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ABSTRACT
The Internet of Vehicles (IoV) paradigm aims to improve road
safety and provide a comfortable driving experience for Internet-
connected vehicles, by transmitting early warning and infotainment
signals to Internet-connected vehicles in the network. The unique
characteristics of the IoV, such as their mobility and pervasive In-
ternet connectivity, expose such networks to many cyberattacks.
In particular, jamming attacks represent a considerable risk to their
performance, as they can significantly affect vehicles’ functionality,
possibly leading to collisions in dense networks. This paper presents
a new scheme enabling the detection and localization of jamming
attacks carried out within an IoV network. We consider several sce-
narios, e.g., where the Internet-connected vehicles and the jammer
are statically positioned, as when parked on a street, moving in the
same direction and with variable speeds, and moving in opposite
directions. We leverage the physical-layer characteristics of the re-
ceived signals, particularly the Received Signal Strength (RSS), and
devise a solution minimizing the jammer localization error based on
a set of antennas deployed on the vehicle. Specifically, we compute
the power emitted by the jammer and received by the arrays of
omnidirectional antennas and we use such values to estimate the
location of the jammer in the previous-cited scenarios. Through
an extensive simulation campaign, we provide a thorough study of
our algorithm, evaluating the effect of several system and channel
parameters on the measurement error. The results obtained for all
scenarios show a significant localization accuracy, i.e., ranging from
0.23 meters to 13 meters, depending on the channel conditions.

CCS CONCEPTS
• Networks→ Network properties; •Mobile and wireless secu-
rity; • Security and privacy→ Systems security;
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1 INTRODUCTION
Intelligent transportation systems have grown in popularity in both
business and academics in recent years, and manufacturers are de-
veloping vehicles to become more intelligent and interconnected
in various ways [22]. These advancements will lead to some of the
most significant improvements tomobility and transportation in the
next few years [17]. They are primarily motivated to enhance road
safety and driving conditions and offer vehicle entertainment ser-
vices. Vehicle-to-Vehicle (V2V) and Vehicle-to-Infrastructure (V2I)
communications, first standardized within the so-called Vehicular
Ad-Hoc Network (VANET) scenario, are todays enriched to build
the Internet of Vehicles (IoVs) paradigm, where Internet-connected
vehicles exchange information among them and with the public
Internet network. Like any wireless network, IoVs are prone to
external and internal cyberattacks [29]. In this context, jamming
attacks enable the adversary to disrupt ongoing communications
occurring on the wireless channel, by simply injecting a powerful
signal targeting the communication frequency. Jamming attacks
can severely affect the quality and quantity of messages exchanged
between vehicles. Low-cost Software Defined Radios (SDRs) such as
HackRF One [5], equipped with open-source software such as GNU
Radio [27], can be easily used to facilitate jamming attacks [28]
This is achieved by scanning the wireless spectrum, identifying
a particular bandwidth to be jammed, and finally transmitting a
hindering signal increasing the interference at the receiver, causing
frequent disconnections, and preventing the receiver from correctly
decoding packets until the channel is idle again [23]. The messages
exchanged within a IoVs network could contain invaluable data.
For example, they can include the occurrence of an accident, road
blockage ahead, and many other data that could be useful to the
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driver [39]. Several jamming strategies are discussed in the liter-
ature [33], e.g., constant jamming, deceptive jamming, random
jamming, and reactive jamming. Moreover, a few contributions
addressed jamming mitigation and localization [7, 8], and some of
them use the RSS to determine the jammer’s location by estimating
the distances between several nodes and the jamming source [9].
However, localizing a jammer in the Internet of Vehicle (IoV) sce-
nario is challenging. Indeed, jammers can be either statically placed,
e.g., on parked cars or infrastructure elements, or dynamically move
in the area, e.g., when placed on a moving car. Thus, a solution for
jamming localization in the IoV scenario should be able to distin-
guish between static and moving jamming by design, as well as to
possibly track the jammer to take it down.

Contribution. In this paper, we provide the following contribu-
tions:

• We analyze adversarial jamming attacks carried out within
a IoV scenario. In this setting, we propose a simple yet ef-
fective methodology to localize a constant jamming attack,
leveraging one or multiple smart vehicles.
• We utilize physical-layer properties, namely, the RSS of the
signal at the receiver(s), and propose a strategy that mini-
mizes the jamming localization error based on a set of an-
tennas deployed on the vehicle’s body.
• The RF power received by one or more vehicles equipped
with arrays of omnidirectional antennas is estimated and
used to determine the position of the jammer.
• We investigate several different scenarios taking into ac-
count realistic and extreme conditions, as well as complex
and harsh operating environments, i.e., where the vehicles
and jammer are statically positioned, moving with the same
speed and direction, moving with variable speeds, and mov-
ing in opposite directions.
• We conduct an extensive simulation campaign to prove the
effectiveness of the proposed approach, encompassing the
path-loss model with different shadowing (𝜎) and environ-
ment values (𝛾 ), different number of vehicles, and different
channel sampling frequencies, resulting in a localization er-
ror ranging from 0.23 meters to 13 meters, depending on the
channel conditions.
• Finally, we prove that it is possible to localize a jammer in the
IoV scenario, even when mobile, with remarkable accuracy.

Paper Organization. The remainder of this paper is organized
as follows: Section 2 discusses the system and the threat model.
Section 3 illustrates the scenarios and localization methodology
proposed in this paper. In Section 4, we explain and evaluate the
performance of the proposed methodology. Section 5 addresses
the relevant related work and compares our proposal with exist-
ing solutions. Finally, Section 6 wraps up the findings and results
presented in this paper and illustrates future work.

2 SYSTEM AND THREAT MODEL
Figure 1 depicts the scenario presented in this work. We assume an
IoV scenario, with Internet-connected vehicles communicating and
exchanging different types of messages while moving in a given
area. We also assume that a powerful jammer is deployed on a

Jammed Area

Array of Antennas
Jammer

J

Base Station

Computed Distances

Figure 1: The scenario assumed in this work. An adversary
carries out a jamming attack in an IoV network, to disrupt the
vehicles’ communications over the wireless channel. Thanks
to the availability of the Internet connection, several vehicles
collaborate to detect the jamming and perform a channel
measurement through several deployed arrays of antennas,
estimating the distance from the jamming vehicle. Once the
distances are computed by each vehicle, it is then transmitted
to the base station to be delivered to the server to perform
the localization.

moving vehicle, to disrupt all types of communications between
vehicles on a particular frequency (e.g., 𝑓 = 2.4GHz, which is the
frequency that IoVs operate at). However, as the communications
between vehicles and Base Station (BS) of the cellular network use
other frequencies (e.g., frequencies between 1920 and 1980 MHz
to uplink data and frequencies between 2110 and 2170 MHz to
downlink data), they are assumed not to be affected by the jamming
activity. In addition, we assume that the adversary is hiding in plain
sight, i.e., on a busy highway during rush hour. Depending on the
vehicle position, it might (not) be directly in the line of sight with
the jammer. We assume a constant jammer that constantly emits
a powerful Additive White Gaussian Noise (AWGN) signal. We as-
sume that this signal mainly blocks all communications between
other vehicles, and hence, disables any form of communication on
the frequency 𝑓 between the surrounding vehicles located within
the jamming radius. Furthermore, we emphasize that jamming af-
fects only the communications among the vehicles operating on
this particular frequency, and it does not affect the communications
of the vehicles with the BS of the cellular network. Indeed, being
Internet-connected, i.e., through a cellular network connection, the
vehicles still can use the Internet connection to deliver information
to an Internet-available server, in charge of performing the local-
ization task. Note that, although feasible, using an SDR to jam the
WiFi channels and the cellular network at the same time would
require more complex and expensive hardware, not always feasible
for an adversary. If the jammer targets several frequencies, e.g.,
GPS, to prevent the vehicle from knowing its current position, we
assume that the vehicle can retrieve the last recorded coordinates
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Table 1: Notations used throughout the paper.

Notation Description

𝑓0 Channel Central Frequency.
𝑁 Number of channel readings/samples.
P𝑡 Power Transmitted.
G Grid Size.
𝜎 Logarithmic Standard Deviation of the Shadow-

ing.
𝛾 Path-loss Exponent.
RS Receiver Sensitivity.
L Vehicles Coordinates.
A Jamming Vehicles Coordinates.
T Time Step.
C Number of Vehicles.
S Number of Simulations.

and provide them to the Internet-connected server. We aim to lo-
calize the mobile jammer by deploying several arrays of antennas
on a smart vehicle. In brief, such arrays of antennas can utilize the
power emitted by the jammer to estimate its location.
Path-loss Model. In this work, we adopt the well-known path-
loss model, as depicted in Eq. 1. Such a model is used to estimate
the power 𝑃𝑅𝑋 (𝑑𝑖 ) received by each omnidirectional array of an-
tennas at a distance 𝑑𝑖 from the source (i.e., the jammer), so as to
estimate 𝑑𝑖 based on the received power. 𝑃𝑇𝑋 represents the trans-
mission power of the jammer, 𝑃𝐿 (𝑑0) represents the path loss at
the reference distance 𝑑0 (i.e., the length of the path) computed by
leveraging the Free Space model [6, 12], 𝛾 is the path loss exponent,
and 𝑋𝑔 defines the attenuation due to the flat fading, modeled as a
Gaussian random variable with zero mean and standard deviation
𝜎 .

𝑃𝑅𝑋 (𝑑𝑖 ) [𝑑𝐵𝑚] = 𝑃𝑇𝑋 − 𝑃𝐿 (𝑑0) − 10 · 𝛾 · 𝑙𝑜𝑔10
𝑑𝑖

𝑑0
− 𝑋𝑔 (1)

Finally, we summarize the notation used in this paper in Table 1.

3 SCENARIOS AND JAMMER LOCALIZATION
In this section, we discuss our localization logic and describe the
considered scenarios.
Distance Estimation.We adopt the inverse of the path loss model
(Eq. 2) to estimate the distance between the jammer and the re-
ceiving antennas deployed on the vehicle(s). To this aim, we de-
fine the path loss 𝑃𝐿 (𝑑𝑖 ) as the signal attenuation experienced
by each antenna when receiving a wireless message transmitted
by a source located at distance 𝑑𝑖 from the jammer, i.e., 𝑃𝐿 (𝑑𝑖 ) =
𝑃𝑇𝑋 − 𝑃𝑅𝑋 (𝑑𝑖 ) − 𝑃𝐿 (𝑑0).

𝑑𝑖 = 𝑑0 · 10
𝑃𝐿 (𝑑𝑖 )
𝛾10 (2)

Localization. We combine the distances [𝑑1, ..., 𝑑𝑛] obtained from
the ranging procedure (as computed by Eq. 2) to create an estimated
position for the jammer [𝑥 𝐽 , 𝑦𝐽 ]. We begin by linearizing the prob-
lem, using one antenna [𝑥𝑛, 𝑦𝑛] and its corresponding distance to
the jammer (𝑑𝑛) as a reference and subtracting it from the 𝑛 − 1

equations, generating a system of 𝑛 − 1 equations in the form of
𝐴𝑧 = 𝑏, generating the matrices (A and b) in Eq. 3.

𝐴 = −2 ·
©«
(𝑥1 − 𝑥𝑛) (𝑦1 − 𝑦𝑛)
(𝑥2 − 𝑥𝑛) (𝑦2 − 𝑦𝑛)

.

.

.
.
.
.

(𝑥𝑛−1 − 𝑥𝑛) (𝑦𝑛−1 − 𝑦𝑛)

ª®®®®¬
𝑧 =

(
𝑥

𝑦

)

𝑏 =
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2
1 + 𝑑

2
1 − 𝑑

2
𝑛

𝑥2𝑛 + 𝑦2𝑛 − 𝑦22 − 𝑥
2
2 + 𝑑

2
2 − 𝑑

2
𝑛

.

.

.

𝑥2𝑛 + 𝑦2𝑛 − 𝑦2𝑛−1 − 𝑥
2
𝑛−1 + 𝑑

2
𝑛−1 − 𝑑

2
𝑛
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(3)

The jammers’ position can be calculated by solving the system of
equations 𝐴 · 𝑧 = 𝑏, using the Linear Least Square (LLS) method [8,
38], as indicated in the Eq. 4.

𝑧 = [𝑥 𝐽 , 𝑦𝐽 ]𝑇 = (A𝑇A)−1A𝑇𝑏 (4)

In summary, the steps required for collecting samples and local-
ization are the following.

(1) Each vehicle computes an estimate of the distance between
its current location and the jammer, based on the power of
the received signals at its antennas.

(2) The vehicles transmit the estimated distances to a nearby BS
or Road Side Unit (RSU), namely, the infrastructure element,
on a frequency/channel that is not affected by the jamming.

(3) The infrastructure element forwards the messages to a local-
ization server over the Internet.

(4) The localization server uses its computational capabilities
to combine all the received readings and build a system of
equations, solve the system of equations, and estimate the
jammers’ location.

Once the jammer is localized, the authorities are notified of the lo-
cation of the jammer and take any desired action, such as physically
taking it down or blocking the traffic in the area.

Scenarios. In the following, we introduce the scenarios considered
in our work. For each scenario, in each simulation run, we selected
the grid size (N ) based on the total number of vehicles generated,
multiplied by a fixed factor of 5. For instance, with 3 vehicles, we
have a grid size of 15𝑚2 (3 vehicles × 5 meters squared). The main
idea is to test an area larger than the distribution of the vehicles.

Scenario 1: Stationary Vehicles and Jammer. This scenario is
considered as the most basic one, as we assume that the vehicles (L)
and Jamming Adversary (A) are stationary, i.e., not moving. This
could occur when vehicles are queued in a jam-packed highway
during rush hour, or when they are parked in a parking lot. We
consider this scenario as the baseline one, whose results are to be
compared with the other (more challenging) scenarios.
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Scenario 2: Vehicles and Jammer Moving with the Same Di-
rection and Speed. In this scenario, we assume that L and A are
moving in the same direction and speed. A is assumed to be lo-
cated within the same traffic lane or radius of L, and continuously
moving. The position for both vehicles (A and L) is incremented
by a constant value at each time step to mimic movement. For this
scenario, we considered the speed of 50 kilometers/hour as the
constant value. We emphasize that the specific value of the speed
is not relevant for this scenario, since we consider that the vehicles
are moving at the same speed and direction.

Scenario 3: Vehicles and JammerMoving atVariable Speeds.As
described in scenario 2, we assume L and A are moving in the
same direction. However, in this scenario, the speed varies with
time for both L and A. We consider that there is a speed change
probability of 0.5 at each time step, i.e., L or A change their mov-
ing speed. The initial speed for all vehicles is randomly generated,
with a value between 50 and 80 kilometers/hour. The speed of L
increases by 3-4 kilometers/hour, while the speed of A increases
by 1-2 kilometers/hour over time.

Scenario 4: Vehicles and Jammer Moving in Opposite Direc-
tions. The final scenario assumes that L and A are moving in
opposite directions at the same speed, as could be the case in a
two-way street. The position of L is shifted in a given direction by
a constant value, while the position of A is shifted in the opposite
direction by the same constant value. As mentioned before, such a
constant value depends on the speed of the vehicles, considered in
this scenario as 50 kilometers/hour.

4 PERFORMANCE EVALUATION
We considered the four reference real-life scenarios described in
the previous section, where jamming attacks are carried out within
a randomly constructed vehicular network. We emphasize that, in
each simulation, the vehicles (including the jammer) are deployed
in random positions to ensure the effectiveness and fairness of the
proposed localization scheme. We adopted the new Tesla Model S
2021 as our smart vehicle with the following dimensions: length =
4.907 meters, width = 1.964 meters, and height = 1.445 meters [1].
We assume that the antennas are installed and distributed on the ve-
hicle body in five different locations, namely, the front (2 antennas),
top (1 antenna), and back (2 antennas). The distance between the
antennas deployed in the front is 1.964 meters. Similarly, the anten-
nas on the back have the same distance. At the same time, the top
antenna is at a distance of 2.672 meters with respect to the other an-
tennas. The type of antennas used is assumed to be omnidirectional.
The simulations were carried out on an Alienware Aurora Ryzen
Edition, with an AMD Ryzen 9 3950X 16-core processor running at
3.49GHz, and 64GB RAM memory. We used MATLAB 2021a to run
all the simulations. Table 2 summarizes the parameters used in the
simulations. Note that some parameters are taken from reference
papers in the jamming literature [8, 18]. To test the effectiveness
of the proposed scheme, we ran 10, 000 simulations per scenario,
where in each scenario the channel is sensed 500 times (N), and
for all the scenarios, we report our results together with the 95%
confidence interval.

Algorithm 1: Scenario 3 simulation algorithm for estimat-
ing the Jammer position when 𝛾 is fixed.
Input: L, A, T , 𝛾 , C, S;
Result: Estimated Jammer Position

(
𝑥 𝐽 , 𝑦𝐽

)
;

1 A ← ∅;
2 L ← ∅;
3 𝛾 ← 5.5;

4 A ← generateCoordinatesSet(1);
5 L ← generateCoordinatesSet(S);

// For each value of sigma

6 for 𝑖 ← 1 to |𝜎 | do
// For each timestep

7 for 𝑗 ← 1 to |T | do
// For each number of simulations

8 for 𝑘 ← 1 to |S| do
// Generate a random number between 1 and 4

9 r ← randi(4, 1);
// Increasing the car/jammer speed logic

10 if r > 2 then
11 car_speed ← j + r;
12 jammer_speed ← j;
13 else
14 car_speed ← j;
15 jammer_speed ← j + r;
16 end
17 // Jammer location estimation

18 (𝑥 𝐽 , 𝑦𝐽 )← JammerLocalizerV2X(𝑙𝑘,1, (𝑙𝑘,2 +
car_speed), 𝑎𝑘,1, (𝑎𝑘,2 + jammer_speed),

𝛾, 𝜎𝑖);
19 end
20 end
21 end

Table 2: Simulation Parameters.

Notation Value

𝑓0 2.4 GHz
N 500
P𝑡 45 dBm
G 5 × Number of Vehicles
𝜎 [0.1, ..., 3]
𝛾 [1.7, ..., 5.5]
RS -60 dBm
T 10
C [3, ..., 10]
S 10,000

Simulation results are obtained for all four scenarios, with the
second, third, and fourth considered more challenging due to their
mobility factor, which could also be more representative or actual
IoVs scenario. Furthermore, we considered different physical sur-
rounding environments, e.g., by increasing the noise level and the
attenuation of the propagated signal from the jammer due to the
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Figure 2: Simulation results for scenario 3. (a) represents the localization error as a function of the localization vehicles when 𝜎

∈ [1, 2, 3]. Similarly, (b) shows the localization error as a function of 𝜎 (c) depicts the localization error as a function of 𝛾 (d)
illustrates the localization error as a function of the localization vehicle when 𝛾 ∈ [1.7, 2, 2.5, 2.7, 3.5, 5.5].

environmental effects. We first evaluated the jammer location esti-
mation error while varying the number of used vehicles for localiza-
tion. Moreover, we evaluated different values of 𝜎 and 𝛾 . to mimic
different channel conditions. Specifically, as described in Algo. 1,
the jammer localizer function (JammerLocalizerV2X(𝑙𝑘,1, (𝑙𝑘,2
+ car_speed), 𝑎𝑘,1, (𝑎𝑘,2 + jammer_speed), 𝛾, 𝜎𝑖∈{0.1,...,3})
perform samples acquisition for a predefined number of times (N =
500). Then, the algorithm estimates the distances for each sample
using the formula in Eq. 2. The distances are then assumed to be
sent to the BS (or RSU) to perform the localization as illustrated
in Eq. 3 and 4. The algorithm summarized above and detailed in
Algo. 1 is adapted to work also in the other scenarios, with minor
changes to the localization logic. In each simulation, the vehicles
are uniformly and randomly distributed across the grid, as well as
the jammer.
We start our analysis by considering the impact of the shadowing
effect on the localization accuracy, considering the variance 𝜎 of the
path-loss model in the range 0.1 dBm ≤ 𝜎 ≤ 3 dBm, the path-loss
exponent in the range of 1.7 dBm ≤ 𝛾 ≤ 5.5 dBm, and a number of
deployed vehicles (C) in the range (3 ≤ C ≤ 10). Figure 2 (a) shows
the localization error as a function of the number of vehicles used
for localization where the value of 𝜎 is set to 1, 2, and 3, respectively.
The localization error is computed as the Euclidean distance be-
tween the actual location of the jammers and the location predicted
through our solution. The findings consider the average value of
the 10,000 simulation runs and 500 jamming signal measurements.
First, note that the number of vehicles does not impact on the local-
ization accuracy. At the same time, when increasing the shadowing
value (𝜎), the localization error increases, even when increasing
the number of localization vehicles. Indeed, as the shadowing value
increases, the received power fluctuates more and is attenuated
further due to the obstacles located between the jammer and the
localization vehicle, leading to less accurate localization. Figure 2(b)
illustrates the localization error as a function of different 𝜎 values. It
can be seen that when increasing the 𝜎 value, the localization error
increases. However, increasing the number of vehicles participating
in the jammer localization procedure reduces the error. The low
rate is due to the increasing sigma value, which increases the signal
attenuation. Additionally, instead of using 10 vehicles to perform
the localization, 8 vehicles are sufficient to estimate the jammer
location accurately. Similarly, Figure 2 (b) shows a similar behav-
ior such that using 6 vehicles is sufficient to estimate the jammer
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Figure 3: Confidence Interval of the Localization Error as a
function of 𝜎 (0.5 dBm ≤ 𝜎 ≤ 3 dBm) when using 3 vehicles
and 𝛾 is 5.5. The error bound is less when 𝜎 ≤ 1. When 𝜎 > 1,
the error bound increases.

location. Figure 2 (c) depicts the localization error as a function
of 𝛾 with a certain number of vehicles. Despite increasing the 𝛾
value, the localization error decreases regardless of the number
of vehicles used. Figure 2 (d) represents the localization error as
a function of the number of vehicles with different 𝛾 values. It is
clearly shown that the localization error significantly decreases
with the increase of the value of 𝛾 . Figure 3 shows the confidence
interval of the localization error as a function of 𝜎 when using 3
vehicles. The error is the least when 𝜎 is ≤ 1, and it increases with
the increase of 𝜎 . Tables 3, 4, and 5 address the results obtained
for each of the considered scenarios. We considered using 3 and
10 vehicles in each scenario, i.e., the minimum and the maximum
number of vehicles used in all scenarios. In scenarios 1, 2, 3, and
4, performances do not change when using 3 or 10 vehicles. For
example, the margin of error between using 3 and 10 is 0.34 meters
in scenario 1 when𝛾 is set to 5.5 and 𝜎 is 3. Such margin is sufficient
and negligible to localize the jammer accurately without using 10
vehicles. Another example is scenario 3, where a mobile scenario
is considered, the jammer and localization vehicles are moving at
different speeds, and apart from each other in a harsh/complex
environment (𝛾 = 5.5), the localization error difference between
using 3 and 10 vehicles is 0. Further, in scenario 4, the maximum
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Figure 4: Localization error as a function of the acquisition
rate (N) when 𝛾 = 5.5, 𝜎 = 3, and C is set to 7 in scenario 1.
When increasing the number of times the channel is read
(N), the less the localization error.

Table 3: Localization error as a function of 𝛾 when 𝜎 = 0.32,
and 𝜎 when 𝛾 = 5.5 associated with the minimum and maxi-
mum number of vehicles in scenario 1.

Number of
Vehicles

𝛾 Error [m] 𝜎 [dBm] Error [m]

3 2.00 13.73 1.00 6.01
3 3.50 7.36 2.00 9.48
3 5.50 4.61 3.00 13.37

10 2.00 13.80 1.00 5.97
10 3.50 7.48 2.00 9.15
10 5.50 4.66 3.00 13.03

Table 4: Localization error as a function of 𝛾 when 𝜎 = 0.32,
and 𝜎 when 𝛾 = 5.5 associated with the minimum and maxi-
mum number of vehicles in scenario 2.

Number of
Vehicles

𝛾 Error [m] 𝜎 [dBm] Error [m]

3 2.00 13.82 1.00 5.96
3 3.50 7.42 2.00 9.26
3 5.50 4.60 3.00 13.35

10 2.00 13.85 1.00 6.00
10 3.50 7.45 2.00 9.21
10 5.50 4.58 3.00 13.32

localization error is 0.23 meters when 𝛾 is set to 5.5 and 𝜎 is 3. Thus,
this proves that the localization accuracy remains similar in harsh
environments, even when increasing the number of vehicles used.
Finally, in Fig. 4, we evaluated the effect of the number of samples
available for localization on the jammer estimation accuracy. We
observe that increasing the number of samples acquired on the
channel improves the localization accuracy, reducing the localiza-
tion error. Indeed, the higher the number of samples, the higher
the chance that the estimator finds a better local minimum point,
reducing the final estimation error.

Table 5: Localization error as a function of 𝛾 when 𝜎 = 0.32,
and 𝜎 when 𝛾 = 5.5 associated with the minimum and maxi-
mum number of vehicles in scenario 4.

Number of
Vehicles

𝛾 Error [m] 𝜎 [dBm] Error [m]

3 2.00 12.61 1.00 6.04
3 3.50 6.76 2.00 9.28
3 5.50 4.18 3.00 13.37

10 2.00 12.51 1.00 5.91
10 3.50 6.76 2.00 9.10
10 5.50 4.17 3.00 13.14

5 RELATEDWORK
This section summarizes the contributions in the current literature,
cross-comparing such solutions with ours.

5.1 Jamming Localization
Several techniques to localize a jammer are discussed in the lit-
erature, using metrics such as Angle of Arrival (AoA), Phase of
Arrival (PoA), Direction of Arrival (DoA), RSS, and Packet Delivery
Ratio (PDR) [7].Wang et al. [37] presented amobile jammer localiza-
tion and tracking scheme to track a mobile jammer in a multi-hop
wireless network, based on four stages: a selection of initial moni-
toring nodes, the determination of cooperative nodes, triangulation
localization, and the handover of the monitoring group. Pelechrinis
et al. [25] presented a distributed jammer localization algorithm
based on gradient descent. As the PDR is highest farther away from
the jammer, each node selects the neighbor that has the lowest
PDR as the locally optimal choice. In [40], the authors proposed a
multi-jammer localization algorithm that is based on alternating
iteration and Gravitational Search Algorithm (GSA). The proposed
method first uses a region growth algorithm to estimate the number
of jammers. Then it estimates the jammers’ positions iteratively
using a combination of alternating iteration and GSA without re-
lying on the distance between nodes or the shape of the jamming
area. Fan et al. [4] proposed an Antenna Identification and Local-
ization of the Jammer (AILJ) method that is based on the network
topology. A collection protocol first gathers information about the
nodes, whereas an identification protocol then classifies the type
of the jammers’ antenna. The jammer’s position is estimated via a
range-free method depending on the antenna. The authors in [10]
utilized RSS to locate an active jammer. The proposed scheme re-
quires the nodes to increase the power transmission in the region
where jamming is active until they can share measurement data
associated with the estimated jammer position. Hussain et al. [8]
proposed a jammer localization scheme where battery-free Radio-
Frequency Identification (RFID) sensor tags harvest energy from
the signal emitted by the jammer. The distances from different tags
are then computed to estimate the actual jammer location based on
the power received at each energy-harvesting node.

5.2 Jammer Detection and Localization in
Mobile Environments

The authors in [26] illustrated a machine learning-based jamming
detection approach for devices operating in the 802.11 networks.
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Table 6: Comparison between the proposed and existing solution.

Ref. IoVs Localization Type Omnidirectional
Antenna

Number of
Jammers

Jammer Movement –
Mobile

Feature – RSS Algorithm

[24] ✗ Range-based ✓ Single ✗ ✗ Gradient Descent
[34] ✗ Range-based ✓ Single ✗ ✓ Gradient Descent

and Ascent
[15] ✗ Range-based ✓ Single ✗ LSQ, Adaptive LSQ
[16] ✗ Range-based ✓ Multiple ✗ ✓ GA, GPS, SA
[41] ✗ Range-based ✓ Single ✓ ✓ LS
[40] ✗ Range-based ✓ Multiple ✗ ✓ Alternating

iteration and GSA
[37] ✗ Range-based ✓ Single ✓ ✓ Trilateration
[14] ✗ Range-free ✓ Single ✗ ✓ CL, WCL and VFIL
[13] ✗ Range-free ✓ Multiple ✗ ✗ VFIL
[36] ✗ Range-free ✓ Single ✗ ✓ GSA

[35] ✗ Range-free ✓

and Directional Single ✗ ✓ CL, VFIL, and
improved GSA

[32] ✗ Range-based ✓ Single ✗ ✓ CrowdLoc
[31] ✗ Range-free ✓ Single ✗ ✗ GCL
[30] ✗ Range-free ✓ Single ✗ ✗ CJ
[2] ✗ Range-free ✓ Multiple ✗ ✗ X-ray
[3] ✗ Range-free ✓ Single ✗ DCL
[20] ✗ Range-free ✓ Single ✗ – PSO

[4] ✗ Range-free ✓

and Directional Single ✗ ✓ AILJ

[19] ✓ Range-free ✓ Multiple ✗ ✗ FCM and PSO
[21] ✓ - ✓ Multiple ✗ ✗ -

This
Work

✓ Range-based ✓ Single ✓ ✓ LLS

The authors considered a scenario where a static jammer is de-
ployed in a Vehicular Ad Hoc Network (VANET). They utilize PDR
and RSS, Channel Busy Ratio (CBR), and measured noise power
to detect and identify the type of jammer. Several machine learn-
ing algorithms were used to perform classification. Kosmanos et
al. [11] Proposed an algorithm for speed estimation of malicious
jammers in VANETS. Their method estimates the channel between
the transmitter-receiver and jammer-receiver based on the relative
speed of the jammer and the receiver. Furthermore, they correctly
determine the relative speed between the jammer and receiver
utilizing the Doppler shift. Pang et al. [19] proposed a range-free
approach to determine the number of deployed jammers and local-
ize them. A multiclass detection problem is formulated, and Fuzzy
C-Means (FCM) method is used to calculate the distance between
coordinates and centroids and calculate the number of jamming
attackers based on the coverage area. In [21], the authors presented
an approach where the number of jammers in Vehicular Ad Hoc
Networks (VANETs) is estimated. The dataset is divided into point
sets using vehicles’ moving features and jammers’ spatial features,
where the point sets are then grouped based on the distribution
of points that are not jammed. Wei et al. [41] put forward a dis-
tributed mobile jammer tracking scheme to locate mobile jammers
in multi-hop wireless networks. The proposed scheme consists of
four main steps, including the selection of the monitoring node,
measurement of the jamming signal, jammer localization, and han-
dover of the monitoring group. To assess the effectiveness of the
presented scheme, multiple simulations were performed for which
the results verify the proposed scheme’s effectiveness. Nevertheless,
this method is only effective for jammers with an omnidirectional

antenna, and not a directional antenna. In addition, the effective-
ness of the scheme needs to be investigated for different mobility
schemes.

5.3 Comparison with Existing Solutions
Table 6 compares the work presented in this paper against existing
contributions. We believe that the scenarios and adversarial model
introduced here are unique and not addressed in the literature.
None of the existing solutions considered moving jammers in IoV
networks, and they neither used multiple arrays of antennas nor
deploy them in a similar fashion, i.e., distributing them at an equal
distance on the vehicle body. Having several antennas as a part of
the vehicle body enables achieving higher localization accuracy.
Further, such a choice provides a wider range of coverage to detect
jamming. Unlike [41], in our localization scheme, we considered
that the vehicle participating in the localization scheme is only
responsible for computing the distance from the received RSS and
transmitting the computed values on through the Internet channel,
not affected by jamming. The Internet-connected server is in charge
of performing the localization of the jammer vehicle, taking full
advantage of the IoV paradigm. Such featuresmake our contribution
tailored to IoV scenarios and unique in the literature.

6 CONCLUSION AND FUTUREWORK
In this paper, we presented a jammer localization scheme for IoV
networks. The proposed scheme can identify the location of the
jammer by leveraging the power received at multiple antennas on
multiple collaborating Internet-connected vehicles. We evaluated
the performance of our scheme in several setups mimicking real-life
scenarios, where the jammer and localization vehicles are stationary
in one setup and mobile in the others. Particular attention was paid
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to challenging mobile scenarios, with the results being thoroughly
analyzed. For each scenario, extensive simulations were performed
on randomly-deployed jammer and localization vehicles to obtain
insights into the performance of our solution while varying the
number of localization vehicles, path-loss exponent, shadowing
values, and acquired samples. The obtained results show the effec-
tiveness of the scheme described in the paper, reporting significant
localization accuracy even in harsh environments, while using a
little number of vehicles.

In the future, we will investigate the performance of our solu-
tion with real-life mobility models, as well as the suitability of our
solution with multiple jammers. In addition, we will deploy the pro-
posed solution in a real environment, and evaluate its performance
in real-life scenarios.
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