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Abstract: The forward osmosis (FO) process is an emerging technology that has been considered as
an alternative to desalination due to its low energy consumption and less severe reversible fouling.
Artificial neural networks (ANNs) and response surface methodology (RSM) have become popular
for the modeling and optimization of membrane processes. RSM requires the data on a specific
experimental design whereas ANN does not. In this work, a combined ANN-RSM approach is
presented to predict and optimize the membrane flux for the FO process. The ANN model, developed
based on an experimental study, is used to predict the membrane flux for the experimental design in
order to create the RSM model for optimization. A Box–Behnken design (BBD) is used to develop a
response surface design where the ANN model evaluates the responses. The input variables were
osmotic pressure difference, feed solution (FS) velocity, draw solution (DS) velocity, FS temperature,
and DS temperature. The R2 obtained for the developed ANN and RSM model are 0.98036 and 0.9408,
respectively. The weights of the ANN model and the response surface plots were used to optimize
and study the influence of the operating conditions on the membrane flux.

Keywords: artificial neural network; forward osmosis; water treatment; desalination; response
surface methodology

1. Introduction

Forward osmosis is an osmotically driven process in which water molecules permeate
through a semi-permeable membrane [1]. The driving force in forward osmosis (FO) is
the osmotic gradient between a dilute feed solution and a concentrated draw solution.
The most common transport models studied for the FO process are based on the film
theory concept [2–4]. The development of these mathematical models requires extensive
knowledge of the process as well as the evaluation of the membrane, solute, and solvent
properties, which adds more complexity to the process [5,6].

The artificial neural network is a simple and efficient modeling technique based on the
working of biological neurons. It is a data-driven technique that uses a learning algorithm
to develop a relationship between input and output variables. Applications of artificial
neural network (ANN) include function approximation, clustering, pattern recognition,
and image processing. A few advantages of ANN include its ability to modeling complex
non-linear systems; to work with incomplete, noisy or missing data; no effect of the data
distribution and interactions among the factors; and continuous improvement of the model
by updating the model with new data set [7].

The trend is shifting towards artificial intelligence-based modeling techniques such as
ANN, as several studies have been published in literature over the last two decades. Niemi et al.
reported a 50% decrease in the computational time for the neural network compared to
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the conventional ultrafiltration model [8]. Corbatón-Báguena et al. identified that the
normalization of the data and randomization of weights improved the performance of the
model [9]. Darwish et al. compared different training algorithms and found the Bayesian
regularization training algorithm to be the fastest and more stable towards initial random
weights and biases [10].

ANN has been used widely to predict membrane flux and study membrane fouling
in ultrafiltration, nanofiltration and reverse osmosis [11–15]. Yang et al. predicted mem-
brane flux and specific energy consumption of a vacuum membrane distillation based
on operating conditions and membrane length using ANN model [16]. Khayet et al. de-
veloped response surface methodology (RSM) and ANN models based on experimental
designs for the simulation and optimization of the reverse osmosis (RO) desalination pilot
plant [15]. The models were compared by studying the effect of feed quality and operating
conditions on the RO performance. Rahmanian and coworkers compared RSM, ANN,
and adaptive neuro-fuzzy inference system (ANFIS) modeling techniques using a set of
operating conditions to predict membrane flux and rejection rate for the removal of lead
ions [13]. ANN models have found their application in optimization and control as well.
Liu et al. modeled and optimized the microfiltration process with turbulence promoter to
maximize Flux Improvement Efficiency (FIE) using ANNs [17]. Cabrera et al. developed
an ANN model that predicted flow and pressure setpoint based on the varying power
supplied from the wind turbine to RO desalination plant while keeping the recovery rate
within a particular range to control the desalination process [18]. Neural networks have
shown superiority over the conventional models so far. However, it does come with its
own limitations. As Abbas and Al-Bastaki showed, ANNs can be reliable for interpolation,
but extrapolation leads to inaccurate results [14].

Only two efforts have been made towards ANN modeling of the forward osmosis
process. Pardeshi et al. developed a Taguchi-neural approach to determine the optimum
operating conditions of the FO groundwater desalination to maximize the reserve solute
flux selectivity [19]. The study also evaluated the importance of the parameters using
analysis of variance (ANOVA) that could affect the quality characteristics of FO. In our
previous study, an ANN model for a generalized prediction of membrane flux for lab-scale
FO desalination [20]. The model was compared to multiple linear regression and published
mathematical models, which showed satisfactory performance. However, the model was
too complex to analyze the weights associated with the input variables due to multiple
hidden layers having a high number of neurons. Table 1 summarizes some of the char-
acteristics of ANN models and their performance developed for the membrane-based
separation processes.
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Table 1. Summary of the artificial neural network (ANN) model developed for the membrane processes.

Process Input Output Network
Architecture Activation Training

Algorithm Performance References

Ultrafiltration (UF) of bleach plant effluent pressure, tube flow velocity, the concentration
ratio of the effluent

rejection of chemical
oxygen demand (COD),

membrane flux
3-8-2 log-sigmoid Levenberg-

Marquardt
Relative

deviation = 12% [8]

Pilot and full-scale filtration of municipal
drinking water

influent flow rate, feedwater flow rate,
membrane flux, operation time, pH, total

dissolved solids (TDS), UV254, temperature
membrane resistance 8-8-1 log-sigmoid Levenberg–

Marquardt
Relative

error = 5% [11]

Reverse osmosis (RO) water desalination unit feed pressure, temperature and
salt concentration permeate rate 3-5-1 log-sigmoid Levenberg-

Marquardt R2 = 0.998 [14]

Filtration of sodium and magnesium
chloride solutions feed pressure, membrane flux, concentration rejection 3-4-1 log-sigmoid Bayesian

Regularization
Absolute

deviation < 5% [10]

Removal of organic micropollutants by
nanofiltration (NF)

membrane salt rejection, molecular length,
equivalent width, hydrophobicity rejection 4-2-1 tan-sigmoid Levenberg–

Marquardt R2 = 0.97 [21]

Hybrid microfiltration (MF) to study
membrane fouling

time, adsorbent type, membrane type, pore
size, surfactant type, concentration transient flux 6-6-3-1 tan-sigmoid - R2 = 0.986 [12]

RO desalination pilot plant feed concentration, temperature, flow
rate, pressure

membrane flux,
rejection 4-5-3-1 log-sigmoid Levenberg-

Marquardt R2 = 1 [15]

micellar-enhanced UF of synthetic wastewater
containing lead ions

pH, feed concentration, surfactant to metal
molar ratio

membrane flux,
rejection rate 3-5-2 log-sigmoid Levenberg-

Marquardt
R2 = 0.9254
R2 = 0.9813

[13]

Separation of particulate suspensions using
MF with turbulence promote

Inlet velocity, transmembrane pressure
(TMP), concentration

flux improvement
efficiency 3-12-1 log-sigmoid Gradient descent R2 = 0.9891 [17]

Pilot plant filtration of polyethylene
glycol (PEG) TMP, crossflow velocity (CFV), time membrane flux 3-5-1 tan-sigmoid Levenberg-

Marquardt R2 = 0.9977 [9]

FO desalination of groundwater feed CFV and temperature, draw solution CFV
and temperature

reverse solute flux
selectivity (RSFS)

4-8-1
4-7-1 exponential

BFGS
quasi-Newton

backpropagation

R2 = 0.9943
R2 = 0.9988

[19]

Small scale pilot plant seawater
desalination plant power, temperature, conductivity Pressure, flow 3-71-171

3-69-13-1 sigmoid
Resilient

backpropagation
algorithm

Mean absolute
error = 0.405 %
Mean absolute
error = 0.867 %

[18]

Vacuum membrane distillation feed inlet temperature, feed flow rate,
membrane length

membrane flux, specific
thermal energy
consumption

3-7-2 tan-sigmoid Levenberg-
Marquardt

R2 = 0.9936
R2 = 0.9645

[16]

Modeling of Lab-scale forward
osmosis desalination

membrane type, membrane orientation, feed
molarity, draw molarity, molecular weight,

feed velocity, draw velocity, feed temperature,
draw temperature

membrane flux 9-25-25-40-1
log-sigmoid,
tan-sigmoid,
log-sigmoid

Levenberg-
Marquardt R2 = 0.973 [20]
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Optimization methods often take a considerable amount of computational time and cost
for numerical simulation, whereas RSM reduces the computational cost and performs more
efficiently [22]. Rahmanian et al. presented a study to maximize the lead removal from aque-
ous solution for micellar-enhanced ultrafiltration using response surface methodology [23].
The three-factor and three-level experimental design were based on the Box–Behnken design
and a fuzzy logic model developed to predict membrane flux and metal rejection. Garg
and Joshi used RSM to maximize the recovery rate and salt rejection and minimize energy
consumption for the RO process while also studying the relative significance using centre
composite design (CCD) [24]. Mansouri et al. coupled the RSM and computation fluid
dynamics (CFD) model to investigate the mass transfer and hydrodynamics in a feed channel
of spiral wound membrane [22]. The design points were generated using the Latin hypercube
sampling method. The methodology helped identify the most and least effective parameters
on the optimum conditions.

Several RSM studies on forward osmosis process have been published in the literature.
Zaviska and Zou studied the potential of forward osmosis as a pre-treatment to RO using
response surface based on CCD [25]. The experimental model was used to calculate the
energy consumption using water flux, water recovery, and final DS concentration. Khayet
et al. optimized a solar FO pilot plant with the application of statistical experimental design
and RSM by studying the effect of operating conditions on FO performance index and
energy consumption [26]. Minier-Matar et al. applied Box–Behnken design (BBD) and
RSM techniques to study the optimization of the FO process for diluting concentrated brine
from desalination plants by osmotically injecting water from Produced and process water
from oil and gas operations [27]. Zhou et al. presented the modeling and optimization
of the combined FO and membrane distillation (MD) process using BBD to generate the
response surface points [28]. The flow rate and concentration of both feed solution (FS)
and draw solution (DS) were used to maximize the membrane flux and removal efficiency.
Naghdali et al. investigated a FO process with an aquaporins-based membrane and
maximized chromium rejection and membrane flux using RSM [29]. FS concentration, DS
concentration, and time were the critical parameters optimized in their study.

Literature has shown that although theoretical models are universal, these are not
as reliable and accurate as of the machine learning models such as neural networks. So,
there is a tradeoff between the universality and accuracy of the prediction. Furthermore,
the ANN models have the advantage of training the model with newer data. Therefore,
the predictions can be continuously improved. For this specific study, the experimental
data were generated using only a single type of membrane. Therefore, its applicability is
limited to this membrane. However, the methodology shown is general and a training
model with different types of membrane data will allow for the consideration of specific
membrane properties such as porosity, tortuosity etc.

To the best of our knowledge, the weights of the FO ANN model have not been analyzed
to find the relative importance of the operating conditions on the membrane flux. In this
work, a combined ANN-RSM approach was used to model and optimize the membrane
flux based on five operating conditions, i.e., osmotic pressure difference, FS velocity, DS
velocity, FS temperature, and DS temperature. The novel methodology presented in the
paper provides an alternative for developing RSM model without performing experiments
based on the experimental design. Instead, it uses ANN model to fill in the experimental
design data for the RSM model. Initially, our published study on the combined influence
of crossflow velocity and temperature on the FO process (AL-DS orientation) was used to
model neural network. The weights of the ANN model were studied to calculate the relative
importance of the input variables on the membrane flux to investigate the sensitivity of the
model. The RSM technique requires an experimental design to work with, while ANN does
not require one [15]. Therefore, a response surface design is generated with the help of BBD
in which the responses are evaluated using the developed ANN model. The response surface
plots were used to optimize flux and study the impact of the operating conditions.
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2. Materials and Methods
2.1. Experimental Design and Data Processing

In this work, data from our previous study by Hawari et al. has been used to develop
the ANN model [30]. The experiments were conducted on SEPA CF forward osmosis cell
supplied by Sterlitech™ Co, Kent, Washington, USA. Thin Film Composite (TFC) (Hydration
Technology Innovations, Albany, Oregon, USA) was composed of polyester (PE) mesh em-
bedded on polysulfone (PSF) substrate to form the support layer. The polyamide dense active
layer of the membrane was formed by interfacial polymerization. The study investigated the
combined influence of the temperature and flow rate on the performance of the FO process.
The active layer of the membrane faced the draw solution (AL-DS or PRO mode), as this
orientation resulted in higher membrane flux. This is because, for AL-DS orientation, dilutive
external concentration polarization takes place on the DS side, whereas concentrative internal
concentration polarization (ICP) takes places at the FS side [31]. The effect of concentrative
ICP is much less severe than dilutive ICP; therefore, the flux is higher in AL-DS than in
AL-FS. Each experiment was run for 30 min to calculate the average membrane flux. The feed
solution was either distilled water or 0.086 M NaCl solution. The draw solution was a 0.5 M
NaCl solution. The experiments were run in a batch mode with no recycling of the feed or
draw solutions. The membrane flux was calculated by measuring the change in the weight
of the feed solution using Equation (1).

Jw =
(Wt − W0)

Am∆t
(1)

where Jw is the membrane flux, W0 and Wt are the initial weight and weight at time t of
the feed solution, Am is the membrane area, and ∆t is the time interval. The van’t Hoff
equation, given in Equation (2), was used to calculate the osmotic pressure of the feed and
the draw solution. The osmotic pressure difference is given by Equation (3)

π = iRTC (2)

∆π = πDS − πFS (3)

where i is the van’t Hoff coefficient, R is the universal gas constant, T is the temperature, C
is the molar concentration of the solution, and πDS and πFS are the osmotic pressure of the
draw and the feed solution, respectively.

The description of the input and output variables for the neural network model is
given in Table 2. The selection of these 5 input variables was due to the reason that only
these variables were varied in the previous study. Parameters like pH, membrane type and
orientation were kept constant for the experiments conducted in the study. The FS and
DS composition was incorporated in the form of osmotic pressure difference as this is the
driving force for the separation in FO. A total of 76 data points were extracted from the
study on which the ANN model was trained and tested (refer to Supplementary data).

Table 2. Variables for the artificial neural network (ANN) model and their ranges.

Type Variables Symbol Range Unit

Input Osmotic pressure difference ∆π 20.00–25.37 bar
Feed solution (FS) velocity vFS 11.05–29.45 cm/s

Draw solution (DS) velocity vDS 11.05–29.45 cm/s
FS temperature TFS 20–32 ◦C
DS temperature TDS 20–32 ◦C

Output Membrane flux Jw 10.0–48.0 LMH

The experimental data is divided into three sets, i.e., training, validation, and test dataset
with a ratio of 80%, 10%, and 10%, respectively. The data was non-randomized for the sake
of consistency and comparison between different developed networks for the selection of the
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best model. The data is normalized to avoid numerical overfitting due to very large or very
small weights associated with the data before the training of the ANN model [32,33]. In this
study, the data, including both inputs and outputs, were normalized in the range of −1 to 1
using the MATLAB’s ‘mapminmax’ function given by the Equation (4).

y =
2(x − xmin)

(xmax − xmin)
+ 1 (4)

where y is the normalized value of x, and xmax and xmin are the maximum and minimum
value of the data, respectively.

2.2. Artificial Neural Network Model

In this work, a multi-layer perceptron (MLP) was developed to model the FO process
to predict the membrane flux. Figure 1a shows an MLP-ANN model’s network architecture
with five input neurons and a single output used in this study. An MLP type neural
network consists of input, hidden, and an output layer of neurons. There can be multiple
hidden layers within the ANN. However, a multi-layer feedforward network with a single
hidden layer is considered to be a universal approximator [34]. Adding multiple layers
also adds complexity in the model with increased computational time and effort. A new
hidden layer shall be added in cases where the performance of the ANN is insufficient
even at high number of neurons in the single hidden layer. Analysis of the weights and its
physical significance is also possible with single hidden layered network, whereas it will
become too complex for multi-layered (hidden) model.

Figure 1. (a) The network architecture of multi-layer perceptron neural network model consisting of a single hidden layer,
five inputs, and a single output, (b) Close-up of the hidden neuron representing the evaluation of neuron’s output value.

In general, the ANN modeling consists of three phases for the three different datasets,
i.e., training, validation, and test phase. During the training phase, initially, the weights
are assigned to the neurons using a training algorithm or optimization method. For this
study, the weights and biases were initialized using the Nguyen–Widrow initialization
method [35]. Furthermore, the Levenberg–Marquardt (LM) algorithm was used to train the
network and update the weights due to its high performance and convergence speed [36–38].
The output of each neuron is related to the neurons and weights of the previous layer
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except for the input layer, as given in the Figure 1b. The value of the neuron output is
evaluated using Equation (5).

aij = f j

{n(j−1)

∑
k=1

(
ak(j−1)wki(j−1)

)
+ bij

}
(5)

where aij and bij are the output and bias of the ith neuron in the jth layer, ak(j−1) and
wki(j−1) are the output and the weight of neuron from the previous layer respectively, n(j−1)
is the neurons in the hidden layer (j − 1), and f j is the activation or transfer function of the
jth layer.

The activation or transfer function adds non-linearity to the neural network [39].
The most commonly used activation functions are logistic sigmoid (log-sigmoid), hyper-
bolic tangent sigmoid (tan-sigmoid), and pure linear functions (purelin). The log-sigmoid
function has an output range from 0 to 1, whereas it is −1 to 1 for the tan-sigmoid function.
In this study, the output layer was set to purelin function (−∞ to ∞), while the hidden
layer switched between log-sigmoid and tan-sigmoid activation function in order to find
the best network.

During the learning phase, the weights are constantly updated by minimizing the
error between the targeted and predicted output variable. This process is called supervised
learning and goes on until the required criterion is met, i.e., minimum error, number of
validation checks, etc. The performance of the trained network can be calculated using
several indicators given by Equations (6)–(10).

Sum square error (SSE) = ∑N
i=1

(
yp,i − yt,i

)2 (6)

Mean square error (MSE) =
1
N ∑N

i=1

(
yp,i − yt,i

)2 (7)

Root mean square error (RMSE) =

√
1
N ∑N

i=1

(
yp,i − yt,i

)2 (8)

Determination coefficient (R2) = 1 −
∑N

i=1
(
yp,i − yt,i

)
∑N

i=1
(
yp,i − ym

) (9)

Adjusted R2 = 1 −
(
1 − R2)(N − 1)

N − k − 1
(10)

where yp,i and yt,i are the predicted and target values of membrane flux, respectively; N is
the total number of data points; ym is the mean of the actual value of water; k is the total
number of input variables.

The validation phase of the ANN modeling helps in avoiding the over-training of the
network. If the trained network continues to perform well, but at the expense of decreasing
performance when subjected to the validation dataset, it means that the model is over-
fitted and may not be able to generalize well. Lastly, the test phase of the ANN modeling
begins where the final trained network is subjected to unseen data to check its generalized
prediction capability. The ANN modeling was implemented using MATLAB and Neural
Network Toolbox 11.1, The MathWorks, Inc., Natick, Massachusetts, United States.

The connection weights of the neural network represent the link between the input
(cause) and output (effect). Therefore, the relative importance (RI) of each input variable is
calculated using the weight partitioning methodology (Equation (11)) to demonstrate the
sensitivity of the ANN model [40,41].

RIm% =
∑nh

j=1

{(
imj

∑nm
k=1 ikj

)
Oj

}
∑nm

l=1

[
∑nh

j=1

{(
imj

∑nm
k=1 ikj

)
Oj

}] × 100 (11)
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where m is the number of input neurons, nh the number of hidden neurons, imj is the
absolute value of connection weights between the input m and hidden neuron j, and Oj is
the absolute value of connection weights between the hidden neuron j and the output.

2.3. Response Surface Methodology

Response surface methodology (RSM) is an optimization technique that is used to
determine the combination of input factors that minimizes or maximizes the objective
function [15]. Combined with design of experiments (DoE), RSM second-order polynomial
regression models can predict the performance of any system. Furthermore, it can be used
to determine the relative significance of multiple factors in the presence of complex interac-
tions between them using minimal experimental design [26]. In this study, Box-Behnken
Design (BBD) was implemented to generate the design to investigate the performance of the
FO process. The advantage of the BBD method is that it does not include the combinations
where all factors are either at their highest or at their lowest simultaneously [23]. This is
useful to avoid the extreme conditions in the design. The developed ANN model is used to
evaluate the membrane flux for the 5 factors and 3 level design resulting from BBD. There-
fore, the discrete design space from ANN is converted to a continuous design space using
RSM. The BBD generated a set of 46 data points using the lower and upper levels for each
input variable are given in Table 2. The general coded form of the second-order polynomial
equation resulting from the response surface regression is given by Equation (12) [42].

Ŷ = β0 +
n

∑
i=1

βiXi +
n

∑
i=1

βiiX2
i +

n

∑
i<j

βijXiXj (12)

where Ŷ is the predicted variable, Xi denotes the input variable, β0, βi, βii, βij refers to the
regression coefficients, and n is the number of input variables. Minitab® (State College,
PA, USA) was used to create the Box–Behnken design and the RSM. The response surface
methodology was implemented using Minitab®.

3. Results
3.1. Neural Network Model Selection and Performance

Several networks were trained to model the FO process using osmotic pressure dif-
ference between the feed and draw solution, flow velocity of the feed and draw solution,
and temperature of the feed and the draw solution as input parameters, whereas mem-
brane flux as an output parameter. Single hidden layered networks with either log-sigmoid
or tan-sigmoid as activation functions having neurons ranging from 1–20 were trained
separately. For this study, the performances of the networks are compared using mean
squared error (MSE). The selection criteria for choosing the optimum network was based
on selecting the model with the least training error without compromising its efficiency
in the validation and testing phases. Figure 2a shows the MSE in all three phases of
trained models at hidden neurons from 1 to 20 and log-sigmoid as the activation function.
The highest MSE was observed for the model with 7 hidden neurons, whereas the error
was relatively low for hidden neurons 13 or more. Similarly, Figure 2b shows the MSE
in all three phases of trained models at hidden neurons from 1–20 and tan-sigmoid as
the activation function. An abrupt increase in MSE was observed for the model with
9 hidden neurons in each phase. It is not possible to determine the exact cause of high
MSE at specific number of neurons in the hidden layer. The MSE does not follow a specific
trend with respect to the increasing number of neurons in the hidden layer. However,
in general, MSE is high at very low number of neurons and it improves as number of
neurons or hidden layers are added to the network but to a specific limit. The limiting
factor is sometimes the over-training of the network, which may again lead to high MSE.
Due to this reason, a range of 1–20 neurons is visualized in order to determine the best
possible model (lowest MSE) in the training phase without comprising its efficiency in
validation and testing phases. The model with 10 hidden neurons showed one of the least
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training phase MSE, as well as high performance in the validation and testing phase. This
criterion allowed for the development of a high-performance network as well as a model
with generalization capabilities.

Figure 2. Simulation summary for selecting the optimum network using mean squared error (MSE) at
different number of hidden neurons and activation function as (a) log-sigmoid, and (b) tan-sigmoid.

The network topology for the optimum model was 5-10-1 (Input-Hidden Neuron-
Output). The evaluation of MSE during the training process can be visualized for all three
datasets in Figure 3. An epoch marks the updating of weights during the training phase.
At 20 epochs, the best validation performance was reached and, therefore, accepted as the
best performance for this network architecture. The continuous training beyond 20 epochs
showed a decrease in training phase MSE. However, the validation and testing phase MSE
was increasing. This means that the network was over-training beyond 20 epochs resulting
in a low generalization efficiency. It was also interesting to see that the MSE was higher for
the validation phase than the test phase, which did not participate in the training process.
However, it is purely coincidental that the MSE is higher for validation and less for the test
phase. The vice versa can be seen in Figure 2b (MSE higher for test phase and lower for
validation phase) for the case of 6, 13, 16, 17, and 19 number of neurons in the hidden layer.
Possible reasons for this phenomenon may include the type of data used in each phase that
is training, validation and testing.
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Figure 3. Mean squared error (MSE) evolution of all phases for the optimum network.

Table 3 shows the MSE, RMSE, SSE, and R2 for the individual and overall dataset of
the optimum model. The R-value, correlation coefficient, is obtained from the MATLAB
code that can be squared to calculate the coefficient of determination (R2), which is a tool
to determine the ‘goodness of fit’ between the target and predicted variables. The R2 of
training, validation, test, and the overall dataset was 0.99906, 0.99295, 0.99776, and 0.98036,
respectively, where a value of 1 means a perfect fit. This means that about 99% of the
variability in each phase between target and predicted variable can be explained by the
ANN model.

Table 3. Overall and individual phase performances of the optimum artificial neural network model.

Performance
Dataset

Training Validation Test All

Mean squared error (MSE) 0.13268 1.13577 0.32092 0.24241
Root mean squared error (RMSE) 0.36426 0.60354 0.56649 0.49235

Sum of squared error (SSE) 8.22636 7.95036 2.24641 18.42314
R-value 0.99953 0.99647 0.99888 0.99013

R2 0.99906 0.99295 0.99776 0.98036
Adjusted R2 0.99898 0.95771 0.98657 0.97895

Figure 4 shows the regression analysis with its equation in each phase between target and
predicted output. The training and validation dataset simulations, presented in Figure 4a,b,
respectively, are involved in the training of the ANN model. The correlation coefficient is
0.99953 for training and 0.99647 for the validation phase. The two phases consisted of data
points distributed over the range of the input variables to minimize the extrapolation as
much as possible. This is because the ANNs have proven to be a useful tool for interpolation.
However, extrapolation may lead to inaccurate results [14,37]. The test phase presented in
Figure 4c shows excellent agreement between the predicted and targeted output, despite
being unseen data subjected to model. The R-value, in this case, was found to be 0.99888.
Figure 4d presents regression over the predicted and targeted variables of the complete
dataset, including all three datasets with a high correlation coefficient of 0.99913.
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Figure 4. Comparison between the targeted and predicted output values in (a) training phase, (b)
validation phase, (c) test phase, (d) overall dataset, of the artificial neural network (ANN) model.

3.2. Neural Network Sensitivity Analysis

In our previous study, an ANN model was developed with nine input variables to
predict the membrane flux, but the weights associated with the network were not analyzed
for their contribution towards the output [20]. In this paper, the relative importance of each
input variable was assessed on the ANN model output (membrane flux) using a sensitivity
analysis approach that employs the partitioning of the weights. The weights and biases for
the optimal ANN model are given in Table 4. It is to be noted that these weights are for the
normalized input and output.

The relative importance percentage for the ANN model inputs was calculated using
Equation (11) and presented in Figure 5a. The order of importance was determined to be
osmotic pressure difference > FS velocity > DS velocity > DS temperature > FS temperature.
According to the calculations, it is noted that the relative importance of the osmotic pressure
difference, FS velocity, and DS velocity is comparable. The FS temperature has the least
effect on the membrane flux, whereas osmotic pressure difference has the highest impact.
Pardeshi et al. analyzed the percentage contribution of each input on the ratio of membrane
flux to reverse salt flux using F-test value from ANOVA [19]. The study revealed the contri-
bution order of DS temperature > FS velocity > DS velocity > FS temperature presented in
Figure 5b. The osmotic pressure difference was not included in their study. The impact
of both velocities and FS temperature was found to be comparable. However, the DS
temperature showed the highest impact on the reverse solute flux selectivity, contrary to
the analysis in this study. The difference in the sensitivity analysis can be the result of the
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dispersion of the data [43]. The dispersion of the data may induce a different impact of the
input variables on the response variable.

Table 4. Optimal values of weights and biases obtained in the training phase.

Input weight Matrix, IW IW{1,1} =

{Destination: Hidden layer 3.4157 −0.5880 0.9954 1.1900 −1.4431
Source: Inputs} 2.7786 −3.3672 −1.0787 −1.5737 0.0933

−1.1643 −2.6092 2.8253 −0.3323 1.6905
3.1871 3.5976 2.7567 −1.8359 0.1077
0.1369 0.3260 4.0058 −1.1023 −2.7599
−3.7725 −0.1537 0.1178 −0.1366 −0.5589
−3.3965 −0.5918 2.1567 4.4484 2.0689
−1.0245 4.2560 −0.8856 0.8582 −1.1337
0.0484 1.1973 −1.7707 0.2235 −0.2009
0.4607 2.5649 −0.4886 0.0249 1.1392

Bias vector, b b{1} =
{Destination: Hidden layer} −1.2832

−1.4174
1.4586
−1.2827
−2.6367
1.5104
−1.2738
0.1608
−0.5107
2.9615

Layer weight matrix, LW LW{2,1} T

{Destination: Output layer 0.5896
Source: Hidden layer} −0.2121

0.5402
0.1981
0.0384
−0.3912
−0.0861
−0.1507
0.7699
0.2288

Bias scalar, b b{1} = − 0.0714
{Destination: Output layer}

T transpose of the matrix.

Figure 5. The relative importance of the FO parameters (a) On membrane flux based on ANN weights of the optimal model
in this study, (b) On membrane flux to reverse salt flux ratio based on analysis of variance (ANOVA) from a published study
by Pardeshi et al. [19].
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3.3. Application of Response Surface Methodology

In this work, BBD was used to investigate the optimal conditions of the FO process by
building response surface plots. The range of these input factors was the same as given in
Table 2. The design parameters and corresponding responses are shown in Table 5. The 25%
increase in osmotic pressure leads to an increase in the value of flux by one order of magni-
tude (std. order 1 and 2 in Table 5). This is also true because osmotic pressure is the driving
force for the separation in the forward osmosis process. It also corresponds to one of the
findings of the work, which is that the osmotic pressure has the highest impact on the value
of the flux. The model shows high predictive efficiency but still comes with a small error that
may be translated to a much bigger error if extrapolating. The response (membrane flux) was
calculated using the optimal ANN model at the BBD specified conditions. The implementa-
tion of RSM resulted in a second-order polynomial regression equation whose uncoded form
is written as:

Jw = 905 − 86.2∆π +0.97vFS − 4.36vDS + 4.60TFS − 2.20TDS + 1.831∆π2 − 0.0179v2
FS + 0.0299v2

DS
−0.0272T2

FS + 0.0414T2
DS − 0.0190∆πvFS + 0.2859∆πvDS + 0.037∆πTFS + 0.157∆πTDS

+ 0.0264 vFSTFS − 0.0778 vFSTFS + 0.0867vFSTDS + 0.0076 vDSTFS − 0.1467vDSTDS

− 0.0875 TFSTDS

(13)

Table 5. Box-Behnken design and response (membrane flux) from the optimum artificial neural network model.

StdOrder
Factors Response

Osmotic Pressure
Difference (bar)

Feed Velocity
(cm/s)

Draw Velocity
(cm/s)

Feed
Temperature (◦C)

Draw
Temperature (◦C)

Membrane
Flux (LMH)

1 20.0 11 20 26 26 4.7
2 25.0 11 20 26 26 41.0
3 20.0 29 20 26 26 18.1
4 25.0 29 20 26 26 52.8
5 22.5 20 11 20 26 11.1
6 22.5 20 29 20 26 21.8
7 22.5 20 11 32 26 14.5
8 22.5 20 29 32 26 26.8
9 22.5 11 20 26 20 16.1
10 22.5 29 20 26 20 24.9
11 22.5 11 20 26 32 3.4
12 22.5 29 20 26 32 30.8
13 20.0 20 11 26 26 20.8
14 25.0 20 11 26 26 41.6
15 20.0 20 29 26 26 7.8
16 25.0 20 29 26 26 54.4
17 22.5 20 20 20 20 10.9
18 22.5 20 20 32 20 23.2
19 22.5 20 20 20 32 17.8
20 22.5 20 20 32 32 17.5
21 22.5 11 11 26 26 18.6
22 22.5 29 11 26 26 17.7
23 22.5 11 29 26 26 11.4
24 22.5 29 29 26 26 19.0
25 20.0 20 20 20 26 14.5
26 25.0 20 20 20 26 45.1
27 20.0 20 20 32 26 14.0
28 25.0 20 20 32 26 46.8
29 22.5 20 11 26 20 15.0
30 22.5 20 29 26 20 35.5
31 22.5 20 11 26 32 29.1
32 22.5 20 29 26 32 18.0
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Table 5. Cont.

StdOrder
Factors Response

Osmotic Pressure
Difference (bar)

Feed Velocity
(cm/s)

Draw Velocity
(cm/s)

Feed
Temperature (◦C)

Draw
Temperature (◦C)

Membrane
Flux (LMH)

33 20.0 20 20 26 20 12.8
34 25.0 20 20 26 20 37.8
35 20.0 20 20 26 32 12.4
36 25.0 20 20 26 32 46.7
37 22.5 11 20 20 26 3.3
38 22.5 29 20 20 26 19.8
39 22.5 11 20 32 26 17.7
40 22.5 29 20 32 26 17.4
41 22.5 20 20 26 26 17.6

The significance of the response surface model was statistically analyzed using ANOVA,
and the results are presented in Table 6. The model F-value obtained was 19.85, where the
p-value was smaller than 0.001. Moreover, the R2 value of 0.9408 and the adjusted R2 of
0.8934 was obtained. This means that 94.08% deviations can be explained by the RSM model,
and the high value of adjusted R2 showed that input factors considered in this study were
significant. All these indicators showed that the RSM model is statistically acceptable.

Table 6. Analysis of variance (ANOVA) table for the response surface modeling.

Source DF a SS b MS c F-Value p-Value R2 Adj. R2

Model 20 6919.03 345.95 19.85 p < 0.001 94.08% 89.34%
Residual 25 435.72 17.43

Total 45 7354.74
a Degree of freedom. b Sum of squares. c Mean squares.

Figure 6 shows the response surface plots for the prediction of membrane flux using
the five input variables. For each plot, three of the input values were held constant
(range average) while variations occur in the other two. Figure 6a–d shows the impact
of osmotic pressure difference and the other input variables on the membrane flux. In all
the cases, the increase in the osmotic pressure difference showed a positive influence on
the membrane flux. This is true as the driving force for the FO process is the osmotic
pressure difference. Moreover, the highest membrane flux (up to 55 LMH) was obtained
at the maximum osmotic pressure difference of 25 bar and the DS velocity of 29 cm/s,
as shown in Figure 6b. Similarly, the increase in FS velocity also showed a positive impact
on the flux, as seen in Figure 6a,e–g. The impact of FS velocity was more significant at
low FS temperature than at high FS temperature and vice versa for the DS temperature.
A comparison between the variation of both FS and DS velocities in Figure 6e showed
that the simultaneous increase in both velocities would result in a high membrane flux.
At DS velocity of 11.0 and 29.0 cm/s, the change FS velocity seemed to have a proportional
response towards the membrane flux. It was interesting to note that, at a fixed FS velocity
of 11.0 cm/s, increasing DS velocity first resulted in a decrease and then an increase in
the membrane flux. While at a fixed FS velocity of 29.0 cm/s, the increase in DS velocity
results in an increase in the membrane flux. This could mean that the prediction of the
membrane flux is more sensitive towards the FS velocity. The DS velocity showed mixed
influence towards the membrane flux. Figure 6b shows the decrease in membrane flux
unify either membrane flux or membrane flux at 20.0 bar osmotic pressure difference while
an increase in flux at 25.0 bar. Similarly, Figure 6i shows the increase of membrane flux with
the increase in DS velocity at low DS temperatures while DS velocity had a negative impact
on the flux at high DS temperature. Figure 6h captures the trend of membrane flux behavior
for the change in DS velocity at low and high FS temperature. The membrane flux initially
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decreased until the DS velocity became higher than FS velocity, where the flux started
to increase. This means that for the AL-DS orientation, the positive difference between
DS and FS velocity favored the membrane flux. The FS temperature positive influence
when compared with variating osmotic pressure difference and DS velocity in Figure 6c,h,
respectively. Figure 6f shows the positive impact on the membrane flux with the increase in
FS temperature at 11 cm/s FS velocity and a slight decrease in flux at 29 cm/s FS velocity.
The impact of variation for both FS and DS temperature is given in Figure 6j. The two
possible scenarios to obtain high membrane flux is either high DS temperature and low FS
temperature or low DS temperature and high FS temperature. High DS temperature favors
the osmotic pressure difference, as seen from the van’t Hoff equation (Equation (2)) and
therefore resulting in a higher membrane flux at 20 ◦C FS temperature. However, a high FS
temperature also had a positive influence on the membrane flux. This can be explained
with the thermal-osmosis phenomena in which water moves from the warmer side to the
cooler side [44]. Since the water permeates from the feed side to the draw side, the increase
in FS temperature at 20 ◦C DS temperature results in an increase in the membrane flux.

Figure 6. Cont.
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Figure 6. Response surface plot of the predicted membrane flux Jw as a function of (a) ∆π and vFS,
(b) ∆π and vDS, (c) ∆π and TFS, (d) ∆π and TDS, (e) vFS and vDS, (f) vFS and TFS, (g) vFS and TDS,
(h) vDS and TFS, (i) vDS and TDS, (j) TFS and TDS.

The results from the RSM study identified the optimum operating conditions for
maximizing the membrane flux. Moreover, it enabled the study of the impact of each input
parameter on the response (flux). The impact of the input variables on the membrane flux
was in agreement with the sensitivity analysis conducted on the ANN model using its
weights, as Figure 6 showed the highest impact on the flux resulted from the osmotic pressure
difference, FS velocity, and DS velocity. Furthermore, a sensitivity analysis was only able to
provide the relative importance of the variable, whereas RSM also identified whether the
variable had a positive or negative influence on the membrane flux.

4. Conclusions

In this study, a combined ANN-RSM approach was used to model and optimize the
membrane flux for the forward osmosis process. First, the ANN model was built using a
published study in which the velocity and temperature of both FS and DS were investigated
simultaneously. RSM model was built with the help of the Box-Behnken design in which
responses were evaluated using the ANN model. Some of the conclusions drawn from this
study are as follows:

• A high-performance ANN model was established using the published study with an over-
all R2 of 0.98036, which was validated and tested with the help of the experimental data.

• The weights of the ANN model were analyzed to investigate the sensitivity analysis of
the model. The osmotic pressure difference, FS velocity, and DS velocity were found
to be the highest and almost equally important operating conditions, which has an
effect on the membrane flux.

• The RSM model (R2 = 0.9408) was used to optimize and further study the impact
of the variables in terms of positive or negative influence on the membrane flux.
The increase in osmotic pressure difference and FS velocity were always found to
have a positive impact on the membrane flux, while the other variables had a mixed
influence. The highest membrane flux (55 LMH) based on the response surface plots
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was obtained for the case of 25 bar osmotic pressure difference, 29 cm/s DS velocity,
20 cm/s FS velocity, 26 ◦C of both FS and DS temperature.

The study showed that ANN is a powerful tool to model with incomplete or missing
data. Moreover, it can be combined with popular techniques such as RSM to predict and
optimize the response over a range of operating conditions. In the future, the study can
be further improved by the addition of specific energy consumption and reverse salt flux,
which will help further optimize the process by minimizing the two variables.

Supplementary Materials: The following are available online at https://www.mdpi.com/2077-0375/
11/1/70/s1, Excel sheet 1: Training_data, Excel sheet 2: Validation_data, Excel sheet 2: Testing_data.
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