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Autism spectrum disorder (ASD) is a neurodevelopmental impairment characterized by deficits in social interaction skills, impaired
communication, and repetitive and restricted behaviors that are thought to be due to altered neurotransmission processes.
The amino acid glutamate is an essential excitatory neurotransmitter in the human brain that regulates cognitive functions such
as learning and memory, which are usually impaired in ASD. Over the last several years, increasing evidence from genetics,
neuroimaging, protein expression, and animal model studies supporting the notion of altered glutamate metabolism has
heightened the interest in evaluating glutamatergic dysfunction in ASD. Numerous pharmacological, behavioral, and imaging
studies have demonstrated the imbalance in excitatory and inhibitory neurotransmitters, thus revealing the involvement of the
glutamatergic system in ASD pathology. Here, we review the effects of genetic alterations on glutamate and its receptors in ASD
and the role of non-invasive imaging modalities in detecting these changes. We also highlight the potential therapeutic targets
associated with impaired glutamatergic pathways.
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INTRODUCTION
Autism spectrum disorder (ASD) comprises a broad range of
conditions, including social, verbal, and repetitive behaviors with
intellectual disability (ID). The cost of autism to society is increasing
worldwide and is now $126 billion per year in the USA, more than
three times the cost in 2006 [1]. Although the etiology of ASD is
largely unknown, a broad scientific consensus points to genetics
and environmental factors as predisposing characteristics in the
development of autistic features.
Evidence from genetic and molecular studies delineates the

impairment of synaptic function in ASD, with genes regulating
synaptic functions being altered or mutated in ASD [2].
Individuals with ASD show alterations in brain development;
however, the mechanism underlying the changes is unknown.
The onset of ASD symptoms coincides with the timing of
synapse formation and maturation, thus supporting the
involvement of synaptic connections and neuronal function in
ASD pathogenesis [3]. The arrested synaptic development in
autism has been confirmed in human and animal studies, which
found an abundance of thin, disrupted, and immature dendritic
spines in different forms of ASD. Genes regulating synaptic
structure and function are also highly mutated in ASD. The
disrupted synaptic function in ASD relates to higher-level
phenotypic changes as observed in other neurologic disorders
and may result in altered sensory processing, cognitive deficits,

hyperactivity, and seizures by affecting the balance between
excitatory and inhibitory neurotransmission [4].
The abrupt synaptic connectivity relates to the alterations in

glutamate receptor expression and function, subsequently modulat-
ing neuronal function [5]. The amino acid glutamate is the most
abundant excitatory neurotransmitter in vertebrates and plays a
significant role in neuronal development and cognition through its
receptors. Defects in glutamate signaling are implicated in autism,
but how such defects affect neuronal signal processing and cause
varied autistic phenotypes remains unknown [6]. This review article
describes how genetic changes affect glutamate and its receptors in
ASD and highlights the role of non-invasive imaging modalities in
detecting these changes.

Glutamate receptors
Glutamate is an important excitatory neurotransmitter in the
human brain. Glutamate receptors are implicated in various
cognitive and neuronal developmental processes such as learning,
memory formation, spine maturation, circuit development, and
synaptic plasticity [7]. They are categorized as either ionotropic
glutamate receptors (iGluRs) or metabotropic glutamate receptors
(mGluRs).
The iGluRs are non-selective ion channels induced by

glutamate and usher synaptic transmissions throughout the
central nervous system [8]. These channels are subcategorized
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into N-methyl-d-aspartate (NMDA), kainate, 2-amino-3(3-hydroxy-
5-methylisoxazol-4-yl) propionate (AMPA), or delta receptors
based on their ligand-binding properties [9].
The mGluRs act through a second messenger and activate

biochemical cascades that cause modification of ion channel
proteins [10]. The eight types of mGluRs (mGluR1-mGluR8) are
classified into three groups depending upon their structure and
function. Group I mGluRs include mGluR1 and mGluR5, which are
associated with the activation of phospholipase C [11]. Group II
includes mGluR2 and mGluR3, and group III includes mGluR4
and mGluRs6-8 [11]. Altered glutamate signaling is associated
with both syndromic and non-syndromic neurodevelopmental
disorders.

Mechanism of action of glutamate receptors
Glutamate released from the pre-synaptic membrane binds to
iGluRs such as NMDA and AMPA receptors. All iGluRs are non-
selective channels that facilitate the entry of cations such as Na+,

K+, and sometimes Ca2+. The activation of NMDA, AMPA, and
kainate receptors results in excitatory post-synaptic responses. In
the NMDA receptor, an Mg2+ binding site binds Mg2+ in the
presence of hyperpolarized membrane potentials and eventually
blocks the opening of the NMDA receptor channel, thus restricting
the entry of Ca2+ ions. However, when the synaptic membrane is
depolarized, Mg2+ is removed, thereby allowing access to Ca2+

ions. The NMDA receptor enables the passing of Ca2+ ions only
during depolarization of the post-synaptic cell, a property that is
the basis for synaptic plasticity. Another interesting property of
the NMDA receptor is that it requires co-agonists, such as glycine
and glutamate, to occupy the binding sites for activation of the
NMDA receptor.
Although both NMDA and AMPA receptors can allow entry for

cations, weak stimulation causes the activation of only the AMPA
receptor. In case of a strong stimulus, the AMPA receptor
depolarizes the membrane sufficiently to expel the Mg2+ ion
from the NMDA receptor and allow the entry of cations, including
Ca2+. This results in a high intracellular concentration of Ca2+ that
activates intracellular signaling cascades. In some cases, the
intracellular Ca2+ binds to calmodulin (CAM), which further binds
to the Ca²+/calmodulin-dependent protein kinase II (CAMKII) and
phosphorylates the AMPA receptor on the synaptic membrane,
resulting in increased Na+ conductance. CAM also promotes the
movement of AMPA receptors from the intracellular stores to the
synaptic membrane, thus creating more AMPA receptors to
stimulate the post-synaptic neuron. As a result, the response to
a given stimulus is more robust, leading to synaptic enhancement.
This change is one of the mechanisms underlying long-term
potentiation (LTP). However, mGluRs modulate post-synaptic
channels indirectly and are sensitive to pharmacological agents.
The binding of glutamate on mGluRs activates and dissociates G
proteins, which then directly associate with ion channels or bind
to other effector proteins such as enzymes (Fig. 1). Compared to
iGluRs, mGluRs cause slower post-synaptic responses.
Kainate receptors are like AMPA receptors and allow the passing

of cations, but they have limited distribution in the brain and
exhibit a minor role in synaptic plasticity. Also, the selective
activation of Gluk1 Kainate receptors elicits seizures in the
basolateral amygdala region of wild-type and Gluk1 and Gluk2
knock-out mice [12].

Metabotropic glutamate receptors and autism
Group I mGluRs comprising mGluR1 and mGluR5 are the most
studied in autism and autism-related disorders. Altered function-
ing of the mGluR5 receptor occurs in Fragile X syndrome (FXS)
[13], obsessive-compulsive disorder (OCD) [14], intellectual dis-
ability (ID) [15], and autism [16]. Higher levels of mGluR5 protein
have been found in the vermis region of the cerebellum in
children with autism than in unaffected children [17]. Similarly, a

post-mortem study by Fatemi and Folsom (2011) found higher
levels of the mGluR5 receptor in the superior frontal cortex of
children with autism than in unaffected children [18]. The FXS is a
major genetic cause of autism and is associated with the most
common ASD phenotypes. Lohith et al. (2013) reported a higher
expression of mGluR5 protein in the prefrontal cortex of patients
with FXS than in healthy controls [19]. Fragile X mental retardation
protein (FMRP), encoded by the FMR1 gene, negatively regulates
the synthesis of post-synaptic glutamate receptors and contri-
butes to synaptic plasticity [20, 21]. A single gene mutation in
FMRP leads to increased excitatory activity and altered synaptic
function. Knock-out of FMR1 results in mGluR-induced long-term
depression (LTD) in animal models [22].
Genetic studies have revealed the presence of altered

glutamatergic signaling pathways in ASD. Glutamate transporter
genes are functional candidates for autism, and single-nucleotide
polymorphisms (SNPs) in SLC1A1 and SLC1A2 glutamate transpor-
ter genes are associated with autism [23, 24]. The SNP rs301430 in
the glutamate transporter gene SLC1A1 is linked with repetitive
behaviors and anxiety in children with ASD [25]. Moreover, Ramoz
et al. (2004) reported that two SNPs (rs2056202 and rs2292813) in
the mitochondrial aspartate/glutamate carrier gene SLC25A12 are
associated with autism [26].
Group I mGluRs are associated with NMDA receptors and

therefore regulate the NMDA receptor-mediated LTP and LTD [27].
Studies using in situ hybridization and immunohistochemical
analysis to assess the neuroanatomical localization of mGluRs
demonstrated the presence of high mGluR1 expression levels in
the olfactory bulb, cerebellum, thalamus, and hippocampus
regions in the rodents brain [28]. However, mGluR5 was highly
expressed in the forebrain and limbic structures [28]. Deleting or
inhibiting the Group I mGluRs in rodents is associated with a
reduction in learning and memory-associated tasks such as the
Morris water maze task, which was the first evidence for the
function of mGluR5 receptors in spatial learning using mGluR5
receptor knock-out animals [29]. In this task, mGluR5 receptor
knock-out mice presented deficits in the acquisition and had
impaired long-term retention [29]. In another study that used mice
for the water maze task, inhibiting mGluR1 affected learning
of new information but did not affect spatial information [30].
The use of the highly selective and strong mGluR5 receptor
antagonist (3-[2-methyl-1,3-thiazol-4-yl)ethynyl]-pyridine (MPEP)
reduced reference and working memory in a radial arm maze
task in rats [31].
Transcriptomic analysis of the post-mortem brain of autistic

individuals has shown that genes involved in synaptic function are
downregulated [32, 33]. Many genes associated with ASD, such as
neuroligin-3 (NLGN3), neuroligin-4 X linked (NLGN4X), neurexin1
(NRXN1), src homology-3 domain (SH3), and multiple Ankyrin
repeat domains 3 (SHANK3) play a significant role in synaptic
functioning [34].
Genomic studies using copy-number variation analysis have

identified alterations in neurexins (pre-synaptic proteins) and
neuroligins (post-synaptic proteins) in ASD [35]. Deletions of NRXN
[36] or NRXN3 [37] truncating mutations in NRXN2 [38] and rare
structural variations in NRXN1 (NRXN1α and NRXN1β) are associated
with the autism phenotype [39–41]. Neuroligins such as NLGN1,
NLGN2, NLGN3, and NLGN4 are implicated in ASD [42–45]. However,
mutations of NLGN3 and NLGN4 are encountered in a small fraction
of autism cases [46–49]. NRXN1α knock-out mice models show that
α-neurexins are crucial for maintaining post-synaptic NMDA-
receptor function, regulating synaptic transmission, and organizing
the pre-synaptic terminals by coupling Ca2+ channels on the pre-
synaptic surface [50–52], accompanied by behavioral abnormalities
that resemble the core symptoms of ASD [53]. Similarly, mice with
NLGN3 mutations showed social and olfactory deficits [54], altered
hippocampal synaptic plasticity [55, 56], impaired spatial learning
[57], and altered synaptic transmission in the calyx of Held [44].
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The alterations in neuronal circuits in autism may be reversible by
re-expression of NLGN3, as an NLGN3-knockout mice model of non-
syndromic autism showed impaired heterosynaptic competition
and altered mGluR-dependent synaptic plasticity [58].
Group I mGluRs are implicated in SHANK3-dependent synaptic

dysfunction in ASD [59]. SHANK3 mutations impair mGluR-
dependent LTD and attenuate the ability of hippocampal
neurons to express group I metabotropic mGluRs at synapses
[59]. Similarly, Heise et al. (2018) showed that compared to wild-
type mice, SHANK3- and SHANK2-knockout mice had fewer
glutamate receptors in the striatum and thalamus regions, while
CNTN4 knock-out mice had fewer glutamate receptors in the
cortex and hippocampus regions [60]. Another gene, the
G-protein coupled receptor-associated sorting protein-2
(GPRASP2), has been shown to play an important role in
glutamatergic synapses. Deletion of GPRASP2 causes impaired
synaptic communications and modulates the surface availability
of mGluR5 in mice [61]. GPRASP knock-out mice have abnormal
mGluR signaling in the hippocampal neurons and exhibit

ASD-like behaviors [61]. These results suggest that monogenetic
variants in ASD-associated genes do not exhibit a common
molecular phenotype excitatory and inhibitory signaling compo-
nents, indicating that more research is required to explore the
commonalities at different levels, such as information processing
or neuronal activity networks in ASD [60].

Ionotropic glutamate receptors and autism
Genetic alterations have also been linked to the NMDA class of
iGluRs where both NMDA hyperfunction and hypofunction are
associated with an ASD phenotype [62, 63]. However, an
autoradiographic post-mortem study demonstrated no significant
modifications in the expression of NMDA receptors in the
hippocampal tissue from 4 males with autism [64]. Another
post-mortem study found significantly increased NMDA receptor
subunit 1 protein expression and reduced AMPA receptor
density in the cerebellum tissue from 9 people with autism [65].
Disrupted NMDA signaling has also been implicated in a wide
range of neuropsychiatric disorders other than ASD, including ID,

Fig. 1 Glutamate signaling. Glutamate stored in pre-synaptic vesicles is removed for conversion into glutamine via reuptake by SLC1A into
the pre-synaptic terminal or via uptake into glial cells. Glutamate re-enters pre-synaptic vesicles through SLC17A. Glutamine from glial cells
has no neurotransmitter activity and is converted back to glutamate by GLS. The ionotropic glutamate receptors (iGluRs) (e.g., GRIN, GRIA,
GRIK, and GRID) transport Na+ cations into the cell, resulting in Na+-mediated depolarization and development of excitatory post-synaptic
potential (EPSP) in the post-synaptic membranes. Then, Ca2

+ transport leads to the activation of Ca2
+-dependent enzymes and ultimately to

long-term post-synaptic modification. The mGluRs coupled with G proteins mediate intracellular signal transduction. GRM1 and GRM5 are
related to changes in Ca2

+ concentrations. GRM2, GRM3, GRM6, and GRM8 inhibit cAMP production. GRM7 prevents glutamate release from
pre-synaptic vesicles.
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schizophrenia, Alzheimer’s disease, and other mood disorders [66],
suggesting different roles of NMDARs in synaptic plasticity and
excitotoxicity [67, 68]. Moreover, causative mutations in NMDAR
genes are implicated in ASD [69], and several ASD-related animal
model studies have shown the association of ASD with NMDA
abnormalities [70].
SHANK3, a post-synaptic protein at excitatory glutamatergic

synapses that connects neurotransmitters and ions channels to
the actin cytoskeleton, is implicated in ASD. Specifically, SHANK3
plays a pivotal role in regulating glutamatergic synapses,
maturation of the dendritic spine, and strengthening the
formation and transmission of synapses via glutamate receptors
such as AMPARs and NMDARs. Therefore, mutations or deletions
in SHANK3 contribute to ASD symptoms [71]. The wide range of
synaptic deficits observed in ASD-associated SHANK3 rodent
models are alterations in NMDARs [72]. Hence, alterations in
NMDARs associated with the glutamatergic synapse are now
identified as an important pathogenic pathway implicated in ASD.
Emerging evidence supports the role of iGluRs in synaptic

plasticity, neuronal development, learning, memory, and cogni-
tive processes. The expression and trafficking of iGluRs are
regulated by neuronal post-synaptic density proteins, cytoskele-
tal proteins, and cell adhesion molecules [73]. A study identified
a missense de novo mutation in the NMDAR subunit gene
GRIN2B in a patient with ASD [74]. Furthermore, changes in
AMPA and kainate receptors have been reported in ASD. A
genetic study found that the interstitial deletion of chromosome
4q in a child with autism contributed to hemizygosity of the
glutamate receptor AMPA2, glycine receptors GLRB and GLRA3,
and neuropeptide receptors NPY1R and NPY5R [75]. Another

study found that the glutamate receptor GluR6 was in linkage
disequilibrium with ASD and suggested that chromosome 6q21
is a strong candidate region for autism [76]. In addition, a
complex mutation in GluR6 co-segregates with non-syndromic
autosomal recessive mental retardation, leading to the complete
loss of Gluk6 protein and thereby to cognitive impairments [77].
In addition to SHANK genes, other genes such as CNTN4 affect

synapse formation and the excitatory and inhibitory signaling in
ASD. Interestingly, the expression of glutamate receptors in the
striatum and thalamus region of Shank2- and Shank3αβ knock-out
mice is reduced. However, Cntn4-knockout mice show elevated
levels of glutamate receptors in the striatum region and reduced
levels of glutamate receptors in the hippocampus and cortex [60].
The cerebellum and hippocampus are two important regions

that exhibit changes in iGluRs and are implicated in ASD.
Mutations in neuronal synaptic proteins are critical in regulating
the function of iGluRs. Mutations in neuronal synaptic proteins
include post-synaptic proteins such as neuroligins (NLGNs)
and pre-synaptic proteins such as neurexins (NRXN), SHANK, and
GRIP1 [73]. As the number of post-mortem studies are limited, it
is unclear whether these findings are true representations of
regional expression variations between the hippocampus and
cerebellum.
Several mutations have been observed in metabotropic and

ionotropic receptors implicated in ASD susceptibility (Fig. 2). The
majority of the mutations are observed in ionotropic receptors,
with GRIN2B, GRIN1, and GRM5 as the most susceptible receptors
and GRM8 and GRIK4 as the least susceptible in ASD. Mutations are
distributed evenly across the amino acids of both metabotropic
and ionotropic receptors.

Fig. 2 Distribution and amino acid location of mutations in ionotropic (GRIN1, GRIK5, GRIK4, GRIN2B) and metabotropic (GRM5, GRM7,
GRM8) receptors. The data were downloaded using SFARI Gene database for autism spectrum disorder (https://gene.sfari.org/).
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Dynamic relationship of excitotoxicity, oxidative stress, and
mitochondrial dysfunction
Recent studies [78, 79] have unraveled the role of oxidative stress
in the pathophysiology of ASD. Children with ASD exhibit low
plasma and cellular glutathione (an endogenous antioxidant)
levels and reduced capacity of glutathione reserve; therefore,
they are highly susceptible to oxidative stress. It has been
documented that oxidative stress and redox imbalance are crucial
components of ASD pathophysiology. Glutamate-mediated
excitotoxicity has been reported as one of the essential
contributing factors in developing oxidative stress in ASD [80].
Glutamic acid decarboxylase (GAD), an enzyme that catalyzes
the transformation of glutamate to gamma-aminobutyric acid
(GABA), glutamine synthase, and GABA receptors, are suscep-
tible to oxidative injuries. The reduced levels of GAD in the brain
promote excitotoxicity by decreasing GABA and increasing
glutamate levels.
Accumulating evidence suggests that overstimulation of

glutamate receptors, impaired mitochondrial functions, and
oxidative stress are interconnected events that lead to oxidative
neuronal injury in patients with autism [81, 82]. Typically,
excitatory receptors allow the movement of sodium, calcium,
and potassium, resulting in neuronal excitation. The movement
of calcium into the cells results in the activation of inducible
nitric oxide (iNOS) and phosphorylation of protein kinase C.
Elevated levels of iNOS increase the production of free radicals,
reactive oxygen, and nitrogen species, which start damaging
lipids, proteins, and nucleic acids. Concurrently, protein kinase C
induces phospholipase A2, which is involved in the production of
pro-inflammatory molecules [83]. This cascade eventually gen-
erates free radicals that can initiate a wide range of toxic
oxidative reactions, thereby potentially inhibiting oxidative
phosphorylation and damaging mitochondrial enzymes that
regulate the electron transport chain. Collectively, these events
cause ATP depletion [84], eventually leading to energy deficits in
neurons and cell death.

Genes affecting neuronal migration, differentiation, and
maturation in ASD
Modulation of neuronal activity is controlled by proteins that are
involved in the pathophysiology of ASD. Genes that are optimal
for the normal functioning of glutamate receptors and neuronal
migration are found to be mutated or disrupted in ASD (Fig. 3).
Transcripts regulated by neuronal activity are present in high
amounts in ASD candidate genes; for example, MEF2A/D, a
transcription factor that plays a significant role in synapse
development, regulates the genes UBE3A, DIA1, and PCDH10.
The neuronal transcription factor NPAS4 plays an important role in
the synaptic excitatory-inhibitory balance, and it’s expression is
found to be regulated by neuronal activity. NPAS4 regulates the
ASD candidate gene NHE9.
The expression of ASD candidate genes UBE3B, CLTCL1,

NCKAP5L, and ZNF18 is regulated by neuronal depolarization
[85]. Mutations in a spliced variant of the ANK2 gene known as
Giant ankyrin-B (ankB) are involved in gene regulation and
synaptic function and result in increased axonal branching and
excitatory synapses during postnatal development [86]. CNTNAP2
mutations in ectopic neurons also suggest their role in neuronal
migration [87] and aberrant positioning of neurons in the corpus
callosum. Moreover, the abnormal localization of CUX1-positive
upper-layer neurons in the deeper layers has been reported in
CNTNAP2-knockout mice, suggesting its function in core autistic
deficits [88]. CNTNAP2 also plays a critical role in radial-glia–driven
neuronal movement as it encodes a neural transmembrane
protein (contactin 2) that is involved in neural-glia interactions
[89, 90]. A recent study reported that CNTNAP2-knockout mice
exhibit decreased excitatory and inhibitory synaptic inputs onto
the mPFC L2/3 pyramidal neurons, leading to aberrant neuronal
firing in the cortical ensembles [91]. Another recent study
demonstrated the significance of NRXN-1α in neuronal differentia-
tion and the development of neural stem cells [92]. The study
investigated the expression of NRXN-1α deletion during early
neural induction in an autistic individual carrying a bi-allelic

Fig. 3 Genes optimal for normal functioning of glutamate receptors, neuronal migration, and synapsis. Mutations or disruptions in genes
optimal for neuronal migration, synapsis, and normal functioning of glutamate receptors can cause neuronal excitability, altered brain volume,
and impaired long-term LTP and LTD that lead to various autism-related deficits. MZ marginal zone, CP cortical plate, IZ intermediate zone,
SVZ subventricular zone, VZ ventricular zone, LTP long term potentiation, LTD long term depression.
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NRXN-1α deletion. The results showed that neural cells with the
deletion had more radial-glia–like morphology and an increased
number of differentiated astroglia [92]. Astrotactin 1 (ASTN1) and
Astrotactin 2 (ASTN2) genes are neuronal cell surface antigens that
are crucial for neuronal migration [93]. The interaction of ASTN1
with ASTN2 regulates neuron-glia adhesion [94]. The ASTN2 gene
has been implicated in ASD, and genome-wide association studies
have shown that ASTN2 is a candidate gene for ASD [95]. ASTN2
deletions are associated with ASD and other neurodevelopmental
complications such as attention deficit hyperactivity disorder,
OCD, and language delay [96]. Moreover, the copy-number
variations of ASTN2 increase excitatory and inhibitory post-
synaptic activity in individuals with ASD [97].
Distal-less homeobox (DLX) genes play a key role in neurode-

velopmental disorders, including autism. They encode home-
odomain transcription factors associated with the Drosophila
distal-less (Dll) gene [98]. DLX1 and DLX2 genes are found in the
transitory structure known as ganglionic eminences in the brain
and regulate the migration of inhibitory interneurons from the
medial ganglion eminence into the cortex [99]. There is a decrease
in GABAergic neurons in DLX1-knockout mice, and the mice also
exhibit epileptic behavior, which is a common pathology
associated with ASD [100]. The downstream target of DLX is
ARX, an X-linked homeobox gene that regulates the functioning of
DLX in neuronal migration [101]. Patients with ARX mutations have
autistic features [102].
UBE3A is highly expressed in the GABAergic and pyramidal

neurons of the human cerebral cortex region. Deleting UBE3A in
the GABAergic or inhibitory neurons of the Angelman syndrome
(AS) mice model resulted in hyperexcitability and epileptic
seizures, common abnormalities in ASD [103]. Additionally, a
mutation of rolled MAPK3 at the 16p11.2 locus, an ASD mapped
region, results in abnormal axonal targeting and fasciculation in
Drosophila larval neuromuscular junctions [104]. AUTS2 protein is
mainly involved in gene expression regulation during brain
development [105]. AUTS2 is localized in the nucleus and in the
cytoplasm, where it helps regulate neuronal migration and the
growth of neurites [106]. Mice having mutations in SHANK3, a
candidate gene for ASD, showed altered glutamatergic synapses
in the pyramidal neurons of the ACC. Excitatory synaptic
dysfunction and social deficits were observed in SHANK3-knockout
mice, and the social behavior of the mice was improved by
restoring SHANK3 expression [107]. Moreover, SHANK3 knock-out
in mice demonstrated that SHANK3 is associated with total brain
volume and hippocampal size [108].

In vivo evidence of increased expression of glutamate in
autism
PET imaging. Non-invasive in vivo PET imaging is ideal for
quantifying AMPARs and NMDARs in normal and diseased brains.
PET tracers can be used to target NMDARs and AMPARs and can
help facilitate both drug development and the pharmacokinetic
profiling of candidate drugs [109]. PET probes are developed by
targeting group 1 mGluR. These probes have already shown their
specificity in binding with the Glu-5 receptor and have been
implicated in studying Glu5R receptors in humans. The mGluR5
tracer [18F]-3-fluoro-5-[(pyridin-3-yl) ethynyl] benzonitrile ([18F]-
FPEB) is used to measure the binding of mGluR5 in different brain
regions. The binding potential of [18F]-FPEB was elevated in the
cerebellum and postcentral gyrus regions of individuals with
autism, suggesting altered mGluR5 binding in these regions [110].
A highly selective PET probe used for imaging the GluN2B

subunit of the NMDA receptor is the benzazepine-based
radioligand (R)- 11C-Me-NB. The efficacy of the PET probe has
been demonstrated in rodents, which showed GluN2B-NMDA
receptor expression in the cortex, striatum, thalamus, and
hippocampus [111]. Using this probe, the NMDA receptor can
be imaged non-invasively in autism, and the role of different

genes on the expression of NMDA receptors can be evaluated in
animal models. This PET probe can also be used to screen drugs
targeting NMDA receptors. Several PET-based probes have been
developed and tested to image iGluRs both in vitro and in vivo;
however, none of them has yet been translated to clinical use,
possibly due to their low binding affinity and impermeability to
the blood-brain barrier. This provides an opportunity to develop a
new class of PET ligands targeting iGluRs and potential clinical
translatability. Nonetheless, these probes can be further devel-
oped to investigate the impact of gene mutations on glutamate
receptors in animal models of autism.

Magnetic resonance spectroscopy
Alterations in glutamate levels have been proposed to account for
various behavioral and electrophysiological phenotypes in autism.
The glutamate dysfunction is linked with abrupt neuronal function
in autism. Alterations in the glutamate level in different brain areas
may lead to different autistic phenotypes. Thus, quantifying the
glutamate level in the brain of individuals with autism may
provide valuable insights into the possible connections between
altered genetic profiles and behavioral phenotypes of autism.
Proton magnetic resonance spectroscopy (1H MRS) is a well-

established non-invasive approach used to ascertain the meta-
bolic profile from different brain regions. The glutamate molecule
consists of two methylene groups and a methine group that
are firmly linked to form an AMNPQ spin system. Four protons
present in two methylene groups form a prominent multiplet in
the 2.04-2.35 ppm range on 1H MRS [112]. However, because of
overlapping resonances with other metabolites such as glutamine,
GABA, and NAA at lower field strength, their contributions are
commonly combined and referred to as Glx.
Several 1H MRS studies have evaluated the alterations in Glx

levels from different brain regions of individuals with autism. A 1H
MRS study performed by Page et al. reported that the Glx
concentration in the right hippocampus of 20 individuals with
autism was higher than those of typically developing controls.
Nonetheless, no significant changes were reported between the
Glx level of the two groups in the right parietal cortex [113].
Although some studies have reported reduced Glx in the
cerebellum [114], basal ganglia [115], and anterior cingulate
cortex [116] in patients with ASD, others have reported elevated
Glx levels in the anterior cingulate gyrus and auditory cortex
regions in patients with ASD [117–119]. Glutamate levels that are
significantly higher than those of controls have also been reported
from the pregenual anterior cingulate cortex in pediatric patients
with ASD, supporting the hypothesis that the activity of attention-
and conflict-monitoring tasks are generally modulated in ASD
[119]. Observations of higher or lower concentrations of Glx from
different brain regions indicate that Glx levels are area-specific in
ASD. However, the ratio of glutamate to glutamine in the Glx level
remains unknown. Moreover, aberrations in glutamate and Glx
levels in ASD differ between child and adult populations,
suggesting that age is an important factor determining the
excitatory or inhibitory functions in ASD.
Hassan and co-workers reported significantly higher blood and

brain glutamate levels in children with autistic disorders [120]. In
addition, the blood and brain glutamate levels were positively
correlated, suggesting that blood glutamate levels can be utilized
to diagnose autism early. 1H MRS analyses of single-gene disorders
are strongly associated with ASD. Bruno and colleagues (2013)
found reduced Glx in the caudate nucleus of patients with FXS
[121], but Pan et al. (1999) reported a higher level of glutamate in
the gray matter of girls with Rett syndrome [122]. The individual
measurement of glutamate could provide a better idea about the
synaptic alteration in autism. Using a higher field strength (7 T
human scanner) provides better separation of peaks and allows
precise quantification of glutamate levels in the brain [123, 124].
Another recent study by Horder et al. used 1H-MRS to measure the
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absolute glutamate concentration in the striatum and the medial
prefrontal cortex in both humans and six rodent models of ASD
[125]. They observed lower glutamate levels in the striatum of
human ASD. Mice exposed to valproate showed decreased
glutamate in the striatum, but BTBR T+ tf/j mice showed higher
glutamate in the striatum. Rats carrying NLGN3 mutations showed
significantly reduced glutamate both in the striatum and
prefrontal cortex. This study emphasizes the varying effects of
gene mutation on glutamate changes in the brain [125].
Individuals with ASD exhibited reduced functional connectivity
and excitatory-to-inhibitory imbalance (glutamate+ glutamine/
GABA) in the cerebro-cerebellar region, with altered listening
comprehension skills, suggesting altered glutamatergic signaling
in the cerebellar regions of those with ASD [126].
Several studies have used single-voxel or single-slice multi‐voxel

1H MRS approaches to ascertain the metabolite pattern in patients
with ASD but were constrained by limited spatial coverage. A
substantial body of evidence [127] suggests that ASD is more
diffuse than previously understood because more widespread
brain dysfunctions have been reported from ASD patients. In
contrast to single-voxel or single-slice 1H MRS sequences, three‐
dimensional echo-planar spectroscopic imaging (3D EPSI) pro-
vides whole-brain metabolite maps with better spatial resolution
[128, 129]. These volumetric maps can be spatially co‐registered to
anatomical images to help in mapping metabolite variations from
different brain areas with reduced possibility of partial volume
averaging. Several studies have shown the potential of 3D EPSI in
detecting metabolic abnormalities from multiple regions in
patients with brain tumors [130, 131], neurodegenerative diseases
[132–134], and neuropsychiatric disorders [135, 136]. We reason
that 3D EPSI may be useful for detecting metabolic abnormalities,
including glutamate, throughout the brain of patients with ASD.
Non-invasive detection of glutamate on conventional 1H MRS is

challenging owing to increased resonance overlapping of
glutamate with its neighboring metabolites such as glutamine,
GABA, and NAA. However, two-dimensional correlated spectro-
scopy (2D COSY) resolves overlapping resonances of these
metabolites unambiguously by introducing a second spectral
dimension and identifying “cross-peak” resonances because of
J-coupling interactions [137]. Moreover, an ultra-high-field (7 T)
scanner further improves the sensitivity of 2D COSY in glutamate
detection and other complex metabolites due to the high signal-
to-noise ratio and increased chemical shift dispersion [138]. Due to
its potential to isolate glutamate, glutamine, and GABA signals, 2D
COSY may be an effective tool to investigate the impaired cortical
excitation/inhibition equilibrium in ASD patients.

GluCEST imaging
Chemical exchange saturation transfer (CEST) is a recently
developed metabolic imaging technique used to detect low
concentrations of specific endogenous and exogenous com-
pounds. Studies have demonstrated that glutamate displays a
concentration- and pH-dependent CEST effect at ~3.0 ppm
downfield from bulk water protons [139]. Our group has
established a glutamate imaging CEST approach (GluCEST) that
can be used to create high-resolution parametric maps of
glutamate changes in various neurological disorders. GluCEST
detected decreased glutamate levels in the brain in a transgenic
mouse model of Alzheimer’s disease [140]. In contrast, it showed a
higher glutamate level in the brain in a mouse model of
Parkinson’s disease [141].
Similarly, GluCEST detected altered brain glutamate concentra-

tion in patients with schizophrenia and temporal lobe epilepsy
[142, 143]. In another study, GluCEST was used to monitor the
modafinil-induced changes in glutamate levels in the rat brain
[144]. Thus far, no GluCEST studies have been conducted in
patients with autism, but this technique provides a novel
approach to measure the level of glutamate changes in the brain.

The GluCEST approach can be beneficial to determine the impact
of a gene on the glutamate level in the brain. An animal model
with different genes knocked out could be generated and imaged
with GluCEST to understand better the effect of the gene
mutation on regional alterations in the brain’s glutamate level.
This method may explain how the mutation or deletion of
particular genes links with regional brain glutamate level changes,
thereby further enhancing our knowledge on the association of
genes with specific neuronal functions.

Treatments targeting the glutamatergic systems in autism
Substantive evidence suggests that inhibiting mGluRs can reverse
autistic phenotypes in several ASD mouse models. Considering
the substantial involvement of glutamate receptors in autism,
different therapeutic strategies targeting these receptors are
being developed to reduce ASD symptoms. Several drugs that
target mGluRs are used to restore the excitation and inhibition
balance in brain cortical regions. These include mGlu5 antagonists
(fenobam), AMPA receptors (ampakines), and NMDA receptor
inhibitors such as memantine, amantadine, and acamprosate
[112, 145]. Glu5 antagonists improve the social and stereotypic
behaviors in rodent models of ASD [146]. In the BTBR mouse
model of autism, mGluR5 antagonist MPEP decreased repetitive
self-grooming, whereas in three cohorts of BTBR mice, another
antagonist of mGluR5, GRN-259, decreased repetitive behaviors.
Moreover, both antagonists improved behavioral and commu-
nication skills in BTBR mice [147, 148]. Furthermore, treatment
with AMPA compounds such as CX1837 and CX1739 recondi-
tioned sociability in the sniffing parameter of the social approach
task in BTBR mice [149].
Additionally, the non-competitive NMDA antagonist memantine

has been utilized in clinical trials of ASD. Treatment with
memantine reduced irritability, stereotypic behavior, and hyper-
activity in children with ASD [150] and improved social behaviors
in children with ASD [151, 152]. In addition, mGluR5 inhibition
rescued autistic phenotypes in mouse models of ASD. One of the
most common mutations in autism is the 16p11.2 microdeletion,
and a study found altered mGluR5 synaptic plasticity in the
hippocampus region of a mouse model of ASD with 16p11.2
deletion. These cognitive deficiencies in mice were reversed by
treatment with a negative allosteric modulator of mGlur5 [153]. A
study by Mehta et al. showed that the mGluR5 antagonist MPEP
significantly decreased repetitive behaviors in valproic acid-
treated mice [16]. An open-label clinical trial showed improved
anxiety and pre-pulse inhibition in FXS individuals treated with the
mGluR5 antagonist fenobam [154]. Single doses of mGluR1
antagonist (JNJ16259685) and fenobam rescued social and
repetitive behaviors in eukaryotic initiation factor 4E-binding
protein 2 gene (Eif4ebp2) knock-out mice [155], implying that
group I mGluRs are a favorable therapeutic target for ASD. Results
from these studies will permit researchers to gain better insights
into the regulatory mechanisms of social behavior in ASD and help
guide the development of novel AMPA receptor-based therapies
to rectify social deficits implicated in ASD. In addition to glutamate
receptor modulation by agonists, antagonists, and negative
allosteric modulators, drugs or agents can be developed that
can inhibit glutamate release, facilitate the clearance of glutamate
by excitatory amino acid transporters, and modulate the voltage
gated Na+ channels that are involved in glutamate regulation
(Fig. 4). Subsequently, these modalities will be used for the
treatment of glutamatergic dysfunction and would aid in rescuing
social and behavioral deficits in ASD.

Other mechanisms underlying ASD
Significant advances in delineating molecular mechanisms under-
lying ASD have provided insights into the neuroanatomical
abnormalities implicated in ASD, such as enlargement of brain
[156–161], hypoplasia of the cerebellar hemispheres, and vermis
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and decreased number of cerebellar Purkinje cells [162]. Studies
on neural stem cells have demonstrated that abnormalities in
neuronal morphogenesis, neurogenesis, synaptic function, and
cell fate also contribute toward the development of ASD. In
addition, Ca2+ signaling, chromatin changes, Wnt signaling, and
RNA splicing also play an important role in the pathogenesis of
these diseases. The neuropathological studies delineate the
association between dysregulated fetal cortical development
and ASD. The abnormalities associated with cortical development
include increased neuronal number and decreased neuron size,
misoriented pyramidal neurons, ectopic cells, dendritic abnorm-
alities, irregular lamination, and reduced white matter tracts [163].
Several transcription factors are also involved in ASD due to

their considerable effect on diverse neuronal functions. Tran-
scription factors regulate the expression of many genes and
their downstream target molecules. The X-linked gene methyl
CpG binding protein 2 (MeCP2) is a transcription factor that
represses gene function and influences downstream molecules
implicated in ASD, such as brain-derived neurotrophic factor
(BDNF) and CDKL5 [164]. Engrailed-2 is another transcription
factor that influences several biological processes implicated in
ASD, as Engrailed-2 is located in the ASD-susceptibility region on
the human chromosome [165–167]. The involvement of
Engrailed-2 in ASD is demonstrated by the finding that the
Engrailed-2 null mice exhibited cognitive impairment and social
dysfunction [168]. Moreover, Engrailed-2 is expressed upon
activation of the Wnt signaling pathway; therefore, the Wnt
pathway, along with Engrailed-2, also regulates axonal guidance
and neuronal migration.
The Wnt pathway contributes significantly toward ASD

because the genetic variants involved in ASD are increasingly
found in genes of the WNT pathway [169]. In ASD, several
de novo mutations are found in genes directly or indirectly
related to the canonical Wnt pathway. These genes include
mixed-lineage leukemia (MLL) complexes, members of the
Brg1-associated factors (BAF), CHD8, and T-box brain 1 (TBR1)
[170–177]. Moreover, Wnt2 genes found in the autism suscept-
ibility chromosomal locus and several Wnt2 variants are
associated with ASD [178–182]. Correlation of the Wnt signaling

pathway with ASD pathophysiology has also been demonstrated
by the finding that the Wnt pathway is regulated by
chromodomain-helicase-DNA-binding protein 8 (CHD8), and de
novo mutations of CHD8 are increasingly found in ASD
individuals [183–185]. The modulation of the Wnt pathway in
mice leads to the development of ASD-like social deficits and
changes in the production of cortical neurons [186–189].
In addition to the Wnt pathway, the mTOR pathway has also

been implicated in ASD. Mutations in the genes involved in the
mTOR pathway affect the translation of neurons in ASD patients
[190]. Studies in mice have demonstrated that dysregulation in
mTOR signaling is associated with ASD behaviors [191–196]. The
downstream signaling molecules of the mTOR pathway, such as
4EBP and eIF4E, are involved in ASD. Additionally, animal studies
on mice demonstrated that the 4EBP2 knock-out and eIF4E
overexpressed mice exhibited autistic-like behaviors [194]. The
deficiency of phosphatase and tensin homolog (PTEN) hyperacti-
vates the mTOR pathway, which contributes to altered social
interaction and the development of macrocephaly [197].
Multiple regions of the brains of individuals with ASD contain

activated astrocytes and microglia. The post-mortem studies on
idiopathic ASD individuals have revealed that genes involved in
activated astrocytes and microglia are upregulated in the cortex of
the brain and to a lesser extent in the cerebellum [198, 199].
Although the genetic variations in the genes of astrocytes or
microglia have not been reported, the knockdown of chemokine
receptor 1 (CX3CR1) resulted in a reduction in microglia, ASD-
associated functional connectivity, and behavioral deficits and
defects in synaptic pruning [200, 201]. This indicated a potential
association of this receptor to ASD. In addition, the upregulation of
microglia and astrocytes causes dysregulated synaptic pruning,
leading to synaptic dysfunction in ASD [202, 203].
Some neurotrophic factors, growth factors, and their receptors are

also involved in ASD, such as MET receptor tyrosine kinase (RTK). The
RTKs regulate several aspects of neuronal physiology, including
neurogenesis and survival, differentiation and migration, patterned
connectivity, and plasticity. The human gene MET, which encodes
MET RTK, has emerged as a prominent risk factor for ASD. The mRNA
and protein levels of MET are reduced in the cortex of ASD

Fig. 4 Potential therapeutic targets for developing drugs or agents targeting the glutamatergic system in autism. Different glutamatergic
mechanisms such as glutamate inhibition, glutamate release, glutamate receptor modulation, and glutamate clearance serve as important
targets that can be used for developing novel drugs or agents that can help in rescuing social and behavioral deficits in autism spectrum
disorder.
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individuals [162, 204]. Therefore, failure in the transcription process
of the MET protein is associated with ASD. In addition to MET, BDNF
and the extracellular matrix glycoprotein Reelin are also associated
with ASD [205–207]. The mutations in certain genes such as PTEN,
fragile X mental retardation 1 (FMR1), chromodomain helicase DNA
binding protein 7 (CHD7), and tuberous sclerosis 1 and 2 (TSC1 and
TSC2) are associated with the ASD [208–212].
Environmental factors and exposure to teratogens have been

suggested as potential risk factors for ASD. The mother’s exposure
to stress and valproic acid, thalidomide, or bacterial or viral
infections can increase the risk of ASD in the offspring [213].
Valproic acid and thalidomide induce morphological abnormal-
ities in the brain, such as reducing cranial motor neurons and
modifying cerebellar structures [214, 215].
Thus, the complete understanding of ASD remains challenging

due to a wide range of mechanisms underlying ASD pathophy-
siology. Identifying core mechanisms of ASD, such as the
excitatory and inhibitory (E/I imbalance) mechanism involving
the glutamatergic system, a common perturbation among ASD
individuals, can help better understand the etiology of ASD.
Moreover, the translation of human genetic and preclinical
findings in ASD can provide mechanistic insights and clues to
rescue different behavioral and synaptic deficits in early preclinical
models, which may serve as a basis for future clinical trials.

CONCLUSION
In the last few decades, investigations of genes and genetic loci
have delineated the etiology of glutamatergic dysfunction in ASD.
Moreover, the phenotypic penetrance of genetic variants overlaps
with other disorders such as attention deficit hyperactivity
disorder, which is highly dependent on an individual’s genetic
background. Future studies should be focused on detecting low-
penetrance variants and epistatic gene interactions and how these
genetic factors are involved in the regulatory mechanism under-
lying the glutamatergic system in ASD. Furthermore, the
glutamate receptors serve as a potential therapeutic target for
ASD. Techniques such as MRS and PET imaging have been used to
detect glutamate changes and to quantify NMDARs and AMPARs
in the autistic brain, but the utilization of GluCEST imaging in
patients with autism remains to be studied. The GluCEST approach
can be instrumental in determining a gene’s effect on glutamate
levels in the brain and can serve as a biomarker for detecting
glutamatergic changes in ASD. In summary, glutamate has broad
implications in the pathophysiology of autism, but more studies
are required to explain how glutamatergic dysfunction drives core
symptoms and deficits in ASD.
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