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Diabetes mellitus is characterized by elevated blood glucose levels, however patients with
diabetes may also develop hypoglycemia due to treatment. There is an increasing demand
for non-invasive blood glucose monitoring and trends detection amongst people with
diabetes and healthy individuals, especially athletes. Wearable devices and non-invasive
sensors for blood glucose monitoring have witnessed considerable advances. This review
is an update on recent contributions utilizing novel sensing technologies over the past five
years which include electrocardiogram, electromagnetic, bioimpedance,
photoplethysmography, and acceleration measures as well as bodily fluid glucose
sensors to monitor glucose and trend detection. We also review methods that use
machine learning algorithms to predict blood glucose trends, especially for high risk
events such as hypoglycemia. Convolutional and recurrent neural networks, support
vector machines, and decision trees are examples of such machine learning algorithms.
Finally, we address the key limitations and challenges of these studies and provide
recommendations for future work.
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1 INTRODUCTION

Blood glucose levels are closely regulated within a desirable range by several hormones released
primarily by the pancreas. Diabetes mellitus is a group of metabolic diseases characterized by
elevated glucose levels (American Diabetes Association, 2013). The 2021 International
Diabetes Federation (IDF) atlas has estimated that there are 537 million adults with
diabetes and that number is expected to increase to 784 million by 2045. Type 1 diabetes
affects between 5 and 10% of patients and is characterized by a lack of insulin production and a
higher variability in blood sugars, which requires exogenous insulin and more regular
monitoring of blood glucose (American Diabetes Association, 2020). Type 2 diabetes
affects up to 90% of all patients diagnosed with diabetes and can be further subdivided
into a distinct number of subtypes with varying degrees of insulin deficiency, insulin
resistance, and propensity for developing complications (Ahlqvist et al., 2020; Ahlqvist
et al., 2018).
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Normal blood glucose concentrations should lie within a range
of 4.0–5.5 mmol/L (72–99 mg/dl) after an 8 h fast and should be
< 7.8 mmol/L (140 mg/dl) 2 h after eating (Güemes et al., 2015).
Chronic hyperglycemia is associated with long-term
microvascular and macrovascular complications (de Boer,
2008). Hypoglycemia occurs due to excess insulin which can
be exogenous or endogenous leading to glucose dropping below
the normal range. Hypoglycemia occurs in both type 1 diabetes
and type 2 diabetes (Briscoe, 2006; Zammitt and Frier, 2005;
Miller et al., 2001). There are clear American Diabetes
Association (ADA) clinical practice recommendations to
achieve optimal blood glucose targets using different therapies
(American Diabetes Association, 2020a; American Diabetes
Association, 2020b), but are inherently associated with an
increased risk of hypoglycemia (Ohkuma et al., 2021),
especially in patients who have reduced awareness of
hypoglycemia (Yeoh et al., 2015).

The ADA categorizes hypoglycemia into: Level 1 with a blood-
glucose value between 54 mg/dl and 70 mg/dl; level 2 with a
blood-glucose value less than 54 mg/dl; and level 3 with severe
hypoglycemia characterized by altered mental and/or physical
status requiring external assistance (American Diabetes
Association et al, 2021). The symptoms of hypoglycemia are
categorized as autonomic, with adrenergic (tremor, palpitations,
tachycardia, and anxiety) and cholinergic (sweating, hunger, and
paresthesia) manifestations. Neuroglycopenic symptoms may
include dizziness, weakness, drowsiness, delirium, confusion,
seizure, and coma. The blood-glucose threshold at which an
individual patient will experience hypoglycemic symptoms
depends on overall glycemic control as the threshold for
hypoglycemia will be higher in patients with consistently
elevated blood-glucose. Thus, self-monitoring of blood glucose
is a key part of diabetes management (Diouri et al., 2021).

The most widely used glucose monitoring systems rely on
disposable test strips that read the blood glucose from a sample
obtained using the finger prick approach. This method is
associated with discomfort, especially when it is undertaken
frequently in patients with type 1 diabetes (Heinemann, 2008).
Continuous glucose monitoring (CGM) devices measure
interstitial glucose and have been shown to marginally
improve overall glycemic control and reduce the incidence of

hypoglycemia (Nathanson et al., 2021; Lee I. et al., 2021), but
suffer from several inherent limitations. There is a time lag
between the interstitial glucose measured by CGM and actual
blood glucose and there are inconsistencies in the readings of
different CGM devices (Kamath et al., 2009; Damiano et al.,
2012). Furthermore, most CGMs are relatively expensive, which
limits the wider adoption of such technology among diabetic
patients.

Wearables are lightweight devices capable of measuring
different vital signs and modalities such as heart rate,
temperature, respiration rate, activity level, and skin
conductance (Cheol Jeong et al., 2019). Wearable
technologies have been proposed to improve the quality of
life by collecting and sharing data between people and their
carers (Seneviratne et al., 2017). Wearable devices have
different functions and may include patches, belts, lenses,
earphones, socks, glasses, watches, wrist bands, and
bracelets (Dunn et al., 2018). Wearables have been
recommended in the elderly to increase their independence
and have been proposed for autism screening and therapy
(Kekade et al., 2018; Cabibihan et al., 2016; Cabibihan et al.,
2018). Recently, the readings from wearable technologies have
been associated with blood glucose levels (Bekkink et al., 2019;
Corino et al., 2017; Maritsch et al., 2020). Using such devices to
indirectly monitor glucose represents a non-invasive,
convenient, and inexpensive method over CGM. A typical
glucose monitoring system consists of wearable devices and
machine learning models assessed against FDA established
evaluation metrics (Figure 1).

Siddiqui et al. surveyed different types of non-invasive
blood glucose monitoring equipment and highlighted the
potential role of artificial intelligence in solving some of the
existing challenges (Siddiqui et al., 2018). Non-invasive
monitoring of glucose levels from breath samples and
epidermal electrochemical glucose sensors hold promise
(Lekha and Suchetha, 2020; Kim et al., 2018). Other non-
invasive sensors that measure physiological parameters such as
pulse and pulse pressure may help to improve glucose
management among diabetic patients, especially during
physical activity (Ding and Schumacher, 2016). A wide
range of non-invasive techniques for blood glucose
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monitoring have been developed utilizing glucose monitoring
in bodily fluids (Nawaz et al., 2016; Bruen et al., 2017).

Despite the existence of many studies related to non-invasive
glucose monitoring, several questions remain unanswered:

1. What technologies can be used in blood glucose prediction
and trends detection?

2. Which machine learning algorithms can be used?
3. To what extent are these technologies and techniques

successful?
4. What are the limitations of the existing approaches?

To answer these questions, we have reviewed the advances
over the past five years in non-invasive sensors, wearable
technologies, and machine learning approaches to estimate
blood glucose, especially to identify hypoglycemia. We have
identified the major limitations and challenges faced by these
studies and provided recommendations to overcome these
constraints. We have reviewed studies that have developed
non-invasive sensors and wearable devices as well as
contributions that have employed existing commercially

available devices. Studies without working prototypes were
excluded. The considered search keywords included non-
invasive or noninvasive, sensor, wearable, glucose, levels, trends,
hypoglycemia, monitoring, machine learning, and prediction.

2 NON-INVASIVE SENSORS AND
WEARABLES

This section presents the advances in wearables and sensors over
the past five years. The technologies used have varied from direct
measurement of glucose from bodily fluids such as saliva, sweat,
and tears to the detection of physiological variables which change
with blood glucose (Figure 2). Examples of such wearable devices
and sensors are illustrated in Figure 3. A summary of the
surveyed studies is provided in Table 1.

2.1 Photoplethysmography
Heart rate variability (HRV) reflects physiological changes in the
human body and provides insights on cardiac health and the
autonomic nervous system, which can be used as an indicator of

FIGURE 1 | An overview of glucose monitoring systems that are based on wearable sensing technologies and machine learning techniques. Wearable devices
collect different physiological signs using different sensor technologies. Machine learning algorithms are then used to train and develop prediction models. The predictive
performance of these models is assessed using evaluation metrics against actual recorded blood glucose levels.

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org May 2022 | Volume 10 | Article 8766723

Alhaddad et al. Sense and Learn: Recent Advances

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


current or impending diseases (Yuan et al., 2020). For example, it
was considered as a predictor in rapid renal function
deterioration (Chou et al., 2019), sudden cardiac death (Sessa
et al., 2018), and stroke or post-stroke complications (Lees et al.,
2018). The analysis of HRV relies on methods in either time-
domain or frequency domain. The root mean square of successive
differences (RMSSD), the standard deviation of normal to normal
interval (SDNN), and average heart rate (HR) are widely used

time domain indices (Acharya et al., 2006). High frequency (HF),
low frequency (LF) and very low-frequency (VLF) are examples
of frequency-domain parameters. HRV has been associated with
the severity of hypoglycemia and fluctuation of interstitial glucose
(Silva et al., 2016; Klimontov et al., 2016).

Estimating HRV parameters from wearables to predict
hypoglycemia has been investigated in previous studies with
changes in HRV occurring up to 90 min prior to hypoglycemia

FIGURE 2 | A broad classification of the wearable and sensor technologies considered in glucose monitoring over the past five years.

FIGURE 3 | Examples of developed wearable devices and sensors that are aimed to aid in blood glucose management. (A) Awearable mouthguard biosensor that
measures salivary glucose levels (Adapted with permission from Arakawa et al. (2020)). (B) Wearable sensor to analyze perspiration glucose (Adapted with permission
from Zhu X. et al. (2018). (C) A biosensor that can measure tear glucose levels (Adapted with permission from Kownacka et al. (2018)). (D) An electromagnetic wearable
glove for continuous glucose monitoring (Adapted with permission from Hanna et al. (2020)).
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TABLE 1 | A summary of the advances in non-invasive sensors and wearable technologies for blood glucose monitoring.

Study Device Experiments Key Findings Limitations

Susana et al. (2022) PPG device Collected data from 80 participants The classification of blood glucose
levels into normal and diabetic

Limited experimental settings and no
reported instances of hypoglycemia

Chu et al. (2021) PPG device PPG and physiological data from
2,538 participants

Promising blood glucose prediction
performance for the group without
medication

Limited PPG data collected from each
participant with limited results for the
group with medication

Maritsch et al. (2020) PPG wrist wearable The data was obtained from one
participant with T1DM

The detection of hypoglycemia using
HRV time features

Limited to one participant

Porumb et al. (2020b) ECG chest wearable
device

The study acquired the ECG data
from healthy participants monitored
for up to 14 days

The ability to detect nocturnal
hypoglycemia relying on raw ECG
signal

No participants with diabetes and
limited instances of hypoglycemia

Bekkink et al. (2019) ECG patch wearable
device

The data was acquired from
patients with T1DM

The identification of HRV patterns in
relation to early detection of
hypoglycemia

Limited instances of hypoglycemia

Charamba et al. (2021) 12-lead ECG ECG, CGM, and diary from 17
patients with type 1 diabetes

Identifying a negative relationship
between QTC and hypoglycemia

No female participants and no
investigation on the effects of
medications

Li et al. (2021) ECG device ECG and glucose data from 21
participants

An overall accuracy of 81.69% in
classifying blood glucose to three
groups

Limited to young participants and
small sample size

Saha et al. (2017) EM patch antennas Tested with water-based samples
and with blood samples from
humans

The detection of glucose spikes in
humans

Limited to experimental settings and
susceptible to noise

Hanna et al. (2020) EM wearable glove Glucose solutions and healthy
participants

High correlation with glucose
changes and blood glucose trends

No diabetic patients and limited
testing conditions

Raj et al. (2021) EM antenna Tested with plasma glucose Deviations in the reflection coefficient Limited experiments with participants
Zidane et al. (2021) EM ring Tested with glucose solutions The ability to detect glucose with a

1.665 mmol/L resolution
No experiments with participants were
reported

Zapasnoy et al. (2021) Microwave sensor Tested with glucose solutions Detecting glucose concentrations in
sodium chloride solutions with a
1 mmol/L resolution

No testing with participants were
reported

Liu et al. (2016) Bioimpedance antenna In vitro test in a pork slab Glucose levels changes can be
picked up by bioimpedance
parameters

Limited testing conditions with a
prototype

Nanayakkara et al.
(2018)

Bioimpedance and near-
infrared

Datasets from one subject High correlation was achieved Testing was limited to one participant
and no blood trends

Tronstad et al. (2019) Bioimpedance Data were collected from 20
patients with T1DM

Bioimpedance aids in the prediction Limited experimental settings and no
blood trends

Snekhalatha et al. (2018) Bioimpedance to
measure galvanic skin
response

Data were collected from 50
participants with diabetes and 50
healthy participants

Negative correlation was observed
with blood glucose levels

Limited to experimental settings and
no blood trends

Sanai et al. (2021) Bioimpedance wearable
ring

Tested with 14 patients with type 2
diabetes

Reported accurate prediction of
blood glucose levels

No testing with patients with type 1
diabetes

Xiao et al. (2019) Sweat glucose wearable
sensor

The device was tested with 4
participants

Dynamic detection range Testing only with healthy participants
and no blood trends

Xuan et al. (2018) Sweat glucose
biosensor

Tested with sweat samples High linearity and short response
time

Limited experimental testing with a
prototype

Zhu et al. (2018b) Wristband sweat
glucose wearable

Tested using sweat samples and
with volunteers

Continuous sweat glucose
monitoring with a mobile app

Limited testing conditions, no patients
with diabetes, and no blood trends

Zhao et al. (2019) Sweat glucose
smartwatch

Tested using sweat samples and
with 6 healthy participants

Real-time glucose monitoring using
a smartwatch

No participants with diabetes and no
blood trends

Katseli et al. (2021) Sweat wearable ring Tested with one healthy participant Detecting sweat glucose in the range
of 12.5–400 μmol/L

Limited testing conditions

Sempionatto et al.
(2021)

Touch-based sweat
sensor

Tested with three healthy
participants

High correlation with blood glucose Not tested with patients with diabetes

Kim et al. (2017) Contact lens tears
glucose sensor

Tested in rabbit and bovine eyes Wireless detection of tears glucose No reported tests with participants

Park et al. (2018) Soft and smart tears
glucose lens

Tested on a live rabbit Real-time detection of tears glucose
wirelessly

No reported tests with participants

Elsherif et al. (2018) Optical tears glucose
sensor

Tested with an artificial eye and
different glucose concentrations

Detection of glucose concentration
using smartphone camera

No in vivo tests or with participants

Kownacka et al. (2018) Flexible tears glucose
biosensor

Tested with 6 participants Achieved decent performance on
Clarke’s error grid

No blood trends and no diabetic
participants

(Continued on following page)
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(Bekkink et al., 2019). Empatica E4 (Empatica Inc., US) is one
example of a wearable used to estimate HRV parameters
utilizing a photoplethysmography (PPG) sensor to measure
the blood volume pulse. The PPG sensor in Empatica E4 has
been shown to provide accurate arrhythmia classification
(Corino et al., 2017). A previous study has demonstrated
that Empatica E4 can be used to detect the occurrence of
hypoglycemia (Maritsch et al., 2020). The study collected HRV
time features (e.g., RMSSD) extracted from the recorded inter-
beat intervals from the wearable device and interstitial glucose
readings using CGM (i.e., FreeStyle Libre) from a participant
with T1DM. Using a machine learning model based on
decision trees (i.e., gradient boosting), the developed model
was able to predict hypoglycemia in the test set with an
accuracy of 82.7%. The study had major limitations in
terms of the features considered, physiological signals, and
was only tested on one participant. However, the initial results
demonstrated that wearables can indeed be used to predict
hypoglycemic events using HRV parameters.

A recent study demonstrated the application of a PPG
device in the classification of blood glucose levels into
normal and diabetic (Susana et al., 2022). With PPG
signal and blood glucose data collected from 80
participants, the study reported an accuracy of 98% with a
decision tree based classifier. Another recent study
investigated blood glucose prediction based on PPG and
physiological data acquired from 2,538 participants split
into two groups with or without medication (Chu et al.,
2021). Seventeen features were extracted from the collected
data and were used in developing the prediction model. With
quarterly measured HbA1c, the best model achieved an
accuracy of 94.3% with an RMSE value of 12.4 mg/dl for

the group without medication while the results for the group
with medication were limited.

2.2 Electrocardiogram
Electrical signals arise in the SA node in the right atrium, travel to
the atrioventricular node in the interatrial septum and diverge
through the left and right bundle of His to the Purkinje fibers
terminating in the endocardium and ventricular epicardium
causing ventricular contraction. Cardiac electrical activity can
be monitored using an Electrocardiogram (ECG). A typical
heartbeat is partitioned into three segments, namely PR
segment, QRS complex, and ST segment and each segment
can be used to identify underlying cardiac conduction defects
such as short QT-interval or PR-interval (Nikolaidou et al., 2017;
Hasegawa et al., 2016; Kališnik et al., 2019).

The advancement in sensor miniaturization has enabled
current wearables to measure changes in cardiac conduction
and contraction with good accuracy. The Fitbit Sense
smartwatch and Apple watch series 4 are examples of wrist
wearables that can measure the heart rate and ECG signal to
identify an irregular heart rhythm, e.g., atrial fibrillation. Chest
sensors are another trend in wearables that can measure electrical
signals from the heart. The Bioharness (3.0, Zephyr Technology,
US) is a lightweight, portable chest wearable device that can
provide live access to a variety of physiological parameters,
including ECG and it has been tested to predict hypoglycemia.
The HealthPatch (VitalConnect, San Jose, CA) is another
example of an ECG wearable used to derive HRV to
investigate hypoglycemia (Bekkink et al., 2019). Other
promising wearable ECG devices that provide ease of
monitoring include the Bittium Faros (Bittium Corporation,
Finland) and Lifetouch (Isansys Lifecare Ltd., United Kingdom).

TABLE 1 | (Continued) A summary of the advances in non-invasive sensors and wearable technologies for blood glucose monitoring.

Study Device Experiments Key Findings Limitations

Lee et al. (2021b) Tears glucose contact
lens

Tested using glucose solutions and
human tears from three participants

Detecting tear glucose with a
detection limit of 211 nM

No tests with diabetic patients

Geelhoed-Duijvestijn
et al. (2021)

Tears glucose biosensor Evaluated with 24 patients with type
1 diabetes

Comparable performance to that
of CGM

Requires further evaluations with
blood glucose trends

Lin et al. (2017) Saliva glucose sensor Tested with saliva samples from 9
participants

Saliva glucose detection range that
corresponded to blood glucose
changes

Limited testing conditions and no tests
with diabetic patients

Chen et al. (2019) Saliva glucose smart
toothbrush

Saliva samples collected from 5
subjects

Linear detection range and reflected
with blood glucose changes

Limited to healthy participants

Arakawa et al. (2020) Saliva glucose
mouthguard

Tested with artificial saliva Detected glucose concentration Limited testing conditions and no in
vivo tests

Zhang et al. (2021) Salivary glucose
biosensor

Evaluated with saliva samples Good linearity for glucose
concentration between 0 and
50 mg/L

Further evaluations are required with
patients with diabetes

Abbas et al. (2018) Fingertip wearable with
an accelerometer

Simulated hand tremors Detection of tremors that are similar
to that exhibited during
hypoglycemia

Limited tests and no patients with
diabetes

Aljihmani et al. (2019) Wrist wearable with an
accelerometer

Data collected from seven subjects
with T1DM and T2DM

Identifying tremors under fatigue No hypoglycemic events

Jaggers et al. (2019) Smartwatch with an
accelerometer

Data was acquired from 10 patients
with T1DM

Activity recognition helps in the
prediction of nocturnal hypoglycemia

Limited to adolescent subjects with
T1DM and nocturnal hypoglycemia
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Changes in blood glucose can alter cardiac repolarization and
induce prolongation of the QT interval with an increased risk of
cardiac arrhythmia (Kališnik et al., 2019). These changes in
cardiac conduction prior to the development of arrythmia
could be used to predict the occurrence of hypoglycemia (Ling
et al., 2016; Porumb et al., 2020b). In a recent work, the
relationship between ECG data and blood glucose in adults
has been investigated (Charamba et al., 2021). The study
collected the ECG, diary, CGM data for one week from
seventeen patients with type 1 diabetes. The study identified a
negative relationship between QTC and hypoglycemia.

A recent study utilized an ECG device (i.e., Bioharness) and a
glucose monitoring system (i.e., FreeStyle Libre Flash) to
develop personalized models to predict the occurrence of
nocturnal hypoglycemic events (Porumb et al., 2020b). The
study acquired the ECG data from healthy participants
monitored for up to 14 days in relation to blood glucose
levels below 4 mmol/L to define a hypoglycemia threshold.
Using machine learning techniques, the study showed the
feasibility of predicting nocturnal hypoglycemia from raw
ECG signals. However, the participants in the study were all
healthy, hence, low blood glucose instances were limited.
Furthermore, the collected data were limited to nocturnal
events, thus, ECG circadian changes during the day in
relation to glucose concentration were not investigated.
Another study acquired ECG and glucose data from 16
healthy adults and 5 with prediabetes to establish a machine
learning model based on CNN to classify blood glucose values
into three groups, namely, low (i.e., below 6.0 mmol/L),
moderate (i.e., above 6.0 mmol/L and below 7.7 mmol/L), and
high (i.e., above 7.7 mmol/L) (Li et al., 2021). The results of the
best trained model showed an accuracy of 81.69% in classifying
the blood glucose values.

2.3 Electromagnetic
Non-ionizing parts of the electromagnetic (EM) spectrum (e.g.,
visible light, radio, and ultraviolet) ranging from 0 to 3.0 PHz
have been used for diagnostic and therapeutic medical
applications Mattsson and Simkó (2019). Non-invasive
estimation of blood glucose has been investigated using
electromagnetic waves and near infrared (NIR) waves based
on the unique absorption spectrum of glucose (Zhang et al.,
2019; Jiang et al., 2017; Hotmartua et al., 2015; Yadav et al., 2014;
Tronstad et al., 2019). Transmittance, which measures the
scattered light after penetrating the tissue, and reflectance,
which measures the reflected light from the skin surface, are
two methods that rely on light to acquire information about a
substance (Hotmartua et al., 2015). By investigating the
properties of both the reflected and transmitted waves, the
level of glucose can be estimated (Yadav et al., 2014).

Several devices have been developed that show that changes in
EM correlate with glucose concentrations (Cano-Garcia et al.,
2016; Shaker et al., 2018). Amicrostrip patch antenna (1.50 mm×
1.50 mm) utilizing a millimetre band of the EM spectrum has
been developed to sense glucose by using two facing antennas
operating at 60 GHz to assess the variations in permittivity across
the signal path (Saha et al., 2017). The device was capable of

detecting changes in small glucose concentrations of 1.33 mmol/L
in water-based samples and glucose spikes in humans and
therefore has potential applications to detect hypoglycemia.
However, the system was limited to experimental settings and
was susceptible to noise (e.g., hand motion). Another study
demonstrated the design of a compact antenna that operates
in the frequency range of 24.1–29.3 GHz and has a bandwidth of
5.2 GHz (Raj et al., 2021). The measured reflection coefficient of
the antenna showed deviations due to changes in the electrical
properties of plasma glucose, which could potentially be used to
measure glucose concentration. Another study demonstrated the
design of a circular two cell split ring resonator microwave sensor
that displayed sensitivity to changes in glucose concentration in
water (Zidane et al., 2021). Their device displayed a glucose
detection resolution of 1.665 mmol/L at a frequency of 1.9 GHz.
Another study developed a microwave sensor with a relatively
wide passband that correlated with blood glucose changes
(Zapasnoy et al., 2021). Glucose concentration between 0 and
25 mmol/L in sodium chloride solution could be detected with
1 mmol/L resolution in the frequency range of 1.4–1.7 GHz.

Recently, an innovative EM-based glove wearable device has been
developed to monitor blood glucose levels (Hanna et al., 2020). The
system consists of two flexible sensors (i.e., slot antenna and a reject
filter) and operates in the frequency range of 500MHz and 3GHz,
which reaches subcutaneous veins and arteries (Costantine et al.,
2019). The design of the multiband antenna was made to imitate the
vascular anatomy of the hand which improved its sensitivity by
concentrating the EM waves on the blood network allowing the
monitoring of glucose over a wider frequency range. When the device
was tested with glucose solutions at various concentrations, the
reflection coefficients varied with the changes in glucose and
achieved a high correlation (i.e., greater than 0.90). In in vivo
experiments, the device showed high correlation (i.e., greater than
0.89) with hypoglycemia and hyperglycemia and reportedly high
accuracy on the Clarke’s error grid. Whilst it showed promise in
estimating glucose levels in healthy participants, the device is still an
experimental prototype that requires extra circuitry and was only
tested in controlled conditions without physical activity. Subsequently,
the same research team demonstrated high fidelity in serum from 21
participants and achieved 98% accuracy against reference glucose
levels (Hanna et al., 2021).

2.4 Bioimpedance
Bioimpedance measures the response of a biological medium
(e.g., human body) to an electric current. The composition of
the biological mediums affects the bioimpedance based on
whether they act as insulators, dielectrics, or conductors
(Naranjo-Hernández et al., 2019). Hence, bioimpedance
measurements can be used to acquire information about
body composition, such as fat, muscle, and water and
thereby assess obesity (Zhang et al., 2018); sarcopenia in
patients with renal disease (Lai et al., 2019), and
gastrointestinal disease (Ruiz-Vargas et al., 2016).
Bioimpedance analysis has been suggested as a non-invasive
method to screen for diabetes mellitus (Jun et al., 2018).

Some studies have investigated the correlation between
changes in glucose levels and bioimpedance (Das et al., 2017;
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Zhu F. et al., 2020; Jose et al., 2019; Satish et al., 2017). A recent
study showed an inverse relationship between glucose
concentration and the bioimpedance difference in blood
volume (Li et al., 2018). Another study identified that a
frequency band of below 40 kHz provided stable and reliable
estimation for blood glucose based on bioimpedance (Takamatsu
et al., 2021). Another study demonstrated a wearable prototype
system for non-invasive glucose monitoring based on
bioimpedance measurement and showed that certain
parameters of bioimpedance were sensitive to changes in
blood glucose levels (Liu et al., 2016). Another study proposed
a hybrid technique that combined bioimpedance with near-
infrared measurements to monitor glucose (Nanayakkara
et al., 2018). Using machine learning (i.e., regression), the
combination of the two measurements achieved better results
based on Clarke’s error grid (i.e., 90% points in region A) when
compared to the reference blood glucose. However, the study was
limited to one participant.

In relation to blood trends, a recent study assessed non-
invasive sensors that included bioimpedance measurements
in detecting hypoglycemia among 20 patients with type 1
diabetes that underwent clamp procedures (Tronstad et al.,
2019). The study revealed that bioimpedance plays a
correcting role in the prediction when paired with other
sensors. Bioimpedance of the skin has also been used to
detect nocturnal hypoglycemic events (Lesko et al., 2018).
Another study investigated the galvanic skin response (GSR)
and correlated it with blood glucose levels (Snekhalatha et al.,
2018), where a device was developed to acquire the GSR
resistance and voltage data from 100 participants (i.e., 50 with
diabetes). A negative correlation with GSR voltage and
resistance was observed among diabetic patients. A recent
study in 14 patients with type 2 diabetes collected
bioimpedance data using a wearable ring over 2 weeks and
used a gradient boosted model to estimate blood glucose
levels and trends and showed excellent prediction
performance with 99% of the values in zones A and B of
the Parkes error grid (Sanai et al., 2021).

2.5 Sweat
Sweating is a normal physiological mechanism to regulate
body temperature through evaporation, but it is also a key
autonomic feature of hypoglycemia (Escolar et al., 2016).
Sweat consists mostly of water but also contains sodium,
chloride, potassium, lactate, and urea (Baker, 2019).
Chemical components in the sweat have been utilized as
biomarkers of disease, e.g., sweat chloride in cystic fibrosis
(Accurso et al., 2014). A study used different non-invasive
sensors (sweat, temperature, and ECG) in patients with type 1
diabetes and showed that measurement of sweating in
combination with the ECG signal predicted the
development of hypoglycemia (Elvebakk et al., 2018). Sweat
also contain glucose at orders of magnitude lower in
concentration (10–200 μM) compared to blood glucose
(Bariya et al., 2018), but require careful considerations to
avoid contamination when collected from the skin surface
(Moyer et al., 2012).

Wearable sensors can take advantage of the non-invasive
nature of using sweat as a predictor of the human health
status (Upasham and Prasad, 2020). There is a growing
interest in developing sweat-based sensors and systems that
are aimed to monitor health to help in the management of
patients with diabetes (Hojaiji et al., 2020; Lee et al., 2017;
Karpova et al., 2019). One study developed a microfluidic
device using a cotton thread and filter paper paired with a
smartphone to sense sweat glucose (Xiao et al., 2019). The
device showed a linear trend in the 50–250 μM range with a
detection limit of 35 μMand the nature of the sensor construction
enabled it to be flexible, easy to integrate, and to be produced at
relatively low-cost. Another study developed a biosensor based on
a graphene oxide nanostructured composite deposited with gold
and platinum nano-particles to detect glucose in human sweat
(Xuan et al., 2018). When tested with sweat samples, the device
showed a short response time and high linearity.

Katseli et al. (2021) demonstrated that a 3D printed
electrochemical sweat sensor shaped like a ring was capable of
monitoring sweat glucose in the range of 12.5–400 μmol/L, which
could be read by a smartphone. However, prototype testing was
limited to one healthy volunteer. Similarly, Sempionatto et al.
(2021) developed a touch-based sweat glucose sensor to estimate
blood glucose. The electrochemical sensor consists of a sweat
collecting layer, glucose biosensor, and a substrate that requires
no sweat stimulation. The sensor achieved a high correlation
(i.e., 0.95) with blood glucose and with all the points in the A and
B regions on the Clarke error grid. Another study developed a
tandem catalytic system for sweat glucose detection based on
chemiluminescence with a high sensitivity and detection limit of
0.1 μM when compared to solutions containing different glucose
concentrations (Gao et al., 2021).

Smart wrist wearables are becoming an essential part of fitness
and health monitoring. The convenience of wearing watches on
the wrist only widened the adoption of such wearable devices
(Guler et al., 2016). Several wrist wearable sensors have been
developed to detect sweat glucose (Hong et al., 2018; Xuan et al.,
2018; Lu et al., 2019). One study demonstrated a nonenzymatic
wearable sensor that allowed the analysis of sweat glucose (Zhu X.
et al., 2018). The sensor was made from a treated silver electrode
coated with fluorocarbon-based materials. An integrated
wristband containing the sensor provided continuous
monitoring of sweat glucose and showed the results on a
smartphone App. Their solution demonstrated the possibility
of detecting glucose in the range of 30–1,100 μM. However, the
developed wearable was tested with samples acquired from
participants only and no correlations with blood glucose were
made. Another research group developed a fully integrated device
to provide continuous monitoring of sweat glucose (Zhao et al.,
2019). The device consists of flexible rechargeable batteries and
photovoltaic cells that are used to power up the device (i.e., signal
processing and display) using solar energy. Monitoring of sweat
glucose is based on an electrochemical sensor connected to a
controlling module. A small display is used to provide real time
monitoring. The wearable displayed potential in detecting sweat
glucose changes in the range of 50–200 μM during different
activities (e.g., running vs. biking).
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2.6 Tears
The human eyes produce tears as a response to irritants, due to
intense emotions, and to keep the ocular surface lubricated and
protected. Tears are made of water, protein, lipids, and
electrolytes (Dartt et al., 2005), but also contain traces of
glucose that correlate with blood glucose levels (Chen et al.,
1996; Zhang et al., 2011). The concentration of tear glucose is
influenced by the method of collection. For example, a study
found that onion-induced tear glucose concentration is up to 8
fold higher compared to one without stimulation (Taormina
et al., 2007). This was attributed to the level of irritation in
the onion-induced method that influenced the collected samples.
Hence, a consistent method to collect the tears must be selected
and careful consideration must be paid to the surrounding
conditions (Rentka et al., 2017). Despite the complicated
nature of collecting tear samples, there is a growing interest in
the development of sensors capable of tear glucose monitoring
(Strakosas et al., 2019; Chen et al., 2018).

A ratiometric fluorescent membrane capable of sensing tear
glucose in the range of 0.1–10 mM has been developed (Duong
et al., 2020). However, the testing conditions were limited to
glucose solutions. Another study developed a low-cost, flexible,
customizable, and disposable sensor strip based on engraved
graphene to detect glucose in tears and saliva (Tehrani and
Bavarian, 2016). The sensor displayed a promising sensitivity
and low detection limit (i.e., 250 nM) when tested in vitro.
However, no testing with real samples of human tears or
saliva has been undertaken. A low-cost and non-enzymatic
glucose sensor based on an inkjet printed electrochemical
sensor was developed in another study (Romeo et al., 2018).
The sensor was flexible and versatile in terms of fabrication, and
demonstrated its ability in detecting glucose concentrations in
human tears. However, tears were induced using onion and
collected in glass capillaries. To overcome some of the
limitations in tear glucose sensors, Belle et al. (2016)
developed an integrated device that has a broad dynamic
range, rapid analysis, low detection limit, works with small
samples, and does not cause stress on the eye. The sensor
could detect tear glucose in the range of 0.72 mg/dl to
111.6 mg/dl corresponding to 20 mg/dl to 600 mg/dl of blood
glucose. However, the developed device was only tested in
samples from an animal.

The development of wearable contact lenses capable of
monitoring different physiological signs has gained
considerable interest in recent years (Elsherif et al., 2018; Park
et al., 2018; Kim et al., 2017). A contact lens comprised of three
layers (silk fibroin, silver nanowires, and protected film) capable
of sensing tear glucose in the range of 500 nM to 1 mM with a
detection limit of 211 nM was developed by Lee W.-C. et al.
(2021). Another contact lens was developed by Kim et al. (2017)
which monitors tear glucose based on glucose oxidase linked to a
graphene channel that can be read wirelessly by a coil. The in vivo
experiments showed that the wearable sensor can detect tear
glucose concentration when placed in a rabbit’s eye. Another
study developed a fully integrated soft contact lens that contains
glucose sensors, wireless circuits, and a display (Park et al., 2018).
The developed smart contact lens is supposed to overcome some

of the limitations of existing contact lens such as being brittle,
blocking the vision, and requiring extra equipment to read the
lens. The wearable was able to detect tear glucose when tested in
vivo on a live rabbit.

An optical sensor embedded in a wearable contact lens was
developed to provide continuous glucose monitoring (Elsherif
et al., 2018). The reading of the sensor was based on smartphone
camera readouts that correlated the reflected power of the
diffraction with glucose concentration. The developed sensor
could detect glucose concentration less than 50 mM with a
12 nm mM−1 sensitivity. However, no in vivo experiments
were reported. They subsequently developed a bifocal contact
lens containing a hydrogel glucose sensor that could detect tear
glucose within the 0–3.3 mM range in artificial tears (Elsherif
et al., 2021). Another study developed and clinically tested a
flexible tear glucose biosensor (Kownacka et al., 2018). The coil-
shaped sensor is 1.3 mm in diameter and 15 mm long and
consists of a flexible coil made of electrodes arranged in
parallel and an antenna wire that can transfer the readings to
an external device through telemetry. The sensor was designed
to be placed under the lower eyelid and was reported to not
cause any irritation or abnormalities in a sheep’s eye. Clinical
testing was conducted with six subjects who wore the sensors
and CGMs (i.e., Abbott FreeStyle Libre) for 5 hours in a fasted
state. On Clarke’s error grid, 95% of the data points for the
sensor were in the A and B regions with 70% in region A, which
was comparable to the performance of the CGM. Geelhoed-
Duijvestijn et al. (2021) evaluated the same biosensor in 24
patients with type 1 diabetes by simultaneously measuring blood
and interstitial glucose levels every 15 min compared to
continuous tear glucose and a neural network based
regression model was used to convert tear glucose to blood
glucose. The performance of the device was comparable to the
CGM with a mean absolute relative difference in glucose of
16.7 mg/dl.

2.7 Saliva
Saliva is a clear and slightly acidic secretion originating from the
sublingual, submaxillary, parotid, and minor mucous glands and
serves to lubricate and clean the oral tissues and assist in taste and
digestion (Humphrey and Williamson, 2001; Dawes, 1974; de
Almeida et al., 2008). Different concentrations of various
electrolytes and minerals can be found in saliva including
carbon dioxide, sodium, chloride, and potassium as well as
traces of glucose (Schneyer et al., 1972; Thaysen et al., 1954;
de Almeida et al., 2008). The excretion and concentration of
salivary glucose has been found to be higher in diabetic patients
compared to control subjects and there is a significant correlation
between the concentration of glucose in the saliva and blood in
patients with diabetes (Jurysta et al., 2009; Amer et al., 2001).

Interest in the use of saliva as a diagnostic fluid has grown
considerably and several sensors have been developed (Nunes
et al., 2015; Bihar et al., 2018). A study fabricated a non-enzymatic
electrochemical sensor to measure salivary glucose with a
working range varying from 0.5 to 50 μg/ml and a detection
limit of 1.9 μg/ml and showed a highly significant correlation (r =
0.96) with blood glucose measured using the finger prick method
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(Diouf et al., 2019). Another study fabricated a saliva glucose
optical sensor and showed that the glucose concentration
increased the absorbance of light when tested at a wavelength
of 630 nm (Jung et al., 2017). There was a good correlation
between the glucose in blood and saliva. A disposable saliva
glucose sensor based on dehydrogenase flavine-adenine
dinucleotide was tested in nine healthy individuals and
showed a detection range of 2.38–3.40 mg/dl corresponding to
a blood glucose range between 90 and 143 mg/dl at a detection
limit of 0.11 mg/dl (Lin et al., 2017). A salivary glucose biosensor
utilized a new hydrogel film to improve glucose detection
sensitivity by 130% with good linearity for glucose
concentration between 0 and 50 mg/L (Zhang et al., 2021).
Another study showed that enzymatic biosensors provided a
linear relationship between electrical impedance and glucose
concentration with the lowest detection limit being 14 μM
(Mercante et al., 2021). Another study developed
bioconjugated nanoflowers which quickly (i.e., within 10 min)
estimated salivary glucose concentration between 0.2–300 mg/dl
(Shende and Kasture, 2021).

There have been attempts to incorporate saliva glucose
sensors into devices used daily to measure glucose levels.
One study embedded a saliva glucose sensor into a smart
toothbrush which integrated a bronze based sensor to
provide non-enzymatic electrochemical measurement of
salivary glucose (Chen et al., 2019). The sensor showed a
linear range from 0 to 320 μM with a detection limit of
6.6 μM. To test the sensor, saliva samples were acquired
from five participants before and after meals. The sensor
readings for the saliva glucose reflected well with the
changes in blood glucose values. Embedding a saliva glucose
sensor with wireless communication capabilities into a
mouthguard has also been considered (Arakawa et al.,
2016). The same team embedded a biosensor based on
cellulose acetate into a mouthguard and was able to detect
glucose concentration wirelessly in the range of
1.75–10,000 μmol/L (Arakawa et al., 2020). However, the
tests were limited to artificial saliva.

2.8 Acceleration
Involuntary shaking part of the human body, such as the hand, is
one manifestation of the symptoms that are associated with
hypoglycemia (Wild et al., 2007). The tremor that occurs
during hypoglycemia is categorized under enhanced
physiologic tremor and results from different mechanical and
neuromuscular interactions (Rana and Chou, 2015). The
enhanced physiologic tremor is usually more visible compared
to normal tremors with a frequency that was estimated to be in
the range of 5–14 Hz (Puschmann and Wszolek, 2011; Rana and
Chou, 2015). Smart wearables can detect tremors and identify
different patterns with the help of machine learning techniques,
but have not been widely assessed to predict hypoglycemia (San-
Segundo et al., 2020; Lonini et al., 2018; Zahed et al., 2018). A low-
cost wearable device based on an accelerometer mounted on the
index finger showed that it can detect tremor in the range of
10–14 Hz, but was not validated in patients with diabetes in
relation to hypoglycemia (Abbas et al., 2018). In a study of seven

patients with type 1 and type 2 diabetes, tremors in the frequency
range of 10–14 Hz were easily distinguishable under fatigue, but
no evaluation was undertaken in relation to hypoglycemia
(Aljihmani et al., 2019).

Acceleration can be used to provide information about human
activities and wearables with an accelerometer have found
increasing use in health care applications such as detecting
falls among the elderly (Janidarmian et al., 2017; Bagala et al.,
2012). Given that severe hypoglycemia can markedly impair
movement, information on physical activity may improve the
prediction of glucose levels (Jaggers et al., 2019; Stenerson et al.,
2014). Accelerometers have been used to plan physical activity
levels in adults with type 1 diabetes (Keshawarz et al., 2018). In a
study of ten adolescent athletes with type 1 diabetes, vigorous
high intensity physical activity correlated with an increased risk of
prolonged nocturnal hypoglycemia (Jaggers et al., 2019).

3 MACHINE LEARNING TECHNIQUES

A typical machine learning algorithm uses data to build a
predictive model that can map a set of inputs to a desired
output. The core element in machine learning is collecting
enough data to be used in the training and evaluation of the
predictive model. Once enough data is collected, a portion of this
data is typically selected to be used to train and optimize a model’s
parameters, and the remaining part is then used to evaluate the
performance of the learned model. In glucose monitoring
applications, wearable devices can be used to acquire
physiological data as inputs while a CGM device is used to
acquire the output or target values. Machine learning
techniques have been considered for several glucose
monitoring applications such as predicting current glucose
levels, forecasting future values, and classifying ongoing trends.

This section presents the different machine learning
techniques that have been used for blood glucose monitoring
and trends detection (Figure 4). A summary of the surveyed
studies is provided in Table 2.

3.1 Artificial Neural Network
AnANN consists of interconnected layers of perceptrons that can
learn patterns of data by adjusting numerical weights attached to
each connection. Several popular ANN architectures have been
considered for the purpose of blood glucose monitoring (Ali et al.,
2018; Mhaskar et al., 2017).

3.1.1 Convolutional Neural Network
CNN is a type of ANN mainly used for processing and
recognition of grid like data (e.g., images) and typically
consists of three types of building blocks (LeCun et al., 2015).
The first two building blocks (i.e., convolution and pooling layers)
perform feature extraction while the third (i.e., fully connected
layer) matches the extracted features with outputs or classes. The
stacking of these blocks constitutes the CNN architecture
(Figure 5A). To make a prediction, the first layer in CNN
receives a vector of input values that can either be spatially
related such as images, or short sequences of time series data
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such as multi-dimensional biometric data. These values are then
passed to several layers that perform two operations;
convolutions, and downsampling. In the convolution layers,
specific features are extracted from nearby inputs by matching
learned meaningful patterns with the sequence of data that are fed
into the layer. The results of this operation are then forwarded to
a next layer which chooses the patterns that were most apparent
(i.e., max-pooling). This operation is repeatedly done depending
on the number of layers used. Finally, the resulting patterns are
fed into a fully connected ANN that produces a prediction based
on the information presented on the last preceding layer. The
number of patterns to match in each layer (i.e., filters) and
number of stacked layers are hyper-parameters that are tuned
based on the desired prediction performance and
computational cost.

CNN has been utilized in many applications, e.g., heart-beat
classification (Acharya et al., 2017), COVID-19 detection (Wang
et al., 2020), and glaucoma detection (Chen et al., 2015). Models
based on CNN have also been developed to predict and forecast
blood glucose levels and trends (Swapna et al., 2018; Idrissi and
Idri, 2020; Kamalraj et al., 2021). A personalized CNN model
employing a fine-tuning strategy improved the prediction
horizon performance compared to standard CNN when
evaluated using CGM data (Seo et al., 2021). Among six
patients with type 1 diabetes, a dataset containing insulin
dose, carbohydrate intake, and glucose levels for 8 weeks was
used to train and benchmark a blood glucose forecasting model
based on casual dilated CNN (Zhu T. et al., 2018). Preprocessing
(interpolation, extrapolation, and filtering) was performed to
compensate for missing values and to clean the data (e.g.,
remove noise). The inputs to the neural network were the
recorded CGM, insulin, carbohydrate intake, and time index
mapped to 256 classes that represent a change of 1 mg/dl
between each class. The results showed promise with an
average root mean squared error (RMSE) of 21.72 mg/dl for a
30 min prediction horizon. A hybrid model consisting of CNN
and gated recurrent unit neural networks has been proposed to
reduce the error rate in predicting blood glucose levels (Shahid
et al., 2021). Based on simulated data, the proposed model

achieved an RMSE of 6.04 mg/dl for the 30 min prediction
horizon and 8.12 mg/dl over 60 min.

A more recent study considered a combination of CNN with
autoencoders to detect nocturnal hypoglycemia (Porumb et al.,
2020a). The study used a non-invasive wearable (i.e., ECG) and
CGM to acquire data from 25 elderly subjects under controlled
conditions for up to 36 h. The collected data were used to train
and evaluate personalized deep learning models. The best
trained model was able to distinguish low blood glucose
trends with an accuracy of 90% in the test dataset. Samir
et al. (2021) proposed another CNN based model to predict
blood glucose trends by classifying food and human activity
and classified hyperglycemia with an accuracy of 93.2% based
on the D1NAMO dataset of diabetic patients using CGMs
alongside food images and acceleration data (Dubosson et al.,
2018). Another study also considered ECG wearable to classify
blood glucose into three levels, namely, low, moderate, and
high (Li et al., 2021). The study used a finger pricking device
(i.e., Accu-Chek) to acquire the blood glucose data from 21
healthy and prediabetic adult participants during fasting and
oral glucose tests. A CNN-based model was able to classify low
glucose (87.94%), moderate glucose (69.36%), and high glucose
(86.39%) in the testing datasets.

3.1.2 Recurrent Neural Network
RNN is a class of ANNs with feedback signals developed to learn
sequential ordered data (i.e., time series) or time-varying patterns
such as that found in speech (Medsker and Jain, 1999). The
prediction in RNN relies on previous information maintained
internally. The hidden layers act like a memory that captures the
information about a sequence. RNN models consist of
interconnected layers of neurons just as in normal ANNs
(Figure 5B). The difference in RNN is their ability to take
into account information from previous predictions.
Specifically, each hidden layer also considers the outputs of
hidden layers from preceding predictions. This allows the
network to capture information from ordered sequences of
data. The learning in a standard RNN structure might be
limited and hindered due to the vanishing gradients problem,

FIGURE 4 | Machine learning algorithms utilized in glucose monitoring applications over the past five years.
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hence, a structure based on RNN (e.g., long-short term memory
(LSTM)) is usually used to combat that (Hochreiter and
Schmidhuber, 1997).

Several applications used RNN based models to recognize
different sequences in human activities (Pienaar and Malekian,
2019), emotion recognition based on videos (Fan et al., 2016), and

the characterization of unwanted interactions with small robots
(Alhaddad et al., 2020). RNN has also been considered for blood
glucose prediction among patients with diabetes (Sun et al., 2018;
Mirshekarian et al., 2017; Martinsson et al., 2018; Aliberti et al.,
2019). A recent study developed a model based on a RNN
structure with the help of transfer learning to forecast future

TABLE 2 | A summary of machine learning based blood glucose monitoring contributions.

Study Inputs Data Used Algorithm Key Results

G et al. (2018) ECG signals used in the analysis
of HRV

Data acquired from 20 healthy
participants and 20 with diabetes in
supine position

CNN and a hybrid
network of CNN-LSTM

CNN-LSTM achieved 95.1% in distinguishing
diabetes

Idrissi and Idri
(2020)

Blood glucose levels using
a CGM

Dataset from 10 T1DM patients CNN and LSTM CNN outperformed LSTM in blood glucose
prediction tests

Zhu et al. (2018a) Dataset containing glucose
levels, insulin dosages, and carb
intake

Data of 6 participants with T1DM
collected over 8 weeks

CNN The best CNN model achieved an RMSE of
21.72 mg/dl in predicting glucose levels

Porumb et al.
(2020a)

ECG signals Data acquired from 8 healthy elderly
participants

CNN with
autoenecoders

Achieved 90% in nocturnal hypoglycemia
detection

Shahid et al. (2021) CGM, carbohydrates, and
insulin

Simulated data representing 10
patients with T1DM

CNN with gated
recurrent unit neural
networks

RMSE of 6.04 mg/dl for the 30 min prediction
horizon

Samir et al. (2021) CGM, food, and human activity Data acquired from patients with
diabetes

CNN Classifying hyperglycemia with 93.2% accuracy

Zhu et al. (2020b) Meal intake, glucose levels, and
insulin dosage

Used simulated and real datasets of
T1DM subjects

Dilated RNN and transfer
learning

Forecasting future glucose levels with an RMSE
of 18.9 mg/dl

Faruqui et al. (2019) Data contained glucose levels,
diet, and physical activity

Data acquired from 10 subjects with
T2DM monitored for 6 months

LSTM based structure 84.12% of next day predictions in zone A of
Clark’s error grid

Gu et al. (2017) CGM, Insulin, food, and physical
activity

Dataset collected from 112
participants (35 healthy, 38 with
T1DM, and 39 with T2DM)

RNN Achieved a blood glucose inference accuracy of
82.14%

Nasser et al. (2021) CGM Data acquired from 10 patients with
T1DM

RNN with restricted
boltzmann machines

RMSE value of 15.59 mg/dl for 30 min
prediction horizon

Eom and Lee
(2022)

CGM, insulin, and carbohydrate Dataset of 30 patients Weibull Time To
Event RNN

Predicting future episodes of hypoglycemia
with an RMSE of 12.56 mg/dl

Zhang et al. (2017) Physiological parameters and
metabolic rate

Data collected from healthy
subjects, senior citizens, and
patients with diabetes

DT and ANN Blood glucose prediction with 88.53%
accuracy

Tsai et al. (2020) PPG signals 9 subjects with T2DM DT based structure
(Random forest)

90% accuracy in predicting glucose

Maritsch et al.
(2020)

HRV using PPG smartwatch One participant with T1DM DT based structure
(Gradient boosting)

82.7% accuracy in detecting hypoglycemia

Reddy et al. (2019) HR, physical activity, and
glucose levels

43 subjects with T1DM during
aerobic exercise

DT 86.7% accuracy in predicting hypoglycemia
during exercises

Aashima et al.
(2022)

CGM Simulated CGM data from 40
participants with T1DM

DT and Adaboost RMSE value of 2.204 mg/dl in predicting blood
glucose levels

Sankhala et al.
(2022)

Sweat glucose Three participants DT RMSE value of 0.1 mg/dl in estimating sweat
glucose

Habibullah et al.
(2019)

NIR signals Used artificial blood samples with
different glucose concentration

SVM 77.5% accuracy with PCA

Malik et al. (2016) Salivary electrochemical
properties

175 participants including
participants with T2DM

SVM, ANN, and logistic
regression

SVM achieved 85% accuracy in detecting
fasting blood glucose

Marling et al. (2016) Heart rate, galvanic skin
response, CGM, and
temperature

One participant with T1DM SVM SVM with a linear kernel showed a promising
performance

Bertachi et al.
(2020)

CGM, HR, steps, sleep, and
calories

10 subjects with T1DM SVM and MLP SVM achieved the best results in predicting
nocturnal hypoglycemia

Shokrekhodaei
et al. (2021)

Intensity data of an optical
sensor

In aqueous solutions containing
glucose

SVM RMSE value of 12.5 mg/dl and 99.55%
accuracy

Yang et al. (2019) CGM 100 participants with T1DM and
T2DM

ARIMA 9.4% false rate in predicting future blood
glucose trends

Prendin et al.
(2021)

CGM Partial data from 141 patients with
T1DM

ARIMA RMSE of 22.15 mg/dl in 30 min prediction
horizon and also in hypoglycemia detection
with 64% precision and 82% recall
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glucose levels (Zhu T. et al., 2020). They believed that forecasting
of future blood glucose will help to enhance the CGM and insulin
pump systems by calculating the optimum insulin doses avoiding
any adverse events. The study considered simulated and actual
datasets containing information on meal intake, CGM readings,
and insulin dosage to evaluate the developed model. The results
showed a good 30 min forecasting performance of the developed
model (RMSE = 18.9 mg/dl) compared to other tested algorithms.

In another work, an LSTM-based algorithm was applied to 6-
months data on diet, glucose levels, and physical activity in 10
patients with type 2 diabetes to forecast daily glucose
concentrations (Faruqui et al., 2019). They were able to
predict the next day glucose concentrations with 84.12% of the
predicted values in zone A based on Clark error grid when
compared to the true values of blood glucose. However, the
study was limited to a small sample size and was affected by
individual variations and data collection challenges. An inference
system based on a smartphone to monitor blood glucose non-
invasively was developed by Gu et al. (2017). They collected data

about insulin, drug dosage, food intake, sleep quality, and
physical activities along with CGM. The authors evaluated
their system on 112 subjects and the implementation of RNN
achieved an accuracy of 82.14% in tracking blood glucose levels
into four classes. A recent study also assessed the ability to
estimate future (i.e., 30 min prediction horizon) blood glucose
levels using an IoT device with CGM sensor, an application layer
protocol, and prediction model on the cloud (Nasser et al., 2021).
Based on a model consisting of RNNs and restricted boltzmann
machines, the proposed system achieved an RMSE value of
15.59 mg/dl in data acquired from ten patients with type 1
diabetes. Another recent study proposed using Weibull Time
To Event RNN (i.e., WTTE-RNN (Martinsson, 2017)) to predict
future episodes of hypoglycemia and reported an RMSE of
12.56 mg/dl (Eom and Lee, 2022).

3.2 Decision Tree
A decision tree (DT) is a divide-and-conquer method that
partitions data such that it becomes easy to classify. A typical

FIGURE 5 | Illustrations of commonly considered artificial neural networks in glucose monitoring applications and an example of a study that considered a
combined architecture. (A) Illustration of a CNN model. The first layer is the input layer which holds values of the input data that is followed by a convolution layer, which
serves to extract meaningful patterns in partial regions of the input. Next, comes the pooling layer that will perform a downsampling operation that reduces the number of
parameters. The extracted features are then passed to a fully connected layer to make the final prediction. (B) Illustration of RNNmodel. The RNNmodel consists of
an input layer (X), hidden layers to model sequential information (from h0 to hnwhere n is the number of hidden layers), and an output layer (O). The structure is connected
with weights that link the input layer to the first hidden layer (Wxh), the hidden layers together (Whh), and the last hidden layer to the output layer (Why). (C) An example of a
study that considered the application of CNN and RNN to predict the occurrence of hypoglycemia based on ECG data (Adapted with permission from Porumb et al.
(2020b)). The isolated heartbeats were combined into segments of 5 min each and each segment has been assigned a label (i.e., low or normal glucose level) based on
the recorded CGM value.
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DTmodel consists of nodes that split the data based on attribute-
value combinations. Data are split repeatedly until a given criteria
is satisfied (e.g., similarity of data in each partition). DT has been
applied to extract and analyse information from large datasets
(i.e., data mining) and in machine learning (e.g., classification and
regression) (Hastie et al., 2009; Navada et al., 2011). Classification
trees are used when the target values are discrete while regression
trees are used when the target values are continuous. Compared
to other machine learning techniques, DT has the advantage of
model interpretability. It provides an insight on the most
influential data attributes related to the task at hand and helps
to plan future experiments (Myles et al., 2004). Different forms of
DT (e.g., classification, regression, and forests) can be considered
depending on the problem and the desired output (Navada et al.,
2011).

Decision trees were used as prediction models for risk factor
interactions in diabetes and to identify subjects with impaired
glucose metabolism (Ramezankhani et al., 2016; Hische et al.,
2010). Different DT models have been used to identify vital
indicators in relation to blood glucose prediction (Liu et al.,
2020). One study developed a non-invasive system to detect blood
glucose levels based on the conservation-of-energy method and
physiological parameters (Zhang et al., 2017). The study acquired
data samples from 400 participants (i.e., healthy and diabetic
patients) that were then used in the model development and
evaluation. Using an algorithm that combines a DT and neural
network, the proposed approach was able to provide a blood
glucose prediction with an accuracy of 88.53% in classifying new
blood glucose samples.

A recent study considered a wearable device to estimate blood
glucose based on photoplethysmography (PPG) signals (Tsai
et al., 2020). The data were acquired from 9 patients with type
2 diabetes in a stable physical position (i.e., sitting). The blood
glucose levels were acquired using a finger prick device (i.e., Accu-
Chek). A machine learning algorithm based on decision tree
(i.e., random forest) was considered to build personalized and
generalized models that achieved 80% and 90%, respectively
when tested with unseen data. Another study recently
evaluated several ensemble machine learning models to
provide a generalized blood glucose prediction (Aashima et al.,
2022). Simulated CGM data from 40 participants with type 1
diabetes were used to train and test the models. A combined
model (i.e., DT and Adaboost) outperformed the other models
and achieved an RMSE value of 2.204 mg/dl when evaluated
against test samples. Another study developed a non-invasive
platform to measure sweat glucose periodically and utilized a
machine learning algorithm to generate sweat glucose readings
from the discrete values (Sankhala et al., 2022). A DT model was
considered to provide sweat glucose readings based on the raw
impedance signal, relative humidity, and temperature and the
regression model achieved an RMSE value of 0.1 mg/dl in three
participants.

DT based models were also utilized to predict blood glucose
trends, such as hypoglycemia. One study proposed using a
machine learning model based on decision trees (i.e., gradient
boosting) to detect hypoglycemia using a wearable device
(Maritsch et al., 2020). Using features acquired from the heart

variability rate, the study developed a machine learning model
based on the data acquired from one participant with type 1
diabetes. The results of the unseen samples demonstrated the
possibility of detecting hypoglycemic events with 82.7% accuracy.
Reddy et al. (2019) investigated the possibility of predicting
hypoglycemia in 43 adults with type 1 diabetes who were
performing aerobic exercise. The extracted features included
physical activity, heart rate, anthropometric data, energy
expenditure estimate, glucose readings, and physical activity.
The results of two developed models based on decision trees
showed promising results in predicting hypoglycemia with an
accuracy of 86.7%.

3.3 Support Vector Machine
SVM is a supervised machine learning technique used in
classification and regression. In classification problems, the
SVM learns from the labeled training data how to best
categorize data that belongs to one of two classes by finding
the optimal hyperplane that separates them (Hearst et al., 1998;
Brereton et al., 2010). The separation in SVM can be based on a
linear, or non-linear combination of features depending on the
complexity of the task at hand and feature dependencies. In case
of a non-linear SVM, kernel functions are used to transform a
problem to a linearly separable one by projecting the problem
from a low-dimensional space to a high-dimensional one (Patle
and Chouhan, 2013). SVM is also used in linear and non-linear
regression. The principle of SVM for regression is to find a flat
function that satisfies a deviation criterion from the target outputs
with less restriction to minimize the errors (Smola and Schölkopf,
2004). In case of a non-linear regression, a similar technique to
that used in classification is applied.

SVM has been considered in different areas and in many
different applications such as in cancer genomics (Huang et al.,
2018), chemistry (Ivanciuc, 2007), autism therapy (Alban et al.,
2021), and bioinformatics (Byvatov and Schneider, 2003). A
custom-built optical sensor was used to investigate the
relationship between wavelengths and glucose concentrations
in aqueous solutions containing different glucose
concentrations ranging from 40 to 250 mg/dl (Shokrekhodaei
et al., 2021). Intensity data based on the four optimal wavelengths
(i.e., 485, 645, 860 and 940 nm) were considered in training a
classifier and a regression model to predict either a discrete range
(i.e., 21 classes) or a continuous value, respectively. A classifier
based on SVM achieved the best results with an RMSE value of
12.5 mg/dl and 99.55% of the predictions in zones A and B on the
Clarke error grid.

SVM has also been applied in glucose monitoring and long-
term diabetes outcome prediction (Barman et al., 2010; Li and
Fernando, 2016; Abbas et al., 2019). A study surveying machine
learning techniques for blood glucose prediction found that a
regression model based on SVM performed best in the short term
forecasting of blood glucose (Mayo et al., 2019). Based on near
infrared (NIR) spectroscopy data in ten discrete artificial blood
samples, SVM alone achieved an accuracy of 67.5% when
evaluated with the testing dataset, but when paired with
principle component analysis (PCA) it improved to 77.5%
(Habibullah et al., 2019). Another study tested several machine
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learning techniques that included SVM in detecting fasting blood
glucose based on measuring the electrochemical properties of
saliva (Malik et al., 2016). The fasting blood glucose was
measured on venous plasma using an automatic biochemical
analyzer and used as the target or true value. The electrochemical
parameters of saliva (e.g., pH, conductivity, and sodium
concentration) and fasting glucose were collected from 175
participants of whom half had diabetes. A SVM classifier
trained with 70% of the data using the radial basis kernel
function achieved the best results in distinguishing high vs.
low fasting blood glucose levels in the remaining unseen
testing data (i.e., accuracy and F1 score of 85%). Support
vector regression has been used to predict future blood glucose
levels using CGM in 12 patients and the best trained model
achieved an RMSE of 12.95 mg/dl for a prediction horizon of
60 min (Hamdi et al., 2018).

A few studies have also considered using SVM to predict the
occurrence of hypoglycemia among patients with type 1
diabetes. For example, one study used a non-invasive
wearable device that measured air temperature, heart rate,
and galvanic skin response to acquire data from one
participant with type 1 diabetes for 2 months (Marling et al.,
2016). The blood glucose data were acquired using a Dexcom
CGMdevice and contained 34 hypoglycemic events, each lasting
for 10 min or more. SVM with a linear kernel achieved the best
performance, but the results were limited to one participant.
Another study used a CGM device (FreeStyle Libre) in 10
participants with type 1 diabetes over 12 weeks and showed
that SVM achieved a high sensitivity (78.75%) and specificity
(82.15%) to predict nocturnal hypoglycemia (Bertachi et al.,
2020).

3.4 Autoregressive Integrated Moving
Average
ARIMA is a linear time series model used to predict or forecast
future values based on past values. It is a function that
includes differencing operators, and autoregressive and
moving average terms (Box et al., 2011; Rodríguez-
Rodríguez et al., 2019). ARIMA is considered as a
generalized model of the autoregressive moving average
(ARMA) as it incorporates a broad range of non-stationary
series (Brockwell et al., 2002). ARIMA has been used to
predict traffic noise pollution (Garg et al., 2015), web
applications workload (Singh et al., 2019), and traffic flow
(Kumar and Vanajakshi, 2015). Models based on ARIMA have
also been considered in the prediction of blood glucose levels
(Rodríguez-Rodríguez et al., 2019). A study used ARIMA to
assist in predicting future blood glucose trend changes for
hypoglycemia and hyperglycemia (Yang et al., 2019). Based on
a combination of the ARIMA model and an adaptive
algorthim, the study developed a prediction framework
using continuous glucose monitoring (CGM) data from 100
patients with type 1 and type 2 diabetes. Their model provided
early alarms with a 9.4% false rate at a sensitivity of 100%.
Another recent study utilized CGM data to compare the
30 min prediction horizon performance of thirty linear and

nonlinear algorithms (Prendin et al., 2021). Individualized
ARIMA was the best linear algorithm in terms of accuracy
with an RMSE of 22.15 mg/dl and also in hypoglycemia
detection with 64% precision and 82% recall.

4 DISCUSSION

The past five years has witnessed considerable advances in the
development of sensors that measure different modalities which
correlate with blood glucose. Glucose levels in tears, saliva, and
sweat are related to the blood glucose levels and the advances in
non-invasive wearable technology have not only allowed an
estimation of blood glucose levels, but also the prediction of
hypoglycemia. The developed wearables have targeted the heart,
skin, eyes, and mouth using various technologies such as
electromagnetic and bioimpedance. Some of these solutions
have been augmented with machine learning techniques which
have yielded promising outcomes, especially in hypoglycemia
prediction. However, there remain considerable challenges before
these devices can achieve FDA approval.

4.1 Participants and Testing Conditions
A major limitation in the studies to date is the number of
participants with the majority of studies being limited to a few
participants. This limitation clearly affects their clinical use and
hinders the generalizability of the findings. Furthermore, some
studies did not even undertake trials in patients with diabetes,
which limits the applicability of the proposed solutions to the
target end-users. Many of the studies reported only the initial or
exploratory results of the developed sensors or wearable
prototypes. The majority of studies were conducted under
controlled settings and were limited to subjects of a younger
age. Future studies should recruit larger numbers of participants
with a wider age range and especially patients with type 1 or type
2 diabetes.

4.2 Bodily Fluids Glucose Sensors
The glucose levels in these bodily fluids were reported to
correlate with blood glucose concentrations, but the glucose
concentrations in these bodily fluids are low compared to that
found in the blood. This represents a major challenge for the
development of sensors and technologies that rely on bodily
fluids to estimate blood glucose levels and trends. Hence, extra
considerations such as the enhancement of sensitivity and
interference elimination become crucial in the development
of such sensors (Yao et al., 2011). Another challenge is the way
a body fluid sample is collected (e.g., stimulated or
unstimulated) as it was found to influence the content of
the acquired sample. For example, diagnostic biomarkers
were found to be higher in unstimulated saliva compared to
stimulated saliva (Miller et al., 2010). A study has also shown
that unstimulated saliva is highly accurate for predicting blood
glucose (Cui et al., 2021). Hence, the collection techniques
require standardization to avoid influencing the contents of the
collected samples (Robson et al., 2010; Rentka et al., 2017).
Contamination in the collected samples is another challenge
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that must be addressed as contaminated samples will generate
false reading on tear glucose levels (Aihara et al., 2020).

4.3 Noise Susceptibility and Physiological
Effects
Some of the physiological sensors were found to be influenced
by daily circadian rhythms in heart rate and sweating
(Elvebakk et al., 2018). Error can also arise due to non-
linear dynamics of physiological signs being measured,
making sensors more susceptible to error and high noise
levels (Zanon et al., 2017; Gadaleta et al., 2019). Some
studies have reported the adverse impact of environmental
conditions (e.g., pH, humidity, and temperature) (Park et al.,
2006; Elsherif et al., 2018). The time delay of a sensor or
wearable device must be minimized to capture the rapid
changes in blood glucose (Marcus et al., 2020). For patch-
like sensors, the multidirectional stretchability of the sensor is
an issue that needs careful considerations to ensure accuracy
and stability under multi stretching cycles (Bae et al., 2019).
Furthermore, reproducibility of sensor characteristics can be
influenced by the fabrication processes (Mano et al., 2018).
Finally, the majority of devices remain in the development
stage and require extra-large devices to be connected to read
out the signal and provide the filtration needed (Hanna et al.,
2020). Electronics and mechanical miniaturization in wearable
sensors represents a major limitation that requires further
technological development and optimization (Elsherif et al.,
2018).

4.4 Data Acquisition and Model
Generalizability
A key challenge in machine learning is acquiring enough
comprehensive data to train and test a model that can then be
generalized to a wider population. Many studies were limited
in terms of the number of participants, duration of the study,
and the incidence of clinically relevant severe hypoglycemia.
Additionally, most studies established their methods and
techniques in relation to CGM data that may be limited in
certain scenarios. There is a need to include a larger
population of patients, especially with diabetes, to account
for the inter-individual differences and to establish better
validation of the proposed solutions. To capture meaningful
data, the duration of trials for data acquisition and the
incidence of hypoglycemia need to be sufficient to avoid
unbalanced or skewed data (Marling et al., 2016). In the
case of imbalanced data, oversampling techniques can
address this and improve the accuracy (Mayo et al., 2019).
Acquiring data from the same participant for longer periods
allows the machine learning algorithm to combat intra-
individual differences and increases overall prediction
performance (Eljil et al., 2016). The reliance on data
annotated by the participants is an issue in acquiring
accurate information as it depends solely on their
commitment (Bertachi et al., 2020). The experimental
conditions should not be controlled to allow data

acquisition of more realistic daily life settings. Future
studies should also include a wider set of physiological
parameters to investigate their individual or collective
effect on estimating blood glucose trends using machine
learning techniques. Additionally, data assimilation
techniques could be considered in conjunction with
machine learning techniques using data acquired from
several sources and wearables (Albers et al., 2017; Albers
et al., 2018).

4.5 Model Interpretability
Although machine learning algorithms have great predictive
potential, the majority of these algorithms are black box
models and lack the means to explain their predictions. The
interpretability requirement of a machine learning model in
health care is crucial (ElShawi et al., 2020). Clinicians need to
make an informed decision based on a prediction but need to
provide a proper explanation. Whilst wearable sensors are
capable of estimating blood glucose trends based on
physiological changes, such predictions without an
underlying explanation may confuse the patient and render
the wearable unreliable (Maritsch et al., 2020). Future studies
must evaluate and incorporate interpretability techniques into
their proposed solutions while making sure that the
information acquired by the sensors are presented in a
user-friendly interface (ElShawi et al., 2020). A support
decision system along with the prediction was suggested to
allow patients to provide feedback to evaluate the performance
of a machine learning algorithm in real-life scenarios (Bertachi
et al., 2020). Another consideration of an algorithm is the
computational cost and energy. A wearable device has limited
resources to perform complex operations and to operate for a
long duration. Hence, feature engineering and data reduction
techniques are needed to reduce the computational cost and
improve energy efficiency (Gómez-Carmona et al., 2020; Al-
Jarrah et al., 2015).

5 CONCLUSIONS AND FUTURE
DIRECTIONS

This review highlights the considerable progress made over the
past five years in the area of non-invasive blood glucose
monitoring using wearable technologies and sensors
alongside machine learning algorithms. The devices have
varied modalities and adopted technologies with novel
approaches utilizing machine learning techniques to provide
meaningful interpretations of multiple physiological
parameters. However, there remain considerable limitations
and challenges that hinder FDA approval and more
widespread adoption of such technologies in patients. We
therefore recommend future studies to focus on the
following areas:

1. The recruitment of a larger number of participants especially
patients with diabetes to validate the proposed techniques for
use in the clinical arena.
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2. Validating glucose sensors by adequate collection without
contamination of bodily fluids.

3. Miniaturization of electronics and sensors for practical deployment.
4. Consistent evaluation of algorithms in personalized vs.

generalized scheme, where a model is trained either on a
target individual or a group of subjects.

5. The utilization of a wider set of physiological parameters for
machine learning and data assimilation techniques while
establishing effectiveness of each sensor’s contribution.

6. Investigating means to reduce computational cost and energy
in wearable devices.

7. The development of interpretable machine learning
models.
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