of the phenotypic variance of lipid traits.2–8

These studies have identified mostly common (minor

allele frequency [MAF] > 1%) noncoding variants with

modest effect sizes and have been instrumental in defining

the causal roles of lipid fractions on cardiovascular dis-
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The Am
ease.9–13 Despite these advances, the mechanisms and

causal genes for most of the identified variants and loci

can be difficult to determine.

Genetic association studies testing rare coding variants

have potential to directly implicate causal genes. Advances

in next-generation sequencing over the last decade have

facilitated increasingly larger studies with improved power

to detect associations of rare variants with complex dis-

eases and traits.14,15 However, most exome sequencing

studies to date have been insufficiently powered for rare

variant discovery; for example, Flannick et al. estimated
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that it would require 75,000 to 185,000 sequenced cases of

type 2 diabetes (T2D) to detect associations at known drug

target genes at exome-wide significance.15

Identifying rare variants with impact on protein func-

tion has helped elucidate biological pathways underlying

dyslipidemia and atherosclerotic diseases such as coronary

artery disease (CAD).14,16–25 Successes with this approach

have led to the development of novel therapeutic targets

to modify blood lipid levels and lower risk of atheroscle-

rotic diseases.26,27

The vast majority of participants in previous studies

have been of European ancestry, highlighting the need

for more diverse study sample. Such diversity can

identify associated variants absent or present at very

low frequencies in European populations and help impli-

cate new genes with generalizability extending to all

populations.

We have assembled exome sequence data from

>170,000 individuals across multiple ancestries and sys-

tematically tested the association of rare variants in each

gene with six circulating lipid phenotypes: low-density li-

poprotein cholesterol (LDL-C), high density lipoprotein

cholesterol (HDL-C), non-HDL-C, total cholesterol (TC),

triglycerides (TG), and the ratio of TG to HDL-C (TG:HDL).

We find 35 genes associated with blood lipid levels, show

evidence of gene-based signals in array-based GWAS loci,

show enrichment of lipid gene-based associations in

LDL-C drug targets and genes in close proximity of

GWAS index variants, and test lipid genes for association

with CAD, T2D, and liver enzymes.
Subjects and methods

Study overview
Our study samples were derived from four major data sources with

exome or genome sequence data and blood lipid levels: CAD case-

control studies from the Myocardial Infarction Genetics Con-

sortium28,29 (MIGen, n ¼ 44,208) and a UK Biobank (UKB) nested

case-control study of CAD28 (n ¼ 10,689); T2D cases-control

studies from the AMP-T2D-GENES exomes15 (n¼ 32,486); popula-

tion-based studies from the TOPMed project30,31 freeze 6a data

(n ¼ 44,101) restricted to the exome; and the UKB first tranche

of exome sequence data32,33 (n ¼ 40,586) (see supplemental infor-

mation). Informed consent was obtained from all subjects, and

committees approving the studies are available in the supple-

mental information.

Within each data source, individuals were excluded if they failed

study-specific sequencing quality metrics, lacked lipid phenotype

data, or were duplicated in other sources. Sequencing and quality

control performed in each study is available in the supplemental

methods. We additionally removed first- and second-degree rela-

tives across data sources while we kept relatives within each data

source because we were able to adjust for relatedness within

each data source by using kinshipmatrices in linearmixedmodels.

If samples from the same study were present in different data sour-

ces, we used the samples in the data source that has the largest

sample size from the study and removed the overlapping set

from the other data source. For instance, samples from the Athero-
84 The American Journal of Human Genetics 109, 81–96, January 6, 2
sclerosis Risk in Communities (ARIC) Study were removed from

TOPMed and kept in MIGen, which had more sequenced samples

from ARIC. Similarly, samples from the Jackson Heart Study were

kept in TOPMed and removed from MIGen. To obtain duplicate

and kinship information across data sources, we used 14,834 com-

mon (MAF > 1%) and no more than weakly dependent (r2 < 0.2)

variants by using the make-king flag in PLINK v2.0.

Single-variant association analyses were performed within each

data source, case status, and ancestry combination. The data were

sequenced and variant calling was performed separately by data

source, and this allowed us to look for effects by case status and

genetically inferred and/or reported ancestry groups. We per-

formed gene-based meta-analyses by combining single-variant

summary statistics and covariance matrices generated from

RVTESTS.34 We performed ancestry-specific gene-based meta-ana-

lyses by combining single-variant summary data from five major

ancestries with >10,000 individuals across all data sources: Euro-

pean, South Asian, African, Hispanic, and East Asian ancestries.
Phenotypes
We studied six lipid phenotypes; total cholesterol (TC), LDL-C,

HDL-C, non-HDL-C, triglycerides (TG), and TG:HDL. TC was

adjusted by dividing the value by 0.8 in individuals reporting

lipid-lowering medication use after 1994 or statin use at any

time point. If LDL-C levels were not directly measured, then

they were calculated via the Friedewald equation for individuals

with TG levels < 400 mg/dL with adjusted TC levels. If LDL-C

levels were directly measured then, their values were divided by

0.7 in individuals reporting lipid-lowering medication use after

1994 or statin use at any time point.5 TG and TG:HDL levels

were natural logarithm transformed. Non-HDL-C was obtained

by subtracting HDL-C from adjusted TC levels. Residuals for

each trait in each cohort, ancestry, and case status grouping

were created after adjustment for age, age2, sex, principal compo-

nents, sequencing platform, and fasting status (when available)

in a linear regression model. We then inverse-normal trans-

formed the residuals and multiplied them by the standard

deviation of the trait to scale the effect sizes to the interpretable

units.
Variant annotation
We compiled autosomal variants with call rate > 95% within each

case and ancestry-specific analysis dataset with minor allele count

(MAC) R 1 (across the combined data). Variants were annotated

with the Ensembl Variant Effect Predictor35 and its associated

Loss-of-Function Transcript Effect Estimator (LOFTEE)36 and the

dbNSFP37 version 3.5a plugins. We limited our annotations to

the canonical transcripts. The LOFTEE plugin assesses stop-gained,

frameshift, and splice-site-disrupting variants. Loss-of-function

variants are classified as either high confidence or low confidence.

The dbNSFP is a database that provides functional prediction data

and scores for non-synonymous variants by using multiple algo-

rithms.37 We used this database to classify missense variants as

damaging by using two different definitions based on bio-

informatic prediction algorithms. The first is based on

MetaSVM,38 which is derived from ten different component scores

(SIFT, PolyPhen-2 HDIV, PolyPhen-2 HVAR, GERPþþ, Muta-

tionTaster, Mutation Assessor, FATHMM, LRT, SiPhy, PhyloP).

The second is based on five variant prediction algorithms

including SIFT, PolyPhen-2 HumVar, PolyPhen-2 HumDiv, Muta-

tionTaster, and LRT scores. Additionally, we ran a deep neural
022



network analysis (Splice AI) to predict splice-site-altering vari-

ants.39 Variant descriptive analysis was performed with a maximal

set of variants that were used for analysis of the lipid phenotype

with the largest sample size. The counts and proportions of vari-

ants—annotated according to the different predicted conse-

quences described above—were obtained out of an overall set of

variants.
Single-variant association analysis
Each data source was sub-categorized on the basis of ancestry and

CAD or T2D case status in the studies ascertained by disease status.

Subgrouping data sources yielded a total of 23 distinct sample sub-

categories. As relatives were kept within each sub-group, we per-

formed generalized linear mixedmodels to analyze the association

of single autosomal variants with standard-deviation corrected-in-

verse-normal transformed traits by using RVTESTS.34 We used

RVTESTS to generate summary statistics and covariance matrices

using 500 kb sliding windows. To obtain the single-variant associ-

ations, we performed a fixed-effects inverse-variance weighted

meta-analysis for multi-ancestry and within each of the five major

ancestries. We used an exome-wide significance threshold of p <

7.23 10�8 (Bonferroni correction for six traits and with previously

recommended threshold for coding variants p < 4.3 3 10�7)40 to

determine significant coding variants.
Gene-based association analysis
We used summary level score statistics and covariance matrices

from autosomal single-variant association results to perform

gene-based meta-analyses among all individuals and within each

ancestry by using RAREMETALS version 7.2.41 Samoan individuals

only contributed to the overall analysis. Gene-based association

testing aggregates variants within each gene unit by using burden

tests and sequence kernel association tests (SKATs), which allows

variable variant effect direction and size.42 The ‘‘rareMETALS.

range.group’’ function was used with MAF < 1%, which filters

out all variants with combined MAF > 1% in all meta-analytic da-

tasets. All variants with call rates < 95% and not annotated as loss

of function (LOF) via LOFTEE, splice-site variants or damaging

missense as defined by MetaSVM or by all SIFT, PolyPhen-2

HumVar, PolyPhen-2 HumDiv, MutationTaster, and LRT predic-

tion algorithms (damaging 5 out of 5) were excluded in the

gene-based meta-analyses.

We used six different variant groupings to determine the set of

damaging variants within each gene, (1) high-confidence LOF

via LOFTEE, (2) LOF and predicted splice-site-altering variants,

(3) LOF and MetaSVM missense variants, (4) LOF, MetaSVM

missense, and predicted splice-site-altering variants, (5) LOF and

damaging 5 out of 5 missense variants, and (6) LOF, damaging 5

out of 5 missense, and predicted splice-site-altering variants. We

used an exome-wide significance threshold of p< 4.33 10�7, Bon-

ferroni corrected for the maximum number of annotated genes

(n ¼ 19,540) and six lipid traits, to determine significant coding

variants. Two gene transcripts, DOCK6 and DOCK7, that overlap

with two well-studied lipid genes, ANGPTL8 and ANGPTL3,

respectively, met our exome-wide significance threshold. After

excluding variation observed in ANGPTL8 and ANGPTL3,

DOCK6 and DOCK7, respectively, were no longer significant and

have been excluded as associated genes.

We performed a series of sensitivity analyses for our results. We

repeated the multi-ancestry gene-based analyses by using an MAF

< 0.1% and compared our exome-wide significant gene-based re-
The Am
sults by using an MAF < 1% to using an MAF < 0.1%. We

compared the single variants in our top gene-based associations

with respective traits by using GWAS summary data.8 Gene-based

tests were repeated excluding variants identified in GWASs with

p < 5 3 10�8. Furthermore, all single variants included in each

of the top gene-based associations were analyzed in relation to

the respective trait. For each exome-wide significant gene-based

association, we obtained the association of each single variant

within the gene-specific variant groups with the respective pheno-

type. Then we determined—out of each gene’s overall set of vari-

ants—those that had p values at different significance thresholds

to identify the percentages of variants contributing to each

gene-based signal. To assess whether the most significant variant

within each gene was driving the association, we repeated gene-

based analyses after removing the respective top single variant

from gene-specific variant groups.

To understand whether variants contributing to top gene-based

signals were similar or different across different ancestries, we

determined the degree of overlap across ancestries for all variants

incorporated and then for those with p< 0.05. Finally, we checked

for overlap across the most significant (lowest p value) variant

from each of the gene-based signals.

Heterogeneity of gene-based estimates in all gene-trait-variant

grouping combinations passing exome-wide significant levels

was assessed across the five main ancestries (European, South

Asian, African, Hispanic, and East Asian) and between T2D and

CAD cases and controls via Cochran’s Q.

We performed replication of our top gene-based associations

with blood lipid levels in the Penn Medicine BioBank (PMBB)

and UK Biobank samples that did not contribute to the discovery

analysis (see supplemental methods).
Gene-based analysis of GWAS loci and drug targets
We obtained variants associated with LDL-C, HDL-C, and TG from

a recent GWAS in the Million Veterans Program.8 Then we identi-

fied genes within 5200 kb of each GWAS index variant and per-

formed gene-based analysis for each of those genes by using the

six variant groups. In-silico lookup of gene-based associations for

respective lipid traits was then performed for all genes within

defined GWAS loci. Drug target genes were obtained from the

drug bank database43 with the following search categories: ‘‘hypo-

lipidemic agents,’’ ‘‘lipid regulating agents,’’ ‘‘anticholesteremic

agents,’’ ‘‘lipidmodifying agents,’’ and/or ‘‘hypercholesterolemia.’’

A liberal definition for drug targets was used—drugs with any

number of targets and targets targeted by any number of drugs—

and then in-silico lookups were performed for gene-based

associations.
Gene-set enrichment analysis
Gene-set enrichment analyses were performed for sets of Mende-

lian-, protein-altering- and non-protein-altering GWASs, and

drug target genes with LDL-C, HDL-C, and TG. 21 genes associated

withMendelian lipid conditions were included on the basis of pre-

vious literature:2 LDLR, APOB, PCSK9, LDLRAP1, ABCG5, ABCG8,

CETP, LIPC, LIPG, APOC3, ABCA1, APOA1, LCAT, APOA5, APOE,

LPL, APOC2, GPIHBP1, LMF1, ANGPTL3, and ANGPTL4. We

analyzed GWAS gene sets on the basis of their coding status and

their proximity to the most significant signal in the GWAS. Cod-

ing variants were defined as missense, frameshift, or stop-gained

variants. Gene sets for coding or non-coding variants were then

stratified into three categories on the basis of proximity to the
erican Journal of Human Genetics 109, 81–96, January 6, 2022 85



Figure 1. Study samples and design
Flow chart of the different stages of the
study. Exome sequence genotypes were
derived from four major data sources:
the Myocardial Infarction Genetics con-
sortium (MIGen), the Trans-Omics from
Precision Medicine (TOPMed), the UK Bio-
bank, and the Type 2 Diabetes Genetics
(AMP-T2D-GENES) consortium. Single-
variant association analyses were per-
formed by ancestry and case status in
case-control studies and meta-analyzed.
Single-variant summary estimates and
covariance matrices were used in gene-
based analyses with six different variant
groups and in multi-ancestry and each of
the five main ancestries. AFR, African
ancestry; EAS, East Asian ancestry; EUR,
European ancestry; HIS, Hispanic ancestry;
SAM, Samoan ancestry; SAS, South Asian
ancestry.
most significant variant within each locus—closest, second

closest, and greater than second closest gene. For each gene within

each set, we obtained themost significant association in themulti-

ancestry or ancestry-specific meta-analysis set by using any of the

six different variant groups. Then each gene within each gene set

was matched to ten other genes on the basis of sample size, total

number of variants, cumulative MAC, and variant grouping near-

est neighbors via the matchit R function. Then we compared the

proportions by using Fisher’s exact test between the main and

matched gene sets by applying different p value thresholds.

Association of lipid genes with CAD and T2D data and

liver fat/markers
We determined the associations of 40 genes identified in the main

and GWAS loci analyses with CAD, T2D, and glycemic and liver

enzyme blood measurements. The association with T2D was ob-

tained from the latest gene-based exome association data from

the AMP-T2D-GENES consortium.15 The reported associations

were obtained from different variant groups on the basis of their

previous analyses. We additionally performed gene-based associa-

tion analyses with CAD by using the MIGen case-control, UKB

case-control, and UKB cohort samples with the variant groups

described above. Further, six traits including fasting plasma
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glucose, HbA1c, alanine aminotransferase,

aspartate aminotransferase, gamma glu-

tamyl transferase, and albumin were

analyzed in the UKB dataset. Single-variant

association analyses were performed with

RVTESTS. We used linear mixed models

incorporating kinship matrices to adjust

for relatedness within each study. Covari-

ance matrices were generated with 500 kb

sliding windows. We used RAREMETALS

to assess associations between aggregated

variants (MAF < 1%) in SKATs and burden

tests with CAD and each of the six quanti-

tative traits. We used six different variant

groupings to determine the set of

damaging variants within each gene, (1)

high-confidence LOF with LOFTEE, (2)
LOF and predicted splice-site-altering variants, (3) LOF and

MetaSVMmissense variants, (4) LOF, MetaSVMmissense, and pre-

dicted splice-site-altering variants, (5) LOF and damaging 5 out of

5 missense variants, and (6) LOF, damaging 5 out of 5 missense,

and predicted splice-site-altering variants.
Results

Sample and variant characteristics

Individual-level, quality-controlleddatawereobtained from

four sequenced study sources with circulating lipid data for

individuals of multiple ancestries (Figure 1). Characteristics

of the study samples are detailed in Table S1. We analyzed

data on up to 172,000 individuals with LDL-C, non-HDL-

C (a calculated measure of TC minus HDL-C), TC, HDL-C,

TG, and TG:HDL ratio (a proxy for insulin resistance).44,45

56.7% (n¼ 97,493) of the sample are of European ancestry,

17.4% (n¼ 30,025) South Asian, 9.6% (n¼ 16,507) African

American, 9.6% (n ¼ 16,440) Hispanic, 6.1% (n ¼ 10,420)

East Asian, and 0.7% (n ¼ 1,182) Samoan, based on geneti-

cally estimated and/or self-reported ancestry.



After sequencing, we observed 15.6 million variants

across all studies; we classified 5.0 million (32.6%) as tran-

script-altering codingvariants on thebasis of an annotation

of frameshift, missense, nonsense, or splice-site acceptor/

donor by using the Variant Effect Predictor (VEP).35 A total

of 340,214 (6.7%) of the coding variants were annotated as

high-confidence LOF via the LOFTEE VEP plugin,36

238,646 (4.7%) as splice-site-altering identified by Splice

AI,39 729,098 (14.3%) as damaging missense as predicted

by the MetaSVM algorithm,38 and 1,106,309 (21.8%)

as damaging missense as predicted by consensus in all

five prediction algorithms (SIFT, PolyPhen-2 HumVar,

PolyPhen-2 HumDiv, MutationTaster, and LRT).37 As ex-

pected, we observed a trend of decreasing proportions of

putatively deleterious variants with increasing allele count

(Figure S2, Table S3).

Single-variant association

We performed inverse-variance weighted fixed-effects

meta-analyses of single-variant association results of LDL-

C, non-HDL-C, TC, HDL-C, TG, and TG:HDL ratio from

each consortium and ancestry group. Meta-analysis results

were well controlled with genomic inflation factors

ranging between 1.01 and 1.04 (Table S4). Single-variant

results were limited to the 425,912 protein-altering coding

variants with a total MAC > 20 across all 172,000 individ-

uals. We defined significant associations by a previously es-

tablished exome-wide significance threshold for coding

variants (p < 4.3 3 10�7)40 that was additionally corrected

for testing six traits (p¼ 4.33 10�7 divided by 6) within all

study samples or within each of the five major ancestries

(Tables S5–S10); this yielded in each analysis a significance

threshold of p < 7.23 10�8. A total of 104 rare coding var-

iants in 57 genes were associated with LDL-C, 95 in 54

genes with non-HDL-C, 109 in 65 genes with TC, 92 in

56 genes with HDL-C, 61 in 36 genes with TG, and 68 in

42 genes with TG:HDL. We identified six missense variants

in six genes (TRIM5 p.Val112Phe, ADH1B p.His48Arg,

CHUK p.Val268Ile, ERLIN1 p.Ile291Val [rs2862954],

TMEM136 p.Gly77Asp, and PPARA p.Val227Ala) >1 Mb

away from any index variant previously associated with a

lipid phenotype (LDL-C, HDL-C, TC, or TG) in previous ge-

netic discovery efforts (Tables S5–S10).3,7,8 PPARA p.Va-

l227Ala has previously been associated with blood lipids

at a nominal significance level in East Asians (p < 0.05),

where it is more common than in other ancestries.46

Both TRIM5 and ADH1B LDL-C increasing alleles have

been associated with higher risk of CAD in a recent

GWAS from CARDIOGRAM (odds ration [OR]: 1.08, p ¼
2 3 10�9; OR ¼ 1.08, p ¼ 4 3 10�4).47 Single-variant asso-

ciations were further performed in each of the five main

ancestries (Table S11).

Gene-based association

Next, we performed gene-based testing of transcript-

altering variants in aggregated SKATs and burden tests42

in all study participants and within each of the five ances-
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tries for six lipid traits: LDL-C, HDL-C, non-HDL-C, TC,

TG, and TG:HDL. We excluded the Samoans from the sin-

gle-ancestry analysis given the small number of individ-

uals. We limited attention to variants with MAF % 1%

for each of six variant groups: (1) LOF, (2) LOF and pre-

dicted splice-site-altering variants via Splice AI, (3) LOF

and MetaSVM missense variants, (4) LOF, MetaSVM

missense, and predicted splice-site-altering variants, (5)

LOF and damaging 5 out of 5 missense variants, and (6)

LOF, damaging 5 out of 5 missense, and predicted splice-

site-altering variants. Meta-analyses results were well

controlled (Table S12).

We identified 35 genes reaching exome-wide signifi-

cance (p ¼ 4.3 3 10�7) for at least one of the six variant

groupings (Tables S13–S19). Most of the significant results

were from the multi-ancestry analysis where multiple an-

cestries contributed to the top signals (Figure 2A), and

most of the 35 genes were associated with more than one

lipid phenotype (Figure 2B). Ten of the 35 genes did not

have prior evidence of gene-based links with blood lipid

phenotypes (Table 1), and seven genes, including ALB,

SRSF2, CREB3L3, NR1H3, PLA2G12A, PPARG, and STAB1,

have evidence for a biological connection to circulating

lipid levels (Box 1).

We performed a series of sensitivity analyses on our re-

sults. To determine whether low-frequency variants be-

tween 0.1%–1% frequency were driving our gene-based

association results, we performed the gene-based multi-

ancestry meta-analyses by using a maximum MAF

threshold of 0.1% instead of 1%. We observed exome-

wide significant associations (p < 4.3 3 10�7) for 29 genes

with a 0.1%MAF threshold, all observed in our primary an-

alyses with an MAF threshold of 1% (Table S20). We then

intersected our 35 lipid-associated genes from 85 gene-

based associations observed in the primary analysis with

our results with an MAF threshold of 0.1%. All genes re-

mained at least nominally significant (p < 0.05) with an

0.1%MAF threshold, except the A1CF and TMEM136 asso-

ciations (Table S21). Furthermore, we determined whether

those signals were driven by previously reported GWAS

hits. We identified a total of seven HDL-C associated vari-

ants in six genes, seven LDL-C variants in three genes,

three TC variants in one gene, and seven TG variants in

six genes that were previously found to be genome-wide

significant in the Million Veterans Program (MVP) GWAS

results (Table S22).8 Respective gene-based analyses were

repeated without those variants. Gene-based signals at

A1CF and BUD13 were lost after removal of one variant

in each of those genes (Table S23).

The JAK2 signal was further investigated after splitting

the 136 contributing variants into those annotated as so-

matic via the Catalogue of Somatic Mutations in Cancer

(COSMIC)64 database and not annotated as a somatic

variant. We observed an association only among a set of

26 variants annotated as somatic, while we observed no as-

sociation when using the remaining 110 variants (Table

S24). We also observed that after removal of the most
erican Journal of Human Genetics 109, 81–96, January 6, 2022 87



Figure 2. Exome-wide significant associ-
ations with blood lipid phenotypes
(A) Circular plot highlighting the evidence
of association between the exome-wide
significant 35 genes with any of the six
different lipid traits (p < 4.3 3 10�7). The
most significant associations from any of
the six different variant groups are plotted.
For almost all of the genes, themost signif-
icant associations were obtained from the
multi-ancestry meta-analysis.
(B) Strength of association of the 35
exome-wide significant genes based on
the most significant variant grouping and
ancestry across the six lipid phenotypes
studied. Beta (effect size) is obtained from
the corresponding burden test for SKAT re-
sults. Most of the genes indicated associa-
tions with more than one phenotype.
Sign(beta)*�log10(p value) displayed for
associations that reached a p < 4.3 3
10�7. When the Sign(beta)*�log10(p) >
50, they were trimmed to 50.
significant variant in JAK2 (p.Val617Phe; rs77375493), a

somatic variant, there is no association between JAK2

and total cholesterol (p ¼ 0.10, Table S13).

We also determined which of the 35 genes were outside

GWAS regions defined as those within 5200 kb flanking

regions of GWAS-indexed single-nucleotide polymor-

phisms (SNPs) for TC (487 SNPs), LDL-C (531 SNPs),

HDL-C, and TG (471 SNPs).8 We identified 1,295 unique

genes included in these lipid GWAS regions. Eight out of

the 35 associated genes (23%) were not within a GWAS re-

gion (Table S13).

To understand whether the gene-based signals were

driven by variants that could be identified through sin-

gle-variant analyses, we looked at the proportion of the

35 genes that were associated with each trait that have at

least one single contributing variant that passed the

genome-wide significance threshold of 5 3 10�8. Seven-

teen genes were associated with HDL-C at exome-wide sig-

nificance (Table S13); eight genes had at least one variant
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with p < 5 3 10�8 (Table S8). Simi-

larly, we observed 4/9 for LDL-C, 4/

10 non-HDL-C, 4/14 TC, 7/18 TG,

and 6/17 TG:HDL genes with at least

one genome-wide significant variant

(Tables S5–S10).

For genes with both gene-based and

single-variant signals, we determined

the variants that were driving these

signals and determined the single-

variant associations for all variants

contributing to the top 35 genes (Ta-

ble S25). From a total of 85 gene-

based associations, 33 had at least

one and 19 had only one single

variant with p < 5 3 10�8 (Tables

S25 and S26). All of the 19 had at least
two variants passing nominal significance (p < 0.05) and

13 had at least ten variants with p < 0.05. Finally, gene-

based associations in A1CF, BUD13, JAK2, and TMEM136

were lost after removal of the respective most-significant

single variant from the group of variants aggregated in

each gene-based association (Table S13).

Comparison of gene-based associations across

ancestries

We determined the overlap between single variants

included in gene-based signals, which additionally were

nominally significant (p< 0.05) in each of the fivemain an-

cestries. A large proportion of variants from each ancestry

did not overlap with any other ancestry (Figure S3). For

example, a total of four genes (CETP, ABCA1, CD36, and

LCAT) were observed to have significant gene-based associ-

ations with HDL-C inmulti-ancestrymeta-analyses. A total

68% of variants from European ancestry samples that

contributed to HDL-C gene-based associations did not



Table 1. Genes associated with blood lipids identified in this study

Gene Name Trait N cMAC nVAR b SE p Mask Test Ancestry
UKBB
replication

PMBB
replication

ALB albumin LDL-C 165,003 51 18 29.51 5.11 7.76 3 10�9 LOF burden multi-ancestry <0.005 N/A

ALB albumin non-HDL-C 166,327 50 17 33.91 6.07 2.27 3 10�8 LOF burden multi-ancestry N/A N/A

ALB albumin TC 172,103 54 18 33.37 5.89 1.48 3 10�8 LOF burden multi-ancestry N/A N/A

SRSF2 serine and arginine rich splicing
factor 2

TC 172,103 59 14 �30.59 5.49 2.46 3 10�8 LOF/DAM5of5/SPLICE AI burden multi-ancestry N/A <0.005

JAK2 janus kinase 2 TC 975,33 441 136 �7.10 1.98 1.71 3 10�7 LOF/DAM5of5/SPLICE AI SKAT EUR <0.05 <0.05

CREB3L3 camp responsive element binding
protein 3 like 3

TG 170,239 874 71 0.12 0.02 2.43 3 10�15 LOF/DAM5of5/SPLICE AI burden multi-ancestry <0.005 <0.005

CREB3L3 camp responsive element binding
protein 3 like 3

TG/HDL-C 165,380 855 69 0.14 0.02 5.76 3 10�13 LOF/DAM5of5/SPLICE AI burden multi-ancestry N/A N/A

TMEM136 transmembrane protein 136 TG 29,571 157 24 �0.15 0.04 3.39 3 10�9 LOF/DAM5of5/SPLICE AI SKAT SAS N/A N/A

TMEM136 transmembrane protein 136 TG/HDL-C 29,517 157 24 �0.20 0.05 1.76 3 10�11 LOF/DAM5of5/SPLICE AI SKAT SAS N/A N/A

VARS valyl-trna synthetase 1 TG 56,140 67 51 0.32 0.06 4.30 3 10�7 LOF/MetaSVM burden EUR N/A N/A

NR1H3 nuclear receptor subfamily 1
group h member 3

HDL-C 93,044 521 111 3.47 0.60 1.45 3 10�11 LOF/MetaSVM/SPLICE AI SKAT EUR <0.005 <0.05

PLA2G12A phospholipase a2 group xiia HDL-C 166,441 1,975 47 �2.28 0.31 8.12 3 10�14 LOF/DAM5of5 burden multi-ancestry <0.005 <0.005

PLA2G12A phospholipase a2 group xiia TG 170,239 2,047 47 0.06 0.01 1.17 3 10�8 LOF/DAM5of5 burden multi-ancestry N/A N/A

PLA2G12A phospholipase a2 group xiia TG/HDL-C 165,380 1,969 46 0.11 0.01 7.56 3 10�13 LOF/DAM5of5 burden multi-ancestry N/A N/A

PPARG peroxisome proliferator activated
receptor gamma

HDL-C 166,441 147 72 �6.24 1.07 4.71 3 10�9 LOF/DAM5of5/SPLICE AI burden multi-ancestry <0.005 <0.005

STAB1 stabilin 1 HDL-C 166,441 6,550 804 0.83 0.16 2.58 3 10�7 LOF/MetaSVM/SPLICE AI burden multi-ancestry <0.005 N/A

cMAC, cumulative minor allele count; nVAR, number of variants in test; EUR, European ancestry; SAS, South Asian ancestry; N/A, not applicable.
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Box 1. Genes with biological links to lipid metabolism

ALB

The association between mutations in the albumin gene and elevated cholesterol levels has been previously

observed in rare cases of congenital analbuminemia.48 This has been mainly suggested to result from compensatory

increases in hepatic production of other non-albumin plasma proteins to maintain colloid osmotic pressure, partic-

ularly apolipoprotein B-100, leading to elevations in TC and LDL-C but normal HDL-C levels—which is consistent

with our findings—although the exact mechanisms remain uncertain.49 A lipodystrophy-like phenotype has also

been linked to analbuminemia, which is consistent with the suggestive tendency for increased risk of T2D with

LOF and predicted damaging variants in albumin in the population (OR ¼ 1.85; p ¼ 0.007) (Table S30).

SRSF2

SRSF2 encodes a highly conserved serine/arginine-rich splicing factor and has previously been linked to acute liver

failure in liver-specific knockout in mice with accumulation of TC in the mutant liver.50 Thus, this gene could be

linked to a non-alcoholic fatty liver phenotype with accumulation of lipids in the liver as observed with other genes

as PNPLA3 and TM6SF2.7 Therefore, we looked at association with liver functionmarkers and we found an association

between SRSF2 and higher albumin levels (p¼ 13 10�4) and a suggestive tendency for higher gamma glutamyl trans-

ferase (GGT) (p ¼ 0.05), consistent with potential liver involvement (Tables S46–S49).

CREB3L3

The association between CREB3L3 and higher TG supports previous evidence from a single family and cohorts with

severe hypertriglyceridemia but not sufficient evidence to be classified as a Mendelian lipid gene.51–53 This has been

additionally supported by functional studies where Creb3l3-knockout mice showed hypertriglyceridemia partly due

to deficient expression of lipoprotein lipase coactivators (Apoc2, Apoa4, and Apoa5) and increased expression of acti-

vator Apoc3.52

NR1H3

The observed association of NR1H3with higher HDL-C and lower TG is supported by previous evidence of a role in

non-alcoholic fatty liver disease in mice.54 This gene encodes a liver X receptor alpha (LXRa), which is a nuclear re-

ceptor that acts as a cholesterol sensor and protects from cholesterol overload.55,56 It has previously been shown that

disrupting the LXRa phosphorylation at Ser196 in mice prevents non-alcoholic fatty liver disease.54

PLA2G12A

PLA2G12A is in the secretory phospholipase A2 (sPLA2) family, which liberates fatty acids in the �sn2 position of

phospholipids. This pattern suggests a previously unreported possible lipolytic role of this phospholipase in amanner

similar to another member of the adipose-specific phospholipases, PLA2G16, which has been shown to have a lipo-

lytic role in mice.57,58 Further studies are needed to confirm whether PLA2G12A has a lipolytic role.

PPARG

Rare LOF mutations in PPARG have been previously found to be associated with reduced adipocyte differentiation,

lipodystrophy, and increased risk of T2D.59–61

STAB1

STAB1 is a scavenger receptor that has been shown tomediate uptake of oxidized LDL-C.62,63 There was a suggestive

association between LOF variants and higher LDL-C (b ¼ 4.3 mg/dL, p ¼ 2 3 10�3), consistent with its role in LDL-C

uptake.
overlap with any other ancestry and nor did 62% in South

Asian, 44% in African, 41% in Hispanic, and 59% in East

Asian ancestry. When restricted to variants with p < 0.05

in themulti-ancestrymeta-analysis, the overlap among an-

cestries increased (Figure S4). A total of 61%of variants from

European ancestry did not overlap with any other ancestry

and nor did 46% in South Asian, 27% in African, 27% in

Hispanic, and 32% in East Asian ancestry. Finally, we deter-

mined the top single variant contributing to each gene-

based association (Figure S5). Out of the four HDL-C or

the three LDL-C genes, none of the top variants overlapped

among any of the ancestries, and at least one out of three

variants from the TG genes was shared between two

ancestries.
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But, the gene-based associations were mostly consistent

across the five ancestry groupings: European, South Asian,

African, Hispanic, and East Asian. Three of the 17 HDL-C

genes showed association in at least two different ancestries

at exome-wide significance level (p¼ 4.33 10�7). Similarly,

3/9 LDL-C, 4/10 non-HDL-C, 5/14 TC, 2/18 TG, and 2/17

TG:HDL genes showed association in at least two different

ancestries at an exome-wide significance level. Using a less

stringent significance level (p < 0.01), across the six lipid

traits, 59%–89% of associated genes from the joint analysis

were associated in at least two different ancestries.

We tested the top 35 genes for heterogeneity across all

303 gene-trait-variant grouping combinations passing the

exome-wide significance threshold (p < 4.3 3 10�7). We
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observed heterogeneity in effect estimates (pHet < 1.7 3

10�4, accounting for 303 combinations) in 19 (6%)

different gene-trait-variant grouping combinations and

in six different genes: LIPC, LPL, LCAT, ANGPTL3, APOB,

and LDLR (Table S27). Although the LOF gene-based effect

sizes were largely consistent across ancestries, there were

differences in the cumulative frequencies of LOF variants

for several genes, including PCSK9, NPC1L1, HBB, and

ABCG5 (Figures S6–S8).

We observed LOF and predicted-damaging variants in

TMEM136 associated with TG and TG:HDL only among in-

dividuals of South Asian ancestry (pSKAT ¼ 3 3 10�9 and

2 3 10�11, respectively) (Table 1, Figure 2A). With the

same variant grouping and ancestry, we observed associa-

tions with reduced TG by burden tests (b ¼ �15%, p ¼
3 3 10�4) and TG:HDL (b ¼ �20%, p ¼ 6 3 10�5) (Tables

S18 and S19). Additionally, a single missense variant was

associated only among South Asians (rs760568794,

11:120327605-G/A, p.Gly77Asp) with TG (b ¼ �36.9%,

p ¼ 2 3 10�8) (Table S9). This variant was present only

among individuals with South Asian (MAC ¼ 24) and His-

panic ancestry (MAC ¼ 8) but showed no association

among the Hispanic population (p ¼ 0.86). This gene en-

codes a transmembrane protein of unknown function.

Replication of gene-based associations

We performed replication by using the PMBB and UKB

samples that did not contribute to the initial analysis. In

PMBB, we observed four out of ten genes without prior ev-

idence of gene-based links with blood lipid phenotypes to

have a p < 0.005 (Bonferroni correction for testing ten

genes) and in the same direction as the discovery (SRSF2,

CREB3L3, PLA2G12A, PPARG) with their respective blood

lipids with an additional two genes that met a nominal sig-

nificance level (p< 0.05; JAK2 and NR1H3). For TMEM136,

we found an association of nominal significance for TG

and TG:HDL as well but with a beta in the opposite and

positive direction. For the other three genes, ALB, VARS,

and STAB1, we did not find associations at a nominal sig-

nificance level for their respective blood lipid traits (Table

S28). In UKB, we found six of the ten genes were associated

at a p< 0.005 and in the same direction of effect as the dis-

covery analysis (ALB, CREB3L3, NR1H3, PLA2G12A,

PPARG, STAB1) (Table S29) with JAK2 reaching a nominal

significance threshold (p < 0.05). The only two genes

that did not show any evidence of replication in at least

one of the replication studies were TMEM136 and VARS.

This may indicate these associations are false positives or

that we lack power for replication for these associations.

Our replication studies did not include individuals of

South Asian ancestry, and we observed that our association

of TMEM136with TG and TG:HDL is driven by individuals

of South Asian ancestry.

Comparison of gene-based associations by case status

We analyzed heterogeneity by CAD or T2D case status for

the top 35 genes. The top 85 signals presented in Table
The Am
S13 determined in case-status-specific meta-analyses for

CAD and T2D. Out of the 85 different gene-based associa-

tions, we observed minimal heterogeneity in the results by

case status. LDLR, LCAT, and LPL showed significant het-

erogeneity by CAD case status and LCAT and ANGPTL4

by T2D status (pHet < 6 3 10�4) (Tables S30 and S31).

Gene-based associations in GWAS loci

We determined whether genes near lipid array-based

GWAS signals8 were associated with the corresponding

lipid measure by using gene-based tests of rare variants

with the same traits. We obtained genes from 200 kb flank-

ing regions on both sides of each GWAS signal: 487 anno-

tated to LDL-C GWAS signals, 531 to HDL-C signals, and

471 to TG signals. We analyzed genes within these three

sets for gene-based associations with their associated traits.

A total of 13, 19, and 13 genes were associated (p < 3.4 3

10�5, corrected for the number of genes tested for the three

traits) with LDL-C, HDL-C, or TG, and 32 unique genes

were identified in the GWAS loci (Tables S32–S37).

Three of the 32 genes had no prior aggregate rare variant

evidence of blood lipid association. Variants annotated as

LOF or predicted damaging in EVI5 were associated with

LDL-C (pSKAT ¼ 23 10�5). The burden test showed associa-

tion with higher LDL-C levels (b ¼ 1.9 mg/dL, p ¼ 0.008)

(Table S32). Variants annotated as LOF or predicted

damaging in SH2B3 were associated with lower HDL-C

(b¼�2.5mg/dL, p¼ 13 10�6) among Europeans, and var-

iants that were annotated as LOF in PLIN1 were associated

with higher HDL-C (b ¼ 3.9 mg/dL, p ¼ 1 3 10�5) (Table

S33). Other genes in the regions of EVI5, SH2B3, and

PLIN1 did not show an association with the corresponding

lipid traits (p> 0.05) in multi-ancestry analyses. A previous

report implicated twoheterozygous frameshiftmutations in

PLIN1 in three families with partial lipodystrophy.65 The

gene encodes perilipin, the most abundant protein that

coats adipocyte lipid droplets and is critical for optimal TG

storage.66 We observed a nominal associations of PLIN1

with TG (b ¼ �7.0%, p ¼ 0.02). Our finding is contrary to

what would be expected with hypertriglyceridemia in a lip-

odystrophyphenotype given the associationwith lowerTG.

This gene has an additional role where silencing in cow ad-

ipocytes has been shown to inhibit TG synthesis and pro-

mote lipolysis,67 which may explain those contradictions.

Enrichment of Mendelian, GWAS, and drug targets

genes

Wenext sought to test theutility of genes that showed some

evidence for association but did not reach exome-wide sig-

nificance. Within the genes that reached a sub-threshold

level of significant association in this study via SKATs or

burden tests (p < 0.005), we determined the enrichment

of (1) Mendelian dyslipidemia (N ¼ 21 genes);2 (2) lipid

GWAS (N ¼ 487 for LDL-C, N ¼ 531 for HDL-C, and N ¼
471 for TG);8 and (3) drug target genes (N¼ 53).43We strat-

ified genes in GWAS loci according to coding status of the

index SNP and proximity to the index SNP (nearest gene,
erican Journal of Human Genetics 109, 81–96, January 6, 2022 91



Figure 3. Enrichment of Mendelian, GWAS, and drug target
genes in the gene-based lipid associations
Enrichment of gene sets of Mendelian genes (n ¼ 21), GWAS loci
for LDL-C (n ¼ 487), HDL-C (n ¼ 531), and triglycerides (TG) (n ¼
471) genes, and drug target genes (n ¼ 53). Error bars denote 95%
confidence intervals.
second nearest gene, and genes further away).We tested for

enrichment of gene-based signals (p < 0.005) in the gene

sets compared to matched genes (Figure 3). For each gene

within each gene set, the most significant association in

the multi-ancestry or an ancestry-specific analysis was ob-

tained and then matched to ten genes on the basis of sam-

ple size, total number of variants, cumulative MAC, and

variant grouping. The strongest enrichment was observed

for Mendelian dyslipidemia genes within the genes that

reached p < 0.005 in our study. For example, 52% of the

HDL-C Mendelian genes versus 1.4% of the matched set

reached p < 0.005 (OR: 71, 95% CI: 16–455). We also

observed that 45.5% of the set of genes closest to an HDL-

C protein-altering GWAS variant reached p < 0.005 versus

1.4% in thematched gene set (OR: 57, 95%CI: 13–362). Re-

sults were significant but much less striking for genes at

non-coding index variants. We observed that 8.9% of the

set of genes closest to an HDL-C non-protein-altering

GWAS variant reached p < 0.005 versus 2.3% in the

matched set (OR: 4.1, 95% CI: 1.8–8.7), while 8% of the

set of genes in the second closest to an HDL-C non-pro-

tein-altering GWAS variant reached p < 0.005 versus 2.6%

in the matched set (OR: 3, 95% CI: 1.1–8.3). There was no

significant enrichment in second closest or R third closest

genes to protein-altering GWAS signals and in R third

closest genes to non-protein-altering GWAS signals. Drug

target genes were significantly enriched in LDL-C gene-

based associations (OR: 5.3, 95% CI: 1.4–17.8) but not in

TG (OR: 2.2, 95% CI: 0.2–11.2) or HDL-C (OR: 1.0, 95%

CI: 0.1–4.3) (Figure 3 and Tables S38–S41).
Association of lipid genes with CAD, T2D, glycemic

traits, and liver enzymes

We tested the genes identified through our discovery (35

genes) and GWAS loci genes (32 genes) for associations
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with CAD or T2D in our gene-based analyses (40 genes

across the two sets). The CAD analyses were restricted to

a subset of the overall exome sequence data with informa-

tion on CAD status, which included the MIGen CAD case-

control, UKBCADnested case-control, and the UKB cohort

with a total of 32,981 cases and 79,879 controls. We

observed four genes significantly associated with CAD

(pCAD < 0.00125, corrected for 40 genes). The four genes

associated with lipids and CAD were all primarily associ-

ated with LDL-C: LDLR (OR: 2.97, p ¼ 7 3 10�24), APOB

(pSKAT ¼ 4 3 10�5), PCSK9 (OR: 0.5, p ¼ 2 3 10�4), and

JAK2 (pSKAT ¼ 0.001). Several other known CAD-associated

genes (NPC1L1, CETP, APOC3, and LPL) showed nominal

significance for association with lipids (p < 0.05). We

observed nominal associations with CAD for two of the

newly identified lipid genes: PLIN1 (pSKAT ¼ 0.002) and

EVI5 (OR: 1.29, p ¼ 0.002; Table S42). None of the 40

lipid genes reached significance for association with

T2D in the latest AMP-T2D exome sequence results. We

observed nominal associations of T2D with STAB1 (OR:

1.05, pT2D ¼ 0.002) and APOB (OR: 1.08, pT2D ¼ 0.005)

(Table S43).15

We additionally tested the 40 genes for association with

six glycemic and liver biomarkers in the UKB: blood

glucose, HbA1c, alanine aminotransferase (ALT), aspartate

aminotransferase (AST), gamma glutamyl transferase

(GGT), and albumin (Tables S44–S49). Using a significance

threshold of p ¼ 0.0012, we found associations between

PDE3B and elevated blood glucose, JAK2 and SH2B3 and

lower HbA1c, and APOC3 and higher HbA1c. However,

JAK2 was no longer associated with Hba1c after removal

of the p.Val617Phe missense variant that is known to

frequently occur as a somatic mutation (b ¼ 0.22, SE ¼
0.40, p ¼ 0.47).

We found associations between CREB3L3 and lower ALT

and ALB and higher AST and between A1CF and higher

GGT. ALB and SRSF2were associated with lower and higher

albumin levels, respectively (Tables S44–S49).
Discussion

We conducted a large multi-ancestry study to identify

genes in which protein-altering variants demonstrated as-

sociation with blood lipid levels. First, we confirm previous

associations of genes with blood lipid levels and show that

we detect associations across multiple ancestries. Second,

we identified gene-based associations that were not

observed previously. Third, we show that along with Men-

delian lipid genes, the genes closest to both protein-

altering and non-protein-altering GWAS signals and LDL-

C drug target genes have the highest enrichment of

gene-based associations. Fourth, of the new gene-based

lipid associations, PLIN1 and EVI5 showed suggestive evi-

dence of an association with CAD.

Our study found evidence of gene-based associations for

the same gene in multiple ancestries. The heterogeneity in
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genetic association with common traits and complex dis-

eases has been discussed extensively. A recent study has

shown significant heterogeneity across different ancestries

in the effect sizes of multiple GWAS-identified variants.68

However, our study shows that gene-based signals are de-

tected in multiple ancestries with limited heterogeneity

in the effect sizes.

Our study highlights enrichment of gene-based associa-

tions for Mendelian dyslipidemia genes, genes with pro-

tein-altering variants identified by GWASs, and genes

that are closest to non-protein-altering GWAS index vari-

ants. A previous transcriptome-wide Mendelian randomi-

zation study of eQTL variants indicated that most of the

genes closest to top GWAS signals (>71%) do not show sig-

nificant association with the respective phenotype.69 In

contrast, our study provides evidence from sequence data

that the closest gene to each top non-coding GWAS signal

is most likely to be the causal one, indicating an allelic se-

ries in associated loci. This has implications for GWAS re-

sults, suggesting the prioritization of the closest genes for

follow-up studies. We also observed enrichment of drug

target genes only among LDL-C gene-based associations

and not for HDL-C and TG gene-based associations, consis-

tent with the fact that most approved therapeutics for car-

diovascular disease target LDL-C

The gene-based analyses of lipid genes with CAD

confirmed previously reported and known associations

(LDLR, APOB, and PCSK9). Using a nominal p threshold

of 0.05, we also confirmed associations with NPC1L1,

CETP, APOC3, and LPL. Of the identified lipid-associated

genes, we observed borderline significant signals with

EVI5 and higher risk of CAD and between PLIN1 and lower

risk of CAD. The putative cardio-protective role of PLIN1

deficiency is supported by previous evidence in mice,

which has indicated reduced atherosclerotic lesions with

Plin1 deficiency in bone-marrow-derived cells.70 This sug-

gests PLIN1 as a putative target for CAD prevention; how-

ever, replication of the CAD association would be needed

for confirmation of those signals.

There are limitations to our results. First, we had lower

sample sizes for the non-European ancestries, limiting

our power to detect ancestry-specific associations and

detect replication for TMEM136 that was driven by a

variant in South Asians. However, we find consistency of

results across ancestries, and when we relax our signifi-

cance threshold, the majority of associations (59%–89%)

are observed in more than one ancestry. Second, it has

been reported that there was an issue with the UKB func-

tionally equivalent WES calling.71 This mapping issue

may have resulted in under-calling alternative alleles and

therefore should not increase false positive findings. Third,

we relied on a meta-analysis approach by using summary

statistics to perform our gene-based testing because of dif-

ferences in sequencing platforms and genotyping calling

within the multiple consortia contributing to the results.

This approach has been shown to be equivalent to a pooled

approach for continuous outcomes.41
The Am
In summary, we demonstrated association between rare

protein-altering variants with circulating lipid levels in

>170,000 individuals of diverse ancestries. We identified

35 genes associated with blood lipids, including ten genes

not previously shown to have gene-based signals. Our re-

sults support the hypothesis that genes closest to a

GWAS index SNP are enriched for evidence of association.
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