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A B S T R A C T

Federated Learning (FL) is a promising distributed training model that aims to minimize the data sharing to
enhance privacy and performance. FL requires sufficient and diverse training data to build efficient models.
Lack of data balance as seen in rare classes affects the model accuracy. Generative Adversarial Networks (GAN)
are remarkable in data augmentation to balance the available training data. In this article, we propose a novel
Federated Deep Learning (DL) Intrusion Detection System (IDS) using GAN, named FEDGAN-IDS, to detect
cyber threats in smart Internet of Things (IoT) systems; smarthomes, smart e-healthcare systems and smart
cities. We distribute the GAN network over IoT devices to act as a classifier and train using augmented local
data. We compare the convergence and accuracy of our model with other federated intrusion detection models.
Extensive experiments with multiple datasets demonstrates the effectiveness of the proposed FEDGAN-IDS. The
model performs better and converges earlier than the state-of-the-art standalone IDS.
. Introduction

The convergence of advanced networking, breakthrough distributed
ystems technologies, and smart services has rapidly expanded the
hreat landscape for IoT devices. Researchers have been looking into
ightweight and adaptive technologies to solve the problems of cyberse-
urity in dynamic smart IoT systems, as these domains are increasingly
argeted by cyber-criminals, especially smart homes, smart e-healthcare
ystems and smart cities [1]. Smart e-health devices, also referred
s IoT medical devices or Internet of Medical Things (IoMT), record
nd monitor human vital signs for diagnosis purposes. These tiny
evices are empowered with wireless connectivity to treat the patients
emotely [2]. IDS is the default and widely used defense mechanisms
n IoT devices and IoMTs. IDS demand robust and improved techniques
o survive against cutting-edge malicious activities. Unfortunately, the
xisting IDS developed for IoT devices are based on a strong assumption
hat the traffic samples available are sufficient, labeled and useful for
odel training [3]. Besides, a notable amount of research and ex-
erimental work substantiates that continuous network monitoring by
DS protects the smart infrastructure the most. Nevertheless, the zero-
ay attacks, groundbreaking attack techniques and eccentric hackers
ake any IDS outdated in the face of the novel attacks. To defend

gainst such disruptive malicious activities, the IDS needs continuous
mprovement at the pace of the variability in the traffic patterns.

Artificial Intelligence (AI) solutions like DL and Machine Learning
ML) have gained enormous attention in the development of anomaly
nd intrusion detection techniques [4–7]. The research shows that the
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accuracy of intrusion detection models is proportional to the amount
of training data, especially for ML or DL trained models [8]. How-
ever, each IoT device has a limited amount of data leading to weak
separate models. It is not recommended to collect the local data of
IoT devices, particularly for e-health devices as the data is highly-
sensitive containing information about the health conditions and other
private patient information [9]. The traffic patterns are different on
each smart device and can be used to train the IDS. If data of all
devices is utilized for training, then the model performance can be
improved. However, centralizing the data for training is not feasible
due to resource constraints, security and privacy concerns. Because of
these two significant obstacles, we look forward for the two advanced
technologies with complementary benefits: FL and GANs.

FL models are trained in a distributed fashion locally within devices
and only the model updates are shared with the central server [10].
However, it is challenging to build a good federated model with the
limited amount of data on each device. We aim to augment the existing
data with similar samples to increase the number of samples especially
from rare classes, fixing data imbalance issues. A recent successful
discovery in ML is the various applications of GANs, particularly in
generating synthetic data to increase the number of data samples and
to fix under-sampling problems [11]. FL has been applied on discrimi-
native models successfully but there are various on-going investigations
on the application of generative networks in FL. Although some of the
efforts have been made in modeling GANs in federated settings [12,13],
many efforts are needed to model it for a real scenario. We model
a GAN network in a federated setting, where local Generators and
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Discriminators are synchronized periodically by a central Generator
and Discriminator with continuous improvement by exchanging gra-
dients and model upgrades. The main contributions of this work are
summarized as follows.

(1) Designing a novel distributed GAN-based intrusion detection
model for smart IoT devices. The GAN generated synthetic data
augments the data on an IoT device to train the IDS model
individually. The GAN network solves the problem of limited,
missing and imbalanced data on the IoT devices.

(2) Proposing a privacy-preserving FL framework, allowing multiple
smart IoT devices to contribute to building a global intrusion
detection model. Each device trains its single model on its own
data and synthetic local data generated by the local GAN and
transfers the model parameters to the global model. The local
data and generated data of each device are not shared with other
IoT devices. This task ensures data and resources privacy by
performing the data preprocessing and model building at each
device’s own premise. The global model performs parameters
aggregation and distributes the updated model to IoT devices.

(3) Developing a comprehensive binary and multiclass classification
intrusion detection model after multiple rounds of communica-
tion with available IoT devices in the network.

(4) Performing extensive evaluation of the accuracy, performance
and convergence of the distributed intrusion detection model
with three standard datasets; NSL-KDD and KDD-CUPP99
(KDD99), UNSW-NB15.

The paper is structured as follows: In Section 2, we provide back-
ground on GAN and existing studies on IDS. Section 3 presents the
main scenario and the framework of the model proposed, while its
implementation details are provided in Section 4. Then, a series of
evaluation results are shown and discussed in Section 5. Finally, we
conclude our work with future directions in Section 6.

2. Background and related work

Before we introduce the proposed framework, we discuss the back-
ground and related work available in the literature.

2.1. Generative adversarial network

GAN networks [14] are computationally heavy, as the architecture
consists of two deep neural networks called the Generator (G) and the
Discriminator (D). In traditional GAN network, G and D are tightly
coupled to reach a target learning rate. The Generator trains itself to
produce artificial data, while the Discriminator trains to differentiate
the original and generated data. The two networks run in parallel to
improve their performance gradually. After n iterations, the Generator
learns to output data close to the original data and the Discriminator
learns to identify the source of the data. This is like a min–max player
game framework which can be represented by the function below.

min
𝐺

max
𝐷

= [𝐸𝑥∼𝑃𝑑𝑎𝑡𝑎 [𝑙𝑜𝑔𝐷𝑖(𝑥)] + 𝐸𝑧∼𝑃𝑧 [𝑙𝑜𝑔(1 −𝐷𝑖(𝐺𝑖(𝑧)))]] (1)

𝐺𝑖(𝑧) is the synthetic data that Generator produces and the Dis-
criminator output is 𝐷𝑖[0, 1], which shows the probability that the
data is real or duplicate. The objective of the Generator is to mini-
mize the probability of the Discriminator in identifying the source of
data, i.e., (1 − 𝐷𝑖(𝐺𝑖(𝑧))). While the Discriminator tries to maximize
the probability of source identification, i.e., (1 − 𝐷𝑖(𝐺𝑖(𝑧))) and 𝐷𝑖(𝑥).
These networks are powerful in data augmentation, data simulation,
anomaly detection, image generation, text-to-image translation [15].
The working of GAN is shown in the Fig. 1.

Mostly, the GAN has always been used in its typical network com-
posed of two neural networks. The input of the Generator is a noise
signal, which is a random vector of size k that follows a normal
istribution and outputs data similar to the training data. The input to
300
Fig. 1. GAN network.

he Discriminator is fed from either the Generator or training sample
o differentiate it. Some of the recent research on this [16,17] have
odified the GAN architecture into a distributed framework to improve

ts convergence rate.

.2. Parameter server and federated learning

Some advancements like parameter server approach considered
raining the non-GAN neural networks on a shared dataset [18]. The
arameter server framework, introduced by Google [19] utilizes one
r more central servers managing multiple workers and their updated
tates for parallel processing. The worker networks compute on their
ocal share of data and communicate their weights to a central server.
he particularity of DL systems in iterative learning (followed by back
ropagation) on huge amounts of data mandates parallel processing or
istributed training.

A typical GAN architecture consists of two tightly coupled DNNs,
Generator and a Discriminator, nevertheless it can be structured in
distributed fashion adopting a similar method applicable to regular
NNs. FL [20,21] trains DL models on a set of active clients. FL is

imilar to parameter server framework with a little distinction that
lients undergo many local iterations (local training) between each
lobal update (interaction with the central node). Also, some of the
orkers may become inactive after some rounds. At the beginning of
ach round, the active clients synchronize the local model updates with
he central server. Parameter server framework involves shared data
torage. At the beginning of each epoch, the worker machines fetch
ata from the storage for training. While in FL, the data resides on each
orker and the central server does not keep track of any individual
orker data and aggregates only the updates sent from the workers to
nsure privacy. Because of number of epochs and updates in FL, at each
ound only one subset of the devices are selected.

In the case of smart home e-health systems, IoT devices are first
o produce data. Hence, FL suits best as the on-device data is more
ertinent and sensitive.

.3. Existing IDS for IoT systems

In this section, we review some of the recent studies focusing on in-
rusion detection based on FL, DL and GAN. Research indicates that IDS
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gained enormous attention and usage in every domain of IoT environ-
ments, right from smart homes, healthcare systems to Cyber–Physical
Systems (CPS). Numerous IDS systems were developed based on Deep
Neural Networks (DNN). For example, Yang et al. [22] modeled a zone
partitioning IDS to identify known and unknown malicious activities
in CPS through various zones that have been compromised. Likewise,
Yang et al. in 2020 [3] designed an IDS based on Convolutional Neural
Network (CNN) for SCADA networks. Among DL models, CNN is highly
used to build a strong IDS as the convolutional architecture analyzes
the features closely to differentiate minor changes [23]. One of the
challenges in improving accuracy of DL based IDS models is selection
of optimal features, that can be obtained by appropriate preprocessing
techniques. In an attempt by Yazan Otoum et al. [24] proposed an IDS
using hybrid pre-processing techniques to select optimal features for
training an efficient model. The model achieved higher accuracy and is
able to identify anomalous traffic patterns.

Most of these models are trained at a centralized entity which is not
only computationally (time and processing) expensive but also threat-
ens the privacy of the data [25]. Though central models trained using
ML or DL techniques gives higher accuracy, it overburdens the classifier
with huge traffic from all over the IoT devices in the network. Besides,
there is a request–response delay in between the model and the IoT
devices. Therefore, there was a shift towards distributed, decentralized
and similar approaches for IDS. Gajewski et al. proposed a distributed
IDS system for smart homes [26]. The data of all IoT devices is collected
on a Home gateway (HG) of the Internet Service Provider (ISP) and the
IDS is built in 2 levels in a distributed fashion. Level 1 is the IDS at the
HG which analyzes the traffic of all IoT devices and gives alerts. While
level 2 is the Network-IDS provided by the ISP which re-analyzes any
malicious alerts by the IDS at HGs.

Nevertheless, decentralized models proposed in literature, transfers
the original data to other sources, which is vulnerable to be intercepted
or leaked. Recently, FL was adopted for IDS to address centralization
and isolated data issues [27,28]. FL is a distributed ML approach involv-
ing Edge computing. FL is similar to distributed learning and trains the
model locally so it does not share the data with other devices ensuring
data privacy. Nguyen et al. [29] proposed a self-learning on-device
IDS using FL for IoT devices. They modeled the IDS as an anomaly
detection module that alerts any communication deviations from the
regular pattern in the IoT devices. Likewise, Yulin et al. [30] designed
IOTDefender, a IDS framework for 5G IoT devices using FL. The model
is built in collaboration with all available IoT devices by transfer of
parameters without privacy leakage. The model achieved 91% average
accuracy with lesser false-positive rate than other unified DL models.
Another IDS model is built by [31] using Gated Recurrent Units (GRUs),
which also employed regular federated scenario by sharing computed
weights with the central server.

The FL based IDS proposed in the literature outperforms the classic
centralized and distributed models, but those models are vulnerable
to various attacks [32,33]. Federated approach leaves some backdoors
for attackers to manipulate the training process or to compromise the
model built [34]. In the race of obtaining better models, FL fails to
inference and similar attacks [35,36]. Attempts have been made to
defend federated models against poisoning attacks using adversarial
networks [12,37,38]. If the training data is mixed up with some other
synthetic data, that computes different parameters and it becomes dif-
ficult to launch membership inversion and inference attack to gain the
actual data set or a sample from the training set. In addition, the order
of transfer of parameters and aggregation techniques changes the model
accuracy. Besides, models trained using FL give poor performance and
higher false alarm rates, if there is limited training data. Considering
these arguments, we investigate IDS models build using GANs.

Seo et al. [39] proposed a GAN-based driver safety system to
reduce the false alarm rates in Vehicular Networks (VN) by augmenting
the training data. In a fully decentralized way, Ferdowsi et al. [40]

designed an adversarial network to identify anomalies in IoT devices. v

301
Fig. 2. Smart home IDS scenario.

his model was aimed to conceal the user’s local data (IoT private data)
y using a single Generator in the network and a Discriminator network
n each IoT device. However, the central Generator collects the data
istributions of all IoT devices in the network. The central Generator for
ata analysis is a major bottleneck for scalability and request response.
here are many GAN based IDS models and federated IDS models
ut none of them is designed using GAN in a federated scenario for
ntrusion detection. We engage GAN in our model to synthesize training
ata to improve the model’s accuracy by augmenting synthetic data.
s the data augmentation ensures less false-positive rates and better

earning for minor class samples [41]. FL distributes the workload by
nabling multi-party on-device learning. This ensures the privacy of
ata while allowing the data available in each device to be used in
he training process. Besides, synthetic data mixed with original data
ncreases the robustness of the federated model, as the synthetic data
s generated from a noise vector.

. Proposed framework

In order to show the application of the proposed framework, we
onsider a smart IoT system scenario, such as a smart home consisting
f various IoT and e-healthcare devices, as shown in Fig. 2. Parts of
he data from the IoT devices are sent to the Edge and o the external
etwork, cloud servers, for further processing and analysis. Any health
ata could be sent via the cloud to the medical practitioner or other
articipants.

The components of the system that we focus are as follows:

(1) IoT devices or Clients: The source of data generation which needs
to be protected against privacy and security threats.

(2) Edge Node: The Edge node is a mediator between the cloud and
the IoT devices. It serves as a central entity for FL and needs
protection to secure the model and also data residing on the Edge
node.

The system is composed of a set of 𝑁 IoT devices i.e., clients or
orker machines, each consists of a local dataset 𝐵𝑛 of size m and the
umber of features d that are transmitted through it. All the devices in
hat particular network follow a probability distribution 𝑃𝑑𝑎𝑡𝑎(𝑥), where
is Non-IID (Independent and Identically Distributed) i.e., time-series

ata, health records, temperature monitoring, or financial data. A set
f data is said to be IID if the probability distribution of all random

ariables is same. In this scenario, the probability distribution of the
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Table 1
Notations.

Notation Description

𝐷𝑛 Local Discriminator
𝐺𝑛 Local Generator
𝐷𝑐 Central Discriminator
𝐺𝑐 Central Generator
N = 1, 2, 3..., 𝑛 All devices/Client in the network
𝑆𝑡 = 1,2,3....,m Available client/active set
𝑤𝑡 Generator parameter at epoch t
𝜃𝑡 Discriminator parameter at epoch t
K Synchronization interval
i..... I Local training iterations
t = 0,1,2, . . . . E Global training epochs
𝐵𝑛 Local dataset on a device
𝓁𝑛
𝑔 Loss of Generator of client n

𝓁𝑛
𝑑 Loss of Discriminator of client n

𝐸𝑛
𝑔 Error feedback of client n on Generator

𝐸𝑛
𝑑 Error feedback of client n on Discriminator

𝑏𝑛 batch size local
𝑑𝑛 Size of dataset (feature set size) on a device
𝑚𝑛 Number of samples in a dataset on a device
𝛼𝑑 Learning rate of Discriminator
𝛼𝑔 Learning rate of Generator
𝜆 Penalty coefficient

data on each IoT device may be different [42]. The entire dataset of
all active agents is denoted as 𝐵 = ∪𝑁

𝑛=1𝐵
𝑛, where 𝐵𝑛 is the local

ataset of each IoT device n. We aim to build an IDS to protect the
oT devices and Edge device from internal i.e., within the network and
xternal attacks. Apart from attacks that target IoT devices, there are
ome attacks targeted towards the Edge node. If we build a model by
ollecting all the data at one place, we endanger the privacy of the
ritical data on those devices. Besides, data centralization increases the
ommunication overhead and the data can also be easily manipulated
t one central entity. Thus, the local datasets in each worker should
emain in place and should not be sent for training on other devices.

.1. Problem formulation

We formulate the intrusion detection problem for multivariate time
eries as follows. In the first phase, the GAN model is trained based
n the time-series dataset of each IoT device, X-input, and generates

‘similar’’ samples 𝑋𝐺 that ‘‘look like the dataset’’. We model the
enerator function as 𝐺𝑤: 𝑅𝑙 → X, R and l are fixed. Likewise, the

unction representing the Discriminator is 𝐷𝜃 : 𝑋 → [0,1] where 𝐷𝜃(𝑥)
efines the probability such that 𝑥 is a normal sample, while 𝜃 is the
arameter of the Discriminator. According to the parallel theory [43],
he model passing through various clients by exchanging the model
arameters does not expose the privacy of other clients. The local
enerators analyze the local traffic and generates similar traffic pattern,
ut only the gradients of the local Generators are transferred to the
entral Generator. So, the output of the local Generators on each client
uarantees differential privacy as per the explanation provided in [44].
n every global communication round the parameters need to be ex-
hanged among the clients, which gives the communication complexity
or one round as (|𝑤| + |𝜃|). The number of parameters passed also
epends upon the number of Generators and Discriminators active in a
ommunication round. So, the total communication complexity for all
ounds is N.(|𝑤|+|𝜃|). One major advantage of the proposed framework
s the Edge device which is placed nearby to the IoT devices that
nsures better communication efficiency. The notations used in this
aper are shown in the Table 1.

.2. Proposed architecture

We first introduce distributed GAN setup for Intrusion detection
nd adaption of FL. The complete architecture of our model is shown
302
Fig. 3. FEDGAN-IDS model training architecture.

in Fig. 3. Our framework consists of a central GAN on Edge and a
local GAN placed on each of the IoT device. The two central networks
(Generator and Discriminators) of the central GAN are responsible to
aggregate all the gradients received from the independent Generator
and Discriminator networks of the local GAN on each IoT device. The
communication between these networks can be visualized in Fig. 3.

Our approach is inspired by MDGAN (Multi-Discriminator Gener-
ative Adversarial Networks) [45] and FL-GAN [44] models, which
are proposed for synthetic image generation and privacy-preserving,
respectively. MDGAN consists of single Generator at the central level
and multiple Discriminators at the worker levels. The data from the
single Generator is shared by splitting over the workers. During training
the Discriminators are swapped in between workers in a peer-to-peer
fashion while in our model they stay fixed and are averaged by the
server upon reception from the workers. Besides, we have independent
Generators on each client which ensures privacy of the data as per the
proof provided by FL-GAN architecture. Though the single Generator at
the central level is suitable for image generation, the analysis of input
data at one place threatens privacy and slows down the classification
process.

FL-GAN has generators and discriminators at the workers as well as
the server and uses federated learning to distribute data with updates
that are averaged by the server. By design FL-GAN has a Generator and
a Discriminator tightly coupled which adapts to a known computation
method by parameter server approach on clients and server side.

Both MD-GAN and FL-GAN architectures have been proposed for
image processing so the machine learning models used are different
from the one we have developed for IDS. In those works, the entire GAN
network was modeled to perform an image dataset augmentation task.
Whereas in our work we modeled the GAN network to perform two
different tasks of (1) sample generation at the IoT nodes similar to them
and (2) also perform an innovative anomalous traffic classification task.
Though the similar architecture is adopted, it is considered in the
context of distribution of IDS over various independent IoT devices. No
model was designed to derive benefits from combined architecture of
FL and GAN for IDS models. The Generator network in each IoT device
is used for generating similar network traffic samples as the traditional
way of GAN modeling. However, the Discriminator network identifies
anomalous samples from the overall samples that are provided from the
Generator network as well as the IoT input traffic. The discriminator
is used as the classifier. We have designed both the binary and the
multiclass classification model.

3.3. Distributed IDS using GAN

We build a distributed IDS model on IoT devices using GAN. Each
IoT device has two networks, namely, Generator and Discriminator. The
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Generator is a deep neural network that analyzes the local traffic of the
IoT device and generates a similar traffic pattern. The synthetic data
from local Generator and original traffic of the IoT device are combined
and provided to the Discriminator network for training a classification
model. The Discriminator is a CNN that identifies malicious traffic
patterns in the samples fed to it. Among DL models, CNNs have gained
enormous success in the identification of malicious traffic in time-
series data [23,46]. Each IoT device builds its own local model on
the Discriminator network. The DNN networks give higher accuracy
with a good amount of training data. With that motivation, we have
incorporated a Generator network that generates similar traffic on each
local worker and that augments the available data to train the Discrimi-
nator used in the IDS model. A central Generator 𝐺𝑐 and Discriminator
𝐷𝑐 is hosted on an Edge server in the smarthome network. Likewise,
local Generators 𝐺𝑛 and Discriminators 𝐷𝑛 are hosted by workers. The
central Generator and Discriminator hold the initial parameters 𝑤 and

respectively 𝐺𝑐
𝑤, 𝐷𝑐

𝜃 . Each worker starts training its local Generator
𝑛 with the initial parameter 𝑤0 (initially received from the central
enerator) on its local dataset 𝐵𝑛. Similarly, the local Discriminators
𝑛 are trained with the initial parameter 𝜃 on its local dataset and data
enerated by the local Generator 𝐵𝑛 +𝑋𝐺𝑛 .

.4. Federated learning framework

In conventional FL, a subset of existing devices participate in FL.
ach device loads the central model and computes it based on its local
ata. Then each device sends its updated model to the central model.
he server aggregates these local models to construct an improved
updated) model. Likewise, the proposed federated structure aims to
ollectively build a distributed IDS. There are two central models:
Generator and a Discriminator. Initially, the central models select

arameters: weights (𝑤, 𝜃), learning rate (𝛼𝑔 , 𝛼𝑑 ), batch size 𝑏, penalty
coefficient (𝜆) and decay rate. Then, a ping message is sent to select
the active devices in the network to send the parameters. Finally,
the parameter sets of the Generator and the Discriminator are sent
initiating a training epoch. The initial architecture and parameters of
the local Generators and Discriminators may be changed after their first
global epoch.

There are numerous challenges for the efficient training of our
model. The coupling between a Generator and a Discriminator requires
organized strategies between the clients (devices) and dictates that the
computational load on the devices be rational. Initially, each Generator
creates synthetic data by analyzing the probability distribution of the
local traffic on the device. The Discriminator takes the input from the
local device and the local Generator to train its network for intrusion
detection. After completion of local iterations on two deep neural
networks, the gradients are transferred to the central networks. The
local model parameters aggregation is performed by the central model
and then the updated central model is shared with and adopted by
the end devices. The central Generator and Discriminator collect the
gradients from all local 𝐺𝑛 and 𝐷𝑛 and aggregate them. The updated
gradients are communicated back to the local networks on the devices.
The local Generators receive the updated gradients to build a new
model in order to improve the quality of samples generated. Similarly,
the local Discriminators improve its detection accuracy by the updated
gradients from the central Discriminator.

4. FEDGAN-IDS algorithm

It is a federated generative adversarial framework for training an
IDS across distributed IoT devices to preserve the privacy of the Non-IID
data. In our algorithm, a global communication round trains the local
Generators and Discriminators on each IoT device, that are periodically
synced via a central Generator and Discriminator on the Edge that
aggregates and transmits the new parameters to all local Generators
and Discriminators.
A global communication round is composed of 4 phases:
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• Phase 1 – Local Generator Training
• Phase 2 – Local Discriminator Training
• Phase 3 – Aggregate parameters at central model
• Phase 4 - Model Parameters Dissemination

The detailed explanation of each of these phases is provided in the
below subsections.

4.1. Phase 1 : Local generator training

The training begins from the local Generators. Initially the local
Generator receives parameters (𝑤0 and 𝛼𝑔) from the central Generator
to begin training. Each local Generator captures the real data distri-
bution from the IoT device and generates similar traffic patterns. The
number of local Generators is equal to the number of available users
(IoT devices) in the network. The Generator is improved gradually with
its loss at every local iteration. The number of samples is denoted by
m and whereas the number of features is denoted by d. The training
goes on for I number of local iterations with respect to the sample
generation loss 𝓁𝑔 . The outcome of this network is a similar set of traffic
pattern 𝑋𝐺. The number of samples generated balance the rare classes
such that the normal and anomaly patterns are in similar proportions.
The working of the local Generator is shown in Algorithm 1. After
completion of local iterations, the gradients of Generator network and
error feedback 𝐸𝑛

𝑔 is sent to the central Generator. Error feedback of
Generator reports its amount of error in data generation on each device.
The generated synthetic traffic is mixed up with the real data of IoT and
fed to the local Discriminator for training.

Algorithm 1 - Local Generator
Input:
1: Receive 𝑤0 from the central Generator.
2: Receive 𝐵𝑛 from local device.
3: Set local iterations (I)
utput: Synthetic data from each Generator

4: procedure LocalGenerator(𝐵𝑛, 𝑤𝑡)
5: for i ⟵ 1 to I do
6: 𝑍𝑖 ⟵GAUSSIAN NOISE (b)
7: 𝑋𝑛

𝐺 ⟵ 𝐺𝑛(𝑤𝑡, 𝑧) | z 𝜖 𝑧𝑖
8: Calculate 𝑤𝑛

𝑖

𝑤𝑛
𝑖 ⟸ 𝐴𝑑𝑎𝑚(( 1

𝑚

𝑚
∑

𝑖=1
𝛥𝑤𝐿

𝑖 + 𝑛), 𝑤𝑖, 𝛼𝑔) (2)

9: Calculate 𝐸𝑛
𝑔

𝐸𝑛
𝑔 ⟸

𝜕𝐵(𝑋𝑛
𝐺)

𝜕𝑥𝑖
|𝑥𝑖𝜖(𝑥𝑛𝐺) (3)

10: Calculate 𝐿𝑛
𝑔

11: end procedure
12: Send : 𝑤𝑖, 𝐸𝑛

𝑔 to the central Generator

4.2. Phase 2: Local discriminator training

Step 2 is the process of training Discriminator for I number of local
iterations as shown in Algorithm 2. The number of local Discriminators
is also equal to the number of users (IoT devices) in the network.
Local Discriminator trains on original traffic and generated traffic of the
local Generator to enhance the training process with enough number of
samples. The data is pre-processed before training the intrusion detec-
tion model. Local Discriminator incorporates weights, biases, penalty
term and L2 regularization to overcome the problem of overfitting. The
outcome of the network is the classification of the sample as attack or
normal for a Discriminator network designed for binary classification.
Whereas, for multiclass classification network it gives outcome as per
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the class of attack category. We also record the training accuracy and
testing accuracy along with the loss of the Discriminator 𝓁𝑑 . After the
training process (local iterations) of each client, it computes an error
feedback of the Discriminator network 𝐸𝐷. The computation of this
function is shown in Algorithm 2. Discriminator error feedback reports
its false-positive and true-negative rate in anomaly detection process.

Algorithm 2 - Local Discriminator
Input: Receive 𝜃0 from the central Discriminator. Receive 𝑋𝑛

𝐺 from
local Generator of the device. 𝐵𝑛 local dataset from the device. Set
local iterations (I)

Output: Normal or Anomaly
1: procedure LocalDiscriminator(𝐵𝑛, 𝑋𝑛

𝐵 , 𝜃𝑡)
2: for i ⟵ 1 to I do
3: 𝐷𝑛 = 𝑋𝑛

𝐺+𝐵𝑛

4: Disc Learning (𝐽𝑑𝑖𝑠𝑐 , 𝐷𝑛)
5: Update Discriminator by ascending the stochastic gradient

𝜃𝑛𝑖 ⟸ 𝐴𝑑𝑎𝑚(𝛥𝜃
1
𝑚

𝑚
∑

𝑖=1
−𝐷(𝐺𝜃(𝑧)), 𝜃, 𝛼𝑑 ) (4)

6: Calculate 𝐸𝑛
𝑑

𝐸𝑛
𝑑 ⟸

∑

𝑇 .𝑁 + 𝐹 .𝑃 (5)

7: Calculate 𝐿𝑛
𝑑

8: end procedure
9: Send : 𝜃𝑛𝑖 , 𝐸𝑛

𝑑 to the central Discriminator

4.3. Phase 3: Central model update

The Algorithm 3 demonstrates the training of this phase. The central
Generator and Discriminator receive the parameters (𝑤𝑡, 𝜃𝑡) and the
error feedbacks 𝐸𝐺 and 𝐸𝐷 from all client models. The parameters
eceived undergo federated averaging and gradients calculation to get
he updated model parameters to be sent to all the active clients.
he two central networks broadcasts the 𝑤𝑡+1, 𝜃𝑡+1 to all clients. We

perform E global epochs until the satisfactory accuracy is achieved
on all Discriminators. The central models tries to minimize the error
feedback of Generators and Discriminators at each global epoch.

Algorithm 3 - Central GAN
Input: Initialize 𝜃0 for 𝐷𝑛. Initialize 𝑤0 for 𝐺𝑛. Set Global epochs (E).

Set the learning rate 𝜂 at each epoch 𝛼(𝜂) and b(𝜂) synchronization
interval 𝐾 𝑡.

Output: Updated parameters
1: for t = 1,2,...,E do
2: Set of available clients: m
3: for m 𝜖 𝑠𝑡 do
4: → Local Generator (𝑤𝑡)
5: → Local Generator (𝜃𝑡)
6: /** Each Client trains locally in parallel **/
7: if (t mod K) = 0 then
8: clients transfer gradients to central server

𝑤𝑡+1
𝛥
=

𝑚
∑

𝑛=1
𝑃 𝑛𝑊 𝑛

𝑡 (6)

𝜃𝑡+1
𝛥
=

𝑚
∑

𝑛=1
𝑃 𝑛𝜃𝑛𝑡 (7)

9: end if
10: Send the updated parameters to all clients; 𝑤𝑡 + 1 and 𝜃𝑡 + 1
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4.4. Phase 4: Model parameters dissemination

The updated model parameters are sent back to all available clients
to build their new models. In the testing phase of this framework, only
the local Discriminators are present for classifying the traffic on IoT
devices and also the central Discriminator on the central Edge. After
empirically determined E epochs (global epochs) a final IDS model is
obtained.

5. Performance evaluation

In this section, we evaluate the performance of the FEDGAN-IDS
model in terms of accuracy, loss, recall, precision, F1-score, AUC score
and convergence rate. We also illustrate the results recorded for binary
and multiclass classification of the proposed IDS model. Besides, we
compare the performance of a FL based IDS (FED-IDS) built using
same hyper-parameters without the GAN architecture. The number of
epochs for communication rounds (global) is kept constant for accurate
comparison. We perform all experiments using three standard datasets:
NSL-KDD, KDD99, UNSW-NB15. We perform all the necessary pre-
processing steps for training the Discriminator models. The experiments
are conducted on a Intel(R) Core (TM) i7 - 10750H CPU @3 GHz
predator machine with 4 GB NVIDIA GeForce RTX2060. For each global
communication round, all the local models parameters are transmitted
to the central Edge server for aggregation and update.

5.1. Datasets description

(1) KDD-CUP99: It is one of the popular and widely used dataset for
network IDS and it was made public in 1999. This dataset is im-
proved from DARPA 98 dataset [47]. However, it has redundant
records. Even though the dataset has some shortcomings, we
decided to use it in testing to ensure the non-biased nature of the
proposed model and the efficiency of the model in eliminating
the duplicate features. This dataset has 24 attack classes and 41
features. However, the attack classes are highly imbalanced. In
a typical binary classification model this dataset achieves higher
accuracy since only 2 class categories are divided (Normal and
Anomaly). When multiclass classification model is tested, the
accuracy of the model is very low due to largely imbalanced
data. This is another significant reason for choosing KDD99 to
show the performance of our model with an imbalanced dataset.
The 10 labels of KDD99 dataset are categorized into 4 standard
attack classes, Denial of Service (DoS), Remote to local (R2L),
User to root (U2R) and Probe.

(2) NSL-KDD: It is an improved version of KDD99 in which the
duplicate features were eliminated. This dataset was made public
in 2009 and from then it was used for numerous network IDS
evaluation and testing [48]. NSL-KDD is also used in evalua-
tion of IDS for IoT devices using FL [49]. Similar to KDD99,
this dataset has 41 features and various attacks which can be
categorized into 4 standard attacks: U2R, R2L, probe and DoS.
The normal samples constitute 53% of this dataset and the
number of different attack samples are highly uneven, making
it imbalanced and unsuitable to test for multiclass models.

(3) UNSW-NB15: UNSW-NB15 is one of the comprehensive publicly
available datasets which was published in 2015 by Mustafa
et al. [50]. From the all collected detailed traffic 10% was
included in the dataset. A large amount of IDS models developed
have utilized this dataset for training and testing purposes. For
instance, Ahmad et al. [51] have used UNSW-NB15 dataset for
a supervised ML IDS for IoT devices. The dataset has 9 attack
classes, namely, Fuzzers, Backdoors, DoS, Generic, Reconnais-
sance, Analysis, Exploits, Shellcode, and Worms. The attack
classes of UNSW-NB15 are not changed and we have tested it
with 10 labels in multiclass classification scenario.
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5.2. Data pre-processing

The data is pre-processed before the classification task. In the
pre-processing step we perform the following tasks.

(1) Encoding: The categorical values in each of the dataset are trans-
formed into numeric features. In case of UNSW-NB15, there are
41 numeric values and 3 strings. The string values are encoded
into numeric to train the model. Likewise, the categorical values
in NSL-KDD and KDD99 are also transformed into numeric.

(2) Normalization: We have performed feature scaling to ensure that
all features are in uniform magnitude and range by using the
euclidean distance between two data points.

(3) Feature extraction: Usually known as feature reduction, which
can be done by linear or non-linear transformation. CNN is
capable to identify optimal features from the existing data. The
non-linear architecture of CNN helps to reduce the dimensions
from a high-dimensional space. In addition, the convolutional
layers eliminates the redundant features to make the model more
simple and effective. We have used 41 features of KDD99 and
UNSW-NB15 dataset in all models for experimentation. Whereas,
in case of UNSW-NB15 dataset 45 features are used.

5.3. GAN network specifications

The specifications of the GAN-IDS network are as follows:

(1) Initially the training samples are transformed from 1D feature
vector into a 2D image form, since GAN networks achieves
highest performance with the 2D image data [52]. Each 1D
network flow data is converted into one 2D gray-scale image,
i.e., aXb two-dimensional feature matrix.

(2) The Generator deep neural network is trained similar the Gen-
erator of supervised Auxiliary Classifier GAN (ACGAN) by fol-
lowing same data augmentation procedure [53]. It learns the
distribution of the image training set to generate new artificial
attack samples in order to balance the dataset. The Generator
does not memorize the training data as the nearest neighbors
from the training data are not matched with the synthetic data
generated. The supervised Generator contributes in generating
high quality data. By using the labels, we directly apply cross
entropy loss on the Discriminator, which adds extra label in
identification of normal and anomalous pattern.

(3) The Discriminator is modeled as a 2D CNN which is trained on
the augmented training set to identify normal and anomalous
patterns. The input nodes of the first layer of Discriminator
network is based up on the output of the Generator network.
The Discriminator network is consist of a first 2D convolution
layer, 2D pooling and fully connected layer with a 3 × 3 matrix
of the convolutional kernel. We have tested different param-
eters for tuning the CNN. Finally, we chose these parameters
for our network. We incorporated 32 filters for convolutional
operation with the size of filter 5. Batch size selected is 32 with
‘‘LEAKY RELU’’ activation function. The 2D pooling layer used
max-pooling technique with two strides. To avoid overfitting
and over learning of the Discriminator network, we apply L2-
regularization and Dropout 0.5 before the output layer. The loss
is calculated by the generated output and the actual output based
on cross-entropy function. To increase the stabilization ability of
the Discriminator network, we use spectral normalization on the
weights of the layer.

5.4. FED-IDS binary classification model

In the first case, we model the IDS using FL without GAN. In
order to compare FEDGAN-IDS, we model this adapted version of FED-

IDS. In this model, we place a central Discriminator network and
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Fig. 4. FED-IDS Binary classification accuracy. The accuracy of a Discriminator model
after 20 global updates using three datasets.

Fig. 5. FED-IDS Binary classification loss. The loss of a Discriminator model after 20
global updates using three datasets.

each independent local Discriminators on the IoT devices. The local
discriminators are trained on the local data of the device, without any
augmentation. The three datasets NSL-KDD, KDD-CUP99 and UNSW-
NB15 are divided into 3 sets: Train, Validation and Test with 70%,
15% and 15%, respectively. From the training sets the normal attack
samples are equally distributed on all available IoT devices. Whereas
the attack samples are randomly distributed on all IoT devices. How-
ever, there is no augmentation of the data in this case, since there is no
Generator network. After each epoch of training, the gradients of local
Discriminators are transferred to the central Discriminator. The central
network aggregates and sends back the updated gradients. After each
global round, more data samples are provided which ensures better
training and improved accuracy. Likewise the process continues for 20
global epochs and after which we record the results on a Discriminator
which performs its local iterations on its local dataset. The accuracy and
loss of this model is shown in Figs. 4 and 5, respectively. The accuracy
was recorded on an IoT device for three datasets: KDD99, NSL-KDD and
UNSW-NB15. We observe that the accuracy is gradually increasing with
the number of epochs.

5.5. FEDGAN-IDS Binary classification model

In the second case, we model the IDS using FL and GAN. Each
IoT device has two DNNs, Generator and Discriminator. The training
samples division is similar to the first case for three datasets. From the
training sets the normal attack samples are equally distributed on all
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Fig. 6. FEDGAN-IDS Binary classification accuracy. The accuracy of a Discriminator
model after 20 global updates using three datasets.

Fig. 7. FEDGAN-IDS Binary classification loss. The loss of a Discriminator model after
20 global updates using three datasets.

available IoT devices. Whereas the attack samples are randomly dis-
tributed. In Binary classification (normal and anomaly), the Generator
network augments the data such that whatever percentage of normal
samples an IoT device gets, the same proportion of attack samples
are generated to have a balanced local data for training. For instance
IoT device 1 gets 15% of normal samples from the whole dataset
then the attack samples are augmented such that it constitutes 15%.
The Discriminator networks trains on the augmented data (original
and generated data). Once the Generator and Discriminator models
are built, the parameters of each model are transferred to the central
nodes for aggregation from all IoT devices. After 20 global epochs, we
have recorded the accuracy and loss of the Discriminator model. The
accuracy of the model is shown in Fig. 6. The loss of this model is
shown in Fig. 7. As the data is Non-IID, we observe some deviations
in the results. The local iterations of each local model is considered
200, whereas the global epochs are chosen as per the performance of
the models. After every global communication round of the FL phase,
the updated gradients improve the network.

The accuracy of both models (FED-IDS and FEDGAN-IDS) increases
gradually with the local iterations on the IoT device. However, the
accuracy of the model without GAN network lies between 75% to
85% for three of the datasets. While adding the GAN network helps
to improve the accuracy at an earlier stage in the federated scenario.
In FL with a GAN network, the model performance is enhanced in
terms of accuracy and loss. The accuracy recorded is greater than 97%
for all the datasets tested. Moreover, in FED-IDS case, the loss of the

model moderately decreases and it reaches it lowest value 0.1. On the
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Fig. 8. Model convergence of Fed-IDS and FedGAN-IDS using NSL-KDD dataset.

contrary, the loss is almost negligible (0.02–0.01) in FEDGAN-IDS case
for the three datasets.

After which, we show the two models convergence in Fig. 8 for NSL-
KDD dataset. After every global epoch, both models improve in terms
of accuracy. At the epoch 10, FED-IDS model achieves the accuracy of
approximately 74% whereas FEDGAN-IDS model achieves more than
85%. The convergence state is reached 5–10 epochs faster in GAN case
than the model without GAN. FED-IDS reaches its maximum value 78%
after 25 epochs and no significant enhancement is seen after that. With
GAN network, the model reaches more than 95% of accuracy after
15 global epochs and the detection accuracy is 10%–12% higher in
FEDGAN-IDS case. We have similar results with the other two datasets,
which can be observed from Fig. 12. We deduce that adding GAN
network to FED-IDS is promising for better performance of IDS model
with FL. The augmented data by GAN ensures enough training samples
which improves the accuracy of the overall model.

We also show the performance evaluation of our FEDGAN-IDS
model in terms of training and testing accuracy of local Discriminators
on its local dataset (own data + synthetic data generated by local GAN).
The training accuracy of the three Discriminator models is recorded at
the global epoch 3 i.e., after 3 global updates using NSL-KDD dataset.
The Discriminator models are trained successfully and each of the local
models give nearly equal accuracy. We record the training and testing
accuracy of all local models during the local iterations (200) and also
during each global epoch. The test accuracy of 3 Discriminators on the
15% of the local dataset is shown in Fig. 9. The Test accuracy of 3 Dis-
criminators on different dataset (other than NSL-KDD samples) is shown
in Fig. 10. At the beginning of the 3rd global epoch, the test accuracy
on the local Discriminators is recorded from 0 to 200 local iterations.
The test accuracy starts with a very low value and gradually increases
to a satisfactory accuracy level with the local dataset. Whereas with dif-
ferent datasets there are many deviations in the results. The reason for
testing the Discriminator models performance with different datasets
is to confirm that our model is not over-fitting. We incorporated the
validation dataset to ensure the non-biased nature of the model.

Moreover, the accuracy of local Discriminator models is recorded
while testing with the NSL-KDD dataset for 9 global epochs. It is
illustrated in Fig. 11 for FEDGAN-IDS model. The detection accuracy
of three Discriminator models (𝐷𝑖𝑠𝑐𝑟𝑖𝑚𝑖𝑛𝑎𝑡𝑜𝑟(𝑖)) is recorded for differ-
ent global epochs (𝐺_𝑖𝑡𝑒𝑟(𝑖)). FEDGAN-IDS models are trained on the
augmented data of the IoT device and parameters are sent to the central
model. After parameter aggregation, the updates are communicated
back to all DNN models which are re-trained on the available local
data of the IoT devices. After each global epoch, the test accuracy
of the individual model is recorded to understand the performance
of the model. We have also recorded the individual Discriminators
performance using KDD99 and UNSW-NB15 in Fig. 12. With these
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Fig. 9. FEDGAN-IDS test accuracy on local discriminators at global epoch 3 with local
test data.

Fig. 10. FEDGAN-IDS test accuracy on local discriminators at global epoch 3 with
different dataset.

Fig. 11. FEDGAN-IDS Binary classification test accuracy at each global epoch on
different discriminators using NSL-KDD dataset.

two datasets also, we have recorded for three Discriminator models,
𝐾𝐷𝐷 −𝐷(𝑖) and 𝑈𝑁𝑆𝑊 −𝐷(𝑖) for 9 global epochs, 𝐺_𝐼𝑡𝑒𝑟(𝑖).

From the results, we observe that test accuracy improves with
every update on all Discriminator models using three datasets. We are
concerned with the attack detection accuracy of the IDS model, hence
307
Fig. 12. FEDGAN-IDS Binary classification test accuracy at each global epoch on
different discriminators using KDD99 and UNSW-NB15 dataset.

Fig. 13. FEDGAN-IDS multiclass classification: Accuracy of different classes for first 9
global epochs using NSL-KDD dataset.

we have recorded the performance of the Discriminator models. The
results signifies continuous improvement of the Discriminator models
at each epoch with better accuracy than the FED-IDS model. The
summary of results for Binary Classification FEDGAN-IDS model using
three datasets are shown in the Table 2. The comparison of FED-IDS
(adapted) and FEDGAN-IDS (proposed) in terms of all metrics is also
shown.

5.6. FEDGAN-IDS multiclass classification

In the third case, we modeled the Discriminator as a multiclass
classifier network to identify different categories of attacks. We have
followed similar division of the training dataset. The normal samples
are divided equally on all available IoT devices. Whereas, the attack
samples are randomly distributed. In this case, the attack samples are
specifically categorized with their class labels such as (DoS, Probe, U2R
and R2L in the case of NSL-KDD and KDD-CUP99). Each IoT device may
get more than one type of attack samples. We balance the dataset con-
sidering the attack samples and also the normal samples. The number
of attack samples augmented by the Generator are proportional to the
percentage of number of normal data samples that an IoT gets, such that
the overall data is balanced on that IoT device. For example, IoT device
1 gets 15% samples of DOS and 15% of Probe compared to the normal
samples it has. Then the two attack samples are augmented such that
entire dataset of IoT device 1 is balanced. The similar division pattern
is followed for UNSW-NB15 dataset. The selection of hyper-parameters
played a principal role in training a multiclass FEDGAN-IDS model. The
decay rate is selected as 1.0𝑋10−4 and the penalty coefficient is chosen
.05. After the models are trained the parameters of Discriminator and
enerator from all IoT devices are transferred to the central Generator
nd Discriminator for aggregation.
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Table 2
Binary classification comparison of FED-IDS and FEDGAN-IDS with three datasets.

Metrics NSL-KDD KDD99 UNSW-NB15

FED-IDS FEDGAN-IDS FED-IDS FEDGAN-IDS FED-IDS FEDGAN-IDS

Accuracy 85.3 99.29 83.8 99.1 83.5 99.4
Precision 84.1 99.3 80.5 97.8 83.8 99.56
Recall 79.2 98.9 78.3 96.3 85.9 99.3
F1-Score 82.8 99 82.2 98.5 84 98.9
AUC-Score 78.4 99.01 79 98 84.6 98.78
Table 3
Multiclass classification of FEDGAN-IDS using NSL-KDD and KDD99.

Metrics U2R R2L PROBE DoS Normal

NSL-KDD KDD99 NSL-KDD KDD99 NSL-KDD KDD99 NSL-KDD KDD99 NSL-KDD KDD99

Accuracy 82 80.59 92.5 90 94.3 92 97 96.7 98.5 98
Precision 82.7 79.5 91.9 89.1 95 93.1 96.5 95.3 98.2 97
Recall 82.9 79.9 89.3 88.5 94.9 92.8 97.1 96 99 98
F1-Score 81.4 78.5 90.6 89.6 93 89 96.8 95.8 98 97.9
AUC-Score 82.3 77.4 90 87.8 90 87.6 96 96.9 97.5 97.5
Table 4
Multiclass classification of FEDGAN-IDS using UNSW-NB15.

Metrics Analysis Shell-code Worms Backdoor Generic Reconnaissance Exploits Fuzzers DoS Normal

Accuracy 94 92 93.8 93 92.8 93 95 97 98 98.7
Precision 95.3 93.5 92.9 94.1 94 96.1 95 96.4 98.8 98.7
Recall 96.3 94.6 93 95.2 95.9 98 96.8 96.8 99 97.8
F1-Score 95.4 93.5 94.6 96.6 96.7 97.5 97.5 97.3 98.7 98.5
AUC-Score 96 94.5 93.3 94.5 95.6 97 98 96.9 98.5 99.4
Table 5
Performance comparison of the proposed models with the existing models.

Model Architecture Dataset Accuracy Precision Recall

CGAN-IDS (2021) [54] CNN KDD99 93.29 – –
Bi-GAN IDS (2020) [55] DNN KDD99 89.5 83.6 99.4
FEDGAN-IDS (Proposed) ACGAN and CNN KDD99 99.1 97.8 96.3
Bi-GAN IDS (2022) [56] DNN and Encoders NSL-KDD 91.2 87.27 98.1
GAN-based IDS (2021) [57] MLP NSL-KDD 78 78 77
WGAN-IDS (2021) [58] ANN NSL-KDD 92 94 93
HFL-IDS (2021) [27] DNN NSL-KDD 78.8 76 77
FED-ACNN-IDS (2021) [59] CNN NSL-KDD 99 93 92.5
FEDGAN-IDS (Proposed) ACGAN and CNN NSL-KDD 99.29 99.3 98.9
CGAN-IDS (2021) [54] CNN UNSW-NB15 89.73 – –
WGAN-IDS (2021) [58] ANN UNSW-NB15 83 86 84
FLUIDS (2022) [60] AutoEncoders and ANN UNSW-NB15 87 – –
FL-IDS [61] ML UNSW-NB15 85 86.4 83
FL-IDS [62] DNN UNSW-NB15 84.3 86.1 83.1
Data privacy FL-IDS (2021) [63] CNN UNSW-NB15 82 – –
FEDGAN-IDS (Proposed) ACGAN and CNN UNSW-NB15 99.4 99.56 99.3
We record the performance of multiclass FEDGAN-IDS model for
ifferent attack classes. Fig. 13 shows the performance recorded at
ach global epoch of FEDGAN-IDS modeled as multiclass classifier
sing NSL-KDD dataset. From the figure, we observe that the per-
ormance of GAN-based Federated Multiclass classification IDS model
s satisfactory. The data augmentation on each attack class samples
mproves the accuracy at each global epoch. We observe that for every
lobal epoch, there is approximately 3%–5% increase in the accuracy
or each attack class. For instance, initially the accuracy U2R and
2L attack class is recorded as 53% and 61%, respectively. After 9
lobal epochs the accuracy of these two classes is increased by 15%
nd 19%, respectively. The detailed results after final global update
re shown in Table 3. From table, we notice that the performance
f FEDGAN-IDS multiclass classification model using NSL-KDD and
DD99 for various metrics lies between 82%–98.5% and 80%–98%, re-
pectively. Whereas, Table 4 shows the performance with UNSW-NB15
atasets which records between 91.5%–98.7%. Correspondingly, the
alues in the two tables infer that the FEDGAN-IDS gives comparable
erformance to the existing models. Since FL is used in modeling this
rchitecture is suitable to incrementally train the model with newer
ttack categories.
308
Finally, we have also compared the performance of our proposed
model with the existing IDS models using GAN and FL, respectively.
The comparison is provided in Table 5. Among the existing methods, we
have chose the IDS models tested using the same three datasets that we
have used. The IDS models based on GAN have achieved performance
ranging between 78 and 93. On the contrary, FL based IDS models have
shown higher accuracy when compared to GAN based standalone IDS
models, with the values ranging between 82–99. Overall, we have seen
that the performance of the proposed model is optimal in all the cases
with three datasets.

6. Conclusion

In this article, we propose an efficient IDS using GAN network with
a distributed FL model. We have discussed the issues and limitations of
current IDS for IoT devices. With a series of evaluation and comparison
of various existing and proposed models, we prove that the FEDGAN-
IDS architecture for IDS in the binary and multiclass classification
scenarios are promising for present-day IoT networking. The applica-
tion of GAN is used for the first time in the federated scenario for IDS.
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The model achieves 99% and 98% accuracy for binary and multiclass
classification, respectively.

In future, we plan to improve the following critical areas of the
proposed model:

(1) We aim to model this architecture including cloud and multiple
Edge nodes by allowing two level aggregation in the hierarchical
federated learning architecture.

(2) Secure sharing of local gradients and global updates to ensure
the integrity in order to protect the Generator and Discriminator
networks training against interception attacks.

CRediT authorship contribution statement

Aliya Tabassum: Literature review, System design, Methodology,
Solution investigation, Simulation setup, Performance evaluation, Writ-
ing – original draft. Aiman Erbad: System design, Methodology, Solu-
tion investigation, Writing – review & editing. Wadha Lebda: System
design, Methodology, Writing – review & editing. Amr Mohamed:
System design, Methodology, Writing – review & editing. Mohsen
Guizani: System design, Methodology, Writing – review & editing.

Declaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared to
nfluence the work reported in this paper.

cknowledgments

This publication was made possible by NPRP grant 7-1469-1-273
rom the Qatar National Research Fund (a member of Qatar Founda-
ion). The findings achieved herein are solely the responsibility of the
uthors.

eferences

[1] A. Tabassum, W. Lebda, Security framework for IoT devices against cyber-attacks,
2019, arXiv preprint arXiv:1912.01712.

[2] H. Moustafa, E.M. Schooler, G. Shen, S. Kamath, Remote monitoring and medical
devices control in ehealth, in: 2016 IEEE 12th International Conference on
Wireless and Mobile Computing, Networking and Communications (WiMob),
IEEE, 2016, pp. 1–8.

[3] B. Li, Y. Wu, J. Song, R. Lu, T. Li, L. Zhao, DeepFed: Federated deep learning
for intrusion detection in industrial cyber–physical systems, IEEE Trans. Ind. Inf.
17 (8) (2020) 5615–5624.

[4] A. Drewek-Ossowicka, M. Pietrołaj, J. Rumiński, A survey of neural networks
usage for intrusion detection systems, J. Ambient Intell. Humaniz. Comput. 12
(1) (2021) 497–514.

[5] S.-W. Lee, M. Mohammadi, S. Rashidi, A.M. Rahmani, M. Masdari, M. Hossein-
zadeh, et al., Towards secure intrusion detection systems using deep learning
techniques: Comprehensive analysis and review, J. Netw. Comput. Appl. 187
(2021) 103111.

[6] A. Tabassum, A. Erbad, M. Guizani, A survey on recent approaches in intrusion
detection system in IoTs, in: 2019 15th International Wireless Communications
& Mobile Computing Conference (IWCMC), IEEE, 2019, pp. 1190–1197.

[7] A. Aldweesh, A. Derhab, A.Z. Emam, Deep learning approaches for anomaly-
based intrusion detection systems: A survey, taxonomy, and open issues,
Knowl.-Based Syst. 189 (2020) 105124.

[8] C. Sun, A. Shrivastava, S. Singh, A. Gupta, Revisiting unreasonable effectiveness
of data in deep learning era, in: Proceedings of the IEEE International Conference
on Computer Vision, 2017, pp. 843–852.

[9] A. Tabasum, Z. Safi, W. AlKhater, A. Shikfa, Cybersecurity issues in implanted
medical devices, in: 2018 International Conference on Computer and Applications
(ICCA), IEEE, 2018, pp. 1–9.

[10] K. Bonawitz, H. Eichner, W. Grieskamp, D. Huba, A. Ingerman, V. Ivanov, C.
Kiddon, J. Konečnỳ, S. Mazzocchi, H.B. McMahan, et al., Towards federated
learning at scale: System design, 2019, arXiv preprint arXiv:1902.01046.

[11] A. Antoniou, A. Storkey, H. Edwards, Data augmentation generative adversarial
networks, 2017, arXiv preprint arXiv:1711.04340.

[12] C. Fan, P. Liu, Federated generative adversarial learning, in: Chinese Conference

on Pattern Recognition and Computer Vision (PRCV), Springer, 2020, pp. 3–15.

309
[13] M. Rasouli, T. Sun, R. Rajagopal, Fedgan: Federated generative adversarial
networks for distributed data, 2020, arXiv preprint arXiv:2006.07228.

[14] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A.
Courville, Y. Bengio, Generative adversarial nets, Adv. Neural Inf. Process. Syst.
27 (2014).

[15] L. Lan, L. You, Z. Zhang, Z. Fan, W. Zhao, N. Zeng, Y. Chen, X. Zhou, Generative
adversarial networks and its applications in biomedical informatics, Front. Public
Health 8 (2020) 164, http://dx.doi.org/10.3389/fpubh.2020.00164.

[16] I. Durugkar, I. Gemp, S. Mahadevan, Generative multi-adversarial networks,
2016, arXiv preprint arXiv:1611.01673.

[17] Q. Hoang, T.D. Nguyen, T. Le, D. Phung, Multi-generator generative adversarial
nets, 2017, arXiv preprint arXiv:1708.02556.

[18] M. Li, D.G. Andersen, J.W. Park, A.J. Smola, A. Ahmed, V. Josifovski, J.
Long, E.J. Shekita, B.-Y. Su, Scaling distributed machine learning with the
parameter server, in: 11th {USENIX} Symposium on Operating Systems Design
and Implementation ({OSDI} 14), 2014, pp. 583–598.

[19] J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin, M. Mao, M. Ranzato, A.
Senior, P. Tucker, K. Yang, et al., Large scale distributed deep networks, Adv.
Neural Inf. Process. Syst. 25 (2012) 1223–1231.
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