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Abstract: Chronic myeloid leukemia (CML) is a myeloproliferative neoplasm characterized by
dysregulated growth and the proliferation of myeloid cells in the bone marrow caused by the BCR-
ABL1 fusion gene. Clinically, CML demonstrates an increased production of mature and maturing
granulocytes, mainly neutrophils. When a patient is suspected to have CML, peripheral blood smears
and bone marrow biopsies may be manually examined by a hematologist. However, confirmatory
testing for the BCR-ABL1 gene is still needed to confirm the diagnosis. Despite tyrosine kinase
inhibitors (TKIs) being the mainstay of treatment for patients with CML, different agents should be
used in different patients given their stage of disease and comorbidities. Moreover, some patients
do not respond well to certain agents and some need more aggressive courses of therapy. Given
the innovations and development that machine learning (ML) and artificial intelligence (AI) have
undergone over the years, multiple models and algorithms have been put forward to help in the
assessment and treatment of CML. In this review, we summarize the recent studies utilizing ML
algorithms in patients with CML. The search was conducted on the PubMed/Medline and Embase
databases and yielded 66 full-text articles and abstracts, out of which 11 studies were included
after screening against the inclusion criteria. The studies included show potential for the clinical
implementation of ML models in the diagnosis, risk assessment, and treatment processes of patients
with CML.

Keywords: artificial intelligence; chronic myeloid leukemia; machine learning; convolutional neural
networks; hemoglobinopathies

1. Introduction

Chronic myeloid leukemia (CML, also known as chronic myelogenous leukemia)
is a clonal myeloproliferative neoplasm that accounts for approximately 15% of adult
leukemias [1,2]. CML is characterized by the dysregulated proliferation of mature granulo-
cytes (neutrophils, basophils, eosinophils) and their precursors. Notably, it was the first
disorder to be linked to a particular chromosomal abnormality (i.e., Philadelphia (Ph) chro-
mosome). Ph chromosome was later found to be formed due to a reciprocal translocation
between chromosomes 9 and 22 that led to the fusion of the BCR gene (Chr. 22) and ABL1
gene (Chr. 9), forming the pathognomonic BCR-ABL fusion gene [3–7]. Clinically, CML
can be divided based on progression into three phases: the chronic phase is when most
patients are diagnosed; the accelerated phase characterized by impairment of neutrophil
differentiation; and the blast phase in which myeloid cells proliferate uncontrollably, re-
sembling acute leukemia [5,6,8,9]. The diagnosis of CML involves several steps, starting
with a peripheral blood smear that typically shows neutrophilia, followed by bone marrow
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biopsy, and finally, testing for the BCR-ABL fusion gene or mRNA that are confirmatory
for the disease [10–14].

Since the development of electronic records and the improvement in access and the
retrieval of patient data (e.g., diagnostic tests, imaging, laboratory tests), terms such as ‘big
data’ and ‘machine learning (ML)’ have started to have a meaningful impact on patient
care in different aspects. ML refers to models or function approximators that learn to make
conclusions or decisions based on information derived from raw data [15,16]. Currently,
there are plenty of implementations of different ML models in the field of health care such as
interpreting lab results, suggesting a favorable diagnosis based on imaging studies [17–19],
giving treatment recommendations and classifying stages of disease. This has made ML
increasingly important for many clinical scenarios in the modern health care system [20–22].
Therefore, ML models can be employed in the case of CML to aid in the workup process by
predicting diagnosis or by improving patient management through predicting prognosis
and giving treatment recommendations.

In this review, we summarize the recent literature pertaining to the use of ML algo-
rithms in CML diagnosis, prognosis, and treatment. Furthermore, the review highlights the
performance, limitations, and future research needs for the models reported. The goal of
this review is to provide an overview and to fuel research on AI implementations in CML
as it is well-embedded in clinical practice, and the use of ML algorithms could potentially
enhance patient management and prognosis.

2. Materials and Methods

A comprehensive literature search strategy of all studies pertaining to ML implementa-
tions in CML diagnosis, prognosis, and treatment was conducted using the PubMed/MEDL-
INE and EMBASE databases. The search strategy used terms pertaining to CML (e.g.,
“chronic myeloid leukemia”, “chronic myelogenous leukemia”, “CML”, “CML-CP”) as
well as terms of artificial intelligence (e.g., “AI”, “machine learning”, “ML”). After applying
the search strategy, all of the identified studies were transferred to EndNote, where dupli-
cates were eliminated. The resulting studies were then transferred to Rayyan to conduct
further screening and remove any additional duplicates.

The primary literature that discussed the use of ML algorithms in different CML appli-
cations including full-text articles and conference abstracts were considered for inclusion
in this review. The publication period from January 2012 until November 2022 was only
considered. Articles that were excluded from this review were non-English articles, animal
studies, in vitro studies, and review articles.

The collected data comprised several aspects including the type of study, publication
year, assessed outcome, model creation methods, utilized model(s), and evaluation metrics
for the model(s) such as sensitivity (SEN), specificity (SPE), accuracy (ACC), and area under
the receiver operating curve (AUC). Additionally, the AUC values were categorized into
different levels such as unsatisfactory (<0.6), satisfactory (0.6 to <0.7), good (0.7 to <0.8),
very good (0.8 to <0.9), and excellent (0.9 to 1.0). In cases where multiple models were used
in a study, the metrics for the best-performing model(s) were extracted. The collected data
also included the strengths and limitations of the studies.

3. Results

A total of 66 articles were identified through a search of the PubMed and EMBASE
databases. Duplicate articles were removed using Endnote® and Rayyan® software, result-
ing in 43 articles, which were further screened using Rayyan®. After screening, 11 studies
met the inclusion criteria and were categorized as diagnostic, prognostic, or treatment.
Table 1 presents the outcome assessed, and the advantages and disadvantages of each
study. The performance metrics for the best performing model in the included studies are
summarized in Table 2. Details of the screening process are provided in Figure 1.
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Table 1. Data extraction summary of the included studies.

Study Outcome Advantages Disadvantages

Dese et al.
(2021) [23]

Diagnosing and
subtyping leukemia

- High performance (93.3% ACC)
- Rapid (<1 min)
- Lower cost than manual diagnosis
- ML algorithms used in feature

extraction to optimize performance of
the classifier (i.e., SVM)

- No mention of thresholds used in
the confusion matrix

- No data on sensitivity or
specificity in detecting CML

- No external validation of the
software

Cerrato (2020)
[24]

Diagnosing and
subtyping leukemia

- Externally validated
- High performance (95% concordance)
- Faster diagnosis than traditional

methods in low-income countries
- Can use blood smears or bone marrow

aspirates

- Absent data on the methodology
of developing the software

- Only concordance with
immunophenotyping was
reported as a performance metric

Hempel and
Fischer (2016)
[25]

Applying clinical
practice guidelines

- Easy access from Internet browsers
- Combines guidelines and expert

opinions
- Self-learning through Bayesian

inference or ML algorithms

- No follow-up data on the project
were published

- No discussion of the ML methods
used in developing the software

- No discussion of the system’s
performance assessment
methodology

Bibi et al. (2020)
[26]

Diagnosing and
subtyping leukemia

- Use of CNN deep learning models
- Best performing model in detecting

and subtyping leukemia (100% ACC)
- Near-zero training and validation loss

- No data on time taken to reach
diagnosis

- No clear description of training,
testing, validation datasets

Haferlach et al.
(2021) [27]

Diagnosing and
subtyping
hematological
malignancies

- Easy access
- High performance (96% ACC against

hold-out-set)
- Can detect several malignancies other

than leukemia
- Large sample size of diverse

hematological diseases

- External validation of the results
is needed

- No data reported on the
sensitivity or specificity of the
model

- Hold-out was used instead of
cross-validation

Ni et al. (2013)
[28]

Distinguishing
malignant CML
neutrophils vs.
normal neutrophils

- High performance (95.8% SEN, 95.3%
SPE, 95.5% ACC)

- Externally validated
- Utilizes flow cytometry

- Further testing on diverse patient
samples is needed

Zhang (2022)
[29]

Segmentation of
bone marrow cells

- High performance (81.8% dice
coefficient, 71.2% IoU, 95.1% PA)

- Compares multiple models in
segmentation performance

- Clinical cross-validation using eight
ML models

- Studies with larger, more diverse
samples are needed
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Table 1. Cont.

Study Outcome Advantages Disadvantages

Hauser (2021)
[30]

Predicting CML
diagnosis

- High performance (average AUC
0.63–0.92)

- Uses blood counts
- Can promote better prognosis through

early detection

- Retrospective analysis
- Studies with standardized data

collection methods are needed
- Only AUC was reported as

performance metric

Shanbehzadeh
et al. (2022)
[31]

Predicting 5-year
CML survival

- Comparison of multiple ML models
- Moderate performance (86% SEN, 85%

SPE, 85.7% ACC, 85% AUC)

- Retrospective analysis
- Single center study
- Prospective studies are needed to

improve the model’s performance

Kok et al.
(2018) [32]

Risk-stratification of
CML-CP patients

- Moderate accuracy in predicting MMR
(84%)

- Combines risk scores with bioassays
- Adds to the predictive value of ELTS

score

- Studies with larger samples are
required to validate the results

Sasaki et al.
(2021) [33]

Making treatment
recommendations
for CML-CP patients

- Higher survival in
treatment-recommended group (98%
vs. 77%)

- Potential to improve patient outcomes
- Recommendations individualized to

each patient

- Single center study
- Study did not include data on

bosutinib
- Further studies are needed to

expand the model’s
recommendations after failure of
first-line treatment

ML, machine learning; SVM, support vector machines; CNN, convolutional neural networks; CML, chronic
myeloid leukemia; CML-CP, chronic myeloid leukemia chronic phase; MMR, major molecular remission; ELTS,
EUTOS long-term survival; IoU, intersection-over-union; PA, pixel accuracy; ACC, accuracy; SEN, sensitivity;
SPE, specificity; AUC, area under the curve.

Table 2. Performance metrics for the best models in the included studies.

Study (Year) Outcomes Best Models AUC ACC SEN SPE Concordance

Dese et al. (2021) [23] Diagnosing and
subtyping leukemia SVM NR 93.33% NR NR NR

Cerrato (2020) [24] Diagnosing and
subtyping leukemia NR NR NR NR NR 95%

Hempel and Fischer
(2016) [25]

Applying clinical practice
guidelines NR NR NR NR NR NR

Bibi et al. (2020) [26]
Diagnosing and

subtyping leukemia
ResNet-34 NR 99.73% NR NR NR

DenseNet-121 NR 100% NR NR NR

Haferlach et al. (2021)
[27]

Diagnosing and
subtyping hematological

malignancies
Xception NR 96% NR NR 95%

Ni et al. (2013) [28]
Distinguishing malignant

CML neutrophils vs.
normal neutrophils

SVM 97% 95.5% 95.8% 95.3% NR

Zhang (2022) [29]
Segmentation of bone

marrow cells
cGAN NR 95.1% * NR NR NR

Linear SVM 84.93% NR NR NR NR
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Table 2. Cont.

Study (Year) Outcomes Best Models AUC ACC SEN SPE Concordance

Hauser (2021) [30]
Predicting CML

diagnosis
XGBoost 87–95% † NR NR NR NR

LASSO 91–96% † NR NR NR NR

Shanbehzadeh et al.
(2022) [31]

Predicting 5-year CML
survival

SVM
(kernel = RBF) 85% 85.7% 86% 85% NR

Kok et al. (2018) [32] Risk-stratification of
CML-CP patients rpart NR 84% NR NR NR

Sasaki et al. (2021)
[33]

Making treatment
recommendations for

CML-CP patients
XGBoost 82% NR NR NR NR

SVM, support vector machine; ResNet, Residual networks; DenseNet, Densely connected convolutional network;
Xcpetion, Extreme inception; cGAN, conditional Generative adversarial network; XGBoost, extreme gradient
boosting; LASSO, least absolute shrinkage and selection operator; rpart, Recursive partitioning and regression
trees; AUC, area under ROC curve; ACC, accuracy; SEN, sensitivity; SPE, specificity; NR, not reported; *, Pixel
accuracy; †, At time of diagnosis.
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Figure 1. Schematic representation of the review process.

3.1. Diagnosis and Classification

Detecting CML and its stage is crucial for clinicians to avoid adverse consequences and
to choose an optimal management plan for patients. In low- and middle-income countries
(LMIC), clinicians mostly rely on microscopic manual inspection of bone marrow and blood
smear films to diagnose and subtype leukemia. However, manual work is prone to error
and takes time to formulate a diagnosis [11,34]. Therefore, multiple ML methods have been
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proposed to solve this issue by automating this step using an artificial intelligence-powered
software to predict the diagnosis of CML.

Dese et al. developed an optical image processing software designed to automatically
diagnose and subtype leukemia using the images of 250 stained blood smears. Images
were optimized through preprocessing and the segmentation of white blood cells (WBC)
from other structures. A total of 120 images with the diagnosis of CML were used in the
study, of which 75 images were used for feature extraction and training, 30 for testing,
and 15 for validation. ML algorithms were employed for feature extraction and identified
several geometric (e.g., area, perimeter, aspect ratio), texture (e.g., contrast, correlation,
homogeneity), color (mean hue saturation value), and statistical features (e.g., skewness,
kurtosis, energy) that were accurate discriminators of leukemia subtype. Support vector
machine (SVM), a supervised ML algorithm, was used as a classifier in the software.
A confusion matrix was constructed to assess the performance on both the training and
validation datasets. In both datasets, the software achieved an accuracy of 93.3% for
classifying CML, and the diagnoses were provided in less than one minute. The system
developed in this study shows the potential for replacing the manual methods of diagnosing
leukemia using automated software. However, it has not been externally validated to
evaluate its performance across different patient samples. Additionally, the study only
reports the accuracy of detecting CML, and other important metrics such as sensitivity
and specificity were not reported. These parameters would be useful to compare the
performance of this software with other methods of CML classification such as manual
classification and to consider its implementation in clinical practice [23].

Similarly, Cerrato developed an image processing algorithm to diagnose leukemia,
which was trained on 1009 images of bone marrow aspirates and peripheral blood smears
from patients diagnosed with leukemia through immunophenotyping. In a sample of
341 patients presenting symptoms of leukemia, the algorithm was applied and subsequently
evaluated by an expert hematologist for external validation. The average time to obtain
an initial diagnosis of leukemia was 75% within 24 h and 24% within 48 h. Out of the
total sample, 20 patients (5.9%) received a preliminary diagnosis, of which four (20%) were
diagnosed with CML. A 95% match was observed between the ML diagnosis and the
immunophenotyping diagnosis. The use of this algorithm assisted hematologists in making
early treatment decisions for patients, ultimately reducing the time needed to diagnose
leukemia. This approach could increase the access to the diagnosis and treatment of
leukemia, especially in lower income countries. Nevertheless, there is plenty of information
missing from the abstract. For instance, there is no mention of the ML method used in
developing the image processing software, or details on the training and testing phases of
the ML model [24].

In 2016, Hempel and Fischer presented an interactive assistance system aimed to help
clinicians in applying clinical practice guidelines (CPG) in the diagnosis and treatment of
CML given their specific parameters (i.e., patient, equipment, medical experience). The
proposed system was a self-learning server that stores information and learns to provide
recommendations according to the most recent guidelines and expert opinions, which can
actively encourage physicians to incorporate CPG into their daily practice. The system
employs Bayesian inference and ML methods to stay up to date with the latest guidelines.
No further data have been published about the outcomes of this system in the context of
CML diagnosis and treatment [25].

Bibi et al. created an Internet of Medical Things-based framework to detect and
subtype leukemia from peripheral blood smear images using DenseNet-121 and ResNet-34
deep learning models (Figure 2). They trained the models on a dataset of 57 CML samples
with 1243 images generated using various augmentation techniques. The CNN models
directly extracted relevant features from the input images, eliminating the need for separate
feature extraction. Despite unclear details on the training, testing, and validation datasets,
the DenseNet-121 model had a perfect performance in predicting CML with 100% accuracy
(Figure 3). The model achieved near-zero training and validation loss, demonstrating its
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ability to generalize to new data. The model outperformed previous models and has the
potential for clinical implementation, but its efficiency and applicability require evaluation
with additional patient samples including data on the time taken to classify images [26].
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Haferlach et al. conducted a trial on 10,082 patients with suspected hematologic
neoplasms. Skilled technicians independently labeled all peripheral blood smear sam-
ples, which were then reviewed by hematologists. Next, they trained a CNN model, an
ImageNet-pretrained Xception model, on 8425 images to identify 21 predefined classes of
neoplasms including CML. The model achieved 96% accuracy on the hold-out-set and 95%
concordance with the pathogenic cases, as determined by manual inspection. Clinicians
can utilize this cloud-based model for automated classification of scanned images of pe-
ripheral blood smears, thereby increasing the efficiency and reducing the cost of leukemia
diagnosis [27].

Immunophenotyping using flow cytometry has been used in many hematological
diseases as it is useful in quantifying and characterizing cells [35,36]. Unique antigen
expressions can be used to classify cells into malignant or normal. This method is difficult
to utilize in CML since mature neutrophils in CML patients can have a similar antigen
expression behavior as the normal neutrophils [37,38]. Thus, polymerase chain reaction
(PCR) is preferred to detect the presence of the BCR/ABL gene to diagnose CML. Ni et al.
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used SVM algorithms with flow cytometry data (four-color panel; CD45, CD65s, C15,
CD11b) to analyze multiple cell parameters and classify them as mature malignant (CML)
or normal neutrophils. Clinical diagnoses were confirmed through the PCR of BCR/ABL,
immunophenotyping, and chromosome morphology. To train the model, data from nine
CML patients and nine healthy donors were used, and data from 67 patients with various
diagnoses were randomly assigned to the test group to assess the SVM model’s predictive
ability. The model achieved a 95.5% overall accuracy, with a sensitivity and specificity
of 95.8% and 95.3%, respectively, using a cut-off value of 51.79% predicted probability.
The cut-off value was determined by the receiver operating characteristic (ROC) curve to
have an AUC of 97% (Figure 4). This study utilized flow cytometry’s analytical ability to
develop a model that accurately identifies mature neutrophil origin. However, larger and
more diverse samples are needed to fully investigate the model’s usefulness in classifying
neutrophil origin [28].
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from Ni et al., Computers in Biology and Medicine; published by Elsevier, 2013” [28].

Zhang et al. used bone marrow specimens from 89 patients (58 CML patients, 31 con-
trols) to developed a multiclass segmentation model to segregate the megakaryocytes
(MKs) from myeloid cells using a conditional generative adversarial network (CMLcGAN).
The model’s generator network utilized UNet++ and the discriminator network contained
four 2× convolutional downsampling layers, and Figure 5 summarizes the framework
used for the automatic detection of CML. Fivefold cross-validation was used to assess
and compare the performance of the model. CMLcGAN was compared to seven models
and outperformed with a mean dice coefficient of 81.8%, IoU of 71.2%, and pixel accuracy
(PA) of 95.1%. Based on the segmentation results, seven characteristics (e.g., count, size,
density) from MKs and the myeloid cells were analyzed using a t-test to determine the most
important predictors for CML diagnosis. Five features were deemed important and were
fed into eight different ML models. The linear SVM was shown to be the best-performing
model to predict CML with an AUC of 84.93%. More studies with larger cohorts are needed
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to test the validity and feasibility of clinical implementation, as the study was conducted
on a sample from a single diagnostic lab. Nevertheless, the study highlights the potential of
using deep learning methods such as CMLcGAN for the precise segmentation and analysis
of bone marrow cells, which could assist in diagnosing CML [29].
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Pathology; published by Elsevier, 2022” [29].

3.2. Prognosis

Despite the advancements in leukemia management, disease prognosis and survival
prediction in CML patients can help in treatment decision-making and evading disease
progression to advanced stages. It is known that the severity of blood cell abnormalities
at the time of diagnosis is a prognostic factor in CML, and those in the early chronic
phase of CML are more likely to maintain major molecular remission (MMR) after the
discontinuation of tyrosine kinase inhibitors [34,39,40]. Therefore, an earlier diagnosis of
CML could lead to a better prognosis.

A retrospective study conducted by Hauser et al. checked the predictive ability
of the blood cell counts collected up to 5 years prior to diagnostic CML testing (BCR-
ABL1 mutation test) in CML diagnosis. They utilized two ML models: extreme gradient
boosting (XGBoost), which is based on decision trees, and least absolute shrinkage, and
selection operator (LASSO), which is based on logistic regression. Data from 1623 patients
were retrieved from the veterans’ health administration database to be incorporated into
these models, then were split by a ratio of 80:20 into the training/validation and testing
datasets, and the AUC and 95% confidence intervals were calculated for each model. The
performance of the models trained on data gathered at the time of the BCR-ABL1 mutation
was the most predictive (AUC 0.87–0.96), while that of the models trained on data gathered
farthest from the mutation test was the poorest (2–5 years prior to the BCR-ABL1 test;
AUC 0.59–0.67). This study provides evidence that the blood cell counts collected prior to
BCR-ABL1 testing can predict future CML diagnosis, thus promoting earlier CML diagnosis
and potentially improved prognosis. Although the study reports the AUC as a performance
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metric, providing additional metrics such as sensitivity and specificity would enhance
the understanding of model performance and facilitate comparisons with other models.
Furthermore, the data in this study were collected during routine medical care, which
may have influenced the performance of the models. Therefore, future studies with a
prospective study design and standardized methodology could improve the predictive
accuracy of these models [30].

Shanbehzadeh et al. conducted a retrospective study to identify the most important
factors affecting 5-year survival in CML and employed them in multiple ML algorithms to
evaluate their ability to predict survival. Data on 45 variables associated with CML survival
were extracted from an electronic medical record database for 837 patients, then randomly
divided into training and testing groups in a ratio of 70:30. To maximize the efficiency and
performance of predictive ML algorithms, the minimal redundancy maximal relevance
(mRMR) feature selection algorithm was used to select the specified variables. Multiple ML
methods were employed, extreme gradient boosting (XGBoost), k-nearest neighborhood
(KNN), multilayer perceptron (MLP), J-48, pattern recognition network, probabilistic neural
network, SVM (kernel = linear), and SVM (kernel = RBF). Twelve variables were selected to
be fed into the ML algorithms (Figure 6), of which palpable spleen, age, and unexplained
hemorrhage were the most relevant to CML 5-year survival. The SVM (kernel = RBF)
outperformed in predicting the 5-year survival in CML among the eight models with 86%
sensitivity, 85% specificity, 85.7% accuracy, and an AUC of 85%. This was a retrospective
analysis of data from a single center, which may limit the applicability and generalizability
of the models. Additionally, the retrospective nature of the study means that important
variables that could improve the performance of ML models were not available. Further
studies are necessary to enhance the quality and accuracy of these models [31].
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One of the main goals of imatinib treatment in patients with chronic phase CML
(CP-CML) is achieving MMR within two years of the diagnosis because it is associated
with improved prognosis and survival [41–44]. Studies have shown that the EUTOS long-
term survival (ELTS) score is a good predictor of survival in CML patients [45,46]. A
model built by Kok et al. utilized multiple bioassays to classify CML-CP patients into
high-risk (HR) and low-risk (LR) groups and to compare it to the ELTS score to determine
which is a better predictor of MMR. In addition, they combined the bioassay model with
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the ELTS score to check if it provided an added predictive value. The model used data
from 210 TIDEL-II (frontline imatinib with early switch to nilotinib for failure to meet the
optimal time-dependent molecular targets) patients, of which 201 patients had ELTS scores.
Out of all the bioassays included in the study, the recursive partitioning and regression
trees (rpart) algorithm identified only four to be the most important predictors of MMR
(IGFBP2 gene expression, KIR2DL5B genotype, OA, and MCP-1 cytokine plasma level). The
model achieved an accuracy of 84% with those classified as high risk having significantly
lower rates of MMR than those classified as low risk (26% vs. 86%, p < 0.0001) as well as
higher for blast-crisis progression (15% vs. 1.6%, p = 0.006). This model can be used along
with the ELTS score to risk-stratify CML-CP patients receiving TIDEL-II treatment, but it
still requires external validation with larger samples to assess performance in the clinical
context [32].

3.3. Treatment

Tyrosine kinase inhibitors (TKIs) improved the survival of patients with CML-CP [47,48].
Many patients have to change into another TKI throughout the course of therapy. The deci-
sion of which TKI is best for a patient is based on multiple biological and sociodemographic
features [41,49]. Sasaki et al. created the LEukemia Artificial Intelligence Program (LEAP)
to provide treatment recommendations for CML-CP patients based on the XGBoost ML
algorithm. They included a cohort of 630 patients who received TKIs from a single center
and were randomly assigned into training (n = 504) and test cohorts (n = 126) in a 4:1 ratio.
Data on 101 variables from the training cohort were utilized in a 3-fold cross-validation
step to develop the LEAP ML model. After hyperparameter tuning, the LEAP model
achieved an AUC of 0.82 in the test cohort. To test the model’s validity, the test group
was further divided into those who received LEAP-recommended TKIs (n = 94 (75%)) and
those who did not (n = 32 (25%)). The median follow-up period for the total cohort in the
study was 139 months. Complete cytogenetic response (CCyR) was achieved in 89% of the
LEAP-recommended group compared with 81% in the other group. Moreover, MMR was
achieved in 82% and 75% in the LEAP-recommended group and LEAP non-recommended
group, with overall survival rates of 98% and 77% (p < 0.001), respectively. While the
study has the potential to improve patient outcomes, it has limitations. For example, it did
not include data on bosutinib, and the LEAP model could only make recommendations
for first-line treatment. Further data are needed to develop a model for recommending
treatment after the first-line has failed [33,50,51].

4. Discussion

CML is a major component of leukemias, accounting for about 15% of all leukemia
cases. Many aspects of CML (e.g., workup, management, risk assessment) can be improved,
especially in low-income countries with poor access to advanced technologies and expen-
sive treatments. Multiple ML models have been proposed to better these aspects and to
make the diagnosis and management of CML more accessible and affordable. This review
aimed to highlight the different implementations of ML algorithms in diagnosis prediction,
risk assessment, and the management of CML.

This review has summarized the findings of 11 studies pertaining to CML diagnosis,
prognosis, and treatment using different ML algorithms to automate these processes. Most
of the studies included in this review were concerned with ML models predicting the
diagnosis of CML based on images of peripheral blood smears or bone marrow aspirates.
Moreover, one study utilized flow cytometry to subclassify neutrophils as CML mature
neutrophils or normal mature neutrophils. The ML algorithm used in this study achieved
high accuracy in predicting the origin of neutrophils. These were followed by studies
addressing the prognosis of CML by employing ML to stratify patients with CML according
to risk or to predict their survival. Finally, a study demonstrating a model that can provide
individualized treatment recommendations for patients with CML-CP.
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Most studies in this review achieved a high performance after cross-validation using
the test/validation groups. However, this only represents the internal validation as the
test/validation groups were usually derived from the same population that the training
groups were derived from. This means that these results still await external validation
using samples from populations with different characteristics than the original studies.
Moreover, some studies had small sample sizes with data derived from a single center/lab
or data collected in a different manner than that of the clinical practice. All these can pose
a threat to the applicability and generalizability of the results of these studies. Therefore,
studies examining these models on bigger and more diverse samples are needed to make
sure these models can be applied in different clinical settings.

5. Conclusions

The literature contains several studies utilizing ML algorithms in CML to improve the
diagnosis, prognosis, and management. Many of the models in these studies achieved a
high precision in performing their tasks. However, further research with bigger samples
and better methodology is still needed; this can be achieved by implementing these models
in various clinical contexts to test their performance. Finally, it is important to note that
the implementation of ML models in this context has the potential of significantly help-
ing physicians by providing early diagnosis, better risk assessment, and individualized
treatment plans, which will positively affect the care of patients with CML.
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