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ABSTRACT Networked control systems which transfer data over communication networks may suffer
from malicious cyber attacks by injecting false data to the transferred information. Such attacks can cause
performance degradation of the closed-loop system and the filtering problem. The sequential importance
sampling (SIS) particle filtering (PF) methods employ the sequential Monte Carlo approach to estimate the
generally non-Gaussian posterior probability density function (pdf) for Bayesian estimation of generally
non-linear non-Gaussain systems. In this paper, it is firstly shown that with the normal SIS PF, the injected
false data to the networked systems remains stealthy and therefore it is not possible to reduce the degrading
effect of the attack on the estimation. However, with a modification in the proposal pdf, a modified SIS PF is
then proposed which guarantees the attack detectability where the attacked measurements are incorporated
in the particle generation process and thus the particles are updated and make the attack detectable. Using
the derived thresholds and under small enough measurement noises, it is also proved that no false alarm
occurs. After estimation of the attack value, the posterior pdf conditioned on truly detected attack leads to an
estimation equivalent to the attack free SIS PF in terms of estimation bias and estimation covariance error.
Finally, the accuracy of the presented concepts is demonstrated for a networked interconnected four-tank
system.

INDEX TERMS Networked control systems (NCS), cyber-security, sequential Monte Carlo, particle
filtering, convergence analysis.

I. INTRODUCTION
Recently, many industrial systems such as smart grids rely
on communication networks to send their information to a
computational unit. The combination of physical systems,
communication networks, and computational devices forms
a cyber-physical system (CPS) [1]. There are many research
works devoted to the problem of networked control systems
(NCS), more recently, in different control theory areas, on top
of them networked controller design and state estimation [2],
[3]. However, in spite of advantageous of such systems such
as remote computations, they may suffer from network con-
straints and security issues [4]. Limited computational and
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communication resources lead to event-triggered and pro-
tocol based approaches [1], [5], [6]. The problem of net-
worked systems under communication constrains such as
packet dropouts and delays have also recently attracted a lot
of research attentions [7]–[9].

Apart from the aforementioned problems, cyber attackers
may be able to compromise the information transferring
via network and therefore degrade the system performance.
The attackers may inject denial of service (DoS) attacks in
which data packets cannot be delivered by the computa-
tional unit through for example jamming packets or packet
loss attacks [10]. In another type of attack, called decep-
tion attack, data packets are modified by attackers during
transmission [11] and false data can be injected to the
information exchanges in the network. Normally deception
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attacks are more difficult to be detected and it can be kept
stealthy to detectors [12]. Both 0-stealthy (zero-dynamics)
and α-stealthy (bias) attacks can be employed by the attackers
to inject false data where in the latter case, the attackers use
a low-pass filter which slowly converges to the steady state
values called bias injection attack and it can be stealthy during
the transient time [13].

Control and filtering problems under such cyber attacks
require novel approaches and analyses. A networked game-
theoretic finite horizon state estimation method under DoS
attack is presented in [14] when a sensor estimates the
states and decides to transmit the data or not and simi-
larly the attacker decides to attack or not at each time.
In the game theoretic approach presented in [15] and [16],
the sensor attempts transmission at each time step but
attack strategies try to maximize the average estimation
error.

Estimation problem for linear stochastic systems under
random false data injection is studied in [12] in which a novel
state estimator is presented and boundedness of mean square
error covariance is ensured under some sufficient conditions.
If the cyber attack is detectable, preventive measures can
be devised to design a secure estimation method (from the
perspective of estimation convergence) and to avoid perfor-
mance degradation. Therefore, detectors are applied mainly
through residue analysis to detect false data injection cyber
attacks in some research works as [11], [12], [17], [18].
However, in many cases the attacks remain undetectable as
their effects does not appear in residuals which can lead to
an insecure estimation problem. Therefore, it is important to
analyze estimation strategies under cyber attacks in terms of
detectability.

Security conditions for the state estimation problem of a
stochastic linear system under false data injection attacks is
studied in [11] where a new necessary and sufficient con-
dition for the insecurity is derived when all communication
channels are under attacks. A Kalman filtering (KF) based
estimation problem under false data injection is presented
in [19] where the estimator is equipped with a residual based
false data detector and the degradation of the remote estimator
is analyzed using the evaluation of estimation covariance
error.

Particle filtering (PF) [20], [21] algorithms are very effec-
tive filtering approaches for non-linear and non-Gaussian
systems which are appropriate for most of industrial sys-
tems. In PF framework, the posterior probability density
function (pdf), which is required for the minimum mean
square error (MMSE) estimators [22], is approximated using
Monte Carlo (MC) method [23] and by generation of sample
points (particles). This is indeed the main advantage of par-
ticle filtering over other Bayesian MMSE estimators such as
Kalman, Extended and Unscented Kalman Filters [24], [25].
Two main PF categories are sequential importance sam-
pling (SIS) and sampling importance re-sampling (SIR)
methods where in the latter the generated particles are
re-sampled using approximated pdf [26].

Recently, development of PFs have been considered in net-
worked control systems [1], [6], [27], [28]. More specifically,
the problem of cyber attack detection is briefly and gener-
ally considered using PF in [29] where the residual norm is
simply compared with a deterministic threshold for a three
tank system. However, there exists no detectability analysis
presented and no attack compensation in the paper. A similar
method has been proposed in [30] where the normal SIR
PF is used to detect different types of FDI deception attack
in the networked Automatic Generation Control (AGC) sys-
tems which adjust the power output of multiple generators
at different power plants in response to changes in the load.
However, there exist no scheme to guarantee the detection
and also no compensation scheme. More recently, in [31], the
problem of PF for networked systems under multiple attacks
is studied based on a new likelihood computation method
where randomly occurring denial of service (DOS) attacks,
deception attacks and flipping attacks are considered. Since
no detectability analysis is performed in [31] and the attacks
are not detected, the proposed likelihood function involves
both cases of probable attacks and no attack which may
degrade the estimation performance.

Due to the importance of PFs in handling any functional
non-linearity in the systems, and the lack of research works
for PF based state estimation under cyber attacks, in this
paper, the SIS PF is employed for the networked system
under false data injection deception attack (bias data injec-
tion). The occurrence rate of the attack is modeled by a
random binary-valued process (an i.i.d. Bernoulli distribu-
tion). After studying the drawback of the normal SIS PF to
detect such attacks, a modified one is proposed in which a
new proposal distribution is presented to involve the mea-
surements in the particle generation process to update the
particles. Our approach is updating the particles and there-
fore marking them with the affect of the attacks is some
how similar to watermarking idea in the literature of attack
detection [17], [32]–[34]. However, in watermarking an extra
signal is incorporated and passes through the network with
adversary attacks to make the attack detectable and in this
paper we are directly incorporating the attacks in the particle
generation process to make it detectable.

The main idea of using measurements in the particle gen-
eration process, was firstly presented in FastSLAM 2.0 using
the idea of FatSLAM 2.0 algorithm in the context of
robot localization and mapping using Rao-Blackwellised
PF (RBPF) [35]–[37]. In [38], the inverse sensor model is
employed in the particle generation process in SLAM appli-
cation which cannot be employed in general non-linear mea-
surement models. In this paper, however, we are proposing a
proposal distribution in which measurements are appeared to
make the FDI attack detectable.

In this paper, we use the idea of updating the parti-
cles to make the FDI attack detectable. For this purpose,
using a modified proposal distribution, the measurements are
involved in the particle generation process and therefore the
effect of the probable attacks is appeared in the particles and
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thus in the residual signal. It is shown for the systems under
Gaussian assumption that the particles can be generated in
two steps, firstly using the system dynamics and secondly
corrected using the measurements (similar to the prediction
and update steps in the Kalman filtering (KF) [24]). After
detection, only the primarily generated particles using the
system dynamics are incorporated in the estimation pro-
cess to avoid a biased estimation. The necessary comparing
thresholds are derived to guarantee the detectability of the
attacks and to avoid false alarms under the assumption of
small enough measurement noises. Thus, the result of the
detection mode can be easily employed to estimate the value
of the injected attack using some approaches such as the one
presented in [39].

The posterior pdf after the FDI detection and estimation
can be truly approximated using the weights corresponding
to each particle conditioned on the known value of the bias
attack. It is shown in the paper that such an estimator which
is equivalent to the attack free SIS PF in estimation bias and
estimation covariance error.

To summarize, the contributions of this paper are as fol-
lows:

1) The detectability of the normal SIS PF is analyzed and
it is proved that the FDI attack may remain stealthy using the
normal SIS PF.

2) A modified SIS PF with the modified proposal distribu-
tion incorporating the probable manipulated measurements
in the particle generations process to update the particles,
is proposed and the appropriate threshold to compare with
the residual norm proportional to the minimum norm of the
attack is obtained to guarantee the detectability.

3) The method is generalized to a generally non-Gaussian
systems where the threshold to compare with the probability
of false alarm is derived to avoid false alarms under the
assumption of small enough measurement noises compared
to the attack value.

4) The SIS PF is extended after the attack detection leading
to an unbiased estimationwith the estimation error covariance
equivalent to the normal SIS PF for the attack free situation.

The rest of this paper is organized as follows. The prob-
lem is formulated in Section II where both system and
attack model are formulated. The normal SIS PF under the
attack with detectability analysis is presented in Section III.
Section IV provides a modified SIS PF to update particles
with detectability and false alarm analysis and extended PF
after the attack removal. Simulation results are presented
in Section V to demonstrate the accuracy of the presented
concepts. Finally, conclusions are presented in Section VI.

II. PROBLEM FORMULATION
Consider a discrete-time non-linear process noise and a linear
measurement model both with an additive non-Gaussian as
follows:

xk+1 = f (xk , uk)+$k , (1)

yk = Gkxk + νk , (2)

where xk ∈ Rnx , k ≥ 0, is the system state vector at time
instant k , x0 is the initial value of the state vector with the
mean value µ0 and the covariance matrix P0, and a known
non-Gaussian probability distribution, uk ∈ Rnu , k ≥ 0,
is the input vector, yk ∈ Rny , k ≥ 0, is the measurement
vector at the time instant k , $k ∈ Rnx , νk ∈ Rny , k ≥ 0,
are independent and identically distributed (i.i.d) zero mean
non-Gaussian random processes with known probability den-
sity functions and covariance matrices Q and R, respectively,
f (·, ·) ∈ Rnx ×Rnu −→ Rnx is a general non-linear function,
and Gk ∈ Rny×nx is the measurement matrix.

It is intended to design an estimator for the system pre-
sented in (1) and (2) where data is transmitted to estimator
through a communication network in which an attacker can
modify the observation by injecting a random false data. The
status of true or false packet transmissions is identified with
a Bernoulli process lk ∈ {0, 1} where lk = 1 represents false
data injection in the transmitted packet with probability of
pl , and lk = 0 represents the true packet transmission with
probability of ql = 1 − pl [10], [12], [40]. Accordingly,
the measurement model under false data injection can be
presented as:

ỹk = yk + lkγk , (3)

where γk ∈ Rny is the injected false data and slowly con-
verges to the desired bias value to ensure the stealthiness
of the attack [39]. For this purpose, the attack is normally
described using an asymptotically convergent model [13]:

γk+1 = τγk + (1− τ )γ̄ , (4)

where, γ0 = 0, 0 < τ < 1 and γ̄ is the steady state value of
the attack. The general framework of the method is depicted
in Figure 1.

FIGURE 1. General schematic of the considered remote estimation
problem.

III. THE NORMAL SIS PF UNDER FDI ATTACK:
DETECTABILITY ANALYSIS
The particle filtering method is mainly based on Sequential
Importance Sampling (SIS) to approximate the generally
non-Gaussian marginalized posterior density function (pdf)
of π (xk ) = p(xk |y1:k ) [41] and this probability density func-
tion is then employed for the minimum mean square error
estimation (MMSE) [42]. In this method, particles are gener-
ated using the proposal density function q(xk ) = p(xk |xk−1)
which is the probabilistic model of the system presented
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in (1). The posterior pdf is approximated as follows applying
the SIS approach [21]:

p(xk |y1:k ) ≈
N∑
i=1

wi∗k δ(xk − x
i
k ), (5)

where x ik is the i-th particle and N refers to the number of
particles. Besides,wi∗k refers to the corresponding normalized
weights which are computed recursively as follows:

wi∗k =
p(yk |x ik )w

i∗
k−1∑N

j=1 p(yk |x
j
k )w

j∗
k−1

. (6)

Now, consider the case in which the measurements are trans-
ferred to the estimator through a network under malicious
attacks. In this case, the PF method is applied to system (1)
with the measurement model of (3). The weights w̃i∗k are
computed similar to (6) with the measurement model (3) as
follows:

w̃i∗k =
p(ỹk |x ik )w̃

i∗
k−1∑N

j=1 p(ỹk |x
j
k )w̃

j∗
k−1

, (7)

and similar to (5), the posterior density function in this case
can be approximated as follows:

p(xk |ỹ1:k ) ≈
N∑
i=1

w̃i∗k δ(xk − x
i
k ), (8)

where xk is the state process described by the posterior pdf of
p(xk |ỹ1:k ). It is worth mentioning that the proposal distribu-
tion, p(xk |xk−1), is the same in both normal PF without attack
and the one under the FDI attack. Therefore, the same set of
particles is considered in both cases (5) and (8).

A. DEFINITIONS AND PRELIMINARIES
Detectors are applied mainly through residual analysis to
detect false data injection cyber attacks. Normally in the
literature, χ2 detector, which is a residual based detector,
is applied to detect cyber attacks in the literature [17], [19],
[43]. The detector makes a decision based on the sum of
squared residuals which is normalized by the steady-state
innovation covariance matrix. However, since the posterior
pdf p(xk |y1:k ) is approximated using Monte Carlo approach,
it is also possible to approximate the pdf of the resid-
ual stochastic process and therefore to analyze the residual
behavior using directly computation of the probability of the
residual norm to be greater than a selected threshold at each
sample time.

For this purpose, firstly, the residual signal for the systems
without attacks is defined:

zk := yk − Gkxk , (9)

where xk ∼ p(xk |y1:k ) and p(xk |y1:k ) is estimated in (5) and
(6) using PF. The probability of attack (PoA) is then defined
as follows:

βk := Pr(‖zk‖ > ηk ), (10)

where ‖ · ‖ refers to the Euclidean norm and ηk is also an
appropriately selected threshold. The PoA βk is calculated
through Monte Carlo method using generated particles as
zik = yk − Gkx ik . The corresponding unnormalized weight
for zik is simply the likelihood function of p(yk |x ik ) and after
normalization, the probability of each particle zik is:

wi∗z,k =
p(yk |x ik )∑N
j=1 p(yk |x

j
k )
. (11)

The reason behind this weight is clarified as follows using
Chapman–Kolmogorov equation and Bayes’ rule:

p(zk ) = p(zk |xk−1) =
∫
p(zk , yk , xk |xk−1)dykdxk

=

∫
p(zk |yk , xk )p(yk |xk )p(xk |xk−1)dykdxk . (12)

and (11) is obtained based on the fact that zk is sampled using
p(zk |yk , xk )p(xk |xk−1), Thus, the residual signal pdf can be
approximated as follows:

pz(zk ) ≈
N∑
i=1

wi∗z,kδ(zk − z
i
k ). (13)

Now, using (10) and (13), βk can be obtained as follows:

βk =
∑
i∈=

wi∗z,k , (14)

where= = {i | ‖zik‖ > ηk}. Finally, the FDI attack is detected
if the obtained PoA βk exceeds the attacked detection thresh-
old ζ .

Now, in order to provide detectability analysis for the
system under the attack, similar to (9), the residual signal is
defined:

z̃k := ỹk − Gkxk , (15)

where xk ∼ p(xk |ỹ1:k ) and p(xk |ỹ1:k ) is approximated in (7)
and (8) using the normal PF. Similarly, the pdf of p(z̃k |ỹk , xk )
is approximated as follows:

pz̃(z̃k ) ≈
N∑
i=1

w̃i∗z̃,kδ(z̃k − z̃
i
k ), (16)

where z̃ik = ỹk − Gkx ik and:

w̃i∗z̃,k =
p(ỹk |x ik )∑N
j=1 p(ỹk |x

j
k )
. (17)

This can be easily obtained using (12) and by replacing zk and
yk by z̃k and ỹk , respectively.

Now, to analyze the detectability of the normal PF under
the attack, the error between the residual signals is defined:

1zk := zk − z̃k . (18)

Definition 1: The injected false data with minimum value of
‖γ ‖min in its norm on the system measurement (see (3)) is
called detectable by the PF if

Pr(‖1zk‖ > ξk ) = 1, for lk = 1. (19)
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where ξk is a positive threshold which should be determined
such that (19) holds for an attack with the minimum value of
‖γ ‖min.

As mentioned in the introduction earlier, now, it is intended
to solve the following problems in the rest of the paper:

Problem 1:Does the normal PF guarantee the detectability
of the FDI attack? For this purpose, it will be shown that there
exist some cases in which the detectability is not guaranteed.

Problem 2: How the normal PF should be modified in
order to detect the FDI attack? How the threshold should be
selected to guarantee the FDI detectability for a given value
of attack?

Problem 3: After the attack detection, how the normal PF
should bemodified to provide a state-estimation close enough
to the normal one without any attack.

B. DETECTABILITY ANALYSIS OF THE NORMAL PF
Now, according to the preliminaries in previous subsection,
we are intended to solve Problem 1. For this purpose, the
normal PF under FDI attack is investigated for detectability.
Toward this, according to Definition 1 and (19), at first the
pdf of 1zk is computed using (13) and (16) and the pdf of
1zk , as a function of two independent random variables zk
and z̃k is computed as follows [44]:

p(1zk ) =
∫
+∞

−∞

pz(1zk + z̃k )pz̃(z̃k )dz̃k . (20)

Using the approximated pdfs of (13) and (16), it can be
concluded that:

p(1zk )

=

∫
+∞

−∞

N∑
i=1

wi∗z,kδ(1zk + z̃k − z
i
k )

N∑
j=1

w̃j∗z̃,kδ(z̃k − z̃
j
k )dz̃k

=

N∑
i=1

N∑
j=1

wi∗z,k w̃
j∗
z̃,kδ(1zk − z

i
k + z̃

j
k ) (21)

Then, it follows that:

Pr(‖1zk‖ < ξ )

=

∫
‖1zk‖=ξ

‖1zk‖=0
p(1zk )d1zk

=

N∑
i=1

N∑
j=1

wi∗z,k w̃
j∗
z,k

∫
‖1zk‖=ξ

‖1zk‖=0
δ(1zk − zik+z̃

j
k )d1zk︸ ︷︷ ︸

:=A

,

(22)

where

A =

{
1 if ‖zik − z̃

j
k‖ < ξk ,

0 elsewhere,

Therefore,

Pr(‖1zk‖ < ξk ) =
N∑
i=1

∑
j∈

wi∗z,k w̃
j∗
z̃,k , (23)

where  = {j | ‖zik − z̃jk‖ < ξk}. Moreover, using (18) it is
concluded that:

‖zik − z̃
j
k‖ = ‖Gk (x

j
k − x

i
k )− lkγk‖. (24)

Now, we want to show that there exist some cases in which
the probability of (23) is not guaranteed to be converged to
zero. Toward this, using triangle reverse inequality, (24) can
be rewritten as follows:

‖zik − z̃
j
k‖ ≥ |‖Gk (x

j
k − x

i
k )‖ − lk‖γk‖|, (25)

where |·| refers to the absolute value function. Since x ik |
N
i=1 are

generated randomly depending on the proposal distribution
of p(xk |xk−1), it is impossible to select a threshold ξ which
guarantees ‖zik − z̃

j
k‖ > ξk .

This drawback of the normal PF in detecting the FDI
attacks can be more analyzed using the decision logic as
explained in (14). It is worth mentioning that wi∗z,k (see (11)),
is replaced with w̃i∗z,k (see (17)), when the attack happens and
depending on its value, a model mismatch happens between
the systemmodel (the generated particle x ik ) and the measure-
ment model (the likelihood function p(ỹk |x ik )).
For small valued attacks, the model mismatch is not sig-

nificant and as expected, the small valued attacks remain
stealthy. However, the appearance of larger attacks does not
also guarantee the detectability. It is due to the fact that
the values of w̃i∗z,k |

N
i=1 may decrease considerably due to the

system and measurement model mismatch resulted from the
attack. This causes the attack to remain stealthy for the attacks
which are large in the value. The amount of model mismatch
increases as the attack value increases. So, the greater the
attack value, it is less probable to be detected.
This procedure is clarified in Figure 2 in which four dif-

ferent cases of no attack, small, medium and large valued
attacks are considered in Figure 2-a to 2-d, respectively. The
likelihood pdf in this figure is depicted for Gaussian case,
however, it can be easily extended for general non-Gaussian
cases. It can be seen from Figure 2-a and Figure 2-b that the
likelihood value for the residuals less than the threshold ηk
is significantly greater than the other residuals’ likelihoods.
So, the attack in the second case is not detected. For the
medium valued attacks, as depicted in Figure 2-c, the weights
of the shifted residual particles are still great enough to trigger
the decision logic. However, according to Figure 2-d, for
large valued attacks, the weights decrease significantly and
therefore the decision logic is not triggered.

IV. PF MODIFICATION FOR SYSTEMS UNDER FDI ATTACK
In this section, we are intended to solve Problem 2 and Prob-
lem 3. A framework is proposed in which two interconnected
PFs are presented to firstly detect the FDI attack and secondly
to provide an unbiased estimation from the system states.
In other words, using the result of first modified PF which
guarantees the detectability of the FDI attack, second PF
estimates the states of the system. The reason behind using
two modified filters is that the filter employed for the FDI
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FIGURE 2. Likelihood values and PoA computation in the normal PF for a
system under four different without, small valued, medium valued and
large valued FDI attacks.

detection is a biased estimator while it is required to use the
result of the detection filter in the PF to provide an unbiased
estimation.

A. MODIFIED PF FOR FDI DETECTION
In order to overcome the drawback of the normal PF to detect
the injected false data cyber attack, in this section a modified
PF with a modified proposal pdf similar to the one used in
FastSLAM 2.0 [36] is presented. The applied pdf incorpo-
rates measurements in the particle generation process which
helps to detect the manipulated measurements. This approach
is almost similar to watermarking approaches in the litera-
ture [17], [32] in the sense that in both the effect of attacks
are incorporated intentionally to make the attack detectable

as mentioned in the introduction. However, in order to avoid
a biased estimation, the particles are generated in two steps
and only the generated ones in the first step is propagated
over time. The proposal pdf decomposed using Bayes’ rule is
as follows:

p(xk |ỹk , xk−1) ∝ p(ỹk |xk )p(xk |xk−1), (26)

where only the particles generated using p(xk |xk−1), denoted
as x ik , are propagated over time and the particles modified
using p(ỹk |xk ), denoted as x̃ i+k , are used for detection. Using
Chapman-kolmogorov equation and Bayes’ rule, it is con-
cluded that:

p(xk |ỹ1:k ) =
∫
p(xk |xk−1, ỹk )p(xk−1|ỹ1:k−1)dxk−1. (27)

Using the fact that particles’ weights are computed by the
ratio of the target to the proposal distribution, the correspond-
ing weight function is:

w̃+(xk ) =
p(xk |ỹ1:k )

p(xk |xk−1, ỹk )
. (28)

Thus, the corresponding normalized weight of x̃ i+k , that is
w̃i∗+k , are obtained by replacing (27) in (28) and approximat-

ing p(xk−1|ỹ1:k−1) =
N∑
i=1

w̃i∗k−1δ(xk−1 − x
i
k−1) as follows:

w̃i∗+k = w̃i∗k−1, (29)

where w̃i∗k is the corresponding weight of x ik (see (7)). There-
fore, the posterior pdf is approximated:

p(xk |ỹ1:k ) ≈
N∑
i=1

w̃i∗+k δ(xk − x̃
i+
k ). (30)

It is worth mentioning that for the systems without any cyber
attack, if the proposed PF is applied, the following notations
are employed: the particles x ik are generated using the pdf
of p(xk |xk−1) with the corresponding weight of wi∗k and the
particles are modified using p(yk |xk ) which leads to new
particles x i+k with the corresponding normalized weight of
wi∗+k with the weight function of w+(xk ).
Remark 1: The proposed PF is a biased estimator, because:

Ep(xk |ỹ1:k ){xk}

=

∫
xk w̃+(xk )

p(xk |xk−1, ỹk )
p(xk |xk−1, yk )

p(xk |xk−1, yk )dxk , (31)

while,

Ep(xk |y1:k ){xk} =
∫
xkw+(xk )p(xk |xk−1, yk )dxk , (32)

whereEp{·} refers to expected value with respect to p as a pdf.
It is obvious that (31) and (32) are not equal and therefore the
estimator is a biased one.

Although the proposed PF is a biased estimator, due to
the incorporation of the probable attacked measurement in
the particle generation process, it can help detecting the
attack. The detectability of the FDI attack using the modified
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PF under Gaussian assumption is proved in the following.
As soon as, the attack is detected, the proposed PF can be
modified resulting in an unbiased estimator. In order to reduce
the ambiguities, notations employed for different weights in
this paper with their corresponding pdfs are summarized in
Table 1.

TABLE 1. Different PF weight notations defined through this paper to
approximate some pdfs.

1) THE MODIFIED PF UNDER GAUSSIAN ASSUMPTION
In order to provide a better understanding of the proposed PF
and to easily evaluate the performance in terms of false data
injection detectability and estimation performance, in the fol-
lowing, the PF is fully derived for the systems with Gaussian
noises, that is referring to (1) and (2), let $k ∼ N (0,Q)
and νk ∼ N (0,R) where Q and R are covariance matrices.
In other words,$k and νk are assumed to be zero mean Gaus-
sian noises with covariance matrices ofQ and R, respectively.
Now, the proposal distribution of p(xk |ỹk , xk−1) is com-

puted with the Gaussian assumption and linearization, almost
similar to the method used to derive FastSLAM 2.0 and
EKF [37]. Toward this, p(ỹk |xk ) and p(xk |xk−1), according to
(26), are approximated as follows in the canonical form:

p(ỹk |xk ) ∝ exp{−
1
2
xTk 3yxk + κTy xk + 0y}, (33)

where 3y = GTk R
−1Gk , κy = GTk R

−1ỹk and 0y =

−
1
2 ỹ

T
k R
−1ỹk . Moreover, it follows that:

p(xk |xk−1) ∝ exp{−
1
2
xTk 3xxk + κTx xk + 0x}, (34)

where 3x = Q−1, κx = Q−1f (xk−1, uk−1) and
0x = −

1
2 f (xk−1, uk−1)

TQ−1f (xk−1, uk−1). Replacing (33)
and (34) in (26) and using the matrix inversion lemma, it is
concluded that:

p(xk |ỹk , xk−1) ∼ N (µx , 6x), (35)

where

µx = f (xk−1, uk−1)+ Kk (ỹk−Gk f (xk−1, uk−1)),

Kk = QGTk (R+ GkQG
T
k )
−1,

6k = Q− KkGkQ.

Therefore, the particles x̃ i+k , i = 1, . . . ,N are generated
using the pdf presented in (35). In other words, at first the
particles, x ik , i = 1, . . . ,N , are generated using p(xk |xk−1)

or the process model and then using (35) it is corrected as
follows:

x̃ i+k = x ik + Kk (ỹk − Gkx
i
k ). (36)

Theorem 1: For system (3), under the Gaussian assumption
and under the injected false data cyber attack, using a SIS PF
with the proposal pdf of (35) and the corresponding weights
of (7) and (29) gives the following result:

The attack is detectable with an infinite number of parti-
cles, that is N →∞ when the threshold for ξk and therefore
ηk is selected as ςk‖γ ‖min for where, ςk = |σ̄k − 1| and
σ̄k is the nearest singular value of GkKk to 1 and ‖γ ‖min =

min
k
‖γk‖ or a lower bound on ‖γk‖.

Proof: Let z̃i+k = ỹk − Gk x̃
i+
k . Since the likelihood

function of p(ỹk |xk ) is incorporated in the particle generation
process as presented in (26), its corresponding weight is
w̃i∗+z̃,k =

1
N and similarly wi∗+z,k =

1
N . These weights can be

easily obtained similar to (12). Firstly, consider wi∗+z,k =
1
N .

In this case, sampling of zi+k is performed using the pro-
posal distribution of p(zk |yk , xk )p(yk |xk )p(xk |xk−1) instead
of p(zk |yk , xk )p(xk |xk−1). p(yk |xk ) is involved in the sam-
pling procedure as the proposal distribution to sample xk is
p(xk |xk−1, yk ) in the modified PF. Similarly, the weight of
w̃i∗+z̃,k is obtained. Therefore:

pz̃(z̃k ) ≈
1
N

N∑
i=1

δ(z̃k − z̃
i+
k ), (37)

and

pz(zk ) ≈
1
N

N∑
i=1

δ(zk − z
i+
k ). (38)

So, according to (23) one can conclude that:

Pr(‖1zk‖ < ξ ) =
N∑
i=1

∑
j∈+

1
N 2 , (39)

where, + = {j | ‖zi+k − z̃
j+
k ‖ < ξ} and,

‖zi+k − z̃
j+
k ‖ = ‖Gk (x

i+
k − x̃

j+
k )− lkγk‖. (40)

For i = j:

‖zi+k − z̃
i+
k ‖ ≈ ‖Gk (x

i+
k − x̃

i+
k )− lkγk‖

= lk‖GkKkγk − γk‖. (41)

If lk = 1, that is for the system under the attack, using reverse
triangle inequality, it can be concluded that:

‖zi+k − z̃
i+
k ‖ ≥ ||GkKkγk | − ‖γk‖|. (42)

Now, Singular Value Decomposition (SVD) of GkKk gives:

‖zi+k − z̃
i+
k ‖ ≥ ςk‖γ ‖min, (43)

So, if ξk is selected as ςk‖γ ‖min then for i = j, condition
‖zi+k − z̃j+k ‖ < ξk does not hold and it is not included in
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the summation. Therefore according to (39) the following is
obtained:

Pr(‖1zk‖ < ξk ) ≤
N∑
i=1

N∑
j=1,j6=i

1
N 2 =

1
N
, lk = 1, (44)

where with an infinite number of particles, that is N → ∞,
Pr(‖1zk‖ < ξk ) → 0 and according to Definition 1, the
attack is detectable. Now, let compare (44) with (14) and
(18) and with the assumption of ‖zk‖ → ε (assuming that
the states and therefore the measurements are truly estimated
using the PF under no-attack), where ε is a small positive real
number, the threshold ηk can be approximated as following
at sample time k:

ηk = ςk‖γ ‖min. (45)

This complete the proof. �
Remark 2:According to (44), when the number of particles

is limited, the attack with the minimum value of ‖γ ‖min in its
norm may remain stealthy with a probability smaller than 1

N .
Remark 3: To obtain the threshold ζ , with the assumption

of ‖zk‖ → ε and referring to (10), it can be concluded from
(44) that the value for the threshold ζ can be selected as:

ζ = α
N − 1
N

, α ∈ (0, 1), (46)

where the greater the α the less sensitive is the detection
method. A selection range for the value of α will be derived
in Theorem 2 for generally non-Gaussian systems in case the
value of pl is known, otherwise, α can be selected as in (46).
Remark 4: To primarily evaluate the probability of

false alarms, let lk = 0. Then according to (41),
‖zi+k − z̃

i+
k ‖ ≈ 0 and therefore:

Pr(‖1zk‖ ≥ ξ ) ≤
N − 1
N

, lk = 0, (47)

where N−1
N shows the maximum probability of false alarms.

During Theorem 2, it will be shown that this probability is
less than pl for generally non-Gaussian systems.

According to (47), when the number of particles increases,
the upper bound for the probability of false alarms increases.
At first sight, this can be interpreted as an increase in the
number of false alarms. However, this is compensated auto-
matically as the value of the threshold ζ is also increased.
Remark 5: Since the initial value of γk is selected as zero

according to (4), that is γ0 = 0, the detectability of the attack
is not guaranteed at the beginning of the attack at sample
times k such that ‖γk‖ ≤ ‖γ ‖min.

2) GENERALLY NON-GAUSSIAN CASE
Now, the detectability and the probability of false alarms
of the proposed modified PF are analyzed for a general
non-Gaussian system through the following theorem.
Theorem 2: The detectability of the general non-linear and

non-Gaussian system presented in (1) under the measurement
FDI attack presented in (3) and (4), is guaranteed using
the proposed modified PF when the threshold ηk in (14) is

selected as ςk‖γ ‖min, where ςk and ‖γ ‖min are introduced
in Theorem 1. Moreover, no false alarms happen if α in (46)
is selected as pl N

N−1 and if trace(R) is small compared with
ςk‖γ ‖min where the covariance matrix of R is related to the
measurement noise νk . In the normal distributions, a suitable
limit for trace(R) is 3× trace(R)

1
2 ≤ η.

Proof: It follows from (2), (3) and (15) that:

z̃k = yk + lkγk − Gkxk
= lkγk + νk . (48)

Using the fact that lk is a Bernoulli distributed random pro-
cess, as described earlier, gives:

pl(lk ) = plδ(lk − 1)+ qlδ(lk ), (49)

where pl and ql are described before (3). Now, using the fact
that z̃k is equal with the summation of two random variables,
lkγk and νk , one can conclude that:

p(z̃k ) = plpνk (z̃k − γk )+ qlpνk (z̃k ), (50)

where pνk (·) refers to the pdf of νk . So, β̃k is computed as:

β̃k = Pr(‖z̃k‖ > η)

= pl

∫
z̃k∈κ̃

pνk (z̃k − γk )dz̃k

+ ql

∫
z̃k∈κ̃

pνk (z̃k )dz̃k , (51)

where κ̃ = {z̃k | ‖z̃k‖ > η}.
Firstly, to consider the probability of false alarms in the

proposed detector, let lk = 0 in (48) which gives z̃k = νk .
Since, νk is a zero mean random process with the covariance
matrix of R, for ηk = ςk‖γ ‖min, if trace(R) is small compared
with ςk‖γ ‖min, the second part of the summation tends to
zero. In order to have ameasure for the trace of the covariance
matrix for the Gaussian cases, since 99.7% of the random
variable fall within three standard deviation [45] in normal
distributions, a suitable limit can be 3× trace(R)

1
2 ≤ η.

According to the above discussions, the probability of false
alarms should be upper limited as follows:

β̃k ≤ pl . (52)

Accordingly, as it was expected, the probability of false
alarms is reduced if the measurement noises are small enough
in the value.

Moreover, since the threshold ζ is selected as α N−1N to
guarantee the attack detectability in Theorem 1, no false
alarm happens if α N−1N ≥ pl . Thus, if α is computed as
follows,

pl
N

N − 1
≤ α < 1, (53)

it is guaranteed that no false alarm happens. If lk = 1,
then z̃k = γk + νk . Thus, since the condition ‖z̃k‖ > ηk
always hold if ηk = ςk‖γk‖min, β̃k tends to 1 and as it
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FIGURE 3. The residual samples, the corresponding weights and PoA
computation in the proposed method of this paper.

was expected according to Theorem 1, the injected false data
is detectable. �
Remark 6: It is worth mentioning that, normally, the value

of pl is not known. Hence, after selection of α ∈ (0, 1)
for some initial sampling instances, pl can be approximated
after detection of the attacks through the ratio of the number
of the attacks to the total number of the sampling instances
according to (46). Since, selection of α ∈ (0, 1) can cause
false alarms if (53) does not hold, the estimated pl , say p̂l ,
may be greater than the real one and therefore some error
in the estimation exists, that is p̂l ≥ pl . This error neither
affects (46) nor (53) and therefore still detectability and no
false alarm occurrence is guaranteed.

Figure 3 depicts how the proposed modified PF of this
paper and the selected threshold for the residual norms, lead
to a correct detection. Incorporating the measurements in the
particles, removes the model mismatch between the system
and measurement model and avoids degeneracy of the resid-
ual samples in the presence of the attacks. Then using the
truly selection of the introduced thresholds, the decision logic
triggers if an attack greater than ‖γ ‖min occurs and there is
no false alarm in the attack free situations.

B. UNBIASED PF
As soon as the attack is truly detected, the value of the
bias attack can be estimated. For example, [39] proposes an
observer to estimate the attack using an observer design for
the attack with the dynamic model presented in (4) lead-
ing to γ̂k . Using the estimated attack γ̂k , in a normal PF,
an unbiased estimation can be provided conditioned on the
detection and estimation results. Accordingly, it is proposed
to use the posterior pdf under the assumption of known lk for
the estimation. The posterior pdf is formulated as:

p(xk |lk , ỹ1:k ) = p(ỹk |xk , lk )p(xk |lk , ỹ1:k−1), (54)

FIGURE 4. General framework of the proposed method.

where

p(xk |l1:k , ỹ1:k−1)

=

∫
p(xk |xk−1)p(xk−1|, l1:k−1, ỹ1:k−1)dxk−1.

Besides,

p(ỹk |xk , lk ) = p(yk |xk ). (55)

Therefore, the same weight function as w(xk ) (see (6)) is
obtained where the proposal sampling function is selected as
p(xk |xk−1).
Therefore:

Ep(xk |l1:k ,ỹ1:k ){xk} = Ep(xk |y1:k ){xk}. (56)

So, the proposed estimator gives an unbiased estimation with
the same estimation error covariance as the PF without any
attack. In other words:

Ep(xk |l1:k ,ỹ1:k ){eke
T
k } = Ep(xk |y1:k ){eke

T
k }, (57)

where ek = xk − Ep(xk |y1:k ){xk}.
The proposed method is presented in Table 2 in details as

a pseudo code and the general framework of the proposed
method is summarized in Figure 4 for more clarification.
Remark 7: It is obvious that the estimation error of eγ =

γk−γ̂k can affect our estimator accuracy, however, during this
paper, it is assumed that γ̂k is an unbiased minimum variance
estimation from γk .

V. SIMULATION RESULTS
In this section, the proposed concepts are evaluated through
simulations on a four-tank system. The highly non-linear state
equation of a four-tank system is presented in [46] and [1].
Simulations are performed in MATLAB 2019b SIMULINK
environment.

A. EVALUATION OF THE PROPOSED METHOD AND
DISCUSSIONS
In this part, the proposed method of this paper is evaluated
precisely. For this purpose, firstly, the FDI attack detectability
is compared with the normal PF for different values of attack.
Then, different scenarios are considered to provide an appro-
priate evaluation of the method. For this purpose, the effects
of changes in the noise covariance and error in estimating the
value of the attack γk are studied. The proposed method in
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TABLE 2. Pseudo code corresponding to the proposed PF method under
FDI attack.

these scenarios is then compared with the normal PF without
any attack and the normal PF under the FDI attack.

The false data are injected with the probability of pl =
0.5 and with τ = 0.9 and γ0 = [0 0 0 0]T . For γ̄ =
0.5[1 1 1 1]T Figure 5 depicts the considered γk and lk . It
can be seen from Figure 5 that the value of the attack, ‖γk‖,
is slowly converging to its final value and lk is one when the
attack happens and zero, otherwise. The real measurements
(yk ) versus the measurements under the FDI attack (ỹk ) is
depicted in Figure 6. It is obvious from the figure that at
some sampling times a bias vector of γk has been added to the
measurement vector. It is worth mentioning that the number
of particles is selected asN = 100 to have an acceptable CPU
computation time.

For γ̄ = 0.5[1 1 1 1]T , estimation results related to
three different cases of the normal PF without any attack,
the normal PF under FDI attack and finally the proposed PF
based approach under FDI attack are depicted in Figure 7
when the measurement noises are zero mean Gaussian ones

FIGURE 5. The injected FDI attack ‖γk‖ with γ̄ = 0.5[1 1 1 1]T and lk with
pl = 0.5.

FIGURE 6. Real versus attacked measurements with
R = 10−3diag(1,1,0.5,0.5), γ̄ = 0.5[1 1 1 1]T .

FIGURE 7. Comparison of different estimation scenarios for (the normal
PF(no-attack), the normal PF (under-attack), the proposed PF
(under-attack) with R = 10−3diag(1,1,0.5,0.5) and γ̄ = 0.5[1 1 1 1]T .

with the covariance matrix of R = 10−3diag(1, 1, 0.5, 0.5).
It can be easily understood from the figure that the estimation
results of the proposed method of the paper are close to the
normal PF with no attack while the normal PF does not show
a good performance in the presence of the attack.

The considered minimum norm for γk is selected as
0.28 which gives ηk = 0.233 for all of the particles in
this system, according to Theorem 1. The detectability of
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FIGURE 8. The injected FDI attack ‖γk‖ and the detection performance
lk − l̂k for R = 10−3diag(1,1,0.5,0.5) and γ̄ = 0.5[1 1 1 1]T .

FIGURE 9. The injected FDI attack ‖γk‖ and the detection performance
lk − l̂k for for R = 10−3diag(1,1,0.5,0.5) and γ̄ = [1 1 1 1]T for the
normal PF.

FIGURE 10. ‖γk‖ and lk − l̂k for R = 10−3diag(1,1,0.5,0.5) and
γ̄ = [1 1 1 1]T .

the method is evaluated in Figure 8 through computation of
lk − l̂k . In this regard, lk − l̂k = 0 means true detection or no
false alarmwhile lk−l̂k = 1 and lk−l̂k = −1 imply the FDI is
not detected and false alarm, respectively. Therefore, Figure 8
shows that the algorithm is one hundred percent detectable
when the ‖γk‖ exceeds ‖γ ‖min = 0.28.
In order to provide a comparison with the normal PF a

larger valued attack with γ̄ = [1 1 1 1]T is considered.
Figure 9 depicts the detection result of the normal PF. The
value of the attack, ‖γk‖, is increased from zero to two,
slowly. It is obvious from Figure 9 that when the value of the
FDI attack is small and large, the normal PF cannot detect the
attack while the attack can be detected using the normal PF,
for the attack in between. The reason behind this, is explained
in III-B. However, in the proposed method of this paper, only
the minimum value of the attack, ‖γ ‖min, should be known
and for the attacks larger than this value the detectability is
guaranteed as shown in Figure 10.
Now, the method is evaluated from the aspect of false

alarms when the covariance values of themeasurement noises
are changed. In this case, γ̄ = 0.5[1 1 1 1]T . As it
can be seen in Figure 8, there is no false alarm when
R = 10−3diag(1, 1, 0.5, 0.5) since trace(R)0.5 = 0.0548 and

FIGURE 11. lk − l̂k for R = 10−3diag(5,5,2.5,2.5) and γ̄ = 0.5[1 1 1 1]T .

FIGURE 12. Comparison of different estimation scenarios for (the normal
PF(no-attack), the normal PF (under-attack), the proposed PF
(under-attack) with R = 10−3diag(5,5,2.5,2.5) and γ̄ = 0.5[1 1 1 1]T .

therefore the condition 3 × trace(R)0.5 ≤ η holds. Next,
the measurement noise covariance matrix is increased to
R = 10−3diag(5, 5, 2.5, 2.5) which leads to trace(R)0.5 =
0.1225 in which the condition 3 × trace(R)0.5 ≤ η does not
hold anymore. The detection results are depicted in Figure 11
through lk − l̂k which shows 5 false alarms as highlighted
by blue circles. Although, such false alarms were expected
according to Theorem 2, normally the adversaries try to make
the attacks large enough not to be faded in the measurement
noise.

The estimation results in this case has been depicted in
Figure 12 in which false alarms are attenuating the estimation
accuracy. In order to provide a numerical analysis, the RMSE
(RootMean Squared Error) criterion is employed. The RMSE
in this case is increased from 2.8×10−3 to 4.6×10−3 which
shows a deterioration in the estimation as it was expected.

In order to see the effect of estimation error in estimating
γk , it is assumed that an unbiased estimation with a covari-
ance matrix of 10−2I4×4 is provided. Figure 13 depicts the
norm of the estimated attack versus the real one. Although,
this does not affect the detection results and all the attack are
detected truly with no false alarm, the estimation is deterio-
rated since equation (55) does not hold anymore. The RMSE
is also computed in this case and it increased from 2.8×10−3

to 8×10−3 which shows a deterioration in the estimation. The
estimation results compared to the normal PF under attack,
the normal PF without attack and the proposed method of this
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FIGURE 13. ‖γk‖ versus ‖γ̂k‖ with a large error covariance matrix of
10−2I4×4 (γ̄ = 0.5[1 1 1 1]T ).

FIGURE 14. Comparison of different estimation scenarios for (the normal
PF (no-attack), the normal PF (under-attack), the proposed PF
(under-attack) with estimated attack, γ̂k , with a large error covariance
matrix of 10−2I4×4 (γ̄ = 0.5[1 1 1 1]T ).

paper, are also depicted in Figure 14. In this case, as it can be
seen form the figure, the estimation result of our proposed
method is deviated from the normal PF without attack. The
numerical results to compare different scenarios provided in
this section are summarized in Table 3 for γ̄ = 0.5[1 1 1 1]T .
As it was also explained previously, when the measurement
noise covariance increases, the probability of false alarm
also increases while still there exist no stealthy attack when
‖γk‖ > ‖γ ‖min. It is obvious that the RMSE increases when
false alarms occur. Moreover, in spite of no false alarm and
true detection, the estimation accuracy is reduced when the
value of γk is not truly estimated.

B. COMPARISON STUDY
For more evaluation, in this part, comparisons are provided
with the proposed method in [31]. As mentioned in the intro-
duction section, there are still few research works devoted
to the PF for systems under cyber attacks. Recently, a PF
based method for non-linear non-Gaussain systems under
randomly occurring denial of service (DOS) attacks, decep-
tion attacks and flipping attacks has been proposed in [31]
where the attacks are compensated through an appropriate
likelihood computation and no detection method is proposed
in the paper. Although the considered deception attack is not
the FDI one, it can be easily extended to include the bias
deception attack as in our case.

TABLE 3. Evaluation of the proposed method in different scenarios
(γ̄ = 0.5[1 1 1 1]T ).

TABLE 4. RMSE and CPU time for the proposed method of this paper
versus the normal PF under attack and the method of [31] with
R = 10−3diag(1,1,0.5,0.5) and γ̂ = γk (γ̄ = 0.5[1 1 1 1]T ).

FIGURE 15. The estimation results of the method in [31] compared with
the normal PFs without and under attack and the proposed method of
this paper all with R = 10−3diag(1,1,0.5,0.5) (γ̄ = 0.5[1 1 1 1]T ).

For this purpose, due to no DOS attack in our case, φ̄s

and ᾱs which are the probability of the DOS attack and the
flip attack in sensor s, are set as zero, that is φ̄s = 0 and
ᾱs = 0 for s = 1, . . . , 4. The probability of the deception
attack occurrence, ϕ̄s for s = 1, . . . , 4, is set as pl which
is the probability of lk = 1 in our paper. Besides, ρk = γ̄

where ρk is the vector of the deception attack. Therefore,
according to equations (13) to (15) of [31], the likelihood of
each particle is 1 and thus the normalizedweights are 1

N for all
particles. It is obvious that the estimator is a biased estimator.
Figure 15 depicts the estimation results of the method in [31]
compared with the normal PFs without and under attack and
the proposed method of this paper. It can be easily seen from
the figure that the estimator of [31] is a biased one.

In order to provide a numerical evaluation criterion, RMSE
is computed to compare the estimation results with the normal
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PF without the attack and the results are summarized in
Table 4. According to this table, the performance of the
proposed method of this paper is greater than the normal PF
under attack for both of the attack scenarios. The performance
is also greatly improved compared with the proposed method
of [31]. CPU computation time has also been computed using
tic-toc command and the averages are reported in Table 4.
Since our proposed method performs both detection and esti-
mation, it is obviously more time consuming than the normal
PF and the method of [31].

VI. CONCLUSION
The problem of PF based state estimation for networked
systems under FDI malicious cyber attacks was studied in
this paper. The normal SIS PF was firstly studied from the
perspective of its ability to detect the attack and it was shown
that the attack may remain stealthy using the normal PF and
therefore the degrading effect cannot be truly compensated
accordingly. To overcome this drawback the proposal pdf
was modified to incorporate measurements in the particle
generation process and therefore the particles were updated.
The updated particles were derived under special case of the
Gaussian assumption where the detectability of the attack
is guaranteed with an infinite number of particles and the
corresponding threshold values were derived. The first one
is proportional to the attack minimum norm and the latter
proportional to the probability of the attack occurrence. It was
then proved that with these threshold selection, the attacks
in generally non-Gaussian systems are detectable and if the
measurement noises value are small enough in their standard
deviations compared with the attack value, there is no proba-
bility of false alarms.

Since the updated particles lead to a biased estimation, the
non-updated particles were then employed for the estimation
after the attack detection and estimation. The particles were
employed to approximate the posterior pdf conditioned on
the detected attack which can provide an unbiased estimation
with an estimation error covariance matrix equivalent with
the normal SIS PF with no attack.

The accuracy of the proposed method were evaluated
through simulations on an interconnected highly non-linear
four-tank system where the measurement covariance matrix
changes. The results were compared to non-attack situation
and the attacked one with the normal SIS PF. The method
was also compared to a recently presented one from different
perspectives of accuracy and cpu computation time. Although
the performance of the method is greatly improved, it is
slightly more time consuming as it contains both detection
and estimation modes.

Due to the lack of research works on PF for networked
systems under cyber attacks, there exists still a long way
in considering different types of attacks when PF methods
are desired. Thus, it is suggested to consider other cyber
attack scenarios such as the replay one for state estimation
of networked non-linear non-Gaussain systems. Moreover,
applying the proposedmethod on some practical applications,

such as detection of the FDI attack on smart grids, is of our
interest, as the future research work.
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