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Abstract— The growth of cloud-based services is mainly
supported by the core networking infrastructures of large-
scale data centers, while the scalability of these services is
influenced by the performance and dependability characteristics
of data centers. Hence, the data center network must be agile
and reconfigurable in order to respond quickly to the ever-
changing application demands and service requirements. The
network must also be able to interconnect the big number of
nodes, and provide an efficient and fault-tolerant routing service
to upper-layer applications. In response to these challenges,
the research community began exploring novel interconnect
topologies, namely: Flecube, DCell, Ficonn, HyperFlaNet and
BCube. However, these topologies either scale too fast (grows
exponentially in size), or too slow, and therefore suffer from
performance bottlenecks. In this paper, we propose a novel
data center topology called LaScaDa (Layered Scalable Data
Center) as a new solution for building scalable and cost-effective
data center networking infrastructures. The proposed topology
organizes nodes in clusters of similar structure, then interconnect
these clusters in a well-crafted pattern and system of coordinates
for nodes to reduce the number of redundant connections
between clusters, while maximizing connectivity. LaScaDa for-
wards packets between nodes using a new hierarchical row-
based routing algorithm. The algorithm constructs the route to
the source based on the modular difference between the source
and destination coordinates. Furthermore, the proposed topology
interconnects a large number of nodes using a small node degree.
This strategy increases the number of directly connected clusters
and avoids redundant connections. As a result, we get a good
quality of nodes in terms of average path length (APL), bisection
bandwidth, and aggregated bottleneck throughput. Experimental
results show that LaScaDa has better performance than DCell,
BCube, and HyperBcube in terms of scalability, while providing
a good quality of service.

Index Terms— Data center network, network topology, average
path length, bisection bandwidth.

I. INTRODUCTION

MASSIVE data centers are being built around the world
to provide various cloud computing services such as
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online office, online social networking, Web search, and
IT infrastructure out-sourcing [1]. For instance, Microsoft,
IBM, Google, Amazon, Yahoo and eBay are running data
centers with at least 50,000 nodes (servers)1 for each one
of them [2], [3]. Mega data centers provide the core support
infrastructure for the cloud and amounts for up to 45% of
the total implementation cost. Consequently, the data center
infrastructure must be well designed to maintain the cost of
both deployment and maintenance at an acceptable level [4].
In addition, data availability and scalability are considered as
critical parameters in the design of a data center topology
because of their big impact on the infrastructure cost. In fact,
according to industry estimates, the US data center market
increased by 23 USD billions between 2005 and 2009, growing
from 16.2 USD billions in 2005 to almost 39 USD billions
in 2009 [5]. Moreover, data centers networking is tradition-
ally built around Top of Rack (ToR) switches interconnected
through End of Rack (EoR) switches, which are in turn
connected through core switches. Consequently, this approach
is very costly, while leading to significant bandwidth oversub-
scription towards the network core. All these issues encour-
aged several researchers to propose new topologies for scalable
and cost-effective network infrastructures, namely: FatTree [6],
FiConn [7], DCell [8], BCube [9], and HyperBcube [10].

However, proposed topologies suffer from performance
bottlenecks and costly implementations [11]. In fact, with
switches having a small port count n, the number of nodes in
BCube increases only by a factor of n, leading to a potentially
high number of recursive layers for large-scale data centers.
For instance, with n = 4, 6 layers are required to construct a
data center with 46 = 4096 nodes. A 6-layer BCube network
requires 6 interface cards for each node which are expensive
and difficult to manage in practice. Hence, BCube can suffer
from scalability issues when employing cost-effective small
port count switches and a small node degree. With DCell
topology, a data center network having millions of nodes
can be easily constructed with a node degree of 4. However,
its major drawback lies in its high wiring complexity, and
inefficient local re-routing algorithm (the full connection in
each network layer makes distances between pairs of nodes in
different layers very long) [12]. So, DCell reduces the diameter
of the entire network, but increases the wiring complexity,
which makes the deployment of a DCell data center very
complicated [13].

In this work, we propose a novel interconnection network
topology called LaScaDa (Layered Scalable Data Center) that
scales faster than HyperBcube, BCube, Flecube, and DCell,

1In this document we will use the words “node” and “server”
interchangeably.
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while enjoying a low average path length, high bisection
bandwidth, high aggregate bottleneck throughput, and more
importantly high scalability using the same number of switches
and links per node as HyperBcube and BCube. We also
propose fault-free and fault-tolerant routing algorithms to be
used in the case of absence or presence of network failures
respectively.

The followings are some of the contributions proposed in
this paper:

1) A novel data center topology called LaScaDa, capable
of scaling the entire network to millions of nodes using
nodes with small degrees and small port count switches.
While using the same number of links and switches per
node as HyperBcube and Bcube, LaScaDa outperforms
these topologies in terms of Scalability, Average Path
Length (APL), Bisection bandwidth and Aggregated
Bottleneck Throughput (ABT).

2) A new physical structure algorithm to interconnect
nodes. Nodes are organized in clusters of similar struc-
ture, which are then interconnected via switches using a
well-crafted pattern and system of coordinates for nodes.
The objective is to reduce the number of redundant
connections between clusters while maximizing connec-
tivity. The algorithm computes the size of the linked
clusters set for each possible switch, then selects the
switch that maximizes the number of connected clusters.

3) A fault-free routing algorithm to route data between
nodes. The algorithm determines the route between
nodes based on the modular difference between the
coordinates of the source and destination. Given multiple
routing paths for a source, the shortest one is selected.

4) A fault-tolerant routing algorithm to be used in the case
of link failure. The algorithm changes the routing table
of some nodes and looks for new intermediate nodes to
forward a packet to its destination.

The rest of this paper is organized as follows: Section 2
provides a summary of relevant related work in the field.
Sections 3 and 4 describe the proposed connection patterns
and key features of LaScaDa. Experimental results are pre-
sented in Section 5 followed by a discussion in Section 6.
Section 7 concludes the paper.

II. RELATED WORK

Different topologies for data centers have been proposed in
the literature and can be classified into two categories: Switch-
Centric and Server-Centric.

A. The Switch-Centric Category

The Switch-Centric category uses intelligent switches for a
smart routing of packets in a data center. Some data center
topologies in this category are VL2 [14], Clos Network [15],
FatTree [16], [17], JellyFish [18], DOS [19] and Hypac [20].

• VL2 has been proposed as a solution for some critical
issues in conventional data centers. By exploiting a uni-
form high capacity traffic from node to node, VL2 over-
comes some critical issues such as Oversubscription,
Agility and Fault-tolerance. In addition, and by employ-
ing virtual machines, VL2 improves network availability
even with hardware or link failures. However, VL2 uses

Valiant Load Balancing (VLB) that before forwarding
a packet, selects randomly an intermediate switch. This
is impractical, especially in the case where two hosts
connected to the same edge switch want to communicate.

• Clos Network [15] is a multi-rooted tree consisting of
three levels of switches: Top of the Rack (ToR), aggre-
gation and intermediate switches. The intermediate and
aggregation switches must have the same number of
ports, however, the number of ports on a ToR switch
is not limited. The number of ports on intermediate
switches is used to compute the number of switches in
the network. If each switch on the intermediate level has
n ports, the topology uses n aggregation switches and n

2
intermediate switches. Only one link is used to connect an
intermediate switch to an aggregation switch. The remain-
ing n

2 ports on each aggregation switch is connected to n
2

different ToR switches. The number of connected nodes
in a Clos Network topology is equal to nToR× n2

4 where
nToR is the number of ports on each ToR switch. Also,
server-to-server latency varies depending on the traffic
path used.

• FatTree [16] is a special case of a Clos network. Fat-
tree topology consists of a core and pods. The core is
composed of switches that interconnect the pods. A pod
is composed of aggregation switches, edge switches, and
servers. Each port of each switch in the core is connected
to a different pod through an aggregation switch. Within
a pod, aggregation switches are connected to all edge
switches. Finally, each edge switch is connected to a dif-
ferent set of servers. Unlike Tree topologies, all switches
at all levels in FatTree are of the same type. High-
performance switches are not necessary in the Aggregate
and Core levels. However, the number of nodes in Fat-
Tree is limited by the number of switch ports.Fatree is
considered a special instance of Clos topologies where
the number of top of racks is equal to n [21].

• Jellyfish [18] increases exponentially the number of nodes
in a data center. It is constructed based on a random
graph at the ToR switch layer. Each ToR switch has
n ports, where r of them are used to connect it to
other ToR switches while remaining ports are used for
nodes interconnection. So, for a network with N racks,
when the same number of ports are deployed by every
switch, Jellyfish connects N×(n−r) nodes. The average
path length in Jellyfish is shorter than Fat-tree, while the
diameter is at least the same.

B. The Server-Centric Category

In addition to intelligent switches, the Server-Centric cate-
gory uses also servers able to forward packets [22]. In this
category, several topologies are used such as DCell [8],
BCube [9], HyperBcube [10], Flecube [23] and FiConn [7].

• DCell has a recursive structure, where the basic element
is called DCell0. The switch in DCell0 connects all of
its nodes. In DCellk, each node has k + 1 links: the
first link (or level0 link) is connected to a switch when
forming DCell0, and leveli link is connected to a node
in the same DCelli. Most of DCell nodes act as routers
and are equipped with multiple interface cards (NICs).
Only computational nodes are considered as routers.
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As a result, DCell topology scales double exponentially
because of additional and long communication wiring
links, switches, and nodes.

• BCube is a Server-Centric network structure [9]. BCube
makes use of more switches when constructing a higher-
level topology. BCube1 is constructed from n BCube0

and n n-port switches. More generally, BCubek is built
from n BCubek−1 and nk extra n-port switches con-
nected to exactly one node in each BCubek−1. When
constructing higher level structures, BCube requires more
switches compared with DCell which uses only level0
n-port switches. However, both topologies require servers
to have (k+1) NICs. The result is that servers will be
involved in switching more packets in DCell than in
BCube.

• FiConn has a recursive structure [7], where a high-level
FiConn is built using low-level FiConns. FiConn uses
only existing backup port on each node for interconnec-
tion, while no extra hardware cost is introduced. This
topology provides some improvements over FatTree and
uses the interconnection intelligence on nodes rather than
on switches, hence, reducing the number of switches.
If we denote the total number of nodes by N , and use
n-port switches to connect them, then the number of
switches needed in FatTree is 5N

n (2 edges, 2 aggregated
and 1 core for each pod), while FiConn requires only N

n
switches. Therefore, FiConn reduces the cost of switches
by 80 % compared with FatTree [16].

• Flecube is a topology built using nodes equipped with
multiple ports directly connected to other nodes via
bidirectional communication links, without using any
switches [23]. In Flecube, a higher-level Flecube is con-
structed from lower-level Flecubes. For instance, level-1
Flecube is constructed using k + 1 n-port servers con-
nected by means of a complete graph via ports in group 1.
Flecube uses servers equipped with multiple ports to
construct its network without using any switches or
routers. So, as the number of connected servers increases,
network performance and data transfer rates decrease.
Therefore, servers equipped with multiple ports do not
allow much scalability, while traffic problems and packet
collisions tend to arise.

• HyperBcube is a recursive topology [10]. The first layer
of the HyperBcube contains n servers and one n-port
switch. Starting from the second layer (k ≥ 2), Hyper-
Bcube can be considered as an n2 × n(2×k−3) matrix
having n(2×k−3) columns, where each column contains
exactly n2 servers belonging to a n2 (k-1)-layer Hyper-
Bcube. A column-based connection is used to connect the
n2 servers located at the same column by using exactly
n n-port switches. However, the connection pattern in
HyperBcube is inefficient since it results in redundant
cluster connections. In addition, if two clusters do not
have any intermediate switch, 8 hops are needed to
connect servers in these clusters.

III. LASCADA TOPOLOGY

A. Motivation

Data centers provide services for cloud computing and
therefore can be quite big. For instance, Microsoft Live Online

Fig. 1. β link for data center connection.

Services data center is one of the largest data centers, and
spans for more than 700,000 square feets [24]. Hence, the data
center infrastructure must be agile and cost-effective to support
the ever-growing critical cloud needs in terms of computation,
storage, and applications. In particular, the data center network
topology must be well designed. Scalability is an important
factor in this regard due to its significant impact on network
performance [25]. The scalability of a topology is given by
a formula that determines the exact number of nodes that
need to be connected given some input parameters such as the
number of ports per switch, and some structural parameters
such as the number of layers. A topology is said to scale fast
if the difference between allowed numbers of nodes grows
very fast. Table I shows a classification of some existing
topologies based on their scalability, bisection bandwidth, and
diameter [8], [9], [14], [16]. In the table, k and n are the
number of ports per node and the number of ports per switch
respectively.

Table I reveals that FatTree and VL2 have some physical
limitations to scale up. In fact, if we denote by n the maximum
port count of switches, VL2 (even with a three-layer network)
can only connect n3

4 nodes, which is insufficient for a large-
scale data center. DCell and BCube provide good scalability,
however, DCell has a high wiring complexity and BCube
requires more than three layers to scale up to a large size. For
instance, with a 4-port switch, we need five layers to build a
data center with 45 = 1024 nodes. A 5-layer BCube network
needs five interface cards per node, which is obviously expen-
sive and difficult to manage in practice. Hence, BCube has
scalability issues when employing cost-effective small degree
nodes and small port count switches.

A data center network consists of nodes, switches, and links.
Basically, there are three types of links: α (linking two nodes),
β (linking a node and a switch) and γ (linking two switches).
The β connection is considered as one of the most efficient
connection as it provides multiple non-blocking paths that
allow multiple pairs of nodes to share their communication
channels.

All the previously mentioned limitations have been consid-
ered in the design of our proposed topology LaScaDa which
scales up a data center to millions of nodes while providing
good quality of services. LaScaDa uses a new physical struc-
ture and routing algorithms. Using exclusively β links and
small port count switches, the proposed topology increases the
number of directly connected clusters per layer, while avoiding
redundant cluster connections. Hence, LaScaDa enjoys low
APL and latency while increasing the number of nodes.

B. Some Definitions

1) Cluster: A cluster is a group of n servers connected to
an “external” n-port switch (See Figure 2).
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TABLE I

SOME DATA CENTER NETWORK TOPOLOGIES AND THEIR SCALABILITY, BISECTION BANDWIDTH, AND DIAMETER

TABLE II

NUMBER OF NODES UNDER DIFFERENT CONFIGURATIONS

Fig. 2. A cluster example when n=2.

Fig. 3. An example of directly connected clusters.

2) Directly Connected Clusters: Two clusters are said to be
directly connected if there is at least one switch that connects
them directly (See Figure 3).

3) Not Directly Connected Clusters: Two clusters are said
to be not directly connected if two or more switches need
to be traversed to find a route from one to the other (see
Figure 4). Note that reducing the number of not directly
connected clusters reduces the average path length.

C. Physical Structure

A LaScaDa network built out of n-port switches is a layered
and recursive topology such that a k-layer LaScaDa network
(k > 1) is built by interconnecting n3

2 (k−1)-Layer LaScaDa
networks using n-port switches. These switches are qualified
as internal switches. The starting building block in LaScaDa

Fig. 4. An example of not directly connected clusters.

is 1-layer LaScaDa, also called cluster. A cluster consists of
n nodes connected to one n-port switch (see Figure 2). For a
k-layer LaScaDa where k > 1, the n3

2 (k− 1)-Layer laScaDa
are interconnected in a well crafted pattern that maximizes
the number of connections between clusters, while avoiding
redundant connections. In what follows we will explain this
pattern by showing how to build a 2-layer LaScaDa network
from 1-layer LaScaDa networks.

A 2-layer LaScaDa is built out of n3

2 1-layer LaScaDa
networks (clusters) numbered from 1 to n3

2 , interconnected
with n3

2 n-port switches (internal switches) numbered from
1 to n3

2 . We perform the interconnection in an iterative
process for i = 1 to n, where n is the number of ports per
switch. In each iteration i we: (1) connect node i of the first
cluster to the first internal switch j (j = 1..n3

2 ) that allows to
connect cluster 1 to the maximum number of other clusters;
(2) then we connect each node i of each other cluster m
(m = 2..n3

2 ) to switch number (j+m−1) mod n3

2 . Intuitively
we are just shifting in a circular way the pattern of connection
of nodes in the first cluster to the other clusters.

The interconnection is represented as a n3

2 ×n matrix L (see
Figure 5) such that L(i, j) (∀i ∈ {1..n3

2 } and ∀j ∈ {1..n}) is
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Fig. 5. 2-layer LaScaDa topology.

the index of the internal switch to witch node (i, j) (i.e., node
j in cluster i ) is connected to.

To generate matrix L we need first to generate its first row
L(1) we denote L1 to distinguish it from the other rows.
Remaining rows are systematically derived as follows:

∀i∈{2..
n3

2
}, ∀j∈{1..n} L(i, j)=(L(i−1, j)+1) mod

n3

2
.

In words, this means that each remaining row is derived from
the row before it by simply adding one to each entry modulo
the number of rows in matrix L. By doing so, we replicate the
connection pattern of the first cluster to the remaining clusters
by progressively shifting it by one, while wrapping it back on
the list of clusters when the end of this list is reached. This
allows also to propagate the characteristics of the first cluster
to the other clusters. For instance, if the number of clusters
directly connected to the first cluster is maximized, then this
number will also be maximized for remaining clusters.

To generate L1, we propose a novel algorithm we call
Linked Clusters Maximization (LCM) (see Algorithm 1). This
algorithm maximizes the number of directly connected clusters
for each cluster, which leads to a reduction in the number of
intermediate hops needed to transmit a packet to its destination
(i.e., reduces the APL).

In Algorithm 1, the first element of vector L1 is initialized
to 1, then ∀i ∈ {2..n}, the best internal switch to be
connected to node (1, i) is selected by computing the size of
the linked clusters set for each possible switch j (j = 1..n3

2 ).
The internal switch S∗ maximizing the number of connected
clusters is selected for node (1, i) by setting L1(i) = S∗,
which corresponds to setting L(1, i) = S∗ in matrix L.
Note that when using n-port switches, the maximum number
of clusters a cluster can be directly connected to is equal
to n(n − 1). This is due to the fact that a cluster has n
nodes, each one of which can be connected to one distinct
internal switch, which in turn can connect to (n− 1) different
clusters. In Algorithm (1) we adopt a greedy approach to
find the best internal switch. An exact approach would be
computationally very expensive, even for small values of n,
as we will have to check all possible configurations of Matrix
L. In our approach, there is no need to check all possible
internal switches ∀j ∈ {1..n3

2 } all the time to find the best one

Algorithm 1 Linked Clusters Maximization

procedure LCM(n)
jselected is the index of the selected internal switch.
D is a connectivity vector of size n.
Input:
n is the number of column of matrix L.
Output:
L1 is the first row of the matrix L.
Ω is the set of linked clusters distances.

L1(1)←1, jselected ← 0;
for i← 2 to n do

D(1..n)← 0//set all entries of D to 0
for j ← 1 to n3

2 do
L1(i)← L1(i− 1) + j
D(j)← |LinkedClusters(i, L1)|
if D(j) = i× (i− 1) then

Break
end if

end for
jselected ← index of the max value in D
L1(i)← L1(i− 1) + jselected

end for
Ω = {(x− 1) for x in LinkedClusters(n, L1)}

end procedure
function LinkedClusters(p, L1)

Input:
L1 is the first line of the matrix L.
p is the internal switch index
Output:
LC is the connected clusters set for the first cluster.

LC ← ∅
for i← 1 to p do

for j ← 1 to p do
if L1(i) �= L1(j) then

Add ((L1(i)− L1(j)) mod n3

2 ) + 1 to LC
end if

end for
end for
return LC;

end function

to connect to. At step i (∀i ∈ {2..n}), we consider that every
switch has only i ports available. If an internal switch that
connects a number of clusters equal to the maximum number
of clusters using i-port switches is found (i.e., i(i−1)), then it
is directly selected without the need to check further internal
switches. Otherwise, the next best switch is selected.

After L1 is generated, the set Ω of linked clusters distances
is computed as stated in Algorithm 1. The set Ω is such
that ∀i ∈ {1..n3

2 } and ∀j ∈ Ω, cluster i and cluster
(i + j) mod n3

2 are directly connected. Figure 6 shows
the network topology of LaScaDa built using 4-port switches.
To connect 128 nodes based on LaScaDa topology, 32 internal
and 32 external 4-port switches are used. For clarity reasons,
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Fig. 6. LaScaDa network for n=4 and k=2.

only connections to internal switches 1 and 32 and few external
switches are shown in Figure 6.

For a k-layer LaScaDa network with k > 2,

the total number of connected nodes is n(n3

2 )
k−1

.
Its connection pattern follows the same pattern as a
2-layer LaScaDa network. In fact, a 2-layer LaScaDa connects
n3

2 1-layer LaScaDa following the pattern computed in matrix
L. Similarly, a 3-layer LaScaDa connects n3

2 2-layer LaScaDa
following the same pattern in matrix L. In general, a k-layer
LaScaDa connects n3

2 (k−1)-layer LaScaDa following the pat-
tern in matrix L. Following this recursive structure, the label
of a node in the k-layer LaScaDa network, representing also
its coordinates in the topology, is built from its label in the
(k−1)-layer LaScaDa network where it appears, prefixed with
the index of that (k − 1)-layer LaScaDa network. So, a node
labeled (Ck−1, .., C1) in the (k − 1)-layer LaScaDa network
number Ck, will be relabeled (Ck, Ck−1, .., C1).

Algorithm 2 shows how to construct a k-layer LaScaDa
network using n3

2 (k− 1)-layer LaScaDa networks numbered
from 1 to n3

2 .
Figure 7 shows an example of LaScaDa network where

n = 2, k = 3. The network is divided into four 2-layer
LaScaDa connected using 16 intermediate switches.

D. Illustrating the Execution of LCM Algorithm

In this section, an example of LaScaDa (k=2, n=4) is
presented. LCM algorithm has been applied to determine
the network connection pattern. The size of the connection
matrix L is (32 × 4), meaning that the network is composed
of 32 clusters and contains 128 nodes interconnected by means
of 64 4-port switches (32 internal and 32 external switches).

Each row of matrix L (see Figure 8) corresponds to one
cluster. The column index in L corresponds to the index of the
node in the cluster, and the numbers in the matrix (Figure 8)
refer to the index of the connected internal switch. The first
row L1 of L is generated using LCM, while each remaining
row is systematically deduced from the row that immediately
precedes it by adding 1 modulo the number of rows. As
shown in Figure 8 (a), the first step of LCM algorithm
consists in initializing the first column of the first row of
L1 to internal switch number 1. Remaining columns are set
iteratively with the objective to maximize the number of

Algorithm 2 Layered Linked Clusters Maximization
procedure LAYERED LASCADA(L)

k is the network degree.
Input:
L is the connection matrix.
n3

2 (k− 1)-layer LaScaDa networks numbered from 1 to
n3

2
Output:
k-layer LaScaDa network

/∗ Connect nodes/∗
for each tuple (Ck, Ck−1, .., Ci, .., C1) ∈ {1, .., n3

2 }k−1×
{1, .., n} do
Connect node (Ck−1, .., Ci, .., C1) in the Ck−1-layer

LaScaDa network number Ck to the internal switch
number (Ck−1, .., C2, L(Ck, C1)).

end for
/∗ Relabel nodes/∗
for each tuple (Ck, Ck−1, .., Ci, .., C1) ∈ {1, .., n3

2 }k−1×
{1, .., n} do
Change the label of node (Ck−1, .., Ci, .., C1) in

the Ck−1-layer LaScaDa network number Ck to
(Ck, Ck−1, .., Ci, .., C1).

end for
end procedure

clusters connected to the first cluster.2 For each remaining
column i of L1, we check which internal switch provides
the maximum number of connected clusters to cluster number
1. Theoretically, when setting the ith column of L1, and by
assuming that each switch has only i ports, each cluster can be
directly connected to a maximum to i(i− 1) clusters. Hence,
the size of the connected clusters set LC is always compared
to i(i− 1) to make sure that the switch choice is optimal.

For the column element of L1 shown in Figure 8 (a), given
that internal switch number 1 is already connected to cluster 1,
the next available internal switch is 2. Hence, the second
column of the L1 is set to 2 to see if internal switch 2 is
a good choice. As it is shown in Figure 8 (b), cluster number
1 becomes directly connected to cluster 2 (by means of internal
switch 2) and cluster 32 (by means of internal switch 1) after
the systematic completion of matrix L. The size of LC is 2,
which is the maximum number of directly connected clusters
that can be reached (i.e., 2× (2−1)). So, LCM selects switch
number 2 to be connected to the second node of the first
cluster. For the third column, the theoretical maximum number
of directly connected clusters is equal to 6 (i.e., 3× (3− 1)).
LCM algorithm tries with the first available switch which
is switch number 3. In this case, 4 clusters will be directly
connected to cluster number 1 (Figure 8 (c)), which is less
than the maximum. Therefore, switch number 3 will not be
selected and LCM tries with switch number 4. In this case,
clusters 2, 3, 4, 30, 31, and 32 are directly connected to
cluster 1 and the size of LC becomes equal to the maximum

2Note that since the connection pattern is repeating, maximizing the number
of clusters connected to the first cluster induces maximizing the number of
connected clusters in the network
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Fig. 7. LaScaDa network for n=2 and k=3.

(Figure 8 (d)). So, switch number 4 is selected to be connected
to node number 3 of the first cluster. The same process is
repeated for the fourth column for which switch number 8 is
selected because it achieves the maximum number of directly
connected clusters which is equal to 12, which can be seen in
Figure 8 (e).

The time complexity of algorithm LCM for computing
matrix L is O(n4), where n is the number of ports per
switch. Given that Matrix L interconnects n3

2 × n nodes,
the complexity of LCM is linear in terms of the number of
nodes. Knowing also that n is in general small, matrix L can
be computed in a relatively short time. It is also computed
once but has multiple uses, including deriving the topology
of a multilayer LaScaDa and routing parquets as it will be
explained later on.

IV. LASCADA KEY FEATURES

In this section, we analyze the key features of LaScaDa
and compare them with features of other topologies. Some
quantitative structural properties of LaScaDa topology are
presented in Table III and Table V where n is the num-
ber of ports per switch and k is the number of ports per
node.

A. Diameter

Given the shortest distances between all pairs of nodes,
the diameter is defined as the maximum of these distances.

Although LaScaDa connects a greater number of nodes com-
pared with all other topologies, it has the lowest diameter when
compared with Ficonn and Flecube (See Figure 9). For a large
value of k, the diameter of LaScaDa is approximately equal to
the diameter of HyperBcube and BCube. Thanks to its routing
algorithm, LaScaDa reduces the APL even for a big number
of nodes.

B. Scalability and Physical Cost

The topology of LaScaDa shows great scalability in terms of
the number of nodes. Table III presents the number of nodes
under different configurations. Table IV, on the other hand,
shows an example of a configuration with n = 48, k = 2
and nToR = 100, Nsw = 3200, r = 36. In this example,
a significantly larger data center network can be constructed
with LaScaDa topology. However, the number of links and
switches per node in LaScaDa is larger than the number of
links and switches per node in Clos Network, and less than the
number of links and switches per node in FatTree and Jellyfish.
Basically, the performance of Jellyfish and Clos Network is
highly influenced by their configuration parameters which are
nToR, Nsw, and r.

Figure 11 shows the number of nodes in LaScaDa compared
to Clos Network, FatTree, Jellyfish and VL2. The number of
ports per switch is varied from 4 to 64. nToR is varied between
100, 200, 300, and r is varied between n

4 , n
2 , 3n

4 . We can see



2058 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 28, NO. 5, OCTOBER 2020

Fig. 8. Connections Matrix computation using LCM algorithm when k = 2, n = 4.

TABLE III

COST COMPARISON WITH TOPOLOGIES SUPPORTING 2 LAYERS ONLY

TABLE IV

AN EXAMPLE OF CONFIGURATION WITH n = 48, k = 2 AND nTOR = 100 Nsw = 3200, r = 36

Fig. 9. Network diameter of various layered topologies.

that the number of nodes in Clos topology increases with
nToR, however, Jellyfish connects a small number of nodes
when r increases. LaScaDa, on the other hand, connects a
larger number of nodes compared to the other topologies.

Figure 12 shows the number of links per device (server
or switch) in LaScaDa compared to Clos Network, FatTree,
Jellyfish and VL2. The number of ports per switch is varied
from 4 to 64, nToR is varied between 100, 200, 300, and
r is varied between n

4 , n
2 , 3n

4 . The number of links per node
in Jellyfish varies with r and is equal to 4 when r = 3r

4 .
In particular, the larger r, the larger is the number of links per
node. On the other hand, LaScaDa still maintains a modest
average cost in terms of links per server (2 links per node).
The number of links per server in LaScaDa is identical to a tiny
2-layer BCube, and less than Dcell (Figure 10). Moreover, and
thanks to its repeated connection pattern (Section C), LaScaDa
maintains an acceptable wiring/cabling complexity (e.g., pre-
manufactured standardized connection modules connect the
servers in a column through one single action).

Table V shows a cost comparison for layered topologies.
With only 4-port or 6-port switches and 4 to 6 recursive layers,
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TABLE V

COST COMPARISON WITH LAYERED TOPOLOGIES

Fig. 10. The number of nodes in LaScaDa compared to BCube and Dcell.

Fig. 11. The number of nodes in in LaScaDa compared to Clos Network,
FatTree, Jellyfish and VL2.

the number of nodes overpasses the million (7× 106). Using
identical n-port switches and only a two-layer network, we can
host n4

2 nodes, which is approximately 5 times larger than
what VL2 can host, and n2 times larger than what DCell and
BCube can host. Furthermore, with its excellent scalability,
LaScaDa maintains a low average cost. In fact, the cost
per node of LaScaDa is identical to the cost of a 2-layer
BCube.

C. Bandwidth

The bandwidth is used to characterize data transfer rate,
i.e., the amount of data that can be transferred from one point
to another. There are four types of data bandwidths that can
occur under different traffic patterns:

• One-to-One bandwidth: Represents the maximum band-
width that the topology offers when one arbitrary node
sends data to another arbitrary node.

Fig. 12. The number of links per device in LaScaDa compared to Clos
Network, FatTree, Jellyfish and VL2.

• One-to-All bandwidth: Occurs when updating some soft-
ware on all nodes.

• One-to-Several bandwidth: Occurs when the file system
is making replicas.

The One-to-One, One-to-Several, and One-to-All band-
widths are limited by the number of ports on each
node (nodes degree k). So, for a tree-based topology,
the bandwidth equals 1, while for a recursive topology the
bandwidth k. Consequently, the basic tree topology has the
smallest All-to-All bandwidth because of the limited number
of switch ports at the root. In addition, this indicates that LaS-
caDa offers a great bandwidth performance under any traffic
configuration (k ≥ 2).

D. Bisection Bandwidth

The Bisection Bandwidth is used to measure the worst-case
network capacity. Networks with higher bisection bandwidth
are more resilient to link failures [3] because increasing the
bisection bandwidth creates path diversity around points of
failure. Many proposed topologies deploy various configu-
rations to improve the bisection bandwidth. For example,
Facebook’s current data center network uses multiples racks to
introduce path variety. Each rack contains a rack switch (RSW)
with up to forty-four 10G downlinks and four or eight 10G
uplinks (typically 10:1 oversubscription), one to each cluster
switch (CSW). A cluster is a group of four CSWs with
corresponding server racks and RSWs. Each CSW has four
40G uplinks (10G-4), one to each of four aggregation switches
(typically 4:1 oversubscription).
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TABLE VI

THE PERFORMANCE UNDER DIFFERENT CONFIGURATIONS (FAULT-FREE)

Fig. 13. Bisection bandwidth of various layered topologies.

Fat-tree also can guarantee a 1:1 over-subscription to
support non-blocking communications between servers and
significantly improve the performance of data center net-
works. In order to avoid the oversubscription and increase
the bisection bandwidth, LaScaDa increases the number
of connected clusters and the number of links per node.
As stated before, a LaScaDa network can be represented as a
n3

2 × n(3k−5)

2(k−2) matrix. Alternatively, it can be seen as

(n3

2 )
(k−2)

2-layer LaScaDa network, each one with n3

2 × n
nodes. Let BG denotes the bisection bandwidth of a 2-layer
LaScaDa network. Given that the connection pattern of nodes

repeats (n3

2 )
(k−2)

times, we deduce that the total bisection

bandwidth is equal to BG × (n3

2 )
(k−2)

. However, an exact
expression for BG is hard to obtain since this depends on the
output of LCM algorithm for each switch port. In theory,
the number of connected clusters could be maximized using
the LCM algorithm. However, the exact number cannot be
known. Hence, the layout of the topology can slightly change
from one port to another.

Experimental results comparing LaScaDa to other topolo-
gies are shown in Figure 13. LaScaDa can substantially
increase the network capacity as it has the largest value
of bisection bandwidth compared to other topologies. For
Instance, with 12-port switches and a node degree of 2,
the bisection bandwidth of a 10368-node data center is 63%,
994%, 1776% and 7780% bigger than the bisection bandwidth
of HyperBcube, BCube, DCell, and Ficonn respectively.

E. Average Path Length

The Average Path Length (APL) is used to evaluate the
overall performance of the whole network due to its impact
on packet delays [26].

Fig. 14. The APL comparison of LaScaDa compared to FatTree, Jellyfish,
DCell and BCube.

According to Table III, Jellyfish has the lowest diameter,
which is clearly shown by its APL in Figure14. Jellyfish has
the lowest APL compared to the other topologies, meaning
that it is able to connect larger number of nodes with smaller
APL. LaScaDa also reduces the APL compared to FatTree,
DCell and BCube.

Table VI shows that LaScaDa provides a higher scalability
and a much smaller APL than the other topologies, even with
a small node degree (k = 2). LaScaDa reduces dramatically
the APL compared to other topologies. For instance, for
32768 servers, the APL of LaScaDa is 4.51, the APL of
HyperBCube is 6.36 for 13824 nodes, the APL of BCube is
5.25 for 16384 nodes and it is 5.73 for 1806 nodes DCell.
This means that LaScaDa reduces the APL by 29%, 14%,
and 21% compared to HyperBCube BCube and DCell, respec-
tively. In addition, we can observe that BCube, DCell, and
HyperBcube require more than three network layers to scale up
to a large size. In fact, LaScaDa connects 80×103 nodes with
20-port switches and two-layer network, while HyperBcube
connects 13824 nodes with 24-port switches (the scalability
increases by 80% using less n-port switches).

F. Aggregate Bottleneck Throughput

The Aggregate Bottleneck Throughput (ABT) indicates the
sum of the throughput of all bottleneck flows [27]. LaScaDa
achieves high ABT. For instance, the ABT of a 2048-node
LaScaDa under All-to-All traffic patterns is 920. The total
number of two-way communication links is NLinks = 4096.
The proportion of the overall network capacity that ABT
can reach is NCPABT = ABT/2Nlinks = 11.23%, which
is already very close to its theoretical limit ( NCPABT =
1/APL = 1/8.8 = 11.36%). This reveals the great performance
of LaScaDa in terms of Aggregate Bottleneck Throughput.
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G. Incremental Expansion

The proposed topology uses an incremental construction
approach. In fact, the LaScaDa network has a repeating
structure that can be built partially. So, even if an entire
column is missing from matrix L, the system performance will
not be reduced. For instance, if 1

n of columns are missing,
the entire network can still be represented as a complete
LaScaDa network built using (n− 1)-port switches.

V. ROUTING SCHEME

A. Fault Free Routing Scheme

To forward a packet from a source (Sk, Sk−1, . . . , S1) to
a destination (Dk, Dk−1, . . . , D1), we propose a hierarchical
row-based routing algorithm. A path P can be established
using the following k steps, where only one coordinate is used
in each step:

P = (Sk, Sk−1, . . . , S1) → (Dk, ?, . . . , ?) →
(Dk, Dk−1, . . . , ?) → . . . → (Dk, Dk−1, . . . , D2, ?) →
(Dk, Dk−1, . . . , D2, D1)

where “?” denotes unknown/don’t care value.
For k = 2, to forward packets from node (S2, S1) to node

(D2, D1), we propose a cluster-based fault free routing scheme
as shown in Algorithm 3. If the source and destination have the
same second coordinate, they are in the same cluster and there-
fore are directly connected via an external switch. However,
if the modular difference between the source and destination
cluster belong to the set of linked clusters distances Ω (i.e.,
(D2−S2) mod n3

2 ) ∈ Ω), then an internal switch can be used
to connect these nodes with a maximum of 3 hops. If the
modular difference does not belong to Ω, then 2 or 3 internal
switches have to be used to forward the packet with up to 5
hops.

Given that the rows in the interconnection matrix L are
derived by progressively incrementing its first row L1 by
one modulo the number of rows (i.e., n3

2 ), the route used
to forward a packet from (S2, S1) to (D2, D1) can be
directly deduced from the route used to forward the packet
from (1, S1) to ((D2 − S2) mod n3

2 , D1) by adding D2 to
the second coordinate of each node in the route. For instance,
if (1, S1) is connected to (D2, D1) via the intermediate
nodes (T 1

2 , T 1
1 ) and (T 2

2 , T 2
1 ), i.e., via the path (1, S1) →

(T 1
2 , T 1

1 ) → (T 2
2 , T 2

1 ) → (D2, D1), then (S2, S1) is con-
nected to ((D2 − S2) mod n3

2 , D1) via the path (d, S1) →
((T 1

2 + d) mod n3

2 , T 1
1 ) → ((T 2

2 + d) mod n3

2 , T 2
1 ) →

((D2 + d) mod n3

2 , D1), where d = (D2 − S2) mod , n3

2 .
Algorithm 3 constructs the route from the nodes of the first
cluster to the other nodes, while the other routes can be directly
deduced.

For k > 2, Algorithm 3 can be generalized for a multi-
layer LaScaDa with two different cases as shown in Figure 15
and Figure 16. In case (a) (see Figure 15) when (Sk −
Dk) mod n3

2 ∈ Ω, Dk and Sk are directly connected to a
common switch. Thus, a path (. . . , Sk, . . . )→ (. . . , Dk, . . . )
exists. Given a random position in the source row, one addi-
tional transition through a 1-layer LaScaDa may be required,
leading to a maximum path length of two in the worst case.

Algorithm 3 Fault Free Routing Algorithm

1: procedure FaultFreeRouting((S2, S1), (D2, D1), Ω)
2: Input:
3: Ω is the vector of directly connected clusters
4: (S2, S1) is the source coordinates
5: (D2, D1) is the destination coordinates
6: Output:
7: Path is the path from the source to the destination

8: if S2 = D2 then
9: /∗The source and the destination are in the same

cluster and are directly connected via an external
switch/∗

10: Path← (S2, S1)→ (D2, D1)
11: else
12: if (S2 −D2) mod n3

2 ∈ Ω then
13: /∗The source and the destination are directly

connected/∗
14: Find T 1

2 and T 1
1 such that P ← (S2, S1) →

(S2, T
1
1 )→ (D2, T

1
2 )→ (D2, D1).

15: else if (S2 −D2) mod n3

2 /∈ Ω then
16: /∗The source and the destination are not directly

connected and are linked only by the interme-
diate of 2 switches/∗

17: Find T 1
1 , T 1

2 , T 2
1 and T 2

2 such that P ←
(S2, S1) → (T i

2, T
i
1) → (T j

2 , T j
1 ) → (D2, D1)

where (i, j) is an arrangement of {1,2}
18: else
19: /∗The source and the destination are not directly

connected and are linked only by the interme-
diate of 3 switches/∗

20: Find T 1
1 , T 1

2 , T 2
1 , T 2

2 , T 3
1 and T 3

2 such that
P ← (S2, S1) → (T i

2, T
i
1) → (T j

2 , T j
1 ) →

(T k
2 , T k

1 ) → (D2, D1) where (i, j, k) is an
arrangement of {1,2,3}.

21: end if
22: end if
23: Path← P
24: end procedure

Fig. 15. Case (a) when (Sk − Dk) mod n3

2
∈ Ω.

In case (b) (see Figure 16), when (Sk − Dk) mod n3

2 /∈ Ω,
there is no direct connection between Dk and Sk, thus a
path (. . . , Sk, . . . )→ (. . . , Ik, . . . )→ (. . . , Dk, . . . ) is taken,
where Ik denotes a common intermediate row between Dk

and Sk. Accordingly, the path length is increased, leading
to a maximum length of 3 intermediate switches in the
worst-case.
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Fig. 16. Case (b) when (Sk − Dk) mod n3

2
/∈ Ω.

B. Fault-Tolerant Routing Scheme

The fault-tolerant routing is proposed for the fault-tolerant
case in LaScaDa. Given a pair of nodes (.i.e., source Sk wants
to communicate with destination Dk (unicast)), according
to the values of MaxlifeT ime, the algorithm tries to find
alternative paths to forward packets to the destination. It starts
by looking for a new source in the same cluster as Sk,
otherwise, it looks in the neighborhood of the cluster of Sk (the
vector of clusters connected to the cluster of Sk via exactly
k + 1 internal switches). We define the Connection Failure
Rate (CFR) metric to measure the possibility that the routing
protocol cannot find an available route. If CFR increases
slowly with the growth of the number of faulty devices in
the data center network, this indicates that the network can
still maintain acceptable performance under faulty conditions.
Results show that LaScaDa has good Fault-Tolerance. On the
other hand, and because of the detours that should be taken
to work around the failures, the average path length and
the latency of LaScaDa will increase as the link failure rate
increases. Hence, there will always be trade-offs between
performance and reliability.

Algorithm 4 Fault Tolerant Routing Algorithm
1: procedure FaultT olerantRouting(MaxlifeT ime)
2: NHops is the used number of hops
3: Intput:
4: MaxLifeT ime is maximum number of hops

5: NHops=0
6: while Routing failed and NHops<MaxlifeTime do
7: Find nearby severs in a radius of NHops and try

routing by supposing the selected node as new
source

8: Select only Routes shorter than MaxlifeT ime
9: NHops=NHops+1

10: end while
11: end procedure

VI. EXPERIMENTAL RESULTS

Figure 17 shows the scalability of LaScaDa under different
port switch and node degree configurations. The figure shows
that by using a small port count switch n and high node degree
k, the scalability of the topology increases much faster than
when using a big n and a small k. As a result, a good tradeoff
between cost and performance would be to use only small port
count switches and a high node degree.

Figure 18 presents the average path length of LaScaDa
under different configurations. Switches port count is varied
from 4 to 8, while the node degree is varied from 2 to 6.
First, it can be seen that the APL increases proportionally
to the node degree k. So, a larger size LaScaDa has longer
APL. However, we can see that by increasing the number of
nodes, the APL takes values from 3.8 for 128 nodes (k=2,
n=4), to 14.9 for 134×106 nodes (k=6, n=4). So, even if the
number of nodes has increased by more than one million times,
the APL did not exceed 15, and increased only by 3.9 times.
In fact, thanks to its physical structure and routing algorithms,
LaScaDa increases the number of directly connected clusters
while reducing the number of intermediate hops during packet
transmission. Hence, the APL has small values and does not
reach the maximum value.

Figure 19 depicts the distribution of the number of nodes
under different configurations. Switches port count is varied
from 4 to 12, while node degree is equal to 2. First, we can
see that LaScaDa and HyperBcube support larger numbers
of nodes compared with all other topologies. Besides, results
show that by increasing the switch degree n, the difference
between LaScaDa and all other topologies greatly increases.
For instance, the number of nodes increases by 133% for
n = 12. This shows the outperformance of LaScaDa in terms
of scalability.

Figure 20 presents the connection failure rate as a function
of the link failure rate of LaScaDa. MaxLifeT ime is varied
between 6 and 5, the link failure rate is varied from 4% to
24%, while the number of nodes is fixed at 2048. For each
failure rate value, we measure the connection failure rate as
the proportion of failure to finding routes. If the connection
failure rate increases slowly compared to the link failure rate,
then this is a good indication that the network can maintain
acceptable performances under faulty conditions.

From Figure 20, we can also see that MaxLifeT ime
affects the connection failure rate of LaScaDa. In fact, when
the link failure is 24% (around 1

4 of links fail), the connection
failure rate is only 10.41% for MaxlifeT ime=6 hops, and
16.84% for MaxlifeT ime=5 hops (equal to the diameter).
This is due to the fact that the number of linked clusters in
LaScaDa is large, which increases the number of alternative
links to use in case of failures. Moreover, increasing the value
of MaxlifeT ime helps in finding alternative paths to forward
packets to the destination. Besides, for a small link failure rate,
6 hops are enough to find a route between any two nodes that
are not totally disconnected.

VII. DISCUSSION

Our preliminary investigation reveals that Lascada topol-
ogy exhibits good properties that strike a good compromise
between the double exponential scalability of DCell and the
high-cost of BCube. In fact, Lascada scales data centers to
large sizes without a noticeable loss in performance com-
pared to existing topologies. Lascada can accommodate n4

2
nodes (k=2), which is approximately 5 times larger than what
Portland/VL2 can accommodate, and n2 times larger than
what DCell/BCube can accommodate. Besides its excellent
scalability, LaScaDa maintains a lower-average cost compared
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Fig. 17. Number of nodes under different port switch and node degree configurations.

Fig. 18. Average path length of LaScaDa under different configurations.

Fig. 19. The number of nodes of LaScaDa, FlatNet, Dcell and Bcube under
different switch port count configurations.

to Bcube and Dcell. For instance, using a 6-port switch and
4 layers, Bcube connects only 64 = 1296 nodes and requires
4 NICs per node, which is costly and hard to control in
practice. Consequently, BCube has scalability issues for cost-
effective small degree nodes and small-port-count switches.
On the other hand, using 5-port switches and 3 layers, Dcell
connects 1806, while LaScaDa connects 69984 (54 times
greater). In terms of APL, Jellyfish has the lowest APL
compared to the other topologies, meaning that it is able
to connect a greater number of nodes with a shorter APL.
However, the performance of Jellyfish and Clos Networks is

Fig. 20. The performance of a 2048-node LaScaDa with different values
of MaxLifeT ime.

highly influenced by their configuration parameters: nTOR,
Nsw, and r. Jellyfish’s unstructured design brings also new
challenges in routing, physical layout, and wiring. For LaS-
caDa, the APL is reduced when compared with FatTree, DCell,
and BCube. In terms of Bandwidth, the basic tree topology
has the smallest All-to-All bandwidth because of the limited
number of switch ports at the root. Recursive topologies,
including LaScaDa, offer a better bandwidth performance
under any traffic configuration (k ≥ 2).

VIII. CONCLUSIONS

In this paper, we proposed and evaluated a novel topology
for data centers called LaScaDa. The proposed topology
scales data centers to large sizes without a noticeable loss
in performance compared to existing topologies. By using
exclusively β links and small port count switches, LaScaDa
scales up a data center to millions of nodes while preserv-
ing a good quality of service. LaScaDa is characterized by
its high Scalability, high Aggregate Bottleneck Throughput,
a good Fault-Tolerance, a low Average Path Length, and a
high Bisection Bandwidth. Thanks to its special connections
pattern and routing algorithms, LaScaDa tries to maximize
the number of directly connected clusters. Simulation results
confirm the efficiency and outperformance of our proposed
topology.
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