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A B S T R A C T   

This study characterized and assessed three different process water (PWWs) (S-1, S-2, and S-3) from oil and gas 
production in Qatar. The wastewater generated in various processing stages contains many harmful components 
including polyaromatic hydrocarbons, phenol, heavy metals, ammonia, and other hydrocarbons and non- 
hydrocarbons. The results revealed that S-2 had higher pH (8.5) followed by S-3 (8.3) and S-1 (7.8). Lastly, S- 
1 reported the highest concentration of gasoline range organics (GRO) and extractable petroleum hydrocarbons 
(EPH), and polycyclic aromatic hydrocarbons (PAHs) followed by S-2 and S-3. In addition, biological oxygen 
demand (BOD) was the highest in S-1 44,300 mg/L followed by S-2 and S-3 26,300 and 14,600 mg/L, respec-
tively. Moreover, salinity was also the highest in S-3 at 260 ppt, followed by S-2 at 38.2 ppt and S-1 at 38.9. 
Overall, S-1 reported the highest concentration of GRO, EPH, and all PAHs followed by S-2 and S-3. Additionally, 
the PWWs consisted of high organic containing wastes. The results also revealed that all three PWWs were 
enriched with zinc and iron, and sixteen different hydrocarbon compounds were identified, amongst which 
acenaphthene, acenaphthylene, fluorene, anthracene, phenanthrene, benzo(a)anthracene, and pyrene were 
dominating in all three samples.   

1. Introduction 

The oil and gas sector is a huge complex industry that has three key 
stages; upstream, midstream, and downstream to generate valuable 
petroleum products [1]. The upstream process involves the exploring of 
natural gas fields or crude oil fields and the drilling of the wells to 
recover oil and gas. The midstream process includes the transporting, 
storage, and various processes of oil and gas. When oil and gas reserves 
are discovered or recovered, they should be transported to a refinery 
that may be in a different geographic region. Transportation includes all 
transporting activity from tanker ships to pipelines and trucking fleets. 
The downstream process refers to transforming raw materials including 
refining crude oil and natural gas into valuable petroleum products such 
as diesel oil, petrol, gasoline, asphalt, liquefied petroleum gas (LPG), 
heating oil, and others [2]. The downstream process can be considered 
as the major source of commercialization for a country. Consequently, 
due to the growth in population and worldwide economic development, 
a significant demand for petroleum products has also seen exponential 
growth. It is also expected that by 2035, the global energy demands will 
increase by 37% from the current level with a significant portion of the 

energy-dependent on petroleum products [3]. Oil and gas production 
processes consume and generate large quantities of water, which results 
in the production of significant amounts of petroleum wastewaters 
(PWWs) [4]. The use of water by the energy sector may vary depending 
on the type of fuel, the extraction method, the level of processing, and 
the climate of the location under development. On the other hand, 
limitations on water availability affect the selection of technology in the 
industry, site selection, and other phases of resource development. It has 
been estimated that amount of PWWs produced is around 0.4 to 1.6 
times the crude oil produced [5]. It is noteworthy that although many 
processes of the oil and gas industry use water, not each process 
necessarily required raw or treated water. A certain amount of the used 
water within the oil and gas refinery can be cascaded and continually 
reused or recycled within the same plant, while a large amount requires 
management [6]. Hence, the petroleum sector faces significant chal-
lenges due to a lack of water resources and concerns about environ-
mental pollution [7]. From the point of view of sustainable development 
in such an industry, the connection between water and petroleum en-
ergy generation is now widely established. To aid the petroleum sector 
development while also protecting the environment, well-developed 
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water management and wastewater treatment technologies are critically 
required [8]. The industrial processes should be innovative, well 
balanced, and optimized to achieve efficient and sustainable water re-
sources use and to eliminate the negative impact on the environment by 
the treatment system. Radelyuk et al. [8] described sustainable water 
use in the industry through three pillars and their interaction: social, 
economic, and environmental. Economic factors are the industrial pro-
cesses that use efficient and cost-effective technologies to treat the 
process water and reuse it in a safe manner, while the environmental 
factors are related to the quality and quantity of used water and the 
wastewater disposal site. The interaction between economic and envi-
ronmental factors allowed reducing the negative impact of oil industrial 
activities on water bodies and increasing the water viability for the 
consumer. The social factor is public health and safety, which are pri-
marily regulated by the government [8]. The sources of PWWs are 
generated from the production activities such as vapor condensation, 
spent caustic, and process water. In addition, PWWs can be generated 
from a cooling tower, surface runoff, or spilled petroleum products [9]. 
These different types of PWWs can be combined or segregated during 
treatment practices based on the water management strategies [7]. 
These different sources of water can vary in their constituents and 
characteristics. PWWs generated by refineries are usually highly 
concentrated with hydrocarbons and other major constituents of pe-
troleum. However, the amount and the quality of the different types of 
PWWs rely on the time, location, human activities, and governmental 
laws and regulations [10]. Consequently, the composition and the 
quantity of the hazardous pollutants in the PWWs can extensively vary 
based on the operation practices, the type and efficiency of the treat-
ment and its processing equipment, and the operating regulation pro-
tocol employed for minimization of wastes [11]. Characterization of 
PWWs parameters is useful in determining wastewater management 
alternatives in the petroleum industry sector through designing the best 
collection and treatment practices, reuse options, and environmental 
management acts. Additionally, these data are beneficial to building up 
further investigations of industrial wastewater’s impact on the envi-
ronment and its contamination characteristics including pollutants of 
emerging concern and toxicity [5,12,13]. The refined oil features can be 
varied from one to geographic site. Several chemical, physical, and 
biological processes, collectively called weathering affect the physico-
chemical properties of the PWWs. Qatar is regarded amongst the top 
three countries to have the largest gas reserves in the world, and is 
described by its arid area and weather [6]. Since the 1990s, Qatar has 
undergone a drastic transformation into a natural gas-driven emerging 
economy as a result of carefully constructed plans created and imple-
mented in close collaboration with potential natural gas suppliers, 
technology providers, and investors [4]. Qatar produced 75.354 million 
tons of oil equivalent (mtoe) of crude oil [14]. 

This paper presented the physiochemical properties of three PWWs, 
which were collected from oil and gas industry sites in Qatar and are 
denoted as S-1, S-2, and S-3. To point out the potentialities of facing the 
continuous increase of the discharge of PWWs by their recycling after 
treatment, the main objective of this study is (i) to identify the possible 
sources of the collected PWWs (ii) characterization of the collected 
PWWs, and (iii) to incorporate a brief case study for characterizing one 
of the PWWs in Qatar. This study briefly emphasizes the sources of 
various wastewater streams and highlights some of the main parameters 
that are present and used to evaluate the quality of the PWWs, which 
helps in determining treatment strategies and the viability of recycling 
or reusing the wastewaters. 

2. Sources of wastewater streams in the oil and gas industry 

Generally, oil and gas industry processes are highly dependent on 
water supply. However, the quantity of water required is dependent on 
various factors including the complexity of the operation, size of the 
plant, oil type, and the products and chemicals used for treatment. 

During the refining process, a large amount of wastewaters is produced 
which is commonly known as process water [15]. Since a large amount 
of water is required during the refinery process, thus a significantly high 
volume of wastewaters is generated which can reach up to 0.4–1.6 times 
the amount of crude oil process [16]. In addition, the process water 
comes into direct contact with hydrocarbons, causing pollution by 
certain hydro-soluble oil components. Thus, process water can be 
divided into several major groups. Table 1 summarizes some of the 
major groups of wastewater streams that are generated in a typical pe-
troleum refinery. 

From Table 1, it can be deduced that it is an obligation to identify the 
source or stream of the generated wastewater in the oil and gas industry 
to understand the types of hazardous pollutants that may be present, 
which can aid in designing the best treatment practices, reuse options, 
and environmental management acts [27]. For instance, sour water 
contains compounds and substances that damage the biological treat-
ment units [28]. 

2.1. Petroleum wastewater quality and disposal standards 

Petroleum effluents are composed of numerous amounts of hazard-
ous compounds including organic pollutants and inorganic pollutants 
such as petroleum hydrocarbons and heavy metals [29]. The charac-
teristics of PWWs depend on various factors including types of refined 
oil, the operation conditions, and the sources of the PWWs pollutants 
[30,31]. The PWWs parameters used to characterize the water quality 
are mainly total dissolved solids (TDS), total suspended solids (TSS), 
biochemical oxygen demand (BOD), chemical oxygen demand (COD), 
total petroleum hydrocarbons (TPH), oil and grease (O&G), total 
organic carbon (TOC) and total metals and ions such as ammonia, ni-
trates, sulfides, and others [3,32]. Other scientists also consider other 
specific parameters such as cadmium, lead, and mercury as well as 
certain organics like cyanides, benzene, toluene, ethylbenzene, and 
xylene (BTEX), as well as inorganics such as phosphates, chlorides, and 
other micropollutants. In some cases, physical parameters of the PWWs 
are used as an indicator of the water quality such as pH (acids, alkalis), 
turbidity, color, and odor. Various environmental organizations such as 
the United States Environmental Protection Agency (USEPA) and the 
World Bank Group (WBG) have set regulatory limits for the disposal of 
treated petroleum effluents to surface water, marine water, and agri-
cultural fields due to the high concentrations of different contaminants 
in PWWs and their potential toxicological implications [33,34]. 

2.1.1. pH 
pH is one of the essential parameters, which directly affects the 

PWWs’ treatability. It also has an influence on the mobility of pollutants 
such as heavy metals’ leachability. The pH value of PWWs reveals the 
proteinaceous matter composition and ammonia compounds emission. 
The normal pH range to use wastewater for irrigation purposes is be-
tween 6.5 and 8.4. A small change in pH can lead to a change in the 
concentration of certain substances in the surrounding environment 
[35]. Król et al. [36] stated that the solubility of anions increases in 
alkaline waters while the solubility of cations increases in acidic waters. 
In addition, acidic effluents impact the dynamics of the bacterial com-
munity in the environment by lowering the bacterial diversity and 
causing a shift in their populations [37]. The pH level in PWWs from gas 
operations usually is more acidic (ranging between 3.5 and 5.5) than 
PWWs from oil field operations (ranging between 6 and 7) [18]. 

2.1.2. Total dissolved solids (TDS), electric conductivity (EC), and salinity 
TDS represents all dissolved matter in PWWs including inorganic 

salts and organic matter. EC measures the ability of a liquid to conduct 
an electric charge, which depends on the concentration and strength of 
the dissolved ions. Hence, EC is correlated to TDS, and both are in-
dicators of salinity level [38]. Salinity represents the salt in PWWs, 
which is an inorganic matter that is typical of the concept of TDS. Ahmad 

H.I. Eldos et al.                                                                                                                                                                                                                                  



Case Studies in Chemical and Environmental Engineering 6 (2022) 100210

3

et al. [39] reported the typical TDS concentration in produced water 
between 1000–400,000 mg/L. Additionally, Al-Ghouti et al. [17] stated 
that the salinity of petroleum effluents range from a few part per 
thousand (ppt) to 300 ppt, which is much higher than the salinity of 
seawater. High TDS indicates hard water that leads to scaling and 
fouling in the treatment system, which consequently reduces the treat-
ment performance and increases the overall maintenance costs [8]. 

2.1.3. Total suspended solids (TSS) 
TSS refers to non-soluble or suspended solids in effluents such as 

sediments, sand, and biological matter [40]. The range of TSS in pe-
troleum effluents largely varies based on the streams and pollutants 
present in the PWWs. Typically, the TSS concentrations in petroleum 
effluents range from 5 mg/L to 5800 mg/L [18]. 

2.1.4. Oil and grease (O&G) 
The term O&G parameter in PWWs refers to a broad range of 

chemical compounds such as fats, wax, and oils from petrochemical 
sources. The concentration of dispersed O&G in PWWs is an important 
parameter to evaluate water quality and safety [41]. Releasing PWWs 
with a high concentration of O&G can highly impact the surrounding 
habitat and organisms by coating plants and animals and suffocating 
them through oxygen depletion [42]. Kusworo et al. [43] reported the 
range of dissolved O&G in petroleum wastewaters, to be between 500 
mg/L to 3000 mg/L. Generally, the concentrations of O&G in petroleum 
effluent vary from 40 mg/L to as much as 9000 mg/L. The maximum 
limit of O&G in discharge wastewater is 5 mg/L [42]. 

2.1.5. Total organic carbon (TOC), biochemical oxygen demand (BOD), 
and chemical oxygen demand (COD) 

The organic intensity of any petroleum effluent is generally 
measured in three ways, namely TOC, COD, and BOD. TOC in petroleum 
effluents represents the organic matter from petroleum hydrocarbons 
and biological sources [44]. It involves the dissolved and particulate 
organic carbon forms. Hence, high TSS can affect the reliability of TOC 
as it reduces the homogeneity of the WW [45]. COD represents the ox-
ygen demand required to oxidize all the OM in the PWWs. COD involves 
the oxygen demand required for biodegradable and non-biodegradable 
substances. In other words, COD measures the amount of organic com-
pound, which will be oxidized, and TOC measures the amount of carbon 
bound to organic substances [46]. Consequently, there is a directly 
proportional relation between TOC and COD. BOD represents the oxy-
gen required for the biological decomposition of the organic matter in 
PWWs by microorganisms. The greater the organic contamination in the 
sample, the greater oxygen amount will be needed by the organisms, the 
lower PWWs quality, with the consideration of the biodegradability of 
the organic matter. BOD is an indirect measurement of the organic 
pollution in WW [47]. However, BOD does not represent all the OM 
present in the PWWs but only the biochemically degradable OM. 

Table 1 
Different wastewater streams generated in the oil and gas industry.  

Type of PWWs Description Type of contaminants present 

Produced 
water 

Produced water is the largest 
oilfield wastewater produced 
during the oil extraction 
process or deep well injection 
process [17]. 

The most common 
contaminants present in 
produced water are total 
soluble solids (TSS), chemical 
oxygen demand (COD), total 
organic carbon (TOC), 
hydrocarbons, and heavy 
metals [18]. 

Desalter 
effluent 

A desalter in an oil refinery is 
usually the first process where 
the salt is removed from 
heated crude oil by washing 
with feed water and additive 
chemicals. The water 
generated from the washing 
step to desalt the crude oil is 
the desalter effluent [19]. 

The most common 
contaminants present in 
desalter water are TSS, COD, 
hydrocarbons, Ammonia, and 
sulfides. Their concentrations 
are varied depending on the 
type of feed water in the 
desalter unit. 

Stripped sour 
water 

Steam is utilized in various 
refinery operations as a 
stripping medium in 
distillation as well as a diluent 
in catalytic cracking and other 
processes to lower the 
hydrocarbon partial pressure. 
The steam condenses into an 
aqueous phase, which is then 
removed as sour water. 
Because this steam condenses 
in the presence of 
hydrocarbons containing 
hydrogen sulfide (H2S) and 
ammonia (NH3), these 
constituents are absorbed into 
the sour water at amounts that 
usually need treatment [21]. 

The most common 
contaminants present in sour 
water are COD, phenols, 
cyanide, sulfides, and 
ammonia. The composition of 
stripped sour water highly 
depends on the production 
source of sour water in the 
refinery [20]. 

Tank bottoms 
water 

Water and sediments are 
commonly found in raw crude 
oil when it is collected up 
when oil is recovered from 
wells. This is referred to as 
bottom sediment and water. 
When oil is stored in huge 
tanks, the bottom sediment 
and water settle to the bottom 
and must be regularly 
removed to avoid 
accumulation and end up in a 
loss of storage capacity. 
Usually, these bottom tanks’ 
sludge is transferred for 
separation or to the 
wastewater treatment units 
[22]. 

The common contaminants 
present in tank bottoms water 
are COD, hydrocarbons, TSS, 
and sulfides. High COD and 
organic contents are usually 
found in water as it is in direct 
contact with raw crude oil. 

Spent caustic 
effluent 

Spent caustic is produced 
when acidic components from 
hydrocarbon streams are 
extracted. These acidic 
compounds include residual 
H2S, organic acids, phenol, 
cyanide, and CO2 [23]. 

The common contaminants 
present in spent caustic are 
sulfides, phenols, cyanide, H2S, 
and RSH (mercaptans). 
Depending on the 
manufacturing process, spent 
caustic effluents vary in their 
composition [23]. 

Condensate 
blowdown 

Condensate can be lost in oil 
refineries from boiler systems, 
steam generators, or steam 
traps. A portion of the 
condensate is removed from 
the system to maintain the 
acceptable level of dissolved 
solids [24]. 

The volume of generated 
process condensate usually is 
the lowest among all types of 
wastewater streams in a 
refinery. The main component 
of this condensate is TDS, silica, 
and COD. 

Cooling water 
blowdown 

Cooling tower systems in PR 
are used to cool down the 
process water for reusing and 
absorbing the heat. To avoid 
an accumulation of dissolved 

The cooling tower effluents 
vary in their composition 
depending on the pretreatment 
of the cooling tower and the 
quality of feed water. However,  

Table 1 (continued ) 

Type of PWWs Description Type of contaminants present 

solids in a cooling tower, a 
portion of the circulating 
water is rejected as blowdown 
[24]. 

the common contaminants 
present are TSS, TDS, BOD, 
COD, and chemical additives 
such as biocides, anti-scale, and 
corrosion inhibitors [7]. 

Ballast water When a vessel is traveling 
empty to pick up oil or after 
unloading oil, ballast water is 
carried on board to preserve 
stability [25]. 

The most common 
contaminants present are COD, 
TDS, and TOC. It is noteworthy 
that the most common 
pollutants that can be occurred 
in ballast water are introducing 
invasive species through 
introducing invasive species to 
new habitats during traveling 
[26].  
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Therefore, COD values are larger than BOD. Dawoud et al. [18] reported 
that the typical concentration of TOC in produced water is 45 mg/L - 71 
mg/L. However, according to studies reported by El-Naas et al. [48]; 
Janson et al. [49]; Lahlou et al. [50]. The concentration of COD in 
different petroleum effluents was 64 mg/L, 5300 mg/L, and 1572 mg/L 
respectively. Kusworo et al. [43] reported that the range of COD and 
BOD in petroleum wastewaters is 750–1600 mg/L and 300–1000 mg/L 
respectively. The value of BOD, COD, and TOC are vital in determining 
the efficient treatment technology as they are directly linked to 
biodegradation treatment by microbes. If the value of BOD, COD, and 
TOC are very low in wastewater, microbial degradation is not a suitable 
treatment as microbes will not be able to thrive with a low supply of 
carbon source impacting overall their performance in the treatment 
plant. On the other hand, too much organic matter can increase the 
microbial biomass leading to several treatment challenges reducing the 
effluent quality such as bio-clogging and bad odor [51]. 

2.1.6. Metals 
Different studies reported the presence of various metals in petro-

leum effluents with different concentrations [52]. Metals such as lead 
(Pd), zinc (Zn), iron (Fe), manganese (Mn), and barium (Ba) are present 
in petroleum effluents at large concentrations. Other metals such as 
cadmium (Cd), nickel (Ni), copper (Cu), chromium (Cr), and mercury 
(Hg) are present in trace amounts in petroleum effluents [53]. The 
concentration of heavy metals in produced water from natural gas 
including Ba, Cd, Cu, Cr, Fe, Ni, Mn is 60.51 ppb, 0.05 ppb, 0.62 ppb, 
30.31 ppb, 4144 ppb, 7.08 ppb, and 268.3 ppb, respectively [54]. The 
standard limits of some metals of water reuse for different applications 
are represented in Table 2 [55]. 

2.1.7. Total petroleum hydrocarbons (TPH) and BTEX 
Total petroleum hydrocarbons refer to hydrocarbon amounts in 

PWWs mainly involving carbon and hydrogen. TPH consists of dissolved 
petroleum hydrocarbons form and suspended form. They are generally 
divided into three categories, namely saturated, unsaturated, and aro-
matics [56]. TPH is a combination of volatile and extractable petroleum 
hydrocarbons consisting of benzene, toluene, ethylbenzene, and xylenes 
(BTEX), which are volatile aromatic hydrocarbons, phenols, polycyclic 
aromatic hydrocarbons (PAHs), methyl tertiary butyl ether (MTBE), and 
naphthalic acids [57]. Phenols are expected to be founded at a high level 
in some petroleum streams such as spent caustic streams [58]. Phenol is 
harmful and produces other harmful byproducts during the chlorination 
of marine water [59]. Table 3 shows the characteristics of major pe-
troleum hydrocarbon compounds present in petroleum effluents. Jain 
et al. [2] reported that desalter water contains benzene, phenol, and oil 
levels of approximately 1 mg/L - 100 mg/L, and 20 mg/L - 200 mg/L, 
respectively. Additionally, oil levels in desalter water and tank bottoms 
water are 100 mg/L - 300 mg/L and up to 5000 mg/L, respectively. 

2.1.8. Total nitrogen (TN) and ammonium 
Total nitrogen in PWWs includes both organic nitrogen (Kjeldahl 

nitrogen) and inorganic nitrogen. It represents all forms of nitrogen 
compounds including organically bound nitrogen, ammonia (NH3–N), 
nitrates (NO3–N), and nitrites ((NO2–N) in PWWs [71]. Kjeldahl nitro-
gen is the total amount of organic nitrogen and ammonia-nitrogen 
(NH3–N) in the wastewater. Ammonium is the most common nitrogen 
substance available in petroleum effluents [72]. Alzarooni & Elshorbagy 

Table 2 
Standard limits of metals for water reuse for different applications [55].  

Metals Fe (mg/L) Cu (mg/L) Cr (mg/L) Zn (mg/L) 

Application 

Agricultural reuse ≤5 ≤0.2 ≤0.1 ≤2 
Restricted urban reuse N.A. N.A. N.A. N.A. 
Industrial application ≤0.02–0.05 ≤0.01 N.A. N.A.  Ta
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[60]. mentioned that ammonium results in petroleum wastewater 
streams from two processes including NH3 injection to neutralize H2S 
and to hydrogenate the organic nitrogen when the crude is processed. 
The standard of TN for effluent discharge is 5 mg/L. High levels of TN 
are present in certain petroleum wastewater streams such as crude oil 
tank discharge and desalter water. The typical range of total nitrogen in 
produced water is 23 mg/L - 26 mg/L [18]. 

2.1.9. Sulfate 
Sulfur is present in PWWs in various forms. Due to the presence of 

H2S, mercaptans (RSH), and disulfide in crude oil, sulfur compounds are 
commonly present in almost all types of petroleum wastewater streams. 
Most of the sulfur compounds are removed during the refinery process to 
avoid corrosion in vessels and to prevent catalyst poisoning [73]. The 
end-products do contain sulfur which should meet the acceptable stan-
dard limits set by the environmental regulations which are 0.5 mg/L for 
sulfides as per the U.S. Environmental Protection Agency (USEPA) [74]. 
The typical range of sulfate radicals in produced water is 61 mg/L - 68 
mg/L [18]. According to studies reported by Minier-Matar et al. [75] 
and Zhao et al. [76], the estimated sulfate concentration in produced 
and processed water is 349 mg/L and 347 mg/L respectively. Table 4 
summarizes the characteristics of petroleum wastewater as reported by 
studies for various countries. In addition, it also mentions the environ-
mental standards for their discharge as per the US-EPA. 

Al-Kaabi et al. [53] and Janson et al. [49] reported acidic petroleum 
effluents with pH values of 4.43 and 4.3, respectively. The highest COD 
and TOC values were 10,497 mg/L and 2405 mg/L, respectively re-
ported by Al-Kaabi et al. [54], while the highest TDS and SO4 values 
were 10,465 mg/L and 336 mg/L, respectively reported by Lahlou et al. 
[50]. Furthermore, the highest phenol concentration reported was 185 
mg/L by El-Naas et al. [48]. Different quality standards are reported for 
water reuse for different applications such as irrigation, urban reuse, and 
industrial reuse. Most of the pollutants present in industrial wastewaters 
are to be evaluated ecotoxicologically because of their physiochemical 
characteristics [44]. Some of these pollutants are classified as highly 
toxic persistent organic pollutants due to their chemical stability and 
resistance to oxidation and reduction in nature [62]. Living organisms, 
especially Humans are exposed to these pollutants by different routes 
such as skin contact, inhalation, or ingestion [77]. 

3. Materials and methods 

3.1. PWWs sampling 

Three PWWs were collected from a local petroleum refinery in Qatar. 
The PWWs were processed wastewater and named S-1, S-2, and S-3. The 

samples were regularly collected every alternate week for one month to 
have a homogenous and sufficient amount. 

3.2. Chemical characterization 

Various physical and chemical properties were investigated using a 
pH meter (HACH HQ 40d) by following the ASTM D4456-17 method. 
This method determined the samples’ pH, conductivity, total organic 
carbon (TOC), total dissolved solids (TDS), total suspended solids (TSS), 
oil and grease content, chloride, and sulfate content. Additionally, the 
hydrocarbon was analyzed using gas chromatograph-mass spectrometry 
(GS-MS) (Agilent 7890B/5977B) by following USEPA 8015C method to 
determine benzene, toluene, ethylbenzene, and xylene concentrations 
while USEPA 5030C/8260C while the USEPA 3005A/6010C was per-
formed to determine the total petroleum hydrocarbons and the USEPA 
3510C/827 for polycyclic aromatic hydrocarbons (PAH). Heavy metals 
were analyzed by inductively coupled plasma optical emission spec-
trometer (ICP-OES) (PerkinElmer Optima 3000V, or Shimadzu ICPS- 
7510 Sequential Plasma Spectrometer, Japan). 

4. Results and discussion 

4.1. Physiochemical analysis 

The treatment option of the wastewater is dependent on the waste-
water characteristics. Hence, the characterization of petroleum effluents 
is beneficial, as it will aid in determining the wastewater management 
strategies in petroleum refineries by planning the best collection and 
treatment practices and exploring the possibility of reusing wastewater. 
Moreover, the characterization data can highlight the environmental 
impact of these industrial wastewaters and focus on pollutants of 
emerging concern and toxicity. A full physiochemical analysis of the 
samples was performed, including pH, electric conductivity (EC), total 
saturated solid (TSS), total dissolved solids (TDS), oil and grease (O&G), 
salinity, chemical oxygen demand (COD), biological oxygen demand 
(BOD), total organic carbon (TOC), total inorganic carbon (TIOC), hy-
drocarbons including [gasoline range organics (GRO) (<C5–C10), 
C10–C40], benzene, toluene, ethylbenzene and xylenes (BTEX), poly-
aromatic hydrocarbons (PAHs), and metals. The results are shown in 
Table 5, for the three different sites, namely sample 1 (S-1), sample 2 (S- 
2), and sample 3 (S-3) for pH, EC, TSS, TDS, O&G, Salinity, COD, BOD, 
TOC, and TIOC. Additionally, hydrocarbons contents in the three sam-
ples are presented in Table 6. It is apparent that the three samples varied 
in terms of their characteristics. For instance, S-1 reported the highest 
organic content. O&G was reported to be 9950 mg/L in S-1, followed by 
1580 mg/L in S-2 and 623 mg/L in S-3. Additionally, the COD was 

Table 4 
Environmental standards for effluent discharge as per the US EPA and characteristics of different petroleum refinery effluents as reported in the literature of various 
countries.  

Environmental standard for effluent discharge as per the USA EPA (mg/L) 

pH COD BOD TOC O&G TSS TDS N–NH4 Sulfides Phenol Reference 

6–8.5 125 15 N/R 5 20 N/R 40 0.5 0.35 [31,78–80] 

Studies 
pH COD BOD TOC O&G TSS TDS N–NH4 SO4 Phenol Country Ref 

mg/L 

8.6 3134 N.R. N.R. N.R. N.R. 1503 N.R. N.R. 855 Indonesia [50] 
4.43 10,497 1034 2405 N.R. 21.33 N.R. N.R. 46.13 1.96 Qatar [54] 
N.R. 64 8.2 N.R. N.R. 30 10,465 N.R. 336 N.R. Qatar [50] 
9.2 8100 4047 N.R. 0.29 19.5 4761 N.R. 238.09 238.09 India [5] 
8.57 6444.93 1310 N.R. N.R. 42 N.R. N.R. N.R. 34.95 Tunisia [81] 
7.5–8.5 3500–5300 N.R. N.R. N.R. 0.08 10 N.R. 14.5–16 160–185 Qatar [48] 
9 1800 620 N.R. N.R. 420 2200 N.R. N.R. N.R. Pakistan [82] 
4.3 1572 N.R. 491 47 N.R. 5189 11 54 N.R. Qatar [49] 
7–9 300–600 150–350 N.R. <50 <150 N.R. 10–30 N.R. N.R. China [83] 
N.R. 68–220 0.2–1.2 10.4–31.3 1.1–3.5 N.R. N.R. 0.21–21.23 N.R. 0.85–3.75 KSA [84]  
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almost double in S-1 (72,800 mg/L) while S-2 contained 46,000 mg/L, 
and the least was found in S-3 at 26,700 mg/L. The BOD was 44,300 mg/ 
L in S-1 and 14,600 mg/L in S-3. Surprisingly, TOC content did not have 
a huge difference among the three samples; S-1 contains 5490 mg/L 
while S-2 and S-3 contain 4730 mg/L and 3300 mg/L, respectively. The 
reason for such differences in the concentrations could be the high hy-
drocarbons content present in S-1. Additionally, the results confirmed 
that S-1 had the lowest water quality with the highest BOD, COD, and 
TOC followed by the S- 2 and S-3. Remarkably, the COD and BOD values 
in all three samples investigated in this study are much higher than those 
from various countries, as reported in Table 4. For instance, Al-Kaabi 
et al. [54] reported the COD and BOD of 10,497 mg/L and 1034 
mg/L, respectively for produced water. In Indonesia, the COD of 3134 
mg/L was reported for petrochemical refinery wastewater. Here, it can 
be seen from Table 5 that the pH of the used PWWs in this study was 
alkaline and ranged between 7.8 and 8.5 (S-1 was 7.8, S-2 was 8.5 and, 
S-3 was 8.3). This can probably be due to various reasons including the 
nitrification process that is carried out to convert ammonia to nitrate in 
the wastewaters and the activity of the microorganism [81]. The TIOC in 
the three samples is undetectable which is not surprising since TIOC is 
usually traced in PWWs. Moreover, salinity was reported to vary 
amongst the three samples. S-1 shows the lowest salinity (38.9 ppt), 
while S-2 and S-3 are characterized by elevated salinity of 112 ppt and 
260 ppt, respectively. Similarly, high EC and TDS were found in samples 
2 and 3, which are correlated with salinity levels in both samples. It has 
been stated in different studies that the salinity of petroleum effluents 
ranges from a few part per thousand (ppt) to 300 ppt [17]. Elevated 
salinity negatively impacts the wastewater treatment process, which 
means additional treatment is required to reduce the salt concentration 
[85]. One of the primary reasons for the differences in the characteristic 
of wastewater could be the different types of wastewaters. For instance, 
this study investigated the PWWs while Al-Kaabi et al. [54], investigated 
produced water, and Kusworo et al. [43] investigated petroleum re-
fineries wastewaters. According to Dawoud et al. [18], the characteris-
tics of several processes and produced waters are to determine the 
proper treatment methods and viability to reuse water for irrigation or 
direct disposal without harming the surrounding environment. Singh & 
Kumar. [86], characterized pretreated petroleum refinery wastewater 
and found the pH of wastewater was 9.2, while the O&G was low at 0.29 
mg/L, the COD reported was 8100 mg/L and TDS was 4761 mg/L. On 
the other Khatoon & Malik. [87], studied petroleum refinery wastewater 

that was combined with domestic sewage and reported the pH of the 
wastewater to be 7.82 similar to S-1, while the EC was 3460 μS/cm, 
salinity was 2.01 PSU, and TDS and COD as 1910 ± 54.5 and 310 ±
32.1, respectively. 

4.2. Hydrocarbon analysis 

Wastewaters generated from the oil and gas industry usually have a 
high content of aromatic and aliphatic petroleum hydrocarbons as well 
as other harmful compounds. These contaminated wastewaters need 
proper treatment and management strategies before disposing or being 
treated for re-use. In case of an accidental oil spill, these compounds 
accumulate and find their way to terrestrial and aquatic life. Over time, 
these compounds can pose a negative impact on the living and nonliving 
biota. These compounds are hydrophobic and thus persist in the envi-
ronment for long periods. Thus, it is important to identify such com-
pounds prior to any treatment. Likewise, the three PWWs samples were 
also analyzed for the hydrocarbons content including gasoline range 
organics (GRO) and extractable petroleum hydrocarbons (EPH), ben-
zene, toluene, ethylbenzene, and xylenes (BTEX), and polycyclic aro-
matic hydrocarbons (PAHs). From Table 6 and Fig. 1, it can be seen that 
S-1 shows the highest concentration of GRO, EPH, and all PAHs followed 
by S-2 and S-3. In general, the BTEX compounds are less than 100 mg/L 
in all three samples. This is because BTEX compounds are volatile and 
unstable in nature. These results are in line with the data obtained for 
COD, TOC, and BOD (Table 5). A total of sixteen compounds were 
detected in all three influents as illustrated in Fig. 1. The effluent was 
found to contain mainly acenaphthene, acenaphthylene, fluorene, 
anthracene, phenanthrene, benzo(a)anthracene, and pyrene. 

4.3. Heavy metal analysis of the collected samples 

It is also essential to determine the presence of heavy metals as they 
are highly toxic and non-destructible. As these metals bioaccumulate 
and over time biomagnify in the food chain [88]. Which consequently 
affects the aquatic ecosystem directly or indirectly. Therefore, this study 
also analyzed the heavy metal composition in all three samples and the 
results are shown in Table 7. It can be seen that seven heavy metals were 
detected in the three-water effluents. It was found that all three effluents 
were rich in zinc and iron. Furthermore, S-3 had the highest concen-
tration of copper, while nickel was only found in S-2. Cadmium, mer-
cury, and lead were present in traces. Depending on contact time, 
toxicity level, and concentration, the presence of a high concentration of 
heavy metals gives rise to a detrimental impact on the environment and 
human lives. Wokoma & Edori [89] studied heavy metal concentration 
in oily wastewater discharged from an oil plant in Nigeria and concluded 
that Zn concentration varied between 0.206 and 0.330 mg/L, while Fe 
and Pb concentration was 0.231–0.275 mg/L and 0.018–0.135 mg/L. 
The finding of this study was in line with Al-Kaabi et al. [63] also re-
ported similar results and found that the metals Zn, Cd, Cu, and Ni had 
the highest concentrations, 4.98 mg/L, 0.050 mg/L, 0.62 mg/L, and 
7.080 mg/L, respectively. Khatoon & Malik [87]. and Rasheed & Saleh 
[90]. also reported high metal concentration in wastewater from a pe-
troleum refinery. 

5. Importance of wastewater characterization 

Characterization of wastewater from the oil and gas industry is very 
important in planning the wastewater management alternatives through 
designing the best collection and treatment practices, reuse options, and 
environmental management acts. Additionally, these data are beneficial 
to building up further investigations of industrial wastewater’s impact 
on the environment and its contamination characteristics including 
pollutants of emerging concern and toxicity. Different treatment ap-
proaches have been introduced and explored. Each treatment technol-
ogy has its pros and cons, which may differ based on the characterization 

Table 5 
Various parameters of the three different petroleum process wastewaters.  

Parameter S-1 S-2 S-3 

pH 7.8 8.5 8.3 
Electric conductivity (EC) @ 25 ◦C (μS/cm) 58,200 143,000 227,000 
Total suspended solid (TSS) (mg/L) 2010 940 2470 
Total dissolved solid (TDS) (mg/L) 41,600 113,000 188,000 
Oil and grease (O&G) (mg/L) 9950 1580 623 
Salinity (ppt) 38.9 112 260 
Chemical oxygen demand (COD) (mg/L) 74,800 46,000 26,700 
Biological oxygen demand (BOD) (mg/L) 44,300 26,300 14,600 
Total organic carbon (TOC) (mg/L) 5490 4730 3300 
Total inorganic carbon (TIOC) (mg/L) <0.3 <0.3 <0.3  

Table 6 
Hydrocarbon content in the three different PWWs.  

Parameter S-1 S-2 S-3 

GRO (<C5–C10) mg/L 1.51 0.50 0.25 
EPH(C10–C40) mg/L 7940 1470 934 
BTEX (μg/L) Benzene <100 <100 <100 

Ethyl benzene <100 <100 <100 
m-Xylene and p-Xylene <200 <200 <200 
o-Xylene <100 <100 <100 
Toluene <100 <100 <100  
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of wastewater. To plan an efficient treatment system, a full analysis 
should be provided including the properties and concentration of pol-
lutants in wastewater, site description, and the proposed treatment plan. 
Hence, many recent research works are aiming at planning compre-
hensive strategies for wastewater management and treatment with 
focusing on their recycling and reusing options to reduce the consumed/ 
generated wastewater. However, it is very obvious that this is a signif-
icant challenge for many oil and gas companies, especially in a country 
like Qatar due to the characteristics of the region, the oil production 
rate, the physicochemical properties and amount of wastewater, and the 
limited sources of natural water. Indeed, it is essential to characterize 
the composition of the local oil and gas industry effluents to offer an 
efficient, appropriate, and sustainable treatment process. 

6. Conclusion 

The current study revealed that the PWWs characteristic could vary 
on various parameters including the collected site, the operation con-
ditions, the type of refined oil, and sources of generated wastewater. 
This is also evident in the case study that was carried out in this study. 
According to the findings, the BOD was highest in S-1 44,300 mg/L 
followed by S-2 and S-3 26,300 and 14,600 mg/L respectively. More-
over, salinity was also highest in S-3 at 260 ppt, followed by S-2 at 38.2 
ppt and S-1 at 38.9. In addition, S-2 had higher pH (8.5) followed by S-3 
(8.3) and S-1 (7.8). Lastly, S-1 reported the highest concentration of 

GRO, EPH, and all PAHs followed by S-2 and S-3. 
The presence of harmful organic and inorganic pollutants in petro-

leum wastewater is attracting the interest of many scientists to find an 
effective treatment technology to treat these effluents. Hence, the 
characterization of wastewater is very critical before implementing or 
designing any treatment. For a country that is regarded as one of the 
most water-stressed countries with limited freshwater resources, it is 
essential for Qatar to strategically adopt PWWs treatment for the pe-
troleum effluents in a way that the water can be reused and recycled. 
The study also revealed that Qatar wastewater from the oil and gas in-
dustry is characterized by very high concentrations of COD, BOD, TDS, 
and TSS. These results highlight the significance of designing effective, 
suitable, and sustainable treatment plans to implement the country’s 
laws regarding the regulation of releasing or reusing, or recycling 
treated wastewater. 
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[36] A. Król, K. Mizerna, M. Bożym, An assessment of pH-dependent release and 
mobility of heavy metals from metallurgical slag, J. Hazard Mater. 384 (2020), 
121502, https://doi.org/10.1016/j.jhazmat.2019.121502. 

[37] H. Zouch, L. Cabrol, S. Chifflet, M. Tedetti, F. Karray, H. Zaghden, S. Sayadi, 
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