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ABSTRACT Radiographic images are commonly used to detect aseptic loosening of the hip implant in
patients with total hip replacement (THR) surgeries. These techniques of manual assessment by medical
professionals can suffer from the drawback of low accuracy, poor inter-observer reliability, and delays due to
the unavailability of experienced clinicians. Thus, the paper provides a reliable Deep Convolutional Neural
Networks (DCNNs) based novel stacking approach (HipXNet) for detecting loosening of the hip implant
using X-ray images. Two major investigations were done in this study. Firstly, the performance of four
different state-of-the-art object detection YOLOv5 models was evaluated to detect the implant region from
the hip X-ray images. Secondly, the study developed a stacking classifier using three different Convolutional
neural networks (CNN) models to classify aseptic hip loosening and compared the performance with eight
different state-of-the-art CNN networks. Moreover, one publicly accessible dataset with two sub-sets was
created for these two experiments, where 200 hip implant X-ray images were collected and annotated
by two expert radiologists for implant detection and 206 hip implant X-ray images were collected for
loosening detection. YOLOv5m model outperformed the other variants of YOLOv5 to detect the implant
region with the precision, recall, mean average precision (mAP)0.5, mAP0.5−0.95 of 100%, 100%, 100%, and
87.8%, respectively. Densenet201CNNmodel outperformed other CNNmodels with the accuracy, precision,
sensitivity, F1 score, and specificity of 94.66%, 94.66%, 94.66%, 94.66%, and 94.5%, respectively while
the stacking technique with Random Forest meta learner classifier produced the best performance with the
accuracy, precision, sensitivity, F1 score and specificity of 96.11%, 96.42%, 96.42%, 96.42%, and 96.74%
respectively for loosening detection. The reliability of the performance was confirmed by the popular Score-
CAM visualization. This study can help in the early and fast identification of hip implant loosening with the
help of simple X-ray images and computed aided diagnosis.

INDEX TERMS Hip implant, aseptic loosening, total hip replacement, convolutional neural network,
stacking technique.
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I. INTRODUCTION
It has been reported that about 20% of people with an
age higher than forty agonize because of bone degenerative
diseases [1] like osteoporosis which leads to a worldwide
request for procedures of total hip replacement (THR). Get-
ting involved with osteoporosis for the aged population is
inevitable. It is predicted that people aged 65 or higher are
more susceptible and the rate of disease for them will be
increased from 8.2% in 2018 to 17.6% in 2060 [2]. Functional
failure of the implant may be followed by revision surgery,
which is often painful and has a relatively low success rate [1],
[3]. The lifetime of implants depends on (i) the type of mate-
rials used for implants, (ii) surgical techniques implemented,
(iii) geometry of implant, (iv) patient’s physical activity, and
(v) patient’s age. Of major concern to implant recipients is the
life cycle of implants, which is currently limited to the order
of 10-15 years. This relatively short life can be attributed
to implant wear, loosening, and misalignment, which often
cause pain and discomfort to the patient. Wear and corro-
sion due to the contact of the implants with other parts and
body fluids generate debris. Soluble debris goes to blood
and secretes through urine, however, particular debris gets
accumulated in tissues, lymph, and bone marrow. This accu-
mulated debris has short terms and long terms effects such
as inflammation and cell tissue damage, hypersensitivity,
chromosomal abrasion, and toxicity, in which both short and
long-term effects result in revision surgery. Fibrous encapsu-
lation due to the non-bonding of implants with surrounding
tissues and inflammation (rejection) are the other reasons
for implant failure. Osteoporosis, osteoarthritis, and trauma
diseases are among the main reasons for replacements of
the joints.

Despite the revolution in total hip arthroplasty (THA) in
arthritis treatment, aseptic (mechanical) loosening always
leads to joint failure and THR surgery [4]. Implant fail-
ure can be identified with radiolucent changes surrounding
acetabular and femoral implants and progression of osteolysis
[5]. In a previously asymptomatic total hip arthroplasty, new
onset of pain could indicate implant loosening, infection,
or both. Aseptic loosening-related pain is often increased by
weight-bearing and range of motion, especially with internal
and exterior rotations. When loosening happens early after
surgery for no obvious reason, the infection should be inves-
tigated. Fever, chills, and restless pain are some of the symp-
toms thatmay accompany an infection. Unfortunately, aseptic
loosening does not always cause discomfort to the patient.
The loosening can be unpleasant with cemented acetabular
components, which are only symptomatic in 10% of instances
[6]. X-ray or computed tomography (CT) images of the hip
area are commonly used for detecting the aseptic loosening
of the hip implants by a medical expert as these can be
done easily and readily. The foundation of aseptic loosening
in radiological evaluation is the visual detection of radiolu-
cent areas around the bone-cement or bone-prosthesis inter-
face [7], [8]. Even in well-fixed implants immediately after
surgery, thin sclerotic lines can be visible, which might indi-

cate that the prosthesis is loose but in reality, it is not [8]. As a
result, loosening is determined by the extent of radiolucent
zones surrounding the implant and the change (progression)
in appearance over time [9], [10]. This results in frequent
hospital visits and prolonged patient follow-up to confirm the
diagnosis of mechanical loosening while increasing patient
morbidity and resource consumption. Aseptic loosening is
typically indicated by loosening more than 2 mm or increased
loosening on repeated radiographs [9], [10].

The human eye, especially on consecutive images, has a
remarkable capacity for recognizing complicated patterns.
The human aspect, on the other hand, has its own set of
issues. Individuals notice patterns in different ways and give
varying weights to different characteristics based on their
unique experiences, making it challenging to translate what
one practitioner sees visually into a set of ‘‘rules’’ that others
can follow. As a result, there is significant scope for inter-and
intra-subject variability and errors. Since the accurate quan-
tification of aseptic loosening and correct identification of
progression can reduce the consequence of the aseptic loosen-
ing, artificial intelligence (AI) based detection and quantifi-
cation have a high potential to avoid subjective variability and
error. Temmerman et al. [11] reported that X-ray images of
the hip implant can be used to diagnose cementless femoral
component loosening with the sensitivity and specificity of
50% and 89.5%, respectively. Inter-observer agreement was
found to be very low (intraclass correlation coefficient (ICC)
of −0.1). Chang et al. in [9] reported sensitivity and speci-
ficity of 83% and 82%, respectively. Temmerman et al. [12]
showed that plain radiography has a sensitivity of 85% and a
specificity of 78% for the diagnosis of cementless acetabular
component loosening. There was a moderate inter-observer
agreement, and an ICC of −0.53 was reported. Aseptic loos-
ening is even more difficult to diagnose early. Khalily and
Whiteside [13] showed that the presence of radiolucent lines
around porous-coated femoral stems was 100 percent sensi-
tive but only 55 percent specific for predicting the need for
future revision (8-12 years post-surgery) at a 2-year follow-
up. These variations in assessment have been questioned by
Smith et al. [14]. Alternative imaging modalities including
computed tomography, magnetic resonance imaging, ultra-
sound, bone scans, and arthrography can increase diagnostic
accuracy, but they comewith higher costs, somewith ionizing
radiation exposure, and the risk of contrast agents.

Recently, machine learning application for reliable auto-
matic detection of abnormalities have become popular
for COVID-19 detection using radiological images [15],
[16], diabetic foot complication detection [17], tuberculosis
detection [18] etc. In these applications, the machine has
performed comparable to that of professional surgeons and
radiologists, and even better than that of general practitioners
[19]. To the best of the authors’ knowledge, no previous work
has reported the use of object detectors to detect the implant
region from hip implant X-ray images so that the deep learn-
ing model can be trained to detect aseptic loosening accu-
rately. This study first focuses on the detection of the implant
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FIGURE 1. Methodology of the study.

area before loosening detection so that the implant region can
be precisely used to identify whether the hip implant is loose
or not. This study also reported saliency map visualization to
confirm that the deep learning models are learning from the
relevant region of interest for the classification. The major
contributions of this study are:
• Firstly, we developed the first publicly accessible dataset

of hip implant X-ray images with two sub-sets. One sub-
set is made up of hip area X-ray images (single leg or both
legs) with implant annotations and another sub-set is for hip
loosening detection, where two classes (Control and Aseptic
loosening) of X-ray images are available.
• We developed an object detection model based on

YOLOv5 architecture for the detection of the implant region
from the X-ray images and compared the performance with
different versions of the YOLOv5 network.
• Then, we developed a stacking classifier using three

different Convolutional neural networks (CNN) models to
classify aseptic hip loosening and compared the performance
with eight different state-of-the-art CNN networks.
• Finally, Score-CAM based visualization technique was

used to display the saliency map of the most contributory area
for loosening detection to confirm the reliability of themodel.

The rest of the paper is divided into the following sec-
tions: Section 2 describes the dataset, pre-processing steps,
and methodology of this study, while Section 3 provides the
results and Section 4 discussed the results of twomajor exper-
iments: implant localization and loosening detection from the
hip implant X-ray images. Finally, section 5 concludes the
study.

II. METHODOLOGY
The overall methodology of this study is illustrated using
Figure 1. Two main experiments were carried out in this

study. Firstly, four different versions of YOLOv5 models
(such as YOLOv5s, YOLOv5m, YOLOv5l, and YOLOv5x)
were investigated to detect the implant regions from the hip
implant X-ray images [20]. Secondly, the implant regions of
the X-ray images were used for aseptic loosening detection
using a novel stacking classifier and compared the perfor-
mance of this classifier with different eight CNN networks.
The stacking approach consists of two learners namely, base-
learners and meta-learners. We used three different CNN
models in base learners and the output of the base learners was
predicted by a machine learning classifier as a meta-learner.
Lastly, we evaluated the classification reliability using the
Score-CAM technique. The experiments were done using
PyTorch library with Python 3.7 on Intel R© Xeon R© CPU
E5-2697 v4 @ 2,30GHz and 64 GB RAM, with a 16 GB
NVIDIAGeForce GTX 1080 GPU. The section also provides
the details of the dataset used, pre-processing steps applied,
machine learning approaches adopted, performance metrics,
and the visualization technique used in the study.

A. DATASET DESCRIPTION
Although there is a large number of THR surgery taking place
all over the world, no publicly available hip implant X-ray
image database for implant localization and aseptic loosening
detection with control groups are present. This has moti-
vated the authors to create such a dataset. A Kaggle dataset
was created and made publicly available so that worldwide
researchers can develop an AI-based model for computer-
aided diagnosis and take benefit of this dataset. This dataset
is made up of two sub-sets: one was for implant localization
from the hip implant X-ray images, while the other one was
for hip arthroplasty loosening detection. A detailed descrip-
tion of the Dataset, dataset preparation, and experiments are
presented below.
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FIGURE 2. Sample images of implant detection dataset; (A) Hip implant
X-ray images, and (B) Hip implant with Implant annotation.

1) IMPLANT DETECTION SUB-SET
Authors have collected and indexed this first sub-set of X-ray
images of hip implants from different publicly available
online medical sources such as medicine journals (articles)
and radiology websites. All images should at least include a
stem and a cup of the hip implant, and the images have to be
X-ray images. These images were carefully checked to avoid
duplications and the clinical experts in the team evaluated
each of the images to make sure that the collected X-ray
images are for hip implants. For patients who had undergone
total hip arthroplasty surgery, an anteroposterior (AP) view of
the X-ray images for the patients with fixed (control group)
and loosened hip implants were collected, while the X-ray
images having a wire or plate attached with the implant
were excluded. Authors managed to collect 200 hip implant
X-ray images from published articles [10], [21]–[24], online
resources [25]–[28], and Radiopaedia [29] and are also avail-
able the complete dataset [30]. Since these images were col-
lected from different resources, different image resolutions,
sizes, and types of implants, loosening conditions are avail-
able in this sub-set. These collected images were manually
annotated by the team and finally validated by an orthope-
dic surgeon, who has more than 10 years of experience in
THR surgery. A sample of X-ray images and corresponding
implant annotations are shown in Figure 2.

2) ASEPTIC LOOSENING DETECTION SUB-SET
The original X-ray images (with single leg or dual legs)
were cropped to get the hip implant section (as shown in
Figure 2(i)(B)). There are 206 X-ray images with a single
hip implant is available in this dataset, where hip implant
images of both loose and control groups are included. The hip
implant images in this database had varying resolutions (256
to 1024 pixels). Out of 206 hip implant X-ray images in the
database, 112 images were from aseptic loosening patients
and 94 images were from control participants. Figure 3 shows
the example X-ray images of the implant detection dataset.

3) PREPROCESSING
In this study, two different experiments used different types of
deep learning models with different input image size require-

FIGURE 3. Sample hip implant X-ray images of loosening detection
dataset: (A) Control, and (B) Aseptic Loosening.

ments, and therefore the datasets were preprocessed to resize
the original X-Ray images (Implant Detection Sub-set). The
state-of-the-art object detection network, YOLOv5 [31] was
used for the implant detection task (first experiment), where
the input image size is resized to 640 × 640 pixels. For
the second experiment, popular pre-trained CNN models,
such as InceptionV3 [32]–[34], ResNet [35], DenseNet [36],
MobileNetV2 [37], and GoogleNet [38] were used. The
X-ray images were resized to 299× 299 for InceptionV3 and
224 × 224 for other CNN models. The images were normal-
ized using Z-score normalization [39] with themean and stan-
dard deviation of the entire image dataset. The pre-processing
also involved the dataset preparation for the machine learning
experiments which are mentioned below.

4) IMAGE AUGMENTATION AND TRAINING PARAMETERS
For five-fold cross-validation, the entire image set was
divided into 80 percent training and 20 percent testing sub-
sets, with 10% of the training dataset used for validation, with
the primary goal of avoiding overfitting. The training dataset
has to be balanced to avoid biased training which was done
with the help of the data augmentation approach, an effective
method to provide reliable results evident in many of the
authors’ recent publications [40]–[45]. Moreover, the image
dataset is small for training deep learning models. To balance
the training image classes and to make the training set larger
to avoid over-fitting [46], three popular image augmentation
techniques (rotation, scaling, and translation) were used. The
images were rotated in a clockwise and counterclockwise
direction with an angle of 5 to 10 degrees for image augmen-
tation. The scaling operation is the magnification or reduction
of the frame size of the image and 2.5% to 10% image magni-
fications were used in this work. Image translation was done
by translating images horizontally and vertically by 5% to
10%. The number of training, validation, and test images used
in implant localization and hip implant loosening detection
experiments are shown in Table 1.

Details of the training parameters for implant localiza-
tion and hip implant loosening detection experiments can
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TABLE 1. Number of images per class and per fold used for implant localization and hip implant loosening detection.

TABLE 2. Training parameters for implant localization and hip implant
loosening detection.

be seen in Table 2. The final receiver operating characteris-
tic (ROC) curve, confusion matrix, and evaluation matrices
were obtained by averaging the findings of five-fold cross-
validation.

B. MACHINE LEARNING MODELS
Two different experiments of this study used two different
machine learning modalities, which are explained below:

1) IMPLANT LOCALIZATION
In this study, we used a different version of YOLOv5 object
detection models to detect the implant region from the hip
implant X-ray images. YOLO is a state-of-the-art, real-time
object detector, and Yolov5 is developed as a continuous
improvement effort from Yolov1 to Yolov4 to achieve top
performances on two official object detection datasets: Pas-
cal VOC (visual object classes) [47] and Microsoft COCO
(common objects in context) [48]. There are three reasons
to choose Yolov5 (object detector) as the implant localizer
model.

Firstly, Yolov5 incorporated a cross-stage partial network
(CSPNet) [49] into Darknet, creating CSPDarknet as its
backbone. CSPNet solves the problems of repeated gradient
information in large-scale backbones and integrates the gra-
dient changes into the feature map, thereby decreasing the
parameters and FLOPS (floating-point operations per sec-
ond) of the model, which not only ensures the inference speed
and performance but also reduces the model size. Secondly,
the Yolov5 applied path aggregation network (PANet) [50]
as its neck to boost information flow. PANet adopts a new
feature pyramid network (FPN) structure with an enhanced
bottom-up path, which improves the propagation of low-level
features. At the same time, adaptive feature pooling, which
links the feature grid and all feature levels, is used to make
useful information in each feature level propagate directly
to the following subnetwork. PANet improves the utilization

FIGURE 4. Yolov5’s network architecture consists of three sections:
CSPDarknet as the backbone, PANet as the neck, and Yolo Layer as the
head.

of accurate localization signals in lower layers, which can
enhance the location accuracy of the object. Thirdly, the head
of Yolov5, namely the Yolo layer, generates 3 different sizes
(18 × 18, 36 × 36, 72 × 72) of feature maps to achieve
multi-scale [51] prediction, enabling the model to handle
small, medium, and large objects efficiently. The network
architecture of Yolov5 is shown in Figure 4.

In the network, the data is first supplied into CSPDarknet,
which extracts features, and then into PANet, which fuses
them. Finally, Yolo Layer outputs detection results (class,
score, location, size). According to YOLOv5, the confidence
score replicates whether a target object exists in a cell or not.
Also, it predicts the object accurately. The confidence score
is calculated by using the following Equation (1):

confidence score = P(To)× IoU (G,B) (1)

where P (To) is the prediction of the target, To and prediction
of the target will be in the range of (0,1); intersection over
union (IoU) is calculated betweenG andB, where G is ground
truth and B is the predicted box. The confidence score of each
class is projected by the leaky rectilinear unit (ReLu) and sig-
moid activation functions, and a threshold value identifies the
object. In YOLOv5, the Binary Cross-Entropy with Logistic
Loss (BCELL) function from the PyTorch library is used
for calculating the loss of class probability and target object
scores [52]. Moreover, an image contains multiple target
objects, and the objects might be of different shapes and sizes.
So, the target objectsmight be captured perfectly with a single
bounding box.
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Algorithm 1 : Non-Max Suppression
1: procedure NMS (B, c)
2: Bnms ← ∅ Initialize empty set
3: for bi ∈ B do => Itarate over all the boxes
4: discard ← False
5: for bj ∈ B do =>
Start another loop to compare with b (i)
6: if the same (bi, bj ) > γnms then
If both boxes having same IOU
7: if score (c, bj ) > score (c, bi) then
Compare the scores
8: discard ← True
9: if not discard then
10: Bnms ← Bnms ∪ bi
11: return Bnms

The YOLOv5 object detection model creates more than
one overlapping bounding box (BB) in a single image to
detect target objects but needs to show only a single bounding
box for each object in an image. Thus, the Non-Maximum
Suppression (NMS) technique is applied to eliminate the
overlapping problem, which selects a single BB out of more
than one overlapping BB to identify the objects in an image.
The NMS method removes the redundant identifications and
determines the bestmatch for ending identification. TheNMS
technique is presented in Algorithm 1.

2) ASEPTIC LOOSENING DETECTION
In this study, we used a stacking approach for hip implant
loosening detection using implant X-ray images where the
eight state-of-the-art CNN models such as i) Resnet18
[34], ii) Resnet50 [34], iii) Resnet101 [34], iv) Incep-
tionV3 [34], v) DenseNet161 [53], vi) DenseNet201 [53],
vii) Mobilenetv2 [37], and viii) Googlenet [54] was investi-
gated. Then the stacking approach was deployed with the top-
performing three models as base learners and the predictions
of thesemodels were used to train ten differentmachine learn-
ing classifiers as meta learners to make the final decision.

If a single dataset A, which consists of input vectors (xi)
and their classification score (yi). At first, a set of base-level
classifiers M1, . . . . . . ,Mp is trained and the prediction of
these base learners is used to train the meta-level classifier
M f as illustrated in Figure 5.

We used five-fold cross-validation to generate a training
set for themeta-level classifier. Among these folds, base-level
classifiers were used on four folds, leaving one fold for test-
ing. Each base-level classifier produces a probability value
for the possible classes. Thus, using input x, a probability
distribution is created using the predictions of the base-level
classifier set, M:

PM (x) =
(
PM (c1 | x) ,PM (c2 | x) , . . . . . . .,PM (cn | x)

)
(2)

where (c1, c2, . . . . . . , cn) is the set of possible class values n,
m denotes the number of subjects and PM (ci | x) denotes the
probability that example, x belongs to a class cj as estimated

(and predicted) by the classifier,M in Equation (2). The class
ci with the highest-class probability PM j (ci | x) is predicted
by a classifier,M . The metalevel classifierM f , and attributes
are thus the probabilities predicted for each possible class
by each of the base-level classifiers, i.e., PM j (ci | x) for i =
1, . . . ., n and j = 1, . . . ., p where n, p denotes the number of
classes and the number of base learners. The pseudo-code for
the stacking approach is shown in Algorithm 2.

Algorithm 2 : Stacking Technique
Input: training data A = {xi, yi}

m
i=1c

Output: a stacking classifierM f

1: Step 1: learn base-level classifiers
2: for t=1 to T do
3: learn ht based on A
4: end for
5: Step 2: construct new data set of predictions
6: for i =1 to m do
7: Ah =

{
x′i, yi

}
, where x′i = {h1 (xi) , . . . ..,hT (xi)

8: end for
9: Step 3: learn a meta-classifier

10: learnM f based on Ah
11: returnM f

C. PERFORMANCE METRICS
1) IMPLANT LOCALIZATION
The performance of the YOLOv5 models in localizing the
implant area in the hip implant X-ray images is evaluated
by the different evaluation metrics such as (i) Precision (P),
(ii) Recall (R), and (iii) Mean average precision (mAP). Pre-
cision represents the ability of a model to detect only the rela-
tive objects. On the other hand, recall represents the ability of
a model to find out all the relevant cases. The mAP for object
detection is the mean of the average precision calculated for
all the classes. The intersection over union (IoU) is given by
the ratio of the area of intersection and the area of the union of
the predicted bounding box and ground truth bounding box.
Traditionally mAP at IoU= 0.5 is used to measure the object
detection performancewhilemAP at IoU= 0.5-0.95 is a good
performance metric. Here, mAP0.5-0.95 represents the mean
average starting at IoU= 0.5 and stepping in 0.05 up to IoU=
0.95. As a result, ten distinct IoUs were calculated to compute
the AP threshold. The average is used to provide a single
value that rewards better localization detection.

The evaluation matrices are calculated by using the follow-
ing Equations (3-5):

Recall (R) =
TP

TP+ FN
(3)

Precision (P) =
TP

TP+ FP
(4)

mAP =
∑m

I=1
P (i)×1R(i) (5)

where True Positive (TP) is the number of correctly identi-
fied implant regions, False Positive (FP) is the number of
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FIGURE 5. Stacking model architecture.

identified implant regions that are not implanted, and False
Negative (FN) is the number of implant regions that are
incorrectly identified. P(i) is the precision, and 1R(i) is the
change in recall from the ith detection.

2) ASEPTIC LOOSENING DETECTION
The performance of different CNN models and machine
learning classifiers was evaluated using five performance
metrics: Overall accuracy, weighted precision, weighted sen-
sitivity or recall, weighted F1-score, and weighted specificity
using Equations (6-10). As various classes have varying num-
bers of images, the networks were compared using a per-
class weighted performance metric and overall accuracy. The
area under the curve (AUC) was also used to assess the
performance.

Accuracy =
(TP+ TN )

(TP+ FN )+ (FP+ TN )
(6)

Precision =
(TP)

(TP+ FP)
(7)

Sensitivity =
(TP)

(TP+ FN )
(8)

F1−Score =
(2 ∗ TP)

(2 ∗ TP+ FN + FP)
(9)

Specificity =
(TN )

(FP+ TN )
(10)

Here, true positive (TP), true negative (TN), false positive
(FP), and false-negative (FN) were used to denote the number
of loose hip implant X-ray images were identified as loose,
the number of control group hip implant X-rays were iden-
tified as control, the number of control group hip implant
X-rays incorrectly identified as loose and the number of loose
hip implant X-ray images incorrectly identified as control,
respectively. We report the weighted performance metric,
with a 95 % confidence interval, for Sensitivity, Specificity,
Precision, and F1-Score, and the overall accuracy with a 95%
confidence interval for the accuracy.

FIGURE 6. Score-CAM visualization of some loose hip implant X-ray
images, to demonstrate the region where the CNN model is mostly
making decisions from.

D. VISUALIZATION TECHNIQUES
With the emergence of visualization tools, there has been
a rise in curiosity about how CNN works and the reason-
ing underlying its decision-making. Visualization approaches
improve the visual portrayal of the decision-making pro-
cess of CNNs. These also improve the model’s transparency
by showing the rationale behind the inference in a way
that humans can understand, hence enhancing trust in the
CNNs’ outputs. Score-CAMwas chosen for this investigation
because of its promising performance in recent computer
vision medical problems [18], [55]. Figure 6 shows a Score-
CAM visualization that highlights the regions that CNN
considers when making decisions. By confirming decision-
making from important regions of the images, these visual-
izations serve to increase trust in the reliability of deep layer
networks.

III. RESULTS
This section discusses the results of the implant localization
and aseptic loosening detection experiments along with the
Score-CAM visualization to better interpret the model per-
formance.

A. IMPLANT LOCALIZATION
We investigated different versions of YoloV5 object detec-
tion models such as YOLOv5s, YOLOv5m, YOLOv5l, and
YOLOv5x to detect implant regions from hip implant X-ray
images. Firstly, the precision, recall and mean average pre-
cision performance metrics with respect to epochs of four
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FIGURE 7. F1 score performance curve for implant detection from hip
implant X-ray image with respect to confidence score using different
versions of the YOLOv5 model.

versions of the YOLOv5 model are investigated. Precision
is the ability of a model to detect only the implant objects,
whereas recall or sensitivity measures the number of objects
correctly detect as an implant. We also investigated the mean
average precision performance with IoU = 0.5, which is a
traditional performance metric to measure the performance
of object detection models, as well as investigated mAP with
IoU 0.5 to 0.95. In this study, all versions of the YOLOv5
object detection models performed very well with 100%
precision, recall, and mAP0.5. Table 3 shows the comparison
of different versions of YOLOv5 model performances for
implant detection using hip implant X-ray images.

Although all versions of YOLOv5 object detection models
performed with 100% precision and recall, using mAP0.5-
0.95 it is apparent that YOLOv5m performed slightly better
than other versions of YOLOv5 (YOLOv5s, YOLOv5l, and
YOLOv5x). The mean average precision mAP0.5-0.95 for
YOLOv5s, YOLOv5m, YOLOv5l, and YOLOv5x is 86.5%,
87.8%, 86.5%, and 84.9% respectively. The F1 score per-
formance curve is depicted in Figure 7. The F1 score is
calculated based on precision and recall, where it shows that
F1 scores performance curve for implant detection from hip
implant X-ray image with respect to confidence score using
different versions of the YOLOv5 model. It is also evident
in Figure 7 that the YOLOv5m version outperformed other
versions of YOLOv5 in terms of implant detection using hip
implant X-ray images.

Figure 8 shows that different versions of YOLOv5 mod-
els trained on the hip implant X-ray dataset can detect the
implant areas of the X-ray images very reliably. However,
the YOLOv5m was used for the remaining experiment as it
outperformed other models. Some sample test images with
ground truth bounding boxes and predicted bounding boxes
are shown in Figure 8, where it is clearly seen that ground
truth and predicted bounding boxes for implant detection are
almost overlapping each other.

FIGURE 8. Sample test images using the best performing implant
localization model, YOLOv5m.

B. ASEPTIC LOOSENING DETECTION
This section describes the performance of the different clas-
sification networks in detecting control and loose hip implant
X-ray images. As mentioned earlier, eight different state-of-
the-art CNN networks and a stacking approach with the top-
performing networks were investigated to identify loosening
of the hip implants using X-ray images. The comparative per-
formance of different CNNs for these classification schemes
is shown in Table 2 (A).

The best classification accuracy, precision, sensitivity, F1
score, and specificity for loosening detectionwere found to be
94.66%, 94.66%, 94.66%, 94.66%, and 94.5%, respectively
using the Densenet201 CNN model.

For binary classification (control vs loosening) using hip
implant X-ray images, the top-performing three CNN mod-
els were DenseNet201, Resnet50, Resnet18 with an over-
all accuracy of 94.66%, 93.69%, and 91.75%, respectively.
We used these three top-performing models as base learn-
ers in the stacking approach, where the predictions of these
three models were used as input to another meta learner. Ten
different machine learning classifiers were investigated as
meta learners and we found Random Forest classifier out-
performed other classifiers with accuracy, precision, sensi-
tivity, F-1 score, and specificity of 96.11%, 96.42%, 96.42%,
96.42%, and 96.74%, respectively for loosening detection
(Table 4(B)).

Figure 9 shows the area under the curve (AUC)/receiver-
operating characteristics (ROC) curve (also known as
AUROC (area under the receiver operating characteristics))
for loosening detection using hip implant X-ray images,
which is one of the most important evaluation metrics for
checking any CNN model’s performance. This is apparent
from the ROC curves that the DenseNet201 CNN model
outperformed other networks for classification with 97.68%
AUC in Figure 9(A). In the stacking model, Random Forest
classifiers were the best performer as meta learners with
98.94% AUC which is shown in Figure 9(B).
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TABLE 3. Comparison of different versions of YOLOv5 model performances for implant detection using hip implant X-ray images.

TABLE 4. Comparison of different CNN performances for binary classification for (A) different CNN models and (B) stacking machine learning classifiers
(A) different CNN models and (B) stacking machine learning classifiers.

Figure 10 shows the confusion matrix for the best perform-
ing CNN model and the stacking model with Random Forest
meta learner for loosening detection using hip implant X-ray
images.

Figure 10(A) shows the confusion matrix of the best per-
forming CNNmodel (DenseNet201) and Figure 10(B) shows
the confusion matrix of the best performing stacking CNN

model (with Random Forest classifier as a meta learner).
The best performing DenseNet201 network failed to detect
5 out of 112 loose hip implant X-ray images while incorrectly
detected 6 control group hip implant X-ray images as loose
whereas 108 out of 112 loose hip implant X-ray images
were correctly detected as loose and 90 out of 94 control
hip implant X-ray images were correctly identified as control
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FIGURE 9. ROC curve for Control and Loose hip implant classification using (A) different CNN networks and (B) stacking meta
learner classifiers.

FIGURE 10. Confusion matrix for Control and Loose hip implant classification using (A) the best performing CNN model, (B) the
best performing stacking CNN model (with Random Forest meta learner).

images with stacking CNN model. Thus, this is evident
that the stacking CNN model with Random Forest classifier
as a meta learner outperformed other state-of-the-art CNN
models.

IV. DISCUSSION
The study carried out two major experiments: i) four different
object detection models were investigated in detecting the
implant from the hip implant X-ray images and ii) eight
different CNNmodels and stacking models were investigated
to classify the loosening in the hip implant X-ray images. The
performance of the YOLOv5m model exceeded other mod-
els in detecting the implant region from hip implant X-ray
images, with precision, recall, mAP0.5, mAP0.5−0.95 of 100%,
100%, 100%, and 87.8%, respectively. For different CNN
models, the Densenet201model outperformed others with the

accuracy, precision, sensitivity, F1-score, and specificity of
94.66%, 94.66%, 94.66%, 94.66%, and 94.5%, respectively.
However, the stacking CNN approach with Random Forest
meta learner classifier produced the best performance with
the accuracy, precision, sensitivity, F1-score, and specificity
of 96.11%, 96.42%, 96.42%, 96.42%, and 96.74%, respec-
tively for loosening detection. Moreover, it was also con-
firmed that the stacking approach can improve the detection
accuracy by around 2%.

To the best of the author’s knowledge, this kind of extensive
investigation was not done before for hip or knee implant
loosening detection and the authors have compared this state-
of-the-art performance with similar works on the hip implant
(but on a very small dataset) and on the knee implant in
Table 5. In a previous study [56], the loosening classification
sensitivity has been reported to be 94% but they used a
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TABLE 5. Comparison of different CNN performances for binary classification for (A) different CNN models and (B) stacking machine learning classifiers
comparison of the findings of this study with recent similar studies.

FIGURE 11. Score-CAM visualization of (A) correctly classified, and (B) misclassified loose hip implant X-ray images. Note: Black
arrows indicate the loosening regions of the hip implant X-ray images.

database consisting of a small number (only 40) of X-ray
images. In [57], a larger private dataset was used for knee
implant loosening detection without object detection, where
the reported model has shown 88.3% accuracy. However,
in this study, a dataset of 200 X-ray images (labeled by 10+
years experienced as a radiologist) was used and a better
result is obtained compared to both studies. Moreover, the
datasets used by the other studies were not made public
to evaluate the performance of our model on that dataset
while we have made our dataset public so that interested
researchers can replicate our results easily. In addition, the
implant localization approach has helped to improve loosen-
ing classification/detection performance with a novel stack-
ing CNN model, making the complete approach more robust
and versatile, with a detection sensitivity of 96.42 percent.

Score-CAM-based heat maps were generated for X-ray
images to see the saliency maps of the network’s predic-
tion. Figure 11(A) depicts the Score-CAM visualization of

correctly identified loose hip implant X-ray images, while
Figure 11(B) depicts the same for misclassified loose hip
implant X-rays using the best performing model. Moreover,
it is visible that the model is deciding on the loosening area of
the hip implant X-ray and black arrows indicate the loosening
region in the hip implant X-ray images. It is noticed that
for the misclassified images, the model is taking a decision
from the non-relevant areas (loosening) and it is also vis-
ible that most of the misclassified images are in the early
stage of loosening. This heat map or saliency map increases
end-user confidence in the network’s output, which makes
the deep learning model more explainable and reliable as a
computer-aided diagnostic tool.

V. CONCLUSION
This study used a stacking approach with deep Convolu-
tional Neural Networks to detect aseptic loosening in hip
implant radiographs automatically. Moreover, this research
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looked into two main important experiments. Firstly, the
performance of four different object detection models was
evaluated to localize the implant region from the hip implant
X-ray images. YOLOv5m model outperformed other models
to detect the implant region from the hip implant X-ray
images with the precision, recall, mAP0.5, mAP0.5-0.95 of
100%, 100%, 100%, and 87.8% respectively. Secondly, the
performance of stacking models was evaluated to classify the
loosening in the hip implant X-ray images and compared with
eight different state-of-the-art CNN models. Densenet201
CNN model outperformed other CNN models with the
accuracy, precision, sensitivity, F1-score, and specificity of
94.66%, 94.66%, 94.66%, 94.66%, and 94.5%, respectively
whereas the stacking CNN approach with Random Forest
meta learner classifier produced the best performance with
the accuracy, precision, sensitivity, F1-score and specificity
of 96.11%, 96.42%, 96.42%, 96.42%, and 96.74%, respec-
tively for loosening detection. It was also confirmed that
the stacking approach can improve the detection accuracy
by around 2%. The Score-CAM visualization output demon-
strates that the loosening detection decision of the model
was done based on the relevant region of the hip implant
X-ray images when the model correctly detect the loosening.
The performance of the study could be improved with a
larger dataset to increase the robustness of the model, but as
mentioned earlier publically available dataset is not accessi-
ble, thus the future study would try to have a larger dataset
with severity labeling (mild, moderate, and severe aseptic
loosening hip implant X-ray) by the experts, which can help
in following-up the disease progression and allow clinicians
to apply the intervention to delay the revision surgery require-
ment. It can be concluded that the newly developed AI-based
aseptic loosening system can aid in diagnosis in the pres-
ence/absence of an expert radiologist, which can help in
reducing a large number of revision surgeries, which might
have happened due to delayed or improper diagnosis.
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