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Abstract: Healthy non-obese insulin resistant (IR) individuals are at higher risk of metabolic syn-
drome. The metabolic signature of the increased risk was previously determined. Physical activity
can lower the risk of insulin resistance, but the underlying metabolic pathways remain to be deter-
mined. In this study, the common and unique metabolic signatures of insulin sensitive (IS) and IR
individuals in active and sedentary individuals were determined. Data from 305 young, aged 20–30,
non-obese participants from Qatar biobank, were analyzed. The homeostatic model assessment of
insulin resistance (HOMA-IR) and physical activity questionnaires were utilized to classify partici-
pants into four groups: Active Insulin Sensitive (ISA, n = 30), Active Insulin Resistant (IRA, n = 20),
Sedentary Insulin Sensitive (ISS, n = 21) and Sedentary Insulin Resistant (SIR, n = 23). Differences in
the levels of 1000 metabolites between insulin sensitive and insulin resistant individuals in both active
and sedentary groups were compared using orthogonal partial least square discriminate analysis
(OPLS-DA) and linear models. The study indicated significant differences in fatty acids between
individuals with insulin sensitivity and insulin resistance who engaged in physical activity, including
monohydroxy, dicarboxylate, medium and long chain, mono and polyunsaturated fatty acids. On
the other hand, the sedentary group showed changes in carbohydrates, specifically glucose and
pyruvate. Both groups exhibited alterations in 1-carboxyethylphenylalanine. The study revealed
different metabolic signature in insulin resistant individuals depending on their physical activity
status. Specifically, the active group showed changes in lipid metabolism, while the sedentary group
showed alterations in glucose metabolism. These metabolic discrepancies demonstrate the beneficial
impact of moderate physical activity on high risk insulin resistant healthy non-obese individuals by
flipping their metabolic pathways from glucose based to fat based, ultimately leading to improved
health outcomes. The results of this study carry significant implications for the prevention and
treatment of metabolic syndrome in non-obese individuals.

Keywords: physical activity; insulin sensitive; insulin resistant; non-obese

1. Introduction

Metabolic syndrome is a group of conditions caused by an unhealthy diet and lack
of physical activity, which increases the risk of various diseases, including type 2 diabetes
(T2D), heart disease, and stroke. [1]. The apparently healthy non-obese insulin resistant
(IR) individuals are at higher risk of developing metabolic syndrome [2–4]. Studies have
revealed that 40% of lean/overweight young females in Qatar are IR, which is a higher
percentage compared to 25% of overweight females in other ethnic groups [5–7]. IR
causes changes in how the body uses energy, leading to increased levels of free fatty
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acids, glucose and amino acids [8–10]. This results in higher insulin secretion to maintain
normal glycaemia.

The metabolic signature associated with the increased risk was previously deter-
mined. A recent study has identified several potential metabolic biomarkers of insulin
resistance, including amino acids (Asn, Gln, and His), methionine sulfoxide, 2-methyl-3-
hydroxy-5-formylpyridine-4-carboxylate, serotonin, L-2-amino-3-oxobutanoic acid, and
4,6-dihydroxyquinoline [11]. Another study reported 113 out of 229 metabolic measures
linked to T2D in a meta-analysis of four cohorts, with strong biomarkers being branched-
chain and aromatic amino acids, triacylglycerol within VLDL particles, linoleic n-6 fatty
acid, and non-esterified cholesterol in large HDL particles. A multi-metabolite score of
phenylalanine, non-esterified cholesterol in large HDL, and the ratio of cholesteryl ester to
total lipid in large VLDL was associated with future diabetes risk (odds ratio of 10.1) in one
of the cohorts (mean age 31 years) and was more strongly associated with deterioration in
post-load glucose and insulin resistance than with future fasting hyperglycaemia [12].

The metabolic switch refers to the body’s transition in energy utilization from glucose
obtained through glycogenolysis to fatty acids and fatty acid-derived ketones. There is a
growing body of evidence indicating that ketones are the preferred fuel for both the brain
and body during fasting and prolonged exercise. This switch involves moving away from
lipid synthesis and fat storage towards mobilization of fat through free fatty acids (FFAs)
and fatty-acid derived ketones. As a result, when the metabolic switch occurs, the primary
source of energy for the body shifts from glucose to FFAs obtained from adipose tissue
lipolysis and ketones, preserving muscle mass [13]. Periodic flipping of metabolic switching
not only provides ketone bodies as an energy source during fasting, but it also regulates
the expression of various proteins and molecules that impact health and aging [14].

Physical inactivity is a significant risk factor for various metabolic conditions such
as insulin resistance, T2D and cardiovascular disease [15,16], but the specific metabolic
pathways through which physical activity protects against these conditions are not fully
understood [4]. Regular physical exercise improves blood sugar regulation and insulin
sensitivity [17] and a healthy lifestyle can improve the lives of diabetic patients [16,18,19]. A
5-year controlled diet and exercise plan can lower the risk of T2DM in non-obese individuals
with glucose intolerance [4]. Recent research in both rats [20,21] and humans [22] has
shown that sensitivity of skeletal muscle to insulin increases after both acute exercise and
physical training. Other studies have shown that regular exercise can improve glucose
tolerance, insulin sensitivity, lipid parameters, blood pressure, and fibrinolytic activity in
IR individuals [22–24]. The American College of Sports Medicine and American Heart
Association recommend 150 min of moderate activity (30 min, 5 days/week) or 60 min of
vigorous physical activity per week for adults, with a focus on regular walking to improve
sugar metabolism, cardiorespiratory fitness, and overall quality of life [25]

Exercise demands metabolic flexibility in order to match fuel availability with the
metabolic process to meet the significant increases in energy needs. The ability to switch
between glucose and fatty acid catabolism during short-term exercise in healthy individuals
primarily depends on the intensity and duration of the exercise. Higher intensity exercise
increasingly relies on glucose oxidation through oxidative phosphorylation, as well as
anaerobic glycolysis at even higher intensities. This takes place regardless of insulin levels,
which are typically low during exercise. As exercise intensity increases, fatty acid oxidation
contributes less to overall energy supply. However, as exercise duration becomes longer,
fatty acids play a larger role to overall energy supply [26]. Exercise physiology research
has made progress in identifying the mechanisms responsible for altered fuel metabolism
in obesity and diabetes, as well as exploring ways to enhance metabolic flexibility in
skeletal muscle and adipose tissue. The ultimate goal is to prevent and treat metabolic
disorders [26].

There is limited research on the metabolic pathways underlying the protective effects
of moderate physical activity in healthy, non-obese individuals and how they differ between
IS and IR counterparts. Understanding the metabolic signature of these groups could aid in
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understanding and preventing the development of metabolic diseases, like T2D, through
targeted diet and exercise [27–29]. Metabolomics offers a quantitative measurement of
metabolic profiles associated with exercise in moderately active non-obese participants to
identify biomarkers and detect changes in response to various physiological states between
IS and IR subjects [30,31]. This study aims to compare the metabolic profiles of IS and IR
individuals in active and sedentary non-obese apparently healthy individuals to further
explore the effect of moderate physical activity on high risk IR individuals compared to
their sedentary counterparts.

2. Results
2.1. Comparing the Effect of Physical Activity on Clinical Traits between IS and IR Subjects

Table 1 reveals that the active group had significantly higher levels of C Peptide and
triglycerides in the IRA compared to the ISA (p ≤ 0.05). Conversely, the sedentary group
had higher levels of C Peptide, creatinine, uric acid, creatine kinase, creatine kinase 1, total
protein, alkaline phosphatase, alanine transaminase, aspartate aminotransferase, and GGT
2 in the IRS compared to the ISS.

Table 1. General characteristics of study participants.

Physically Active Sedentary

ISA (78) IRA (50) p ISS (87) IRS (90) p

Gender
Male 44 (56.41%) 26 (52%) 0.624 33 (37.93%) 56 (62.23%) 0.001
Female 34 (43.58%) 24 (48%) 54 (62.06%) 34 (37.78%)

Vital Signs
Age (years) 25.7 (2.7) 26.0 (2.9) 0.562 25.8 (3.0) 25.8 (3.0) 0.881
BMI (kg/m2) 24.4 (22.9–26.9) 26.1 (23.4–27.8) 0.174 23.7 (22.2–26.0) 24.9 (23.4–27.5) 1.3 × 10−3

Average systolic BP (mmHg) 106.0 (101.0–113.7) 108.5 (101.0–116.0) 0.355 102.0 (96.0–111.0) 110.0 (101.0–115.7) 2.3 × 10−3

Average diastolic BP (mmHg) 67.8 (7.4) 67.4 (7.6) 0.957 67.5 (8.1) 69.74 (7.30) 0.043
Pulse rate (beats/min) 65.0 (59.0–72.0) 69.0 (63.0–76.0) 0.062 68.0 (62.0–72.0) 70.0 (65.0–78.0) 0.048

Blood sugar
HOMA-IR 1.2 (1.0–1.5) 2.9 (2.3–5.0) 1.7 × 10−21 1.3 (1.0–1.5) 3.2 (2.2–5.2) 3.2 × 10−30

C Peptide (ng/mL) 1.4 (1.2–1.7) 2.6 (2.1–4.0) 9.6 × 10−16 1.5 (1.3–1.7) 2.9 (2.1–4.2) 4.8 × 10−18

Insulin (uu/mL) 6.0 (4.9–7.0) 13.2 (10.2–21.9) 1.0 × 10−20 6.0 (4.8–7.0) 14.5 (10.0–23.1) 6.9 × 10−27

Hemoglobin A1c (HbA1c) % 5.2 (5.0–5.3) 5.3 (5.0–5.4) 0.182 5.2 (5.0–5.4) 5.3 (5.1–5.5) 0.124
Glucose (mmol/L) 4.8 (4.5–5.0) 5.1 (4.8–5.4) 1.1 × 10−4 4.7 (4.5–4.9) 5.2 (4.8–5.4) 6.2 × 10−11

Physical tests
Sitting height (cm) 90.7 (85.2–134.3) 90.8 (85.5–134.1) 0.778 91.7 (86.4–134.8) 91.4 (87.2–133.6) 0.783
Weight (kg) 69.2 (61.3–76.2) 73.4 (63.2–79.8) 0.134 65.4 (58.6–72.2) 70.4 (63.9–78.7) 2.1 × 10−3

Waist size (cm) 78.5 (73.0–84.0) 82.5 (75.0–89.0) 0.044 75.0 (71.0–80.0) 82.0 (75.0–89.0) 4.0 × 10−6

Hip size (cm) 100.2 ± 6.8 102.3 ± 6.1 0.072 100.5 ± 6.8 101.1 ± 5.8 0.463
Waist to hip ratio 0.79 ± 0.07 0.80 ± 0.08 0.305 0.76 ± 0.08 0.81 ± 0.08 2.2 × 10−5

Handgrip (left) 33.0 (22.0–44.0) 33.0 (28.0–43.0) 0.925 26.0 (20.0–38.0) 31.5 (22.0–40.0) 0.046
Handgrip (right) 35.0 (26.0–48.0) 32.0 (26.0–45.5) 0.739 29.0 (22.0–39.5) 34.0 (23.2–42.0) 0.114
Maximum heart rate (beats/min) 120.0 (106.5–133.0) 122.0 (111.5–132.0) 0.485 129.0 (112.0–142.0) 126.5 (114.2–139.0) 0.893
Run time (seconds) 764.0 (742.0–764.0) 764.0 (742.0–764.0) 0.981 764.0 (684.0–764.0) 764.0 (742.0–764.0) 0.12

Kidney profile
Sodium (mmol/L) 140.5 (139.0–141.8) 141.0 (139.0–142.0) 0.739 140.0 (138.5–141.0) 140.0 (139.0–142.0) 0.133
Potassium (mmol/L) 4.3 (4.1–4.5) 4.3 (4.1–4.5) 0.787 4.3 (4.1–4.5) 4.2 (4.0–4.4) 0.037
Chloride (mmol/L) 101.0 (100.0–102.0) 102.0 (99.2–102.7) 0.398 101.0 (100.0–102.0) 101.0 (100.0–102.0) 0.794
Bicarbonate (mmol/L) 27.0 (25.0–28.0) 26.0 (25.2–28.0) 0.41 26.0 (25.0–27.0) 26.0 (25.0–27.0) 0.826
Urea (mmol/L) 4.3 (3.4–5.3) 4.1 (3.4–5.1) 0.606 4.2 (3.3–4.9) 4.2 (3.4–4.8) 0.822
Creatinine (mmol/L) 69.0 (52.7–78.7) 67.0 (54.7–80.0) 0.743 61.0 (54.0–76.5) 70.5 (58.2–77.0) 0.023
Calcium (mmol/L) 2.4 ± 0.1 2.4 ± 0.1 0.571 2.4 ± 0.1 2.4 ± 0.1 0.264
Calcium Corrected (mmol/L) 2.3 ± 0.1 2.3 ± 0.1 0.382 2.3 ± 0.1 2.3 ± 0.1 0.146
Phosphorus (mmol/L) 1.2 ± 0.1 1.2 ± 0.2 0.752 1.2 ± 0.1 1.1 ± 0.2 1.1 × 10−3

Uric Acid (umol/L) 296.5 (240.2–335.5) 282.0 (234.5–361.7) 0.625 257.0 (221.5–305.0) 308.5 (242.0–349.7) 6.1 × 10−4

Creatine kinase (U/L) 86.5 (69.2–130.0) 99.0 (60.0–159.5) 0.746 67.0 (55.0–105.0) 89.0 (62.0–117.0) 0.037
Creatine Kinase 1 (ng/mL) 1.1 (0.9–1.5) 1.1 (0.7–1.5) 0.771 1.0 (0.7–2.0) 1.31 (1.0–1.6) 1
Creatine kinase 2 (U/L) 88.0 (72.0–124.0) 71.0 (52.2–239.0) 0.758 86.5 (60.0–127.0) 75 (47.5–109) 0.478
Magnesium(µmol/L) 0.8 ± 0.05 0.8 ± 0.05 0.887 0.8 ± 0.05 0.84 ± 0.05 0.621
Total Protein (g/L) 74.0 (72.0–76.0) 75.0 (72.0–77.0) 0.737 73.0 (70.0–76.0) 74.0 (72.0–76.0) 0.049
Homocysteine (µmol/L) 8.7 (6.8–10.6) 8.0 (6.6–9.5) 0.142 8.3 (6.2–9.9) 8.0 (6.6–9.5) 0.952

Liver profile
Total Bilirubin (µmol/L) 7.0 (5.2–10.0) 5.9 (4.6–7.85) 0.045 7.6 (6.0–9.0) 6.0 (4.3–9.0) 0.031
Albumin (g/L) 47.0 (45.0–48.0) 47.0 (45.0–48.0) 0.63 46.0 (45.0–48.0) 46.0 (44.2–49.0) 0.992
Alkaline phosphatase (U/L) 61.0 (48.5–72.0) 64.5 (57.2–79.7) 0.054 60.0 (52.5–70.5) 68.5 (60.0–77.7) 1.1 × 10−3

Alanine Transaminase (U/L) 17.0 (12.0–22.7) 19.0 (13.0–31.5) 0.292 14.0 (10.0–19.5) 21.5 (14.0–32.0) 8.5 × 10−6
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Table 1. Cont.

Physically Active Sedentary

ISA (78) IRA (50) p ISS (87) IRS (90) p

Liver profile
Aspartate aminotransferase (U/L) 19.0 (16.0–21.7) 18.0 (15.0–23.7) 0.835 17.0 (14.0–19.0) 18.5 (15.0–21.0) 8.3 × 10−3

GGT (U/L) 13.0 (10.5–18.5) 13.0 (10.5–17.5) 0.788 13.0 (8.2–17.0) 16.0 (13.0–23.0) 0.037
GGT 2 (U/L) 14.0 (10.0–19.0) 17.5 (12–25.5) 0.069 14.0 (12.0–25.0) 23.0 (16.0–35.0) 2.7 × 10−4

Lipid profile
HDL Cholesterol (mmol/L) 1.5 ± 0.4 1.4 ± 0.4 0.356 1.5 ± 0.3 1.2 ± 0.3 1.5 × 10−5

LDL Cholesterol Calc (mmol/L) 2.8 (2.1–3.0) 2.9 (2.1–3.3) 0.413 2.6 (2.1–3.0) 2.9 (2.5–3.2) 0.082
Triglyceride (mmol/L) 0.8 (0.6–1.0) 1.0 (0.7–1.4) 0.041 0.8 (0.5–1.1) 1.1 (0.8–1.6) 3.7 × 10−6

Iron profile
Iron (µmol/L) 15.5 (11.5–20.0) 14.0 (10.5–17.0) 0.143 16.0 (10.5–20.0) 15.15 (11.21–19.1) 0.971
TIBC (µmol/L) 56.0 (52.0–63.0) 60.0 (56.0–67.0) 0.004 60.5 (54.2–66.5) 59.0 (52.0–64.0) 0.443
UIBC (µmol/L) 41.0 (34.0–48.0) 46.0 (39.0–55.0) 0.014 43.0 (36.0–53.6) 42.0 (34.5–49.8) 0.583
Ferritin (µg/L) 54.0 (22.0–110.5) 34.0 (17.0–105.5) 0.332 34.0 (10.0–70.0) 63.5 (20.5–119.0) 0.014

Vitamins
Folate (nmol/L) 22.0 ± 7.4 22.6 ± 8.2 0.673 24.0 ± 8.9 21.6 ± 7.0 0.157
Vitamin B12 (pmol/L) 288.0 (232.2–418.0) 271.5 (208.0–356.2) 0.194 283.0 (222.0–374.0) 295.0 (229.0–377.0) 0.935
Dihydroxyvitamin D Total
(ng/mL) 15.0 (11.2–18.0) 13.5 (11.0–24.0) 0.46 16.5 (12.0–24.7) 13.0 (10.2–17.7) 4.2 × 103

Hormones
Total Testosterone (nmol/L) 15.9 (1.4–25.4) 4.14 (1.2–17.6) 0.047 1.85 (1.1–20.4) 14.2 (1.4–19.0) 0.383
Estradiol (pmol/L) 124.0 (88.0–237.0) 122.0 (84.0–234.0) 0.499 146 (86.7–349.7) 105 (77.2–169.7) 0.022
SHBG (nmol/L) 44.3 (30.8–64.7) 37.1 (23.5–60.0) 0.1 52.8 (36.7–79.2) 31.5 (22.5–46.8) 4.1 × 10−6

Free Thyroxine (pmol/L) 13.7 (12.5–14.5) 13.3 (12.5–14.1) 0.469 13.3 (12.4–14.6) 13.4 (12.6–14.6) 0.63
Free triiodothyronine (nmol/L) 4.6 (4.1–4.9) 4.4 (4.0–4.85) 0.701 4.4 (4.14–4.8) 4.7 (4.3–5.1) 0.007
TSH (mU/L) 1.3 (1.0–2.0) 1.3 (1.0–1.6) 0.241 1.6 (1.1–2.5) 1.3 (0.9–2.2) 0.079

Blood inflammatory markers
Hemoglobin (g/dL) 13.7 (12.6–15.1) 13.7 (12.5–14.9) 0.655 13.3 (11.9–14.56) 14.4 (13.1–15.3) 8.6 × 10−4

Estimated hemoglobin * 18.5 ± 3.3 19.1 ± 3.3 0.527 17.7 ± 3.8 18.3 ± 3.9 0.236
Hematocrit % 42.1 (37.6–45.0) 41.9 (38.5–44.9) 0.843 40.0 (36.1–42.78) 42.7 (39.4–45.7) 4.2 × 10−4

Red Blood Cell count (×106/µL) 5 (4.4–5.3) 5.1 (4.6–5.5) 0.095 4.7 (4.5–5.1) 5.1 (4.7–5.6) 3.5 × 10−5

White Blood Cell count
(×103/µL) 6.5 (5.4–7.5) 6.5 (5.5–8.1) 0.696 6.4 (5.4–7.6) 6.6 (5.1–7.8) 0.984

Monocyte % 7 (5.9–8.2) 7.3 (6.2–8.6) 0.506 6.8 (5.6–8.2) 8.0 (6.5–9.3) 2.8 x 10−3

Monocyte count (×103/µL) 0.5 (0.4–0.6) 0.5 (0.4–0.6) 0.473 0.4 (0.3–0.5) 0.5 (0.4–0.6) 8.7 × 10−4

Absolute neutrophil count
(×103/µL) 3.3 (2.7–4.3) 3.6 (2.8–4.5) 0.535 3.4 (2.7–4.7) 3.5 (2.6–4.4) 0.901

Neutrophil % 53.2 ± 9.6 55.0 ± 10.3 0.325 54.2 ± 9.0 54.6 ± 9.6 0.847
Lymphocyte count (×103/µL) 2.3 (1.9–2.8) 2.1 (1.9–2.5) 0.386 2.2 (1.8–2.6) 2.2 (1.7–2.6) 0.477
Lymphocyte % 36.5 ± 8.7 34.1 ± 8.7 0.134 35.6 ± 7.6 34.4 ± 7.8 0.291
Eosinophil % 2.3 (1.3–3.8) 2.3 (1.5–3.475) 0.966 1.8 (1.2–3.3) 2.5 (1.6–3.5) 0.049
Eosinophils count (×103/µL) 0.1 (0.1–0.2) 0.1 (0.1–0.3) 0.911 0.1 (0.1–0.2) 0.1 (0.1–0.2) 0.327
Basophil % 0.6 (0.3–0.7) 0.6 (0.4–0.7) 0.601 0.7 (0.5–0.9) 0.6 (0.4–0.8) 0.231
Basophils count (×103/µL) 0.0 (0.0–0.1) 0.0 (0.0–0.03) 0.864 0.0 (0.0–0.1) 0.0 (0.0–0.1) 0.589
Platelet count (×103/µL) 233 (207.0–263.0) 235 (208.8–275.8) 0.674 237 (195.0–284.0) 244 (209.0–276.5) 0.805
MCH (pg) 28.6 (26.6–29.9) 27.5 (25.7–28.8) 0.013 28.6 (26.1–29.8) 28.2 (26.6–29.6) 0.743
MCHC (g/dL) 33.4 (32.7–33.9) 33 (32.4–33.6) 0.184 33.3 (32.5–34.0) 33.6 (32.8–34.2) 0.185
C Reactive Protein (mg/L) 5 (5–5) 5 (5–5) 0.659 5 (5–5) 5 (5–5) 0.023

BMI (body mass index), Systolic BP (systolic blood pressure), Diastolic BP (diastolic blood pressure), LDL (low
density lipoprotein), HDL (high density lipoprotein), HOMA-IR (homeostatic model assessment of insulin
resistance), TIBC (Total iron binding capacity), UIBC (Unsaturated iron binding capacity), SHBG (Sex hormone
binding globulin), TSH (Thyroid stimulating hormone), MCH (Mean cell hemoglobin), MCHC (Mean corpuscular
hemoglobin concentration), * hemoglobin (estimated from hematocrit). The data is presented as mean ± SD
for normal variables, median (IQR) for skewed variables, and number (percentage) for nominal parameters.
The differences between the groups were tested using ANOVA/Kruskal Wallis for parametric/non-parametric
variables and Chi-square test for nominal variables. The significance level was set at p ≤ 0.05.

2.2. Multivariate Analysis of Metabolites Differentiating IS and IR in Sedentary and Active
Non-Obese Subjects

The metabolic signatures of 305 subjects were analyzed using non-targeted metabolomics.
OPLS-DA was utilized to identify the best distinguishing components between IS and
IR sedentary and active groups, as shown in Figure 1a,b. The sedentary group had one
predictive and one orthogonal component, with the discriminatory component accounting
for 53.9% of the variance between ISS and IRS (R2X = 0.129; R2Y = 0.539; Q2 = 0.241). The
active group had one predictive and two orthogonal components, with the discrimina-
tory component accounting for 74.5% of the variance between ISA and IRA (R2X = 0.148;
R2Y = 0.745; Q2 = 0.188). The loading plots showed which sets of metabolites best differ-
entiated between sedentary and active individuals, including Long chain monosaturated
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fatty acids (LCMFA), Long chain polyunsaturated fatty acid (LCPFA), Haemoglobin and
Porphyrin metabolism (HPM), Medium chain fatty acid (MCFA), and Amino acid (AA)
metabolism (Leucine, Isoleucine and Valine). These are shown in the loading plots for
sedentary and active individuals in Figure 1c,d. Mulitvariate analysis of all four groups
was also performed. Corresponding scores plot and list of metabolites with VIP > 1.5 are
summerized in Supplementary Figure S1 and Table S1, respectively.
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Figure 1. OPLS-DA of metabolites differentiating IS and IR in sedentary (a) and active (b) non-obese
individuals. OPLS-DA (Orthogonal Projections to Latent Structures Discriminant Analysis) of insulin-
sensitive and insulin-resistant individuals. The analysis was performed on sedentary and active
cohorts separately as shown in score plots (a,b) for the two groups respectively. Model (a) (seden-
tary) identified one predictive and one orthogonal component while Model (b) (active) identified
1 predictive and 2 orthogonal components. (c,d) represent the corresponding loadings plots for
sedentary and active individuals respectively. Enriched sub-pathways are coloured in both OPLS-DA
models, including LCMFA—Long chain monosaturated fatty acids; LCPFA—Long chain polyunsatu-
rated fatty acid, HPM—Haemoglobin and Porphyrin metabolism, MCFA—Medium chain fatty acid,
AA—Amino acid (Leucine, Isoleucine and Valine metabolism).
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2.3. Univariate Analysis of Metabolites Differentiating Sedentary Insulin Sensitive and Insulin
Resistant Individuals

A linear model was used to study the connection between metabolites and sedentary
individuals with insulin sensitivity and resistance, controlling for factors such as gender,
age, and BMI. Five metabolites were identified to be related to insulin sensitivity and
resistance among sedentary individuals and the relevant pathways listed (Table 2). These
included pyruvate and glucose (carbohydrate pathway), 1-carboxyethylphenylalanine
and N-acetylglycine (amino acid pathway), and gamma-glutamylcitrulline (peptide path-
way) (FDR = 0.01). Boxplots of the metabolites with significant differences are shown in
Figure 2 and a bar-plot of the results of functional enrichment analysis based on metabo-
lite ranks by p-value using the Wilcoxon rank sum test is shown in Figure 3 and re-
sults are indicated in Supplementary Table S2. Enriched metabolic pathways included
phenylalanine, plasmalogen, guanidino and acetamido, long chain polyunsaturated fatty
acids (n3 and n6), pantothenate and CoA metabolism, urea cycle, arginine and proline,
progestin steroids, hemoglobin and porphyrin, leucine, isoleucine and valine, and long
chain monounsaturated fatty acids. Heatmap showing the top 100 metabolites is shown
in Supplementary Figure S2. Volcano plot (Supplementary Figure S4a depicts log2 fold
change and −log10 p-value of metabolites that differentiate between IS and IR groups in
sedentary individuals. A scatter plot of top metabolites from univariate model are shown
in Supplementary Figure S5a.
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Table 2. Linear model analysis of metabolite levels in insulin sensitive versus insulin resistant
amongst sedentary individuals.

Metabolite Super-Pathway Sub-Pathway Estimate SE p-Value FDR

Pyruvate Carbohydrate Glycolysis, Gluconeogenesis,
and Pyruvate Metabolism −0.182 0.033 7.22 × 10−8 6.11 × 10−5

1-carboxyethylphenylalanine Amino Acid Phenylalanine Metabolism −0.372 0.079 3.76 × 10−6 0.001

Gamma-glutamylcitrulline Peptide Gamma-glutamyl Amino Acid 0.214 0.051 3.59 × 10−5 0.010

N-acetylglycine Amino Acid Glycine, Serine and
Threonine Metabolism 0.268 0.068 1.01 × 10−4 0.021

Glucose Carbohydrate Glycolysis, Gluconeogenesis,
and Pyruvate Metabolism −0.103 0.028 2.31 × 10−4 0.039
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2.4. Univariate Analysis of Metabolites Differentiating Physically Active Insulin Sensitive and
Insulin Resistant Individuals

A linear model was applied to evaluate the effect of physical activity on insulin sensitive
and resistant individuals by correcting for gender, age, BMI, and PCs. 17 metabolites with
significant associations were identified (Table 3). These included 1-carboxyethylphenylalanine
and isoleucine (amino acid pathway, FDR = 0.006, 0.007), prolylglycine and gamma-
glutamylmethionine (peptide pathway, FDR = 0.031, 0.041), various lipids (FDR < 0.05),
and branched-chain, straight-chain, or cyclopropyl 12:1 fatty acid (FDR = 0.006). The
metabolites that showed significant differences are illustrated in boxplots in Figure 4.
A bar plot summarizing functional enrichment analysis results based on the ranking of
metabolites by p-value using Wilcoxon rank sum test is shown in Figure 5. Results of
functional enrichment analysis indicated significant differences in long chain saturated
fatty acids, gamma glutamyl amino acids, fatty acid dicarboxylates, and the metabolism of
leucine, isoleucine, valine, medium chain fatty acids, long chain monounsaturated fatty
acids, and long chain polyunsaturated fatty acids (n3 and n6) subpathways, as shown in
Figure 5 and Supplementary Table S3. Heatmap showing the top 100 metabolites is shown
in Supplementary Figure S3. Volcano plot (Supplementary Figure S4b depicts log2 fold
change and −log10 p-value of metabolites that differentiate between IS and IR groups in
active individuals. A scatter plot of top metabolites from univariate model are shown in
Supplementary Figure S5b.
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Table 3. Linear model analysis of metabolite levels in insulin sensitive versus insulin resistant
amongst active individuals.

Metabolite Super-Pathway Sub-Pathway Estimate SE p-Value FDR

Myristoleate (14:1n5) Lipid Long Chain Monounsaturated
Fatty Acid 0.684 0.138 1.38 × 10−6 0.001

Branched-chain, straight-chain,
or cyclopropyl 12:1 fatty acid

Partially
Characterized
Molecules

Partially Characterized
Molecules 0.597 0.136 1.59 × 10−5 0.006

Dodecadienoate (12:2) Lipid Fatty Acid, Dicarboxylate 0.415 0.098 2.67 × 10−5 0.006

1-carboxyethylphenylalanine Amino Acid Phenylalanine Metabolism −0.395 0.093 2.90 × 10−5 0.006

Palmitoleate (16:1n7) Lipid Long Chain Monounsaturated
Fatty Acid 0.584 0.141 4.58 × 10−5 0.007

Isoleucine Amino Acid Leucine, Isoleucine and Valine
Metabolism −0.119 0.029 5.59 × 10−5 0.007

Tetradecadienoate (14:2) Lipid Long Chain Polyunsaturated
Fatty Acid (n3 and n6) 0.499 0.123 6.40 × 10−5 0.007

Myristate (14:0) Lipid Long Chain Saturated
Fatty Acid 0.407 0.102 8.04 × 10−5 0.008

7-alpha-hydroxy-3-
oxo-4-cholestenoate (7-Hoca) Lipid Sterol 0.194 0.05 1.57 × 10−4 0.015

5-dodecenoate (12:1n7) Lipid Medium Chain Fatty Acid 0.42 0.112 2.16 × 10−4 0.017

10-heptadecenoate (17:1n7) Lipid Long Chain Monounsaturated
Fatty Acid 0.439 0.117 2.24 × 10−4 0.017

Hexadecadienoate (16:2n6) Lipid Long Chain Polyunsaturated
Fatty Acid (n3 and n6) 0.43 0.12 4.21 × 10−4 0.029

Prolylglycine Peptide Dipeptide −0.375 0.106 4.87 × 10−4 0.031

Stearidonate (18:4n3) Lipid Long Chain Polyunsaturated
Fatty Acid (n3 and n6) 0.448 0.13 6.55 × 10−4 0.036

16-hydroxypalmitate Lipid Fatty Acid, Monohydroxy 0.227 0.066 6.61 × 10−4 0.036

Gamma-glutamylmethionine Peptide Gamma-glutamyl Amino Acid −0.195 0.057 8.04 × 10−4 0.041

Oleate/vaccenate (18:1) Lipid Long Chain Monounsaturated
Fatty Acid 0.369 0.109 8.29 × 10−4 0.041

2.5. Common Metabolites That Are Significantly Different between IS and IR Individuals in Active
and Sedentary Groups

A Venn diagram (Figure 6) illustrates metabolites that are significantly different
between IS and IR individuals in active and sedentary groups and those that are com-
mon between the two groups. The metabolites 1-carboxyethylphenylalanine and gamma-
glutamylcitrulline are associated with insulin sensitive and insulin resistance regardless
of activity. Fatty acids(monohydroxy, dicarboxylate, medium and long chain mono and
polyunsaturated) were identified in the active groups, whereas changes in carbohydrates
(glucose and pyruvate) were seen in the sedentary group.

2.6. Spearman’s Correlation of Clinical Traits and Top Metabolite Hits from the Linear Regression
Analysis in Active and Sedentary IR Individuals

In order to further understand how the metabolic changes associated with physical
activity are affecting IR individuals, correlation analysis was performed between the clin-
ical traits of IR-sedentary individuals with the significantly changing metabolites from
the linear regression analysis (Table 2). Similarly, the clinical traits of IR-active partici-
pants were assessed for correlation with metabolites from the linear analysis (Table 3),
Figure 7 shows clear significant differences in the correlations of various clinical traits and
metabolites differentiating IR active and sedentary individuals. These include negative
correlations of insulin and c-peptide and metabolites differentiating IR active, but positive
correlation with metabolites differentiating IR sedentary. Conversely, free thyroxine and
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triiodothyronine are positively correlated with metabolites in IR active, but no correlation
in the sedentary group.
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Significant correlations are depicted by ***/**/* denoting <0.001/<0.01/<0.05.

3. Discussion

The pathology of insulin resistance prior to obesity and its underlying molecular
mediators remains largely uncharacterized. Metabolic profiling has been widely used
for the identification of novel pathways and specific biomarkers for insulin resistance
and T2D [32–35]. The objective of this study was to compare the metabolic profiling
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of apparently healthy lean/overweight active and sedentary IS and IR participants and
identify the metabolic pathways underpinning the increased risk of the insulin resistance
and the impact of physical activity on insulin resistance.

Our emerging data showed 4 distinct metabolic signatures that effectively distin-
guished between IS and IR, namely glucose and pyruvate in the sedentary group, various
types of fatty acids (monohydroxy, dicarboxylate, and short to long chain mono and polyun-
saturated) in the active group, and 1-carboxyethylphenylalanine in both groups as a shared
microbiota metabolite. Glucose and pyruvate are important molecules in the regulation of
insulin sensitivity. Glucose is the primary source of energy for cells and is taken up by cells
in response to insulin. Pyruvate is involved in glucose metabolism and is also taken up by
cells in response to insulin [36]. In sedentary IR individuals, cells become less sensitive to
insulin, resulting in a decreased uptake of glucose and pyruvate. This leads to increased
levels of glucose and pyruvate in the bloodstream, which can lead to further progression
of disease. This is in line with our results where glucose and pyruvate are higher in IRS.
However, in the active group, our results identified several long- and medium-chain fatty
acids (PUFA, MUFA, and saturated fatty acids) in active IS & IR but data suggested higher
levels of these metabolites in ISA individuals compared to their IRA counterparts. Exercise
training promotes fatty acid oxidation in association with suppression of glucose oxidation
in skeletal muscle under resting conditions, but increases the rate of carbohydrate oxidation
when glucose flux into muscle cells is stimulated by insulin [37].

The transient carbohydrate deficit after exercise caused by the increased demand for
energy during exercise results in the mobilization of fatty acids from adipose tissue to
provide energy for the muscles. Fat is an important source of energy for muscle contraction,
both at rest and during exercise. Triglycerides are stored in adipose tissue and within
muscle fibers, and are the main source of the free fatty acids (FFAs) that are oxidized during
low intensity exercise [38,39]. At this exercise level, oxidative muscle fibers primarily use
fatty acid oxidation for ATP production [40]. The rate of FFA turnover is high enough
to provide the majority of the energy needed for exercise. Studies showed that during
prolonged exercise, muscle triglycerides become the primary source of energy obtained
from fat. Additionally, it is widely documented that endurance activities increase the
energy utilization from fat while sparing carbohydrate sources [38,39]. The increased FFA
concentration in the plasma was then used to replenish the depleted glycogen stores in the
muscles [41]. Our emerging data showed increased levels of long-chain fatty acids in ISA
group, suggesting that lipid oxidation in this cohort of young apparently healthy is indeed
proportional to lipid availability. In addition to that, emerging findings suggest metabolic
switch from glucose to fatty acid metabolism when comparing IS and IR in sedentary vs
active individuals. This shift moves metabolism away from lipid/cholesterol synthesis and
fat storage, towards the mobilization of fat through fatty acid oxidation in active IS & IR,
but higher in ISA. This process helps to maintain muscle mass and function.

Additionally, the emerging data indicate accumulation of various microbiota byprod-
ucts such as the phenylalanine derivative 1-carboxyethylphenylalanine in both sedentary
& active IR group. 1-carboxyethylphenylalanine was identified as the most discriminating
metabolite among all measured metabolites and a promising predictive biomarker for
IR [42]. Elevation of phenylalanine and its derivatives (1-carboxyethylphenylalanine) could
contribute to progression of insulin resistance as phenylalanine stimulates insulin secre-
tion, potentially causing hyperinsulinemia [43,44]. More recent evidence suggested that
phenylalanine impairs insulin signaling and inhibits glucose uptake through modification
of insulin receptor (IR) β [45]. Phenylalanine and 1-carboxyethylphenylalanine were found
significantly higher in severe insulin resistant (SIRD) [46].

Our data also showed elevation of isoleucine metabolite in IRA compared to ISA,
perhaps due to dietary intake. A previous study provides evidence that reducing dietary
isoleucine may be an effective way to reduce the risk of insulin resistance. The study
also suggests that further research is needed to determine the optimal levels of dietary
isoleucine for optimal metabolic health [47].
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The emerging data also suggested significant negative correlations between 7 lipid
metabolites including Myristoleate (14:1n5), Branched-chain, straight-chain, or cyclopropyl
12:1 fatty acid, Dodecadienoate (12:2), Myristate (14:0), 5-dodecenoate (12:1n7), Stearidonate
(18:4n3), Oleate/vaccenate (18:1) with insulin and c-peptide in IRA, whereas positive
correlations were found with phosphorus, T3 and T4.

The association of top metabolites differencing IS and IR in IRA with insulin and
C-peptide is expected, as they are markers of insulin resistance. Previous reports have
suggested that long-chain fatty acids exhibit a strong inverse correlation with IS index in a
nondiabetic cohort [42]. Additionally, our results suggested that thyroid hormones play a
role in lipid metabolism and IS index. A recent study showed that serum thyroid hormone
levels have a close correlation with blood lipid and insulin metabolism. The levels of TC,
TG, and LDL-C were significantly lower in the hypothyroidism group than in the normal
thyroid group [48], suggesting a positive correlation between T3/T4 lipid metabolites,
as our results showed in IRA individuals. Another study showed that hypothyroidism
is frequently associated with dyslipidemia that results in intrahepatic accumulation of
fat, leading to nonalcoholic fatty liver disease (NAFLD), which leads to the development
of hepatic insulin resistance. Interestingly, 1-carboxyethylphenylalanine, the common
metabolites differentiating IS and IR in in both active and sedentary subjects, was nega-
tively correlated with T3, T4, estradiol, phosphorus, total protein and positively correlated
with insulin, creatinine in IRA. Additionally, 1-carboxyethylphenylalanine was positively
correlated with insulin, haemoglobin, urea, creatinine, ALT, GGT, GGT2, TG, uric acid and
C-peptide in IRS. These correlations provide additional evidence of the potential utility of
this metabolite as a surrogate marker of insulin resistance and its associated biochemical
markers. The functional relevance of these correlations is currently being investigated.

The study recognizes the limitation of focusing solely on non-obese individuals with
insulin resistance and highlights the need for future research to investigate metabolic dif-
ferences in a more diverse population. Our previous findings on differences between obese
IS and IR individuals suggested that phospholipid metabolites are critical in distinguishing
between the two groups [34]. The findings of the two studies emphasize the importance of
considering physical activity levels and obesity when investigating metabolic differences
associated with insulin resistance. Personalized and targeted treatment approaches based
on individual metabolic profiles are necessary for effective management of metabolic dis-
orders. Further research is needed to explore the potential clinical implications of these
findings and develop effective personalized treatment strategies. Although the study pro-
vides valuable insights, there is still much to learn about the complex interplay between
metabolism and disease.

4. Materials and Methods
4.1. The Data Source and Study Participants

The data from 305 participants was extracted from Qatar Biobank, including question-
naires related to physical activity and laboratory results for 66 clinically-relevant metabolic
traits such as measurements of systolic and diastolic blood pressure, waist to hip ratio
(WHR), body mass index (BMI), clinical chemistry, and endocrinology tests (Table 1). In
addition to metabolomics data for over 1000 metabolites. The study was approved by the
Institutional Review Boards of the Qatar Biobank (QF-QBB-RES-ACC-00066) and Qatar
University (QU-IRB 1716-E/22). All participants provided informed consent. Insulin
resistance was determined by HOMA-IR ((fasting glucose (mmol/L) × fasting insulin
mlU/mL)/22.5)). Individuals with HOMA-IR less or equal to 1.85 were categorized as
IS whereas those with HOMA-IR greater than 1.85 were categorized as IR. Physically
active participants were identified as those who walk at least two days per week for
more than 150 min. Inclusions criteria included young (20–30 years old) lean/overweight
(BMI: 20–30 Kg/m2) healthy (no chronic diseases such as diabetes, glaucoma, macular
degeneration, blood clot, cardiovascular disease, bariatric surgery, and cancer). Accord-
ingly, among all participants, 42% were physically active, including 25.6% IS (ISA) and
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16.4% IR (IRA), whereas 58% were sedentary, including 28.5% IS (ISS) and 29.5% IR (IRS)
(Supplementary Figure S1).

4.2. Metabolomics

Established protocols were used for untargeted metabolomics of serum samples from
all participants [31]. Waters ACQUITY ultra-performance liquid chromatography (UPLC)
and a Thermo Scientific Q-Exactive high resolution/accurate mass spectrometer interfaced
with a heated electrospray ionization (HESI-II) source and Orbitrap mass analyzer operated
at 35,000 mass resolution were used for metabolite measurement. Detailed description of
methodology was previously described [31]. To identify compounds, hits were compared
with already existing library entries of purified standards of over 3300 purified standard
compounds. Compounds were then assigned to various categories according to their
sources. Internal standards and quality controls were previously described [49]. Briefly, a
mixture of stable isotope-labeled compounds were used as internal standards to correct for
variations in sample preparation and instrument performance. Quality control samples
were used to monitor the stability and reproducibility of the method over time. The pre-
analytical sample handling, including sample collection, storage, and preparation used
a standardized protocol to minimize variability and ensure the integrity of the samples.
Supplementary Table S4 lists all identified metabolites and their raw data.

4.3. Statistical Analysis

The metabolomics data were log-transformed. Multivariate analysis including un-
supervised (principle component analysis) PCA and supervised (orthogonal partial least
square-discriminant analysis) OPLS-DA were run using the software SIMCA® (version
16.0.1). Two outliers were removed after PCA analysis as a part of quality control prior
to OPLS-DA. R version 4.0.3 was used to perform linear models for each metabolite
(as the response variable) versus insulin sensitivity (HOMA-IR cutoff of 1.85), physi-
cal activity (active/sedentary) (as the explanatory variables) and their interaction. The
model also included the following confounders: age, gender, and BMI. Marginal means
were compared between insulin-sensitive (IS) (HOMA-IR < 1.85) and insulin-resistant (IR)
(HOMA-IR > 1.85) individuals stratified by physical activity status using the R package-
Emmeans. Multiple testing correction method (False Discovery Rate, FDR) was used to
adjust the nominal p-values. FDR < 0.05 was considered statistically significant. Functional
enrichment analysis was run on all p-value ordered metabolite lists from linear models
performed in the study. This analysis was conducted based on one-way Wilcoxon rank
sum test which was followed by FDR multiple testing correction method. The sub path-
ways were previously predefined by Metabolon and those with less than three top hits
were dropped. Spearman’s correlation was performed between the significantly different
metabolites from the regression analysis and the clinical measurements of participants for
IRA and ISA groups separately. A p value of 0.05 was considered significant.

5. Conclusions

This study investigated the metabolic signatures of IS and IR non-obese individuals,
both active and sedentary. Findings revealed that physical activity influences the metabolic
pathways of IR individuals by shifting their metabolism from glucose-based to fat-based.
These insights highlight the importance of moderate physical activity in reducing metabolic
syndrome risk in non-obese individuals, offering crucial implications for prevention and
treatment strategies.
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