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Abstract: Diabetes mellitus (DM) is one of the most prevalent diseases in the world, and is correlated
to a high index of mortality. One of its major complications is diabetic foot, leading to plantar
ulcers, amputation, and death. Several studies report that a thermogram helps to detect changes
in the plantar temperature of the foot, which may lead to a higher risk of ulceration. However, in
diabetic patients, the distribution of plantar temperature does not follow a standard pattern, thereby
making it difficult to quantify the changes. The abnormal temperature distribution in infrared (IR)
foot thermogram images can be used for the early detection of diabetic foot before ulceration to
avoid complications. There is no machine learning-based technique reported in the literature to
classify these thermograms based on the severity of diabetic foot complications. This paper uses an
available labeled diabetic thermogram dataset and uses the k-mean clustering technique to cluster
the severity risk of diabetic foot ulcers using an unsupervised approach. Using the plantar foot
temperature, the new clustered dataset is verified by expert medical doctors in terms of risk for the
development of foot ulcers. The newly labeled dataset is then investigated in terms of robustness to
be classified by any machine learning network. Classical machine learning algorithms with feature
engineering and a convolutional neural network (CNN) with image-enhancement techniques are
investigated to provide the best-performing network in classifying thermograms based on severity. It
is found that the popular VGG 19 CNN model shows an accuracy, precision, sensitivity, F1-score, and
specificity of 95.08%, 95.08%, 95.09%, 95.08%, and 97.2%, respectively, in the stratification of severity.
A stacking classifier is proposed using extracted features of the thermogram, which is created using
the trained gradient boost classifier, XGBoost classifier, and random forest classifier. This provides
a comparable performance of 94.47%, 94.45%, 94.47%, 94.43%, and 93.25% for accuracy, precision,
sensitivity, F1-score, and specificity, respectively.

Keywords: diabetic foot; thermogram; thermal change index; machine learning; deep learning;
diabetic foot; k-mean clustering; classical machine learning; deep learning; non-invasive diagnosis
technique; diabetic foot severity classification

1. Introduction

Diabetes mellitus (DM) is a chronic medical condition resulting from high amounts of
sugar in the blood, which often leads to severe health complications such as heart-related
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diseases, kidney failure, blindness, and lower limb amputation [1]. Diabetes mellitus leads
to foot ulcers, which might not heal properly due to poor blood circulation [2]. This might
result in the spreading of infection and, eventually, can lead to amputation [3]. Amputations
of lower limbs are more common in diabetic individuals, and according to statistics, diabetic
foot lesions account for 25% of hospital admissions, and 40% of individuals presenting
with diabetic foot necessitate amputation [4]. The reoccurrence rate of diabetic foot ulcers
(DFUs) is also significantly high, with approximately 40% after the first year and 60%
within three years of occurrence [5]. In an advanced and developed country such as Qatar,
with more than 20% of the population being diabetic, it is reported that one of the most
common reasons for people being admitted to hospitals is diabetic foot complications [6].
Every year in the USA alone, over one million diabetic patients suffer an amputation
due to failure of recognizing and treating diabetic foot ulcers properly [7]. In Europe,
250,000 diabetic patients have their legs amputated with a death rate of 30% in one month
and 50% in a year [8]. A diabetic patient under a ‘high risk’ category needs regular check-
ups, hygienic personal care, and continuous expensive medication to avoid unwanted
consequences. Diabetic foot ulcers lead to increased healthcare costs, decreased quality of
life, infections, amputations, and death. Early detection and better DFU classification tools
would enable a correct diagnosis, effective treatment, and timely intervention to prevent
further consequences.

Self-diagnosis at home, i.e., self-care such as monitoring without medical assistance,
for early signs of ulcers could be useful in preventing severe after-effects. However, the
easiest monitoring technique, visual inspection, has its limitations, such as people with
obesity or visual impairment not being able to see their sites of ulcers easily. Some systems
that allow for easy monitoring are TeleDiaFoS [9] and Bludrop [10]. TeleDiaFoS is a
telemedicine system for the home telemonitoring and telecare of diabetic patients. In this
system, the affected foot is scanned using a specialized patient module, which is operated
with a simple two-button remote controller. While this method has shown great results
that are comparable to Visitrak [11] and Silhouette [12], it requires a specialized module
specifically for it. This might increase the cost. Bludrop has also introduced a patented
system that promises high accuracy, but their system also requires specialized hardware.
According to recent studies, a temperature monitoring system at home has been able to
spot 97% of diabetic foot ulcers well in advance [13–16]. It has also been confirmed that
patients going through the continuous monitoring of foot temperature had a low risk
of foot complications [17]. There have been studies that have tried to find the relation
between temperature and diabetes mortality [18,19], where they stressed that exposure
to high and low temperatures increases the chances of diabetic mortality, especially in
the aged population. Foltynski et al. in [20] concluded that ambient temperature does
influence foot temperature even during foot ulceration and, thus, it should be taken into
consideration, especially during the assessment for diabetic foot ulceration. As early as
the 1970s, skin-temperature monitoring emerged as a useful tool for identifying patients at
risk for ulceration. In the literature, the temperature monitoring approach uses the plantar
foot temperature asymmetry between both feet, which is referred to as an “asymmetry
analysis”, to find ulcers at an early stage [21]. A temperature difference of 2.22 ◦C (4 ◦F)
over at least two consecutive days could be used as a threshold to indicate the starting
time of preventive therapy for foot ulcers [14]. It has also been found that the system
correctly identified 97% of observed DFUs, with an average lead time of 37 days [22].
Therefore, a foot with an elevated temperature (>2.2 ◦C compared to the opposite foot) can
be considered to be “at-risk” of ulceration due to inflammation at the site of measurement.

Thermography is a popular technique used to examine thermal changes in a diabetic
foot [22]. This is a pain-free, no-touch, and non-invasive technique. Several studies have
proposed thermogram-based techniques for the study of diabetic feet [2,3,23], which include
the identification of characteristic patterns in infrared images and the measurement of
changes in thermal distribution. It was reported that the control group showed a specific
butterfly pattern [24], while the DM group showed a large variety of spatial patterns [25,26].
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It is possible to calculate and determine an estimation of thermal changes with respect
to one foot as a reference [27–30] using the contralateral comparison of temperatures.
However, if both feet have temperature changes, but neither of them has the butterfly
pattern, one of the feet cannot act as a reference. Asymmetry cannot be measured even if
there is a large temperature difference and identical spatial distributions present in both
feet. An alternative approach is to calculate the temperature change using a control group
butterfly pattern [31–33].

Machine learning (ML) techniques are gaining popularity in biomedical applications
in assisting medical experts in early diagnosis [34–36]. The authors conducted an extensive
investigation and developed a trained AdaBoost classifier, which achieved an F1-score of
97% in classifying diabetic and healthy patients using thermogram images [37]. However,
the temperature distribution of a diabetic foot does not have a specific spatial pattern and
it is, therefore, important to devise a method to distinguish the diabetic feet with different
temperature distributions that do not depend on a spatial pattern. The spatial distribution
may change after a while and the temperature changes are not significant in some cases.
Moreover, the detection of irregular temperature rises in the plantar region is important for
diabetic patients. The deep learning technique using thermogram images to classify the
control and diabetic patients is not a well-studied domain. Moreover, the severity grading
of diabetic foot is also lacking in the literature, which might help to establish an early
warning tool for diabetic foot ulcer detection. A simple, effective, and accurate machine
learning technique for diabetic foot severity stratification before foot ulcer development
using thermogram images would be very useful.

Several studies [31,32,38–45] have attempted to extract features that can be used to
identify the hot region in the plantar thermogram, which could be a sign of tissue damage
or inflammation. In all of the works, the plantar region was split into six areas and different
statistical features were extracted. In order to obtain various coefficients from texture and
entropy characteristics, Adam et al. in [43] employed a discrete wavelet transformation
(DWT) and higher-order spectra (HOS). In another work, the foot image was decomposed
using a double-density dual-tree complex wavelet transform (DD-DT-CWT), and many
features were retrieved from the decomposed images [42]. To categorize patients as normal
or in the ulcer group, Saminathan et al. in [41] segmented the plantar area into 11 regions
using region raising and retrieved texture characteristics. Maldonado et al. in [40] em-
ployed the DL approach to segment a visible foot picture, which was then used to segment
the plantar area of the same patient’s thermogram image to identify ulceration or necrosis
based on temperature differences. Hernandez et al. in [32] presented the thermal change
index (TCI) as a quantitative indicator for detecting thermal changes in the plantar region
of diabetic patients in comparison to a reference control group. They published a public
database of diabetic foot thermogram pictures and named it the “Plantar Thermogram
Database”, and used TCI to classify the participants into classes one to five based on the
spatial temperature distribution and temperature range. The authors conducted consider-
able research and produced a trained AdaBoost classifier that classified diabetic and healthy
patients using thermogram images with an F1-score of 97 percent [37]. Cruz-Vega et al.
in [38] proposed a deep learning technique to classify the plantar thermogram database
images in a non-convenient classification scheme, where the results were shown by taking
two classes at a time and then averaging the results after ten folds of a different combination
of two set classes. For the classification of class three and class four, a new diabetic foot
thermogram network (DFTNet) was proposed, with a sensitivity and accuracy of 0.9167
and 0.853, respectively. However, the ground-truth classification of the patients in this
database was performed using the TCI score, which takes the butterfly pattern of the
control group which is individually used to compare each affected foot. Therefore, the
classification entirely relies on the reliability of the TCI scoring technique, which was found
questionable in two different aspects. Firstly, it was observed that thermogram images with
a butterfly pattern even present in higher classes and the temperature distribution of severe
diabetic patients as reported in other articles were incorrectly classified to lower classes
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based on the TCI score. Secondly, the state-of-the-art deep learning techniques failed to
reliably classify the thermogram images into different classes, which were graded based
on the TCI score. If a database is publicly available, it is easy to re-evaluate the labels in
datasets if it is found that the labels are questionable [46]. Aradillas et al. [47] mentioned
scenarios where they found errors in the labeling of the training samples in databases and
proposed cross-validation techniques to remove them. Hu et al. [48] mentioned wrong
labels in face-recognition databases and proposed a training paradigm that would take the
dataset size into account and train itself by probabilistically removing some datasets that
could have been incorrectly labeled. Ding et al. [49] proposed a semi-supervised two-stage
approach in learning from noisy labels.

As per the above discussion, it can be seen that there is a lack of severity grading of the
risk of ulcer development. The authors, including a set of expert medical doctors working
in a diabetic foot clinic, stated that a foot plantar temperature distribution can help in the
early detection of a foot ulcer development [50–52]. The scientific hypothesis of this work is
whether machine learning approaches can be used to categorize thermograms into severity
classes of patients with their risk of ulcer development. This severity classification can
help in early treatment that could prevent diabetic foot ulcers. The improved performance
of a machine learning model could help in early detection from the convenience of the
patient’s home and reduce the burden on the healthcare systems, considering diabetic
foot complications are very common and lead to expensive follow-up and treatment
procedures throughout the world. All the above studies motivated the authors to carry out
an extensive investigation on dataset re-labeling, using an unsupervised machine learning
and pre-trained convolutional neural network (CNN) to extract features automatically from
thermogram images, reduce feature dimensionality using the principal component analysis
(PCA), and, finally, to classify thermograms using k-mean clustering [53] to revise the labels.
The new labels identified by the unsupervised clusters were fine-tuned by a pool of medical
doctors (MDs). Then, the authors investigated classical machine learning techniques using
feature engineering and 2D CNNs with image enhancement techniques on the images to
develop the best-performing classification network. The major contributions of this paper
can be stated as follows:

The revision of labels of the thermogram dataset for the diabetic severity grading of
a publicly available thermogram dataset using unsupervised machine learning (K-mean
clustering), which is fine-tuned by medical doctors (MDs).

The extraction and ranking of relevant features from temperature pixels for classifying
thermograms into diabetic severity groups.

The exploration of the effect of various image enhancement techniques on thermogram
images in improving the performance of 2D CNN models in diabetic severity classification.

This work is the first of its kind to propose a machine learning technique to classify
diabetic thermograms into different severity classes: mild, moderate, and severe.

The manuscript is organized into five sections, where Section 1 discusses the intro-
duction and the related works and key contributions, Section 2 discusses the detailed
methodology used in this work, and Sections 3 and 4 presents the results and discussion.
Finally, Section 5 presents the conclusions.

2. Methodology

The methodology adopted in the work is presented in Figure 1. In the study, the
thermogram was applied to a pre-trained CNN model to extract useful features, and then
the feature dimensionality was reduced using principal component analysis (PCA), and
the sparse feature space was then applied as an input to the k-mean clustering algorithm to
provide unsupervised revised classes, which was then verified by medical doctors. The
newly revised classes—mild, moderate, and severe—were then tested in terms of classifica-
tion performance by 2D CNN approach using different image enhancement techniques and
classical machine learning algorithms on the extracted features from the thermograms. The
following sections went over the dataset used in the study, the K-mean clustering method
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used for unsupervised clustering, and the investigation performed using (i) thermogram
images and 2D CNN networks and various image enhancement techniques, and (ii) classi-
cal machine learning algorithms with feature engineering (feature extraction, and feature
reduction) on the thermogram images. This section also went through the performance
indicators that were utilized to choose the best machine learning algorithm.
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2.1. Dataset

In this study, 167 foot-pair thermograms of DM (122) and control (45) subjects were
obtained from a public database from the General Hospital of the North, the General
Hospital of the South, the BIOCARE clinic, and the National Institute of Astrophysics,
Optics and Electronics (INAOE) for 3 years (from 2012 to 2014). All of these places were
located in the city of Puebla, Mexico. The dataset had demographic information such as
age (control group—27.76 ± 8.09; diabetic group—55.98 ± 10.57 years), gender, height,
and weight. The participants who participated in the study were asked to lay in the
supine position for 15 min to reach thermodynamic equilibrium to improve the accuracy
of temperature variation due to diabetic complications and had avoided prolonged sun
exposure, intense physical activity, and any effort that could affect blood pressure [32,39].
The participants were asked to remove their shoes and socks and clean their feet with a
damp towel.

The data collection performed during resting time was to avoid exerting any effort
that would impact the subjects’ blood pressure and, as a result, their plantar temperature.
The dataset included segmented thermograms of the medial plantar artery (MPA), lateral
plantar artery (LPA), medial calcaneal artery (MCA), and lateral calcaneal artery (LCA), a
concept suggested by Taylor and Palmer [54], in addition to the segmented foot thermo-
grams (Figure 2). Because it was utilized to compute local temperature distribution, the
information gained utilizing angiosomes was related not only to the damage caused by DM
in arteries, but also to the accompanying ulceration risk. The dataset, which is the largest
diabetic thermogram public dataset, also included pixelated temperature measurements
for complete feet and four angiosomes for both feet.
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2.2. K-Mean Clustering Unsupervised Classification

In this part of the investigation, the underlying features of the images extracted using
a pre-trained CNN model were used to cluster them in different groups using k-mean
clustering. K-mean is the most popular method for clustering data in an unsupervised
manner, and was proposed in 1967 [53]. K-mean is an unsupervised, non-deterministic,
numerical, iterative method of clustering. In k-mean, each cluster is represented by the
mean value of objects in the cluster. Here, we partitioned a set of n objects into k clusters,
so that intercluster similarity was low and intracluster similarity was high. The similarity
was measured in terms of the mean value of objects in a cluster. A similar concept was
used in our investigation and could be divided into 4 steps:

A. Pre-processing: Preparing the image so that it could be fed properly to the CNN
model.

B. Feature extraction: Using a pre-trained CNN model to extract the underlying features
from a specific layer.

C. Dimensionality reduction: Using principal component analysis (PCA) [55] to reduce
the noise in the feature space and reduce the dimensionality

D. Clustering: Using K-mean to cluster the images based on similar features.

In the pre-processing step, the image was first resized to 224 × 224 size. This was
because the CNN model available in Keras [56], pretrained on ImageNet Dataset [57],
required the input image to be of that size. Interpolation was applied to images before
resizing to allow for rescaling by a non-integer scaling factor. This step did not change the
properties of the image, and instead ensured that the image was formatted correctly.

For feature extraction in our study, the popular CNN network—VGG19 was used [58].
The VGG19 network developed by the Oxford Visual Geometry Group is a popular CNN for
computer vision tasks because of its high performance and relative simplicity. The detailed
framework, along with network architecture, can be seen in Figure 3. The pre-trained
VGG19 model was used to extract 4096 features from the ‘FC1’ layer from each thermogram
image. The selection of the network layer for feature extraction was a hyperparameter in
this experiment, and it was tuned to obtain the parameter that provided the best result,
which is a common exercise. We empirically found out that the FC1 layer gave us the best
result similar to other studies that investigated k-means clustering [59,60]. The number of
features needed to be reduced so that the k-mean algorithm did not overfit and it remained
robust to noise. PCA was used to transform and reduce the features such that only the
most important features were retained [51]. Figure 4 shows the cumulative variance versus
the number of components after PCA. It can be seen that the first 10 components provided
a cumulative variance of 0.5, and after adding 90 more components, the variance rose to
0.9. Thus, significant information was retained in the initial components. In our study, we



Sensors 2022, 22, 4249 7 of 23

used 45 components, which helped to achieve 75% cumulative variance, which is usually
an acceptable threshold in various k-mean clustering studies [61–64].
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The reduced and transformed features were separated into different groups using
k-mean clustering [65]. This is an unsupervised machine learning algorithm, which popu-
larized dealing with non-labeled data [66,67]. K-mean’s aim was to group data that were
similar in feature space. The algorithm flow can be seen in Algorithm 1 below. In our study,
max_iter was set to 500 and the break condition that happened only after line 4 was fulfilled
for all clusters.
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Algorithm 1: K-mean clustering

Input : Feature matrix, number of centroids (k)
Output : Trained model

1: for i← 1 to max_iter do
2: Assign each point with the centroid that it is closest to in latent space;

3:
Recalculate the position of the clusters (centroid_position) to be equal to the mean
position of all of its associated points;

4: if centroid_positioni == centroid_positioni−1 then
5: break;
6: i++;
7: end for

The algorithm aimed to reduce inertia. Inertia is the sum of squared Euclidean
distances from a centroid to its associated data points and can be seen mathematically in
Equation (1).

Inertia =
k

∑
j=1

n

∑
i=1
‖ x(j)

i − cj ‖ 2 (1)

where k is the total number of clusters, n is the number of samples associated with a cluster,
x is the position of the sample in the feature space, and c is the position of the centroid in
the feature space.

K-means++ [68] was used to initialize the centroid position. This method helped
to achieve good clustering performance and reduced computational complexity. In this
method, the first centroid was selected from the data with uniform probability. The other
centroids were selected from the data with a probability proportionate to their distance
from the nearest centroid. Hence, the initial centroids were close to the data points but
were far apart from each other.

As stated earlier, the labeled dataset provided by k-mean clustering was used for
the investigation using (i) transfer learning, image enhancement, and transfer learning
2D CNN and (ii) classical machine learning techniques and feature engineering on the
extracted features from the thermograms.

2.3. Two-Dimensional CNN-Based Classification

Two-dimensional CNN is widely used in biomedical applications for automatic and
early diagnosis of anomalies such as COVID-19 pneumonia, tuberculosis, and other dis-
eases [69,70]. A labeled dataset can be divided into training and testing datasets, with the
training dataset being used to train the network and the unseen testing dataset being used
to verify its performance. During the training process, a portion of the training dataset
is used for validation to avoid overfitting. Five-fold cross-validation was employed in
this study, which divided the dataset five-fold and found the performance metric for the
testing dataset five times. Each time, one of the folds was used as testing dataset, and the
remaining folds were used for training and validation. This approach helped in stating
results considering the complete dataset and making sure the test data were always unseen.
The final results were the overall and weighted result of the five folds; detailed performance
metric was shown later. As larger amount of data used for training always helps in ob-
taining better trained model, the authors used popular augmentation techniques (rotation
and translation) to increase the training data size. The rotation operation used for image
augmentation was performed by rotating the images in clockwise and counter-clockwise
directions with angles from 5 to 30 in increments of 2◦. Image translation was conducted by
translating images horizontally and vertically from −15 to 15%. The details of the training,
validation and testing dataset for 2D binary and severity classifier are shown in Table 1.
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Table 1. Details of the dataset used for training (with and without augmentation), validation, and
testing.

Classifier Dataset
Count of Diabetic

Thermograms/Cluster
Identified in the Paper

Training Dataset Details

Training
(60% of the Data)

Thermogram
/Fold

Augmented Train
Thermogram

/Fold

Validation
(20% of the Data)

Thermogram
/Fold

Test
(20 % of the

Data)
Image/Fold

Severity Contreras
et al. [39]

Mild 43 2040 3 11
Moderate 48 2244 4 11

Severe 93 1806 7 24

Transfer learning: As we had a limited dataset, which can be seen in Table 1, we could
make use of pre-trained models which were trained on a large ImageNet database [71].
These pre-trained networks were trained on very large ImageNet database [71], and had
good classification performance. These networks could be further trained on any other
classification problem, and this is known as transfer learning. Based on extensive lit-
erature review and previous performances [37], in this study, seven well-known pre-
trained deep CNN models were used for thermograms’ classification: ResNet18, ResNet50,
ResNet100 [72], DenseNet201 [72], InceptionV3 [73], VGG19 [58], and MobileNetV2 [74].

Image enhancement: It was found that image enhancement techniques such as adaptive
histogram equalization (AHE) [75] and gamma correction [70,76] can help the 2D CNN
in improving its classification performance for thermograms [37]. Some samples of the
image enhancement on DM and CG can be seen in Figure 5. The authors investigated
the improvement of performance made possible by the different image enhancement
techniques, and they were reported in the Experimental Results section.
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2.4. Classical Machine Learning Approach

This section discusses the features extracted for classical ML techniques, feature
reduction techniques, feature ranking techniques, machine learning classifiers, and the
extensive investigations performed using two approaches.
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2.4.1. Extracted Features and Feature Reduction

The authors looked through the literature carefully to summarize the features that are
used in clinical practice and machine learning approaches to analyze the foot thermograms
for diabetic foot diagnosis. The details of the final list of features identified by the authors
were mentioned in their previous work in [37] and also mentioned below:

Thermal Change Index (TCI) =
CGang − DMang

4
(2)

where CGang and DMang are the temperature values of the angiosome for the control group
and a DM subject, respectively.

Estimated Temperature (ET) =
aj−1Cj−1 + ajCj + aj+1Cj+1

aj−1 + aj + aj+1
(3)

Estimated Temperature Di f f erence (ETD) =| ETle f t Angiosome − ETright angiosome | (4)

Hot Spot Estimator (HSE) =| cl − ET | (5)

A histogram for the percentage of pixels in the thermogram (either complete foot or an-
giosomes) in the different classmark temperatures (C0 = 26.5 ◦C, C1 = 28.5 ◦C, C2 = 29.5 ◦C,
C3 = 30.5 ◦C, C4 = 31 ◦C, C5 = 32.5 ◦C, C6 = 33.5 ◦C, and C7 = 34.5 ◦C) was generated to
equate the parameters in Equations (3)–(5). The classmark temperature and the associ-
ated percentage of pixels in that region were denoted by the terms Cj and aj, respectively.
The percentage of pixels in the surrounding classmark temperatures Cj−1 and Cj+1 were
represented by the values aj−1 and aj+1, respectively.

In addition to these parameters, the authors formulated NRTclass j, which was the
number of pixels in the class j temperature range over the total number of non-zero
pixels, where class j could be class 1 to 5. This parameter is visually very important for
distinguishing the variation in the plantar temperature distribution, and was also reported
in the authors’ previous work [37].

Thus, TCI, highest temperature value, NTR (class 1–5), HSE, ET, ETD, mean, median,
SD of temperature for the distinct angiosomes, LPA, LCA, MPA, MCA, and full foot were
among the 37 features that could be employed for early diabetic foot identification. In their
prior study [37], the authors published the statistics of the data provided by the source [39].

By determining the association between the various features, the final list of features
was streamlined to eliminate redundant features. Features with a correlation of greater than
95% were deleted, improving overall performance by lowering the number of redundant
features and preventing overfitting [77,78].

2.4.2. Machine Learning Classifiers

The authors also explored different machine learning (ML) classifiers in this study
to compare the performances. The popular ML classifiers used in the study were mul-
tilayer perceptron (MLP) [79], support vector machine (SVM) [80], random forest [81],
extra tree [82], GradientBoost [83], logistic regression [84], K-nearest neighbor (KNN) [85],
XGBoost [86], AdaBoost [87], and linear discriminant analysis (LDA) [88].

2.4.3. Classical Machine Learning Approach 1: Optimal Combination of Feature Ranking,
Number of Features

After optimization, the dataset’s shortlisted parameters were evaluated to determine
decisions and the best features for severity classification. The multi-tree extreme gradient
boost (XGBoost) [89], random forest [90], extra tree [91], chi-squared [92], pearson cor-
relation coefficient [93], recursive feature elimination (RFE) [94], logistic regression [95],
and LightGBM [96] were used to identify three different sets of feature ranking. Rigorous
research determined the greatest combination of features that offered the best performance,
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and the best-performing top-ranked features from the different feature-ranking methodolo-
gies were used to identify the best combination of features.

2.4.4. Classical Machine Learning Approach 2: Stacking-Based Classification

We presented a stacking-based classifier that worked by merging numerous best-
performing classifiers created by different learning algorithms L1, . . . . . . , LN on a single
dataset S, which consisted of examples si = (xi, yi), i.e., pairs of feature vectors (xi) and
their classifications (yi). A collection of base-level classifiers M1, . . . . . . , MN was trained in
the first phase, where Mi = Li(S). A meta-level classifier was trained in the second step,
which integrated the outputs of the base-level classifiers (Figure 6).
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A cross-validation approach was used to build a training set for learning the meta-level
classifier. We applied each of the base-level learning algorithms to four folds of dataset for
five-fold cross-validation, leaving one fold for testing. A probability distribution over the
possible class values was predicted by each base-level classifier. When applied to example
x, the prediction of the base-level classifier M was a probability distribution:

PM(x) =
(

PM(c1|x), PM(c2|x), . . . . . . ., PM(cm|x)
)

, (6)

PM(ci|x) signifies the probability that example x belonged to class ci as estimated
(and predicted) by classifier M, where (c1, c2, . . . . . . , cm) is the set of possible class values.
Classifier M predicted the class cj with the highest class probability PM(

cj
∣∣x). The meta-

level characteristics are the probabilities predicted by each of the base-level classifiers
for each conceivable class, i.e., PMj(ci|x) for i = 1 . . . . . . m and j = 1 . . . . . . N, where
(c1, c2, . . . . . . , cm) is the set of possible class values and PM(ci|x) denotes:

2.5. Performance Evaluation and Classification Scheme

In all of our experiments, we reported sensitivity, specificity, precision, accuracy,
F1-score, and area under the curve (AUC) for five folds, as our evaluation metrics.

Sensitivity =
(TP)

(TP + FN)
(7)

Speci f icity =
(TN)

(TN + FP)
(8)

Precision =
(TP)

(TP + FP)
(9)

Accuracy =
TP + TN

(TP + FN) + (FP + TN)
(10)

F1 Score =
(2 ∗ Precision ∗ Sensitivity)
(Precision + Sensitivity)

(11)
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Here, TP, FP, TN, and FN are true positive, false positive, true negative, and False
negative. In any classification, TP is the number of correctly identified thermograms, TN
is the number of correctly identified thermograms of the other class, FP is the number
of thermograms misclassified and FN is the number of thermograms of the other class
misclassified. In this paper, weighted performance metric with 95% confidence interval
was reported for sensitivity, specificity, precision, and F1-score, and for the accuracy, the
overall accuracy was reported.

All the experiments were done on google colab platform and used GPU GeForce
RTX2070 Super which is manufactured by NVIDIA, it is located in Santa Clara, CA, USA.
The other software was Matlab from Mathworks, Natick, MA, USA.

3. Experimental Results

This section of the paper provides the results of the various important experiments of
the paper. The details are below:

3.1. K-Mean Clustering Unsupervised Classification

As stated in the previous section, k-mean clustering was used to classify the ther-
mogram images in an unsupervised fashion. This was conducted by using the features
extracted from the VGG-19 network, which were later reduced and transformed using
PCA. K-mean clustering was applied for various cluster numbers, i.e., k in Algorithm 1.
The optimal number of clusters would be equivalent to the correct severity class of the
thermograms, later verified by medical experts. The T-distributed stochastic neighbor
embedding (t-SNE) plots, which are very useful in visualizing the clustering of data in two
dimensions [97,98], for various clusters can be seen in Figure 7. The t-SNE is a dimension-
ality reduction method that is used to visualize high-dimensional data. In this work, the
high-dimensional feature space was visualized by reducing it to two-dimensions using
t-SNE, and then plotting it in a scatterplot. It was evident that there was a clear distinction
in clustering for cluster sizes two and three compared to a cluster size of five (original
classification performed using TCI scores, i.e., class one–class five). As stated in Figure 4,
45 components were used in the k-mean clustering.

The clusters found using the k-mean clustering approach were confirmed by experts
in the diabetic foot complication domain as thermograms of patients with mild, moderate,
and severe severity, and can be seen in Figure 8. The experts used their experience with
plantar foot temperature distribution amongst diabetic patients as reference for confirm-
ing the severity classification. The clusters found by k-mean clustering provided three
differentiable sets of thermograms. Plantar foot thermograms with slightly a deviated
butterfly pattern were labelled as mild by medical experts. The second set of plantar
foot thermograms where there was an abnormal and high-temperature distribution was
labelled as moderate by medical experts, as the temperature distributions were still not
very high (which is usually indicated by the red color distribution in thermograms) and
could indicate the possibility of ulcer development in the near future. The third set of
plantar foot thermograms had extreme high temperature (which is usually indicated by the
red color distribution in thermograms) throughout the foot, indicating the possibility of
ulcer development in the immediate future, and were labelled as severe. Such clustering
was not found in the original classification using the TCI-based method (i.e., class one–class
five). The clustering algorithm separated the images into three clusters. The mild class had
82 images, the moderate class had 84 images, and the severe class had 78 images.
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The output of the k-mean clustering could be further understood with the help of
the pie charts in Figure 9, which showcase the distribution of the classes in the different
clusters found by the k-mean clustering approach. It can be clearly seen that many class
one thermograms were very similar to class five thermogram (refer to the severe class in
the pie chart) and many class three, class four, and class five were similar to class one and
class two (refer to the mild class in the pie chart).
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3.2. Classical Machine Learning-Based Classification

Once the new labeled datasets were confirmed using the k-mean clustering approach
and verified by the medical experts, the highlighted correlated features from the 37 extracted
were reduced to 27 features—NRT (class one), NRT (class two), NRT (class three), NRT
(class four), NRT (class five), highest temperature, TCI, HSE, ETD, mean, and STD of MPA
angiosome; HSE, ET, ETD, mean, and STD of LPA angiosome; HSE, ET, ETD, mean, and
STD of LCA angiosome; HSE, ETD, and STD of MCA angiosome; HSE, ETD, and STD of
full feet. The heatmaps of the correlation matrix with all features and after removing the
highly correlated features are shown in Supplementary Figure S1.

3.2.1. Classical Machine Learning Approach 1: Optimal Combination of Feature Ranking,
Number of Features

In this experiment, 3 feature selection techniques with 10 machine learning models
were investigated with 27 optimized features to identify the best-combined results in
810 investigations. The best-performing combination is presented in Table 2. It can be
seen that the XGboost classifier with the random forest feature selection technique and the
top 25 features showed the best performance of 92.63% weighted F1-score in the diabetic
severity classification.
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Table 2. Performance metrics for the best-performing combinations using Approach 1.

Classifier Feature
Selection

# of
Feature Class Accuracy Precision Sensitivity F1-Score Specificity Inference

Time (ms)

XGBoost Random
Forest

25

Mild 92.59 ± 6.80 91.53 ± 7.23 94.74 ± 5.80 93.1 ± 6.58 91.94 ± 7.07

0.397
Moderate 92.59 ± 6.47 86.15 ± 8.53 88.89 ± 7.76 87.5 ± 8.17 93.89 ± 5.91

Severe 92.59 ± 4.61 96.64 ± 3.17 93.50 ± 4.34 95.04 ± 3.82 91.67 ± 4.86
Overall 92.59 ± 3.29 92.72 ± 3.26 92.59 ± 3.29 92.63 ± 3.28 92.31 ± 3.34

3.2.2. Classical Machine Learning Approach 2: Stacking-Based Classification

As stated earlier, we shortlisted the major contributing features from the 29 finalized
features after a feature reduction. The shortlisting was performed based on finding the
features which were categorized as highly correlated with the output based on all the
techniques—Pearson, Chi-square, RFE, logistic, random forest, and LightGBM. Table 3
showcases the features which had a total of more than four, and it was found that only
eight features (TCI, NRT (class four), NRT (class three), the mean of MPA, mean of LPA,
ET of LPA, mean of LCA, and highest temperature) were top ranked features by all the
techniques (Pearson, Chi-Square, RFE, logistics, random forest, and LightGBM). These eight
features were used to check the performance using different machine learning classifiers
and stacking performed on the top three classifiers, providing the best result, as can be
seen in Table 4. The stacking classifier created using the trained gradient boost classifier,
XGBoost classifier, and random forest classifier was the best-performing classifier, with
94.47%, 94.45%, 94.47%, 94.43%, and 93.25% for accuracy, precision, sensitivity, F1-score,
and specificity, respectively. The performance of this approach was better than Approach 1,
as shown in Table 2, with the only difference in the inference time, which was found more
in the stacking classifier, as expected.

Table 3. Shortlisted features based on the six feature ranking techniques.

Feature Pearson Chi-Square RFE Logistics Random Forest LightGBM Total
TCI

√ √ √ √ √ √
6

NRT (Class 4)
√ √ √ √ √ √

6
NRT (Class 3)

√ √ √ √ √ √
6

Mean of MPA
√ √ √ √ √ √

6
Mean of LPA

√ √ √ √ √ √
6

ET of LPA
√ √ √ √ √ √

6
Mean of LCA

√ √ √ √ √ √
6

Highest Temperature
√ √ √ √ √ √

6
NRT (Class 2)

√ √ √ √ √
5

NRT (Class 1)
√ √ √ √ √

5
ET of LCA

√ √ √ √ √
5

NRT (Class 5)
√ √ √ √

4
STD of MPA

√ √ √ √
4

ETD of MPA
√ √ √ √

4
STD of MCA

√ √ √ √
4

ETD of MCA
√ √ √ √

4
STD of LPA

√ √ √ √
4

HSE of LCA
√ √ √ √

4
ETD of Full foot

√ √ √ √
4
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Table 4. Class-wise performance metrics for the top 3 machine learning classifiers and the stacked
classifier.

Classifier Class Accuracy Precision Sensitivity F1-Score Specificity Inference
Time (ms)

Gradient Boost

Mild 92.01 ± 4.98 91.38 ± 5.15 92.98 ± 4.69 92.17 ± 4.93 91.71 ± 5.06

0.379
Moderate 92.01 ± 4.73 84.50 ± 6.32 86.51 ± 5.97 85.49 ± 6.15 93.92 ± 4.17

Severe 92.01 ± 3.37 96.30 ± 2.35 94.35 ± 2.87 95.32 ± 2.63 89.58 ± 3.80
Overall 92.01 ± 3.40 92.10 ± 3.38 92.01 ± 3.40 92.04 ± 3.40 91.20 ± 3.55

XGBoost

Mild 93.24 ± 4.61 90.08 ± 5.49 95.61 ± 3.76 92.77 ± 4.76 92.51 ± 4.83

0.336
Moderate 93.24 ± 4.38 89.26 ± 5.41 85.71 ± 6.11 87.45 ± 5.78 95.86 ± 3.48

Severe 93.24 ± 3.13 96.75 ± 2.21 95.97 ± 2.45 96.36 ± 2.33 90.42 ± 3.66
Overall 93.24 ± 3.15 93.26 ± 3.15 93.24 ± 3.15 93.22 ± 3.15 92.31 ± 3.34

Random Forest

Mild 91.80 ± 5.04 89.19 ± 5.7 86.84 ± 6.21 88.00 ± 5.97 93.32 ± 4.58

0.327
Moderate 91.80 ± 4.79 90.43 ± 5.14 82.54 ± 6.63 86.31 ± 6.00 95.03 ± 3.80

Severe 91.80 ± 3.41 93.51 ± 3.07 98.79 ± 1.36 96.08 ± 2.42 84.58 ± 4.49
Overall 91.80 ± 3.44 91.71 ± 3.46 91.80 ± 3.44 91.67 ± 3.47 89.32 ± 3.88

Stacking
(Gradient Boost +

XGBoost +
Random Forest)

Mild 94.47 ± 4.20 91.53 ± 5.11 94.74 ± 4.10 93.10 ± 4.65 94.39 ± 4.23
0.379 + 0.336

+ 0.327 =
1.042

Moderate 94.47 ± 3.99 92.44 ± 4.62 87.30 ± 5.81 89.80 ± 5.29 96.96 ± 3.00
Severe 94.47 ± 2.85 96.81 ± 2.19 97.98 ± 1.75 97.39 ± 1.98 90.83 ± 3.59
Overall 94.47 ± 2.87 94.45 ± 2.87 94.47 ± 2.87 94.43 ± 2.88 93.25 ± 3.15

3.3. Two-Dimensional CNN-Based Classification

As discussed earlier, the authors investigated state-of-the-art transfer learning
networks—ResNet18, ResNet50, VGG19, DenseNet201, InceptionV3, and MobileNetv2,
along with popular image enhancement techniques. The best-performing network and
enhancement types (e.g., AHE) were used for severity classification. Gamma correction did
not improve the performance, as it did not help in sharpening the distinguishing features.
Further discussion on the image enhancement techniques was provided in the Discussion
section. Independent foot images were used to check if the different pre-trained networks
could classify them into different severity levels. Table 5 reports the best-performing AHE,
with VGG19 showcasing the best performance. It is to be noted that the improved perfor-
mance came with a tradeoff of a slightly higher inference time. The increase in inference
time to classify the thermogram image was caused due to the addition of the image en-
hancement technique as a pre-processing step. However, the increase in inference time due
to this additional pre-processing step was only 1 ms, which would not affect even real-time
classification applications. It is more important to have improved performance than to
have a faster response. In our study, the image enhancement helped in the performance
with a 1 ms excess delay. The ROC curves for the original and AHE thermograms are also
shown in Figure 10.

Table 5. Two-dimensional CNN five-fold testing performance of severity classifier.

Enhancement Network Class Accuracy Precision Sensitivity F1-Score Specificity Inference
Time (ms)

Original VGG 19

Mild 98.77 ± 2.86 98.21 ± 3.44 96.49 ± 4.78 97.34 ± 4.18 99.47 ± 1.88

7.271
Moderate 94.67 ± 5.55 86.76 ± 8.37 93.65 ± 6.02 90.07 ± 7.39 95.03 ± 5.37

Severe 95.90 ± 3.49 97.50 ± 2.75 94.35 ± 4.06 95.90 ± 3.49 97.5 ± 2.75
Overall 94.76 ± 2.82 94.89 ± 2.76 94.67 ± 2.82 94.73 ± 2.80 97.32 ± 2.03

AHE VGG 19

Mild 98.77 ± 2.86 96.55 ± 4.74 98.25 ± 3.4 97.39 ± 4.14 98.93 ± 2.67

8.161
Moderate 95.08 ± 5.34 90.48 ± 7.25 90.48 ± 7.25 90.48 ± 7.25 96.69 ± 4.42

Severe 96.31 ± 3.32 96.75 ± 3.12 95.97 ± 3.46 96.36 ± 3.3 96.67 ± 3.16
Overall 95.08 ± 2.71 95.08 ± 2.71 95.09 ± 2.71 95.08 ± 2.71 97.2 ± 2.07

Gamma
Correction VGG 19

Mild 88.11 ± 8.40 90.91 ± 7.46 87.72 ± 8.52 89.29 ± 8.03 88.24 ± 8.36

9.651
Moderate 88.11 ± 7.99 75.71 ± 10.59 84.13 ± 9.02 79.70 ± 9.93 89.50 ± 7.57

Severe 88.11 ± 5.70 94.12 ± 4.14 90.32 ± 5.20 92.18 ± 4.73 85.83 ± 6.14
Overall 88.11 ± 4.06 88.62 ± 3.99 88.11 ± 4.06 88.28 ± 4.04 87.34 ± 4.17
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4. Discussion

As mentioned earlier, the authors conducted an extensive investigation and developed
a trained AdaBoost classifier to achieve an F1-score of 97% in classifying diabetic and
healthy patients using thermogram images [37]. The diabetic foot thermogram network
(DFTNet) proposed a deep learning technique to classify the images of the plantar thermo-
gram database in a non-convenient classification scheme, where the results were shown
by taking two classes at a time and then averaging the results after ten folds of a different
combination of two set classes [38]. As discussed earlier, the ground-truth classification of
the patients in this database was performed using the TCI score and entirely relied on the
reliability of the TCI scoring technique. Previous works and the lack of severity grading of
diabetic foot complications motivated this work.

Again, to the best of the author’s knowledge, no previous studies have investigated
image enhancement techniques for diabetic foot severity classification using thermograms
for 2D CNNs. The authors investigated different pre-trained networks and also found that
the image enhancement techniques helped in the classification performance. Figure 11
confirms the improved performance of the image enhancement technique using the F1-score
performance metric.

Even the classical machine learning approach provided better classification perfor-
mance using TCI, NRT (Class 4), NRT (Class 3), the mean of MPA, mean of LPA, ET of
LPA, mean of LCA, and highest temperature extracted features from the thermogram.
The stacked classifiers using popular gradient boost, XGBoost, and random forest classi-
fiers provided a comparable classification performance with a much lower inference time
(Tables 4 and 5). The following interesting results could be summarized:

AHE, due to its special equalization, helped with the severity classification using the
pre-trained VGG 19 network.

A deeper layer network such as DensetNet201 did not improve the performance for
image enhancement, which could be attributed to the simplistic nature of the thermogram
images, which did not require a very deep network to extract meaningful features.

The proposed features [37] and new classification technique helped in classifying the
diabetic thermograms into different severity groups.
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5. Conclusions

Diabetic foot problems are an issue that has great consequences not only in terms of
mortality, but also in terms of the expense needed for monitoring and controlling the disease.
Thus, early detection and severity classification can help in preventing such complications.
The deployment of machine learning in biomedical applications could help in preparing
easy-to-use solutions for early detection, not only for medical experts to save their time,
but also since such solutions can be useful for patients in a home setting. They can use it
in their homes, especially during pandemic times, where visits to healthcare services are
preferred to be limited, avoiding stress on the healthcare system. The authors in the paper
proposed a novel framework to cluster diabetic thermograms based on severity, which
was not present in the literature, and the ones that were available needed verification. The
trained 2D CNN and classical machine learning models could help in severity stratification
using foot thermograms, which can be captured using infrared (IR) cameras. To the best of
the author’s knowledge, this was the first study analyzing such a diabetic foot condition
severity classifier for the early and reliable stratification of diabetic foot. The machine
learning classifier performance was comparable to the 2D CNN performance using image
enhancement. In conclusion, such a system could be easily deployed as a web application,
and patients could benefit from remote health care using just an infrared camera and a
mobile application, which is a future direction of our research.
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