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ABSTRACT Diabetic sensorimotor polyneuropathy (DSPN) is an early indicator for non-healing diabetic
wounds and diabetic foot ulcers, which account for one of the most common complications of diabetes,
leading to increased healthcare cost, decreased quality of life, infections, amputations, and death. Early
detection and intelligent classification tools for DSPN can allow correct diagnosis and treatment of
painful diabetic neuropathy as well as a timely intervention to prevent foot ulceration, amputation, and
other diabetic complications. Hence, to successfully mitigate the prevalence of DSPN, this study aims to
depict an intelligent DSPN severity classifier using Adaptive Neuro Fuzzy Inference System (ANFIS).
Michigan Neuropathy Screening Instrumentation (MNSI) was considered as the input for identification
and stratification of DSPN. Patients have been classified into four classes: Absent, Mild, Moderate, and
Severe. The model accuracy was validated with the results from different machine learning algorithms. The
Accuracy, sensitivity, and specificity of the ANFIS model are 91.17£1.18%, 92+2.26%, 96.72+0.93%,
respectively. The proposed classifier was used to classify the Epidemiology of Diabetes Interventions and
Complications (EDIC) clinical trial patients and observed that in the first, eighth, and nineteenth EDIC years
18.31%, 39.45%, and 59.14% patients had different levels of DSPN. This study also investigates the changes
in muscle activity during gait from three different lower limb muscles (vastus lateralis (VL), tibialis anterior
(TA), and gastrocnemius medialis (GM)) electromyography (EMG) of DSPN patients with different severity
levels classified by the proposed classifier and observed that VL and GM muscles show an increase in delay
for activation peak and decrease in peak magnitude during gait with the progression of DSPN severity. Based
on this observation, the ANFIS model was trained using the extracted EMG features for DSPN severity
stratification and showed promising results. Our proposed ANFIS based severity classifier using both MNSI
variables and EMG features will help health professionals to diagnose and stratify DSPN severity based on
both signs and symptoms and electrophysiological changes due to DSPN.

INDEX TERMS ANFIS, DSPN, diabetic neuropathy, fuzzy system, classifier.

I. INTRODUCTION

According to the 9th International Diabetic Federation Dia-
betes Atlas, 463 million people worldwide were affected
by diabetes in 2019. Diabetic sensorimotor polyneuropathy
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(DSPN) is the most common form of diabetic neuropathy,
involving signs and symptoms of impairment of the periph-
eral nerve functions which affects over 50% of diabetic
patients [1]-[4]. DSPN has many long-term complications;
especially in lower limbs and is crucial for cases like foot
ulceration and amputation [5]. According to the American
Diabetic Association (ADA), position statement [5], almost
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50% of DSPN patients show no symptoms of such diseases.
Thus, early detection is essential in order to prevent long-term
complications and foot injuries; and to improve the quality of
the healthcare facilities for diabetic patients.

For the assessment of DSPN, a large number of special-
ized screening and diagnostic tests are available, which can
be easily deployed [5], [6]. In most cases, the neurologi-
cal history, physical examination, and electrophysiological
tests are combined for accurate conventional assessment of
DSPN [5]-[7]. Some of the popular clinical diagnostic meth-
ods for DSPN are- Vibration sensation test using a 128 Hz
tuning fork [5], Monofilament test [S], Quantitative sensory
testing (QST) [8], Skin biopsy [9], Nerve Conduction Studies
(NCS) [10], Corneal confocal microscopy (CCM) [11], Elec-
tromyography (EMG) [12], etc. Although many screening
and clinical tests are available for DSPN, most of them are
expensive, painful, and require specialized personnel and
equipment. Some of them are invasive methods, and some
produce inconsistent results even after using similar meth-
ods. Present DSPN measure lacks uniformity and agree-
ment in clinical research, to correctly identify the patients’
severity [5].

Over the years, researchers tried to introduce intelligent
systems in medical fields for the enhancement of the health
care systems [13]-[16]. Intelligent diagnosis system for
DSPN becoming a focus of interest for researchers due to
its effect on the long term and severe complications. CCM
is a new rapid, regenerable, and non-invasive method for
accurately detecting DSPN from the in-vivo corneal images.
Researches are being emphasized to automated CCM systems
for accurate and reproducible identification of DSPN using
artificial intelligence [17]-[19]. However, this method is
expensive, requires specialized equipment and personals, and
is not available in regular clinics. In the initial stage, DSPN
is diagnosed using different screening methods like neuropa-
thy disability score (NDS), Michigan neuropathy screening
instrumentation (MNSI), etc., based on the symptom and
signs of the patients [6]. These tests are used for assessing
pain, touch, vibration, and temperature sensation loss due
to DSPN [6]. For reliable, accurate, reproducible diagnosis
using these scoring methods for DSPN, intelligent systems
can be a potential solution. In the existing literature, the Fuzzy
Inference System (FIS) is the most commonly used system
for screening and classifying the severity of DSPN [20]-[22].
As the fuzzy system works based on if-then rules, there is
always a chance to have a human error in defining the rules
for identifying DSPN, thus the accuracy of the classification
is questionable. One study has been conducted to identify
the different levels of DSPN severity by Kazemi et al. [23]
using a multicategory support vector machine with NDS as
the input of their model. However, the model performance
accuracy was only 76%.

In such a scenario, the adaptive neuro-fuzzy inference sys-
tem (ANFIS); which has learning capability incorporating the
benefits of fuzzy inference system to approximate nonlinear
functions, can be an advantageous method for dealing with
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the nonlinear characteristics of the DSPN. ANFIS has been
chosen as a universal estimator due to its dual applicability
to predict the future condition by utilizing a present dataset
and approximation of non-linear characteristics by setting
the rules of the Fuzzy system [24]. Due to this advantage
of ANFIS, it is becoming very popular in decision-making
and prediction systems for biomedical applications [24]-[27].
This study states an intelligent severity classifier for DSPN
using ANFIS. A combination of clinical history and exami-
nation are highly useful for the clinical diagnosis of DSPN.
Michigan Neuropathy Screening Instrumentation (MNSI) is a
validated screening method [5]. According to ADA position
statement [5] for the screening of DSPN, history question-
naire, pinprick sensation for small fiber function and vibra-
tion sensation for large fiber function with the addition of
the 10-g monofilament tests to access the risk of amputation
and ulceration should be included. MNSI is a very simple,
inexpensive, and most commonly used screening method for
DSPN, which does not require specialized personnel. More-
over, it can be carried out in any regular healthcare system.
MNSI is the most widely used questionnaire for screening of
DSPN [28], [20]. MNSI was used as inputs for training the
DSPN severity classifier system using the ANFIS algorithm.
Feldman et al. [28] indicated that MNSI can play an impor-
tant role in early diagnosis and staging of diabetic neuropathy
and is highly correlated with NDS.

Diabetic neuropathy denotes the progressive deprivation
of sensitivity in the somatosensory system; especially in
the lower limbs, which leads to dysfunctional gait dynam-
ics; predominantly associated with abridged joint move-
ment, reduction in active muscle power, and changes in gait
mechanics [28]. DSPN patients have shown greater stance
phase time, reduced amplitude, and prolonged activation peak
in the lower limb muscle activity [29]—[31]. In particular, the
following three lower limb muscles: vastus lateralis, tibialis
anterior, and gastrocnemius medialis are commonly studied
to observe the changes in muscle dynamics with the pro-
gression of neuropathy [22], [29]-[33]. Therefore, to diag-
nose DSPN and to observe the biomechanical changes in
different muscle activity due to DSPN, electromyography
(EMG) [22], [29]-[33] has been widely used in different clin-
ical research and trials; to observe the muscle activities and
identify DSPN severity. In this research, we have investigated
the changes in muscle activation delay during the gait cycle
of three lower limb muscles from the patients with different
degrees of DSPN severity using ANFIS. EMG parameters
during the gait cycle have been considered as input to classify
the DSPN patients’ severity level using the proposed ANFIS
model.

The novelty of this research work is to develop an ANFIS
based intelligent classifier that will be able to classify DSPN
severity levels using Michigan neuropathy screening instru-
mentation scores as well as lower limb muscle EMG param-
eters during gait. The benefit of this classifier is, it will be
able to classify patient’s severity levels using two different
screening methods and provide reliable, accurate, and early
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identification to enhance the health care facility for the DSPN
patients. Another major contribution of this study is to inves-
tigate the progression of DSPN severity over time among the
patients from the Epidemiology of Diabetes Interventions and
Complications (EDIC) clinical trials. As per our knowledge,
this is the first study that has observed the DSPN severity of
EDIC patients using a machine learning algorithm. We have
investigated the changes in different lower limb muscle activ-
ities with the progression of DSPN severity using ANFIS
and used those properties to classify the DSPN patients using
the proposed model. This study exhibits the potential of the
proposed intelligent DSPN severity classifier based on the
ANFIS algorithm, using both the MNSI scoring system and
EMG parameters in DSPN severity classification. In the cur-
rent state-of-the-art, the clinical practice is to acquire data
and post-process by the experts to interpret the results. Both
the DSPN severity classifier system can contribute to enhanc-
ing the healthcare facilities for DSPN patients by providing
early, reliable, accurate identification and stratification of the
DSPN. This study can help the health professionals with
making an accurate decision as for diagnosis of DSPN, initial
screening can be done using MNSI and electrophysiological
changes can be observed from EMG features and will be
able to classify the patient’s severity based on these results
from our proposed severity classifier. So, this research aims
to develop an intelligent classifier using ANFIS for screening
and stratification of DSPN severity, which will be able to
work as a stand-alone system and will assist the healthcare
professionals to improve the healthcare facilities for DSPN
patients.

The rest of the study is divided into following sections:
Section 2 discuss the Adaptive Neuro Fuzzy Inference system
architecture, Section 3 showcase the methodology of this
study which describes following processes: data collection,
augmentation, imputation, input feature ranking, preparation
of MNSI dataset, ANFIS model development, and three lower
limb muscles EMG signals processing for feature extrac-
tion and severity classification using EMG features. In the
4™ section, the findings of this study have been discussed.
This section has been divided into two sub-sections, study one
discusses the MNSI dataset preparation from the EIDC trials,
proposed ANFIS models performance analysis, and validat-
ing the ANFIS model with different conventional machine
learning algorithms and FIS models. Study two discuss the
progression of DSPN severity with time in the EDIC patients,
observed from the MNSI data and the change of lower limb
muscle activities with the progression of DSPN severity from
muscle EMG’s and use those features to classify DSPN
severity using the proposed ANFIS classifier. In the fifth
section, the overall results were discussed, and the sixth
section includes a conclusion with future work.

Il. ADAPTIVE NEURO FUZZY INFERENCE SYSTEM (ANFIS)
ANFIS is an artificial neural network (ANN), was first intro-
duced by Jyh-Shing Roger Jang [24] in 1993. It is a fuzzy
inference system implemented in the framework of adaptive
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networks, which can serve as a basis for constructing a
set of fuzzy IF-THEN rules with appropriate membership
functions to generate the stipulated input/output (I/O) pairs.
ANFIS is a fuzzy mapping algorithm based on the Tagaki-
Sugeno-Kang fuzzy inference system (1985) to develop a sys-
tematic approach to generating fuzzy rules from a given I/O
dataset [25], [26]. Based on both human knowledge (in the
form of fuzzy IF-THEN rules and hybrid learning algorithm);
ANFIS can construct mapping using given input/output I/O
data values [27]. The ANFIS model generates outputs similar
to the system outputs with a minimum root mean square
error (RMSE) and maps the relationship between an input and
output dataset to identify the optimal distribution of member-
ship functions [27]. The ANFIS model was implemented in
MATLAB, which includes Fuzzification by determining the
type and the number of membership functions.

Fuzzification Defuzzification
Layer Layer
Implication Normalizing l I
Layer Layer
paa Py

Combining
Layer

Qutput

FIGURE 1. Two input ANFIS Architecture.

ANFIS architecture consists of five layers with directional
links and nodes. It uses Hybrid Learning Algorithm, which
consists of two passes: a) forward pass where functional sig-
nals go forward till layer 4 and the consequent parameters are
identified by the least squares estimate, and b) backward pass
where the error rates propagate backward, and the premise
parameters are updated by the gradient descent. Figure 1 is
showing two input ANFIS architecture.

The function of each layer of the ANFIS architecture is
described below [25]:

Layer 1: The first layer takes the input value and deter-
mines the membership function and belonging to them. Every
node i in this layer is a square node with a node function

Ol =p, x), i=12... (1)

where, x is the input to node i, and A;, is the linguistic
label (small, large, etc.) associated with this node function.
Parameters in this layer are referred to as premise parameters.
Node output is the membership value of the input.

Layer 2: The second layer is responsible for generating the
firing strengths for the rules. Every node in this layer is a
circle node labeled r, which multiplies the incoming signals

and sends the product out. For instance
O?ZWiZMA;(x)*MB;(x)’ i=1,2... 2)

Node outputs are the firing strength of the rules.
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Layer 3: The role of the third layer is to normalize the
computed firing strengths by diving each value with the total
firing strength. Every node in this layer is a circle node
labeled N. The i”* node calculates the ratio of the i’ rule’s
firing strength to the sum of all rules’ firing strengths:

Wi

wp= ——,
w1 + wp

03

1

i=1,2... 3)

Node outputs are the normalized firing strengths of the rules.
Layer 4: The fourth layer takes the normalized values as

inputs and the consequence parameter set {pj, q;, i }. Every

node i in this layer is a square node with a node function,

0;‘ =wif; = w; (pix1 + qixy + 1i) “

where (w;) is the output of layer 3. Node outputs are the
evaluation of right-hand side polynomials of equation 4.

Layer 5: The values returned by the 4th layer are the
defuzzified ones and those values are passed to the last layer
to return the final output as the summation of all incoming
signals, i.e.,

2wl
P=D Wi S 5)
Node outputs are the weighted evaluation of right-hand side
polynomials.

lll. METHODS

This research is divided into two studies. The first study
discusses the process of dataset preparation, design of the
ANFIS based DSPN severity classifier, and validation of
the classifier. The second part of the study discusses the
classification of EDIC patients using the ANFIS based clas-
sifier to observe the progression of DSPN severity over time,
the change in lower limb muscle activities during gait among
DSPN patients with different levels of severity, EMG feature
extraction process, and used the extracted features to train
the proposed DSPN severity classifier. In the sections below
methodology for both studies has been discussed in detail.

A. STUDY-1

1) DATA COLLECTION

For the design, train, and validation of the ANFIS based
DSPN severity classifier, the MNSI dataset from Epi-
demiology of Diabetes Interventions and Complications
(EDIC) [34], [35] clinical trials have been used in this study.
EDIC clinical trials were designed by the National Insti-
tute of Diabetes, Digestive and Kidney Diseases to annually
assess DSPN among typel diabetic patients using MNSI.
This clinical study was started in 1994 with 1,375 patients
from 29 different medical centers, and the study is still an
ongoing process. For training and cross-validation purposes
8 EDIC years MNSI data with 10543 samples were collected.
To observe the progression of DSPN severity over the years
among the EDIC patients, first, eighth, and nineteenth EDIC
years MNSI data were used.
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2) DATA IMPUTATION

Eight years of MNSI data with 10543 samples could have
been retrieved from the EDIC trials. However, the dataset was
imbalanced and have missing data. Among the 10543 sam-
ples, there were 363 blank entries with no MNSI data. After
removing the blank entries, 10180 samples were recovered.
Among the 10180 data, there were missing values in the
dataset. The K-nearest neighbor [36] data imputation tech-
nique had been used to fill the missing data.

3) DATA AUGMENTATION

The imputed EDIC dataset with 10180 samples was imbal-
anced and had 8819, 1075, 245, and 40 samples in absent,
mild, moderate, and severe classes, respectively. In order to
deal with imbalanced data in different DSPN severe groups,
data augmentation techniques had been used to balance the
dataset so that the dataset has an equal number of samples
in each class. Two techniques Random Over Resampling
and Synthetic Minority Oversampling Technique (SMOTE)
had been checked to balance the dataset. No difference was
found in the augmented datasets using both techniques. As the
MNSI dataset consists of values in between O to 2, both the
technique are exhibiting the similar performance for resam-
pling the dataset. It was made sure that there was no overfit-
ting in the augmented data. Python 3.7 in-house written code
was used for data imputation and data resampling.

4) DSPN SEVERITY SCORING FOR MNSI DATASET
MNSI scoring system consists of two parts: history question-
naire and clinical tests. In history questionnaire, there are
15 yes/no questions related to the patient’s symptoms where
each question is scored as 1 point depending on the patients’
response. In EDIC trials, all the results from the questionnaire
are added together and consider as one single estimator for
identifying DSPN symptoms. Hence, we have considered the
questionnaire as one parameter. In the clinical examination
part of MNSI, there are five tests: the appearance of the foot,
ulceration, ankle reflection, vibration perception, and tactile
sensitivity are included in the clinical tests. Each clinical test
is scored as 1 for each leg and a total of 2 for both legs. In this
study, history questionnaire had been chosen as one param-
eter and the rest 5 clinical tests as 5 individual parameters
in identifying DSPN severity. Total 6 MNSI variables data
were used from EDIC trials for this study. After processing
the MNSI dataset from EDIC trials with imputation and aug-
mentation methods, patients MNSI data were assigned with
“Neuropathy degree score” proposed by Watari et al. [22]
after reviewing other existing literature [22], [24], [27], and
the final score was ranged from O to 10. The neuropathy
degree score was used to classify the patients with different
degree of severity as follows:

(i) x < 2.5: Absent neuropathy

(1) 2.5 < x < 5.0: Mild neuropathy

(>iii) 5.0 < x < 8.0: Moderate neuropathy

(iv) x > 8.0: Severe neuropathy

where x is the neuropathy score.
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FIGURE 2. ANFIS Architecture for DSPN Severity Classification using MNSI.

A second MNSI dataset was collected which was col-
lected from Watari et al. [22] for the validation and EMG
feature analysis. In their study, Patients’ DSPN severity
level was classified from the MNSI dataset by a Fuzzy
Inference System (FIS). The purpose of this dataset was
to classify the DSPN severity of the patients using the
proposed ANFIS severity classifier and validate the results
with the original severity classes, classified using FIS by
Watari et al. [22].

5) FEATURE RANKING

To understand the effects of all the 6 MNSI parameters in
identifying DSPN, MNSI features were ranked using the
eXtreme Gradient Boosting (XGBoost) algorithm. XGBoost
is a decision-tree-based ensemble Machine Learning algo-
rithm that uses a gradient boosting framework. XGBoost
can estimate feature importance from a trained predictive
model by providing a score to each feature that was used
in the construction of the boosted decision trees within
the model. Imputed and augmented EDIC dataset was used
for feature ranking. The hyperparameters of the XGBoost
model were tuned by fixing the maximum depth of the
tree to 4, subsample ratio of the training instance and sub-
sampling of columns were fixed at 0.9, to avoid overfit-
ting and learning rete was used to 0.2 for the conservative
boosting process. The designed XGBoost model was trained
to evaluate the feature importance of the MNSI variables.
Based on the results from the feature ranking top three fea-
tures with a comparatively high importance index in iden-
tifying DSPN had been selected as inputs for the ANFIS
model. Python 3.7 in-house written code was used for feature
ranking.
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6) ANFIS MODEL DEVELOPMENT USING MNSI DATA

An ANFIS model was designed using MATLAB ver. R2020a,
(The MathWorks, Inc., Natick, Massachusetts, United States)
with three inputs and an output. For designing the ANFIS
model, 5 input membership functions were considered for
the three input parameters from the feature ranking. All the
membership functions were Gaussian type. Initial FIS was
generated using the Matlab function Genfis. The grid parti-
tion method was used to generate the initial FIS. We have
considered the hybrid learning algorithm for minimizing the
error and to adjust the shape of membership functions of the
ANFIS model. This allows the fuzzy inference systems to
learn from the data that is being modeled. Stratified 10-fold
cross-validation was used to train and test the designed
ANFIS model. 10- fold stratified Cross-validation was
achieved by Cvpartition Matlab function. Matlab function
Evalfis was used to evaluate the ANFIS model using the test
data. In the ANFIS architecture, there were 286 nodes with
500 linear and 30 nonlinear parameters with 125 IF-THEN
rules. Figure 2 is showing the proposed ANFIS architecture
for DSPN severity Classification. Confusion matrices were
generated to evaluate the performance of the designed ANFIS
model in classifying DSPN.

B. STUDY-2

1) DATASET PREPARATION FOR LONGITUDINAL STUDIES
ON EDIC PATIENTS

To observe the progression of the DSPN severity over time
among the EDIC patients, this study has observing first,
eighth, and nineteenth EDIC years MNSI data. All three years
MNSI data was collected from the EDIC trials and made three
different datasets for observation. Missing data were treated
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with the K-NN data imputation method. On the first, eighth,
and nineteenth EDIC years 1222, 1374, 1280 patients MNSI
data were collected, respectively. These datasets were used
to classify the EDIC patients DSPN severity levels using the
designed ANFIS classifier.

2) EMG SIGNAL PROCESSING AND FEATURE EXTRACTION
Diabetic neuropathy leads to a progressive loss of somatosen-
sory sensitivity, especially in the lower limbs, which may
cause functional gait variations; predominantly related to
reduced range of movement of joints, reduced active muscle
power, and changes in gait mechanics [20]. EMG has been
widely used by researchers to observe muscle activities and
diagnose DSPN in patients [22], [28], [30], [33]. In this
research, we wanted to investigate the changes in muscle
activity for three lower limb muscles (vastus lateralis (VL);
tibialis anterior (TA); and gastrocnemius medialis (GM)) dur-
ing the gait cycle in different DSPN severity groups. Based
on these investigations, we want to extract EMG features and
apply them to classify DSPN patient’s severity levels using
the proposed ANFIS based classifier.

With that purpose, a second MNSI dataset from
Watari et al. [22] was also collected to analyze the EMG sig-
nals of the patients based on DSPN severity. This dataset was
composed of 132 real case adult volunteers of both genders
and divided into a control group of non-diabetic subjects
(n = 30) and diabetic subjects (n = 102). Corresponding
MNSI dataset, three lower limb muscles EMGs, and vertical
ground reaction force (vGRF) signals were collected for each
DSPN patients for the EMG signal analysis. The patients
were classified into four DSPN severity classes based on
their corresponding MNSI data using the proposed ANFIS
based classifier. The patients’ severity levels classified from
the ANFIS model were verified from the results reported by
Watari et al. [22]. For the acquisition of the muscle EMG’s,
Watari et al. [22]. had used an EMG system with 1000 factor
signal amplification and 10 mm circular Ag/AgCl electrodes.
Three different lower limb muscles were considered for EMG
signal acquisition during gait: VL, TA, and GM. EMG raw
data were collected from [22] for signal analysis and feature
extraction. A total of 102 DSPN patients’ raw EMG signals
from three different lower limb muscles were collected and
used for muscle characteristics observation. EMG signals
were sampled at 2000Hz sampling frequency. Baseline won-
dering was removed from the raw EMG signal. The signal
was in digital form and we processed the EMGs by in-house
built Matlab code. EMG signals were filtered through a
zero-lag 4th order Butterworth filter with a 50-500 Hz pass-
band followed by a low pass filter with a cutoff frequency
of 5 Hz for noise elimination and full-wave rectified. From
the vertical GREF, the corresponding gait cycle was detected
for all the EMG signals. From the processed signals peak
amplitude and % stance phase time to get the activation peak
was observed for different DSPN severity group patients.

A new dataset was prepared from the observed
102 patients’ EMG parameters consisting of peak amplitude
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and time to get the activation peak for three (TA, VL, GM)
lower limb muscles. The dataset was resampled to have
930 samples and was made sure that there is no repetition
in the data. Using the developed ANFIS model and the EMG
dataset, two different models were trained, and performance
was observed for DSPN severity classification. In model 1,
we have considered only the peak amplitude from three lower
limb muscles for different severity groups as an input of the
ANFIS model, whereas in model 2, we have considered both
peak amplitude and time to get the peak activation of three
muscles as inputs.

C. STATISTICAL ANALYSIS

Statistical analyses were performed using SPSS software
(version 21.0; SPSS Inc., Chicago, IL, USA). Data were
compared among neuropathic and non-neuropathic groups.
Descriptive statistics were used to find out the mean and
standard errors and data were expressed as mean =+ standard
deviation (SD). Analysis of variance (ANOVA) was used to
find out the statistical significance of the variables. An inde-
pendent t-test was used to find out the 95% confidence inter-
vals (95% CI). All statistical tests were one-sided, and the
statistical significance was considered at p<0.05.

IV. RESULTS

The results section has been divided into two subsections.
In study-1, ANFIS model development and performance
analysis were discussed for DSPN severity classification.
In study-2, using the validated ANFIS based DSPN severity
classifier, two observational studies have been conducted.
The studies and their outcomes are discussed in detail in the
following sections.

A. STUDY-1

1) MNSI DATASET

Demographic variables such as age, sex, body-mass-index
(BMI), DM duration, HBA1C, etc. have been observed to
understand the EDIC patient’s characteristics. Table 1 is
showing the baseline characteristics of the patients dur-
ing the first year of the EDIC trials. It is visible that
HDL cholesterol and BMI show no statistical significance
(p > 0.05) among neuropathic and non-neuropathic groups.
In our dataset, we have considered 1200 samples per DSPN
class, a total of 4800 samples. An imputed and augmented
dataset was used in feature ranking to find the importance
of the MNSI variables. Figure 3 is showing all the six
MNSI variables’ impact in identifying DSPN severity by
the XGBoost feature ranking method. It was found that the
Questionnaire, vibratory perception, and tactile sensitivity
among all the other MNSI variables have more impact in
identifying the severity of DSPN. Therefore, in this study,
we have selected these three parameters as inputs. So the
final dataset was consists of three inputs: vibration perception
(range 0 to 2), tactile sensitivity (range O to 2), question-
naire (range 1 to 22) range, and one output: DSPN severity
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TABLE 1. Baseline characteristics of the EDIC patients.

95% CONFIDENCE
_ INTERVAL OF THE
(N=1370) MEAN STD. ERROR DIFFERENCE F P
LOWER UPPER
AGE (YEARS) 35.936.945 0.188 35.56 363 41344 0.000
SEX F 653
M 718
DIABETIC DURATION 14.56+4.906 0.133 143 14.82 24.850 0.000
(YEARS)
BMI 26.28+4.035 0.109 26.06 26.49 1.234 0.267
(KG/M?)
H]?Q)lc 8.25+1.374 0.037 8.18 8.33 20.108 0.000
HDL CHOLESTEROL 54.1113.844 0.38 5336 54.85 0.008 0.928
(MG/DL)
LDL CHOLESTEROL 4 39,30 613 0.844 112.73 11604 5958 0.015
(MG/DL)
HYPERTENSION (%) 0.23+0.418 0.011 0.2 025 34409  0.000
TABLE 2. Performance evaluation of the proposed ANFIS model.
Sensitivity Specificity Accuracy F1 Score Classification Fold Error
(%) (%) (%) (%) Rate (%) (%)
ANFIS 92.06£226  96.72+0.93  91.17+1.18  91.15£120  91.26£1.11  0.09+0.01
Ensemble  90.074.02  96.22:093  89.98+1.83  90.31£0.02  89.98+1.83  0.10£0.02
SVM 89.07+4.74  96.39+0.85  89.69+1.75  89.79+0.02  89.69+1.75  0.10+0.02
KNN 88.0940.02  92.67+136  87.81+2.14  87.95:0.02  87.8142.14  0.12+0.02
Naive Bayes ~ 87.93+0.01  94.47+0.73  87.81x1.17  87.8740.01  87.81£1.17  0.12£0.01
DAC 87.2440.02  95.86+0.83  87.21+1.53 87224002 8721153  0.13+0.02

XGBoost feature selection

Questionnaire

Vibratory Perception

Tactile Sensitivity

Features

Ankle Reflexes

Appearance of Feet

Ulceration

010 015 020 025 030 035

Relative importance

0.00 0.05
FIGURE 3. Feature ranking of the MNSI parameters.

level (grade 0O: absent or non-neuropathic, grade 1: mild
neuropathic, grade 2: moderate neuropathic, grade 3: severe
neuropathic).

2) ANFIS MODEL

The preprocessed MNSI dataset was used for 10-fold strati-
fied cross-validation to evaluate the ANFIS model’s perfor-
mance. The dataset was divided into 4320 samples for the
training set and 480 samples for the testing set. The training
set had 1080 samples and the testing test had 120 samples
in each DSPN severity class. The ANFIS model was trained
for 10 epochs; the training root mean square (RMS) error was
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0.235. Figure 4 shows the confusion matrix for DSPN severity
classification using the ANFIS model. Seven absent, sixteen
mild, and eight moderate patients were miss-classified by the
ANFIS model however, no severe patient was miss-classified.

3) PERFORMANCE EVALUATION

The performances of the DSPN severity classification system
were compared with different conventional machine learning
(ML) algorithms such as Ensemble classifier, support vector
machine (SVM), K-nearest neighbor (KNN), naive Bayes,
and discriminant analysis classifier (DAC) for the valida-
tion of the proposed model. Customized in-house MATLAB
codes were written for all ML classifiers. The dataset with
10-fold stratified cross-validation was used to train and
validate the ML models. Table 2 shows the comparative
performance analysis of ANFIS with different ML algo-
rithms for DSPN severity classification. Accuracy, sensitiv-
ity, and specificity of the ANFIS model are 91.171+1.18%,
92.171+2.26%, 96.721+0.93% respectively. It is evident from
Table 2 is that ANFIS is outperforming the ML models with
a significant performance difference.

B. STUDY-2

1) LONGITUDINAL STUDY ON EDIC TRIALS FOR DSPN
SEVERITY CLASSIFICATION

The validated ANFIS model was used to classify the EDIC
patients’ severity levels to observe the progression of DSPN
with time. First, eighth, and nineteenth years’ MNSI data
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> = w»
8 = 2 3
o
Absent 113 7 0 0
Mild 5 104 11 0
Moderate 0 6 112 7
Severe 0 0 0 120

FIGURE 4. Confusion matrix for the ANFIS model using 10-fold
cross-validation.

from EDIC trials were used to observe the change in sever-
ity level of the DSPN patients. Figure 5 shows the DSPN
severity condition of the patients for the first, eighth, and
nineteenth EDIC years. It can be observed that there are no
severe neuropathic patients in the first year and the number
of non-neuropathic patients was 81% of the total patients.
In year 8, the number of neuropathic patients increased, and
6 patients got severe neuropathy. By the end of 8 years, 20%
of the total patients became neuropathic. In the 19" year,
almost 59% of the total patients became neuropathic. Initially,
there were no severe DSPN patients, which increased to
39 in the 19th year. From this observation, we can conclude
that, with time, all diabetic patients have higher risks to
have DSPN and therefore, early detection is very crucial
for diabetic patients to provide medication to prevent the
consequences of severe DSPN.

TABLE 3. Validation of the DSPN severity classifier with existing literature.

Classificati Classificati
Neuropathy on % of total on by FIS
Severity ]IBV}I/ AdI\IIFIS patients model [22]
ode!

Absent 43 42.16 43
Mild 24 23.53 30
Moderate 14 13.73 16
Severe 21 20.59 28
Total 102 - 117

2) EMG BASED DSPN SEVERITY STRATIFICATION USING
ANFIS MODEL

With the trained and cross-validated ANFIS model, we have
classified the MNSI data collected from Watari et al. [22].
The objective of this classification was to stratify the DSPN
severity for the patients reported in [22]. Table 3 shows
the number of patients in different DSPN severity classes
classified using the ANFIS model and the result reported
in [22]. There were some missing data in the dataset which
caused some mismatch in the number of patients. In our inves-
tigation, we have used 102 patients while Watari et al. [22]
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Absent

(998)
81.6%

Moderate
(4) Severe (0)
0.33% 0%

H Absent (998) m Mild(220) = Moderate (4) = Severe (0)

(@

Moderate(67)
4.88%

B Absent(832) m Mild(469) = Moderate(67)

Severe(6)

(b)

Moderate (127)
9.92%

M Absent (523) m Mild (591) = Moderate (127) 1= Severe (39)

©

FIGURE 5. DSPN severity groups of EDIC patients (a) year 1, (b) year 8,
and (c) year 19.

reported results on 117 patients. Classified patient’s EMG
signals were analyzed to observe the change in muscle activ-
ity due to DSPN.
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FIGURE 6. Change in muscle activity for different DSPN severity groups three different lower limb muscles (TA [top], VL [middle], GM [bottom])
during gait. [Time to get the first activation peak corresponds to each severity groups for all three muscles are indicated in the legend of each
graph].

TABLE 4. Peak magnitude and Time for peak activation for vastus
lateralis (VL), tibialis anterior (TA), and gastrocnemius medialis (GM)
muscles during the gait cycle.

Absent Mild Moderate Severe
M:i?‘; d 3451241 305.01+1 3032241  230.04%1
gniude 51.37 60.94 05.30 25.46
< (0%
& Time to peak
(% stance  24.0842.5 24.6542.4 19.73+2.0  26.9842.6
phase)
Peak
Magninde 1158656 127025 9214244, 6296217,
1.99 5.03 41 09
A (uv)
”  Timeto peak
(% stance  30.06£2.3 30.26£3.3 3240427 33.832.9
phase)
Peak 396.83£5  265.98+2  203.3242  131.9442
Magnitude 7.39 2.66 031 7.86
= (uv) ’ ' ’ '
O Time to peak
(% stance  38.5044.8 38.61£3.6 45.51+4.3  58.2445.1

moderate group has an earlier activation peak, which helps
us to conclude that the changes in muscle activation do not
progress in the same manner from mild to severe stages for
TA. On the contrary, VL and GM muscles show delayed acti-
vation peak with the progress of severity level as illustrated
in figure 6 (middle, bottom). From this observation, we can
conclude that for VL, and GM muscles’ EMG can be used to
identify the severity level of the DSPN patients.

TABLE 5. Performance analysis of ANFIS based DSPN severity classifiers
using EMG features during gait dynamics (MIODEL 1: trained with peak
magnitude model 2: trained with peak magnitude and time to peak
occurrence for TA, VL, and GM muscles).

phase)

Figure 6 shows the muscle activity for VL, TA, and GM
muscles concerning the % stance phase during gait. Table 4
is showing the mean peak amplitude and time (% stance
phase) to get the activation peak. We have observed the
activity peak delay and lowered peak amplitude during gait
for different DSPN severity groups for VL and GM muscles.
From figure 6 (top), we can observe the activation peak delay
in TA muscle for absent, mild, and severe groups whereas the
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Model 1 Model 2

Accuracy (%) 96.13+1.70 80.54+3.91

Sensitivity (%) 98.36:1.90 82.23+5.49

Specificity (%) 98.75+1.47 94.49+2 .46

Precision (%) 96.11+2.04 80.02+3.41

Recall (%) 94.98+2.80 80.46+4.56

F1 Score (%) 98.16+2.15 68.46+4.93

Classification Rate (%) 96.13+1.70 80.54+3.91

Fold Error (%) 0.44+0.03 0.19:£0.04

NPP (%) 98.95+1.22 89.2242.95

PPV (%) 93.47+4.80 90.80+3.74
Table 5 is showing the performance of the two

trained model in classifying DSPN patients based on the
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EMG parameters. Accuracy, sensitivity, and specificity of
model 1 and model 2 are 96.13£1.70%, 98.36£1.90%,
98.754+1.47%, and 80.544+3.91, 82.231+5.49, 94.49+2 .46,
respectively.

V. DISCUSSION

Diabetic neuropathy (DN) has received the attention of
researchers as one of the major complications for DM
patients [37] and DSPN is the most common distal and
symmetrical form of diabetic neuropathy. Even though a
vast range of diagnostic tools (Symptom scores, quantita-
tive sensory testing, and electrophysiology) have been intro-
duced by researchers over the year for DSPN; screening and
stratification of DSPN are still required for manual grading
or decision making by the health care professionals which
are always subjective and depends on the expertise of the
personnel. Hence to successfully mitigate the prevalence of
DSPN, a new detection model is required to characterize and
intelligently identify DSPN severity with higher accuracy and
robustness but non-invasive. Moreover, it must be acceptable
by the clinicians. Early detection and better classification
tools for DSPN can allow better management of painful
diabetic neuropathy as well as foot ulceration, amputation,
and other diabetic complications.

Nowadays the use of Artificial Intelligent (Al) in health
care systems are getting more popular because of its flex-
ibility, ability to learn, cost-effectiveness, and it helps the
healthcare system to provide better patient’s satisfaction,
reduce workload from the health professionals, and increase
the quality of life of the patients. Because of these advantages,
researchers are focusing on smart and intelligent systems for
the diagnosis and stratification of different diseases. Machine
learning algorithms are being used in different biomedical
systems for the diagnosis and classification of different dis-
eases and health issues [30]-[33]. Researches are also been
conducted to introduce automated systems using artificial
intelligence in diagnosing DSPN. Focus is given on clinical
diagnosis methods like automated detection of CCM images
using machine learning methods [17]-[19] for early and reli-
able detection of DSPN. However, the initial identification
of DSPN is based on the clinical symptoms and signs, and
different diagnostic scoring methods such as QST, neuropa-
thy disability score, Michigan neuropathy screening method,
vibration sensing with a 128 Hz tuning fork, and monofila-
ment test are used for assessing pain, touch, vibration, and
temperature sensation loss due to DSPN [6]. As there is no
fixed global scoring method for DSPN severity identification
the screening methods to identify and grade the severity
levels of the DSPN differ in different countries of the world.
Variations in screening methods, scoring, and subjective iden-
tification are the reasons to introduce an intelligent system
for accurate and reliable diagnosis and severity classification
for DSPN. Therefore, this research aims to propose a DSPN
severity classifier using the ANFIS algorithm to enhance the
diagnosis facility for DSPN patients by early, accurate and
reproducible screening and stratification of DSPN.

VOLUME 9, 2021

In the literature, the Fuzzy Inference System (FIS) and sup-
port vector machine (SVM) algorithms have been introduced
for detecting and classifying the severity of DSPN [20]-[23].
DSPN onset is insidious and progresses differently for every
patient which makes it exhibits non-linear characteristics.
Researchers using the fuzzy system for classification of the
severity of DSPN have to design non-linear characteristics of
DSPN through the IF-THEN rules which leave a chance of
human error and reliant on expert knowledge, thus its accu-
racy is questionable. On the other hand, Kazemi et al. [23]
have identified different levels of DPN severity by using
multicategory SVM (MSVM) and considered the neuropathy
disability score (NDS) as the input of their MSVM classifier.
However, the accuracy of their system was only 76%.

Therefore, for accurate and reliable severity classifica-
tion of DSPN, this study aims to develop an intelligent
ANFIS based classifier to classify the severity level of the
DSPN patients into 4 classes- absent, mild, moderate, and
severe. ANFIS is an artificial neural network based on
Takagi—Sugeno fuzzy inference system (FIS) which has the
potential to capture the benefits of both systems in a single
framework [24]. Its inference system corresponds to a set
of fuzzy IF-THEN rules that have the learning capability
to approximate nonlinear functions. ANFIS can work with
non-linear structures and have a fast learning capacity. As we
aim for a cost-effective and simple DSPN severity classifier,
we need data from a screening method, which is simple,
inexpensive, accurate, non-invasive, and does not require
expensive instruments or tools. Besides increasing patient’s
awareness and urgency about the seriousness of DSPN, sim-
ple diagnosis tools like a 128-Hz tuning fork, monofilament
test and temperature sensation test, reflexes of ankle test
are required to be provided to the primary healthcare pro-
fessionals [38]. So, we have selected Michigan Neuropathy
Screening Instrumentation (MNSI) [28] as input to train our
DSPN severity classifier using the ANFIS algorithm. MNSI
is a simple and inexpensive screening method that did not
require any special expertise and is a very simple clinical
examination that can be done in any regular healthcare center.
Among the MNSI variables, we have ranked the importance
of these variables in identifying DSPN using the XGBoost
feature ranking method. So, for our input, we have taken
into consideration the following three parameters from MNSI
based on their importance index in feature ranking: vibratory
perception, tactile sensitivity, and history questionnaire. The
feature ranking methods helps to enhance the performance of
the ANFIS classifier and reduce the costs of doing a number
of the clinical tests for DSPN diagnosis. It will help the health
professionals to screen DSPN in a faster way using a minimal
number of tests.

To train an intelligent system, the data fed to it plays a
very crucial role. The accuracy of the system will depend
on how well the data showcases the objectives close to the
human-like experience. As DSPN exhibits non-linear char-
acteristics, we need a large training dataset for training the
ANFIS algorithm. We have used the database from the EDIC,
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which is a long-term observational follow-up of the Diabetes
Control and Complications Trial (DCCT) cohort [35] with
1,375 of the surviving DCCT subjects since 1994. MNSI was
used to assess DSPN in the EDIC studies annually [28], [35].
We have used 8-years’” MNSI data from the EDIC study to
train the ANFIS model. As the ANFIS model was trained with
areal dataset, it can accurately learn the non-linear character-
istics of DSPN and has a very small training error which is
0.235. -Furthermore, all the input parameters selected here
are semi-quantitative or non-quantitative tests and are simple
and easily available in all the healthcare facilities. As we
have used a large dataset with a wide range of demographic
variables from the EDIC trials with different severity of
DSPN, it has also been observed that the patients had different
diabetic duration which made this dataset more realistic in
observing different classes of DSPN severity.

The performance of the proposed ANFIS model has been
compared with different conventional ML algorithm-based
classifiers such as ensemble classifier, SVM, KNN, naive
Bayes, and DAC. The comparative study showed that ANFIS
exhibits better sensitivity, specificity, and accuracy compare
then different ML classifiers. For this study, deep learning
algorithms have not been considered as they are more suitable
for extracting high-level, complex features [39]. Introducing
deep algorithms classification problems where regular clini-
cal scorings like MNSI have been used as inputs can introduce
higher computational costs due to the complex nature of
the algorithms which can hinder the idea of a cost-effective
diagnosis system for DSPN patients [40].

DCCT/EDIC studies were designed to observe the effects
on the development and progression of the early vascular
and neurologic complications of type 1 insulin-dependent
diabetes mellitus [35]. In this study, we have determined
the severity level of the EDIC study subjects from the first,
eighth, and nineteenth years to observe the progression of
DSPN severity with time. From EDIC year 1 to 8, the number
of patients with non-neuropathic patients decreased by 20%,
which means with time, new EDIC patients have developed
DSPN. Initially, there were no severe DSPN patients in year 1,
which increased to 6 in year 8 and 39 in year 19", Also, in
year 1 to 19, 59% of patients were neuropathic. From this
observation, we can conclude that, with time, all diabetic
patients have higher risks to have DSPN and early detection
is very crucial for diabetic patients to provide medication to
prevent the consequences of severe DSPN.

In our study, we have investigated the changes in activity
in lower limb muscles during gait in DSPN patients with
different degrees of neuropathy in order to extract EMG fea-
tures that exhibit a change in muscle activities with the pro-
gression of DSPN severity. Three lower limb muscle signals
during the gait cycle were investigated. We have observed the
peak magnitude and the time to reach the muscle activation
peak for each muscle during gait in different DSPN severity
groups. This study observes changes in muscle activity due
to DSPN; although, it does not follow a specific order for
all the lower limb muscles that have been also reported in
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different studies [22], [28], [30], [33]. We have found that
both VL and GM muscles show an increase in delayed peak
activation and decrease in peak magnitude with the progress
in severity degree whereas TA muscle does not follow this
pattern. So, the peak amplitude and activation peak delay for
VL and GM muscles can potentially be used as an important
feature to identify the degree of DSPN in patients.

Based on the above finding, we have prepared a dataset
consists peak magnitude and time to get the activation peak
during gait from these three lower limb muscles and used
it to train the ANFIS classifier to identify DSPN severity
from the EMG parameters. Here two different model was
trained using ANFIS algorithm. We can observe that model 1
which was trained using only the peak magnitudes of three
muscles during gait from different severe groups performs
better than model 2 where both peak magnitude and time
(% stance phase) to get the peak were considered as inputs.
‘We can observe that using the muscle peak magnitude, we can
classify the DSPN severity. ANFIS algorithm showed signif-
icantly better performance using MNSI and EMG parameters
for stratification of DSPN.

According to the International Diabetic Federation [1]
in 2019 1 one, in 11 people have diabetes and 10% of the
global health expenditure which is USD 760 million is spent
on diabetics. 50% of the diabetes patient will suffer from
DSPN- one of the most common and costly complications.
According to Aljunid et al. [41], the health expenditure for
diabetic patients increases with severity. The diagnostics tools
available for DSPN are expensive, time-consuming, required
specialized personnel and some of them are invasive and
painful. Hence to successfully mitigate the prevalence of
DSPN, our DSPN severity classifier using ANFIS can intel-
ligently identify DSPN severity in real-time which will allow
early detection and treatment of diabetic neuropathy as well
as a timely intervention to prevent foot ulceration, ampu-
tation, and other diabetic complications. This system has
benefits to overcome the limitation of conventional methods
that often leads to a late diagnosis and heavily relied on offline
analysis of the healthcare experts.

This DSPN severity classifier can work as a stand-alone
system and can be implemented on any host computer in
a health-care system. It will help in saving a lot in annual
healthcare expenditure and improve the quality of life among
diabetes patients. Also, in the future, we can add a prediction
system in our DSPN classifier which will be able to predict
patients future conditions based on their previous records and
will help the health professionals to enhance the healthcare
of diabetic patients in relations to identifying the high-risk
individuals to improve their risk factors.

VI. CONCLUSION

Due to unclear and subjective screening processes and uncer-
tainties in symptom measurements, diagnosing DSPN is com-
plicated. Many research and different diagnostic methods
have been introduced, yet no specific baseline is available and
conflicting diagnosing criteria are available in a different part
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of the world. Therefore, researchers are trying to implement
intelligent systems for diagnosing DSPN. In this research,
an ANFIS model was proposed which is a simple yet most
used screening method for DSPN. This can be done in a
regular healthcare center without specialized personals and
equipment. The ANFIS model showed better performance
in comparison to different ML models. Due to its learning
capabilities to approximate the nonlinearity of DSPN, it can
provide a better human-like experience for classifying the
severity of DSPN. Using the designed model, we have classi-
fied the severity level of the patients from the EDIC clinical
trials and observed that, with time, how DSPN’s severity
increases among patients and could successfully identify
those patients who need immediate medication. After severity
classification, the patient’s EMG signals from three different
lower limb muscles (TA, VL, and GM) were analyzed to
find the muscles that accurately show a delay in activation
peak with the progression of DSPN severity from absent to
severe condition. VL and GM muscles showed decreased
peak magnitude and delayed activation peak with the pro-
gression of severity level. Extracted EMG features were used
in the proposed DSPN classifier and it exhibits promising
performance in DSPN severity stratification. Our proposed
DSPN severity classifier was able to perform better with
both MNSI data and EMG variables. So, this system has the
capability to act as a stand-alone system and help the health
professionals for decision making in DSPN identification and
stratification.
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