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This paper presents an extension of the Pipe-in-Pipe (PiP) model for calculating vibrations
from underground railways that allows for the incorporation of a multi-layered half-space
geometry. The model is based on the assumption that the tunnel displacement is not
influenced by the existence of a free surface or ground layers. The displacement at the

soil properties corresponding to the soil in contact with the tunnel. Next, a full space
model is used to determine the equivalent loads that produce the same displacements at
the tunnel–soil interface. The soil displacements are calculated by multiplying these
equivalent loads by Green's functions for a layered half-space. The results and the
computation time of the proposed model are compared with those of an alternative
coupled finite element–boundary element model that accounts for a tunnel embedded in
a multi-layered half-space. While the overall response of the multi-layered half-space is
well predicted, spatial shifts in the interference patterns are observed that result from the
superposition of direct waves and waves reflected on the free surface and layer interfaces.
The proposed model is much faster and can be run on a personal computer with much
less use of memory. Therefore, it is a promising design tool to predict vibration from
underground tunnels and to assess the performance of vibration countermeasures in an
early design stage.

& 2014 Elsevier Ltd. All rights reserved.
1. Introduction

Significant vibration in buildings near underground tunnels is attributed to moving trains. Vibration is generated due to
irregularities of wheels and tracks and propagates to nearby buildings where it is perceived as ground-borne vibration in the
frequency range 1–80 Hz and ground-borne noise in the frequency range 16–250 Hz. Vibration at higher frequencies is
generally attenuated rapidly with distance along the transmission path through the ground [1]. Vibration transmitted to
buildings can cause malfunctioning of sensitive equipment and annoyance to inhabitants. The problem is more significant
for shallow tunnels in close proximity to foundations of nearby buildings. Underground tunnels pass under commercial and
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residential areas with a wide range of depths below the surface. For example, the average depth of the underground tunnels
in London is 24 m with a maximum depth of 67.4 m. Vibration in buildings can be isolated by using vibration
countermeasures, such as floating slab tracks and/or base isolation of buildings [2–5].

Modelling of vibration from underground railways is gaining more interest on account of the need for quick tools to
design vibration countermeasures for both existing and newly constructed tunnels. There are two popular methods for
modelling, discussed in the following paragraphs.

The first approach is the Pipe-in-Pipe (PiP) model [6–8], where the tunnel and the soil are modelled as two concentric
pipes. The inner pipe represents the tunnel wall and is modelled using thin shell theory. The outer pipe, with its outer radius
being set to infinity, represents an unbounded soil with a cylindrical cavity and is modelled using elastodynamics. The PiP
model is computationally efficient, in both running time and memory requirements, on account of the uniformity along and
around the tunnel. The disadvantage of the PiP model in its present form is that it only can account for a tunnel embedded in
a homogeneous full space. This may not be sufficient for the modelling of realistic situations.

The second approach employs a coupled finite element–boundary element (FE–BE) methodology [9–11]. The tunnel wall
is modelled using the FE method while the surrounding soil is modelled using the BE method. The advantage of this method
is the possibility of modelling a free surface and a multi-layered ground, and tunnel walls with non-circular geometries. The
computational efficiency of this model has been greatly improved in the last few years by taking advantage of a periodic or
longitudinally invariant geometry. For periodic structures, a Floquet transform can be used for the computation of the
structural response and the radiated wavefield [10–15]. In the case of longitudinally invariant structures, a computationally
efficient two-and-a-half-dimensional (2.5D) approach can be applied [9,16–18], where the Fourier transform of the
longitudinal coordinate allows to represent the three-dimensional (3D) response of the structure and the radiated wavefield
on a two-dimensional (2D) mesh. Even with these recent developments, the coupled FE–BE models require a significant
computational effort. Therefore, coupled FE–BE models are useful for research purposes but still computationally too
expensive to be used as a design tool.

The PiP model has been validated against the coupled FE–BE model for the case of a tunnel embedded in a full space [13].
A good agreement is achieved between the results of the two models with much more computational efficiency from the PiP
model. This has raised the question of whether the PiP model could be used for more realistic situations such as for
modelling a tunnel in a multi-layered half-space.

The objective of this paper is to extend the PiP model to allow for the incorporation of a layered half-space geometry. To
this end, it is assumed that the tunnel displacement is not influenced by the existence of a free surface or ground layers, i.e.
the displacement at the tunnel–soil interface is the same whether there is a free surface and ground layers or not. This
approximation is only valid when the free surface and layer interfaces and the tunnel are sufficiently spaced. Another
objective of this paper is to investigate the accuracy of the proposed formulation for realistic cases.

Before presenting the methodology of this work, it is worth to point out a model proposed by Grundmann and Müller
[19,20], which has some features from the coupled FE–BE model as well as the PiP model. This model calculates vibration
from circular and non-circular tunnels in a full space and a half-space. To account for a circular tunnel in a full space, the
shell theory or the FE method is used for the tunnel, while the elastic continuum theory is used for the soil. To account for a
non-circular tunnel in a full space, the problem domain is divided into two parts by a virtual cylindrical surface that encloses
the tunnel wall. The first is the internal part consisting of the tunnel wall and the soil that lies within the virtual cylinder;
this part is modelled using the FE method. The second part is the homogeneous infinite space with an internal cylindrical
boundary and is modelled using elastic continuum theory. A half-space is modelled by using superposition of two boundary
value problems [21,22]: a tunnel embedded in a full space and an elastic half-space.

This paper is organized as follows. Section 2 describes the methodology used in this paper, where a distinction is made
between three calculation steps for the calculation of vibrations from a tunnel embedded in a multi-layered half-space.
Section 3 presents a numerical study of the performance and accuracy of the proposed model. Five case histories with
different soil layering are considered. The results are compared with reference FE–BE calculations.
2. Methodology

In this paper, a model is presented that allows to compute the vibrations from a tunnel embedded in a multi-layered
half-space (Fig. 1). The model is based on the assumption that the near field displacement of the tunnel is not influenced by
the existence of a free surface or ground layers, in other words, the displacement at the tunnel–soil interface is the same
whether there is a free surface and ground layers or not.

The methodology consists of three steps, as outlined in Fig. 2. In a first step (Fig. 2a), the response of a tunnel embedded
in a full space due to a vertical point load Fz at the tunnel invert is computed. The assumption that the tunnel is embedded in
a full space allows for a fast evaluation of the displacement at the tunnel–soil interface using the PiP model [6–8].

In the second calculation step (Fig. 2b), a model of a full space (without a tunnel) is considered. A number of equivalent
loads in the full space, that produce the same displacement at the tunnel–soil interface as computed in the first calculation
step, are determined. The computation of these equivalent loads is fast and performed using analytical fundamental
solutions for an elastic full space.



Fig. 2. Proposed methodology: (a) calculation of the displacement at the tunnel–soil interface using a model of a tunnel embedded in a full space,
(b) calculation of equivalent loads that produce the same tunnel displacements on the tunnel–soil interface and (c) application of the equivalent loads
in a model of a multi-layered half-space.

Fig. 1. Tunnel embedded in a multi-layered half-space.
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In the third calculation step, a model of a multi-layered half-space (without a tunnel) is considered. The equivalent loads
from step 2 are multiplied by Green's functions of a multi-layered half-space. These Green's functions are evaluated
numerically by means of the direct stiffness method [23–25].

The three calculation steps mentioned above are discussed in more detail in the following subsections.
2.1. Step 1: calculating the displacement at the tunnel–soil interface

In the first calculation step, the response of a tunnel embedded in a full space due to a vertical point load Fz at the tunnel
invert is computed using the PiP model (Fig. 3). The PiP model is based on a Fourier transformation of the time t to the
frequency ω and of the coordinate y along the tunnel axis to the wavenumber ky. In addition, a Fourier series expansion is
employed in the circumferential direction θ.

The 3D displacement in the tunnel and the full space is described by its radial, circumferential and longitudinal
components urðr;θ; y; tÞ, uθðr;θ; y; tÞ, and uyðr;θ; y; tÞ in the cylindrical coordinate system ðr;θ; yÞ (Fig. 1). The Fourier
transform of the time t to the frequency domain ω reads as

ûrðr;θ; y;ωÞ ¼
Z 1

�1
urðr;θ; y; tÞe� iωt dt (1a)



Fig. 3. Calculation step 1: (a) the displacement at the tunnel–soil interface is computed as the dynamic interaction between (b) the tunnel wall and
(c) a full space with a cylindrical cavity.
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ûθðr;θ; y;ωÞ ¼
Z 1

�1
uθðr;θ; y; tÞe� iωt dt (1b)

ûyðr;θ; y;ωÞ ¼
Z 1

�1
uyðr;θ; y; tÞe� iωt dt (1c)

where a hat above a variable denotes its representation in the frequency domain. A Fourier transform of the coordinate y to
the wavenumber ky is subsequently applied:

�urðr;θ; ky;ωÞ ¼
Z 1

�1
ûrðr;θ; y;ωÞe� ikyy dy (2a)

�uθðr;θ; ky;ωÞ ¼
Z 1

�1
ûθðr;θ; y;ωÞe� ikyy dy (2b)

�uyðr;θ; ky;ωÞ ¼
Z 1

�1
ûyðr;θ; y;ωÞe� ikyy dy (2c)

where a breve above a variable denotes its representation in the frequency–wavenumber domain. Finally, a Fourier series
expansion is employed in the circumferential direction:

�urðr;θ; ky;ωÞ ¼ ∑
1

n ¼ 0
~urðr;n; ky;ωÞ cos ðnθÞ (3a)

�uθðr;θ; ky;ωÞ ¼ ∑
1

n ¼ 0
~uθðr;n; ky;ωÞ sin ðnθÞ (3b)

�uyðr;θ; ky;ωÞ ¼ ∑
1

n ¼ 0
~uyðr;n; ky;ωÞ cos ðnθÞ (3c)

where ~urðr;n; ky;ωÞ, ~uθðr;n; ky;ωÞ, and ~uyðr;n; ky;ωÞ represent the frequency–wavenumber displacements for every
harmonic component n in the Fourier series expansion. Since a vertical load Fz is applied at the tunnel invert, the resulting
displacements are symmetric with respect to the (y,z)-plane. As a result, the displacements �urðr;θ; ky;ωÞ and �uyðr;θ; ky;ωÞ
are even functions of θ and a Fourier cosine series is used in Eqs. (3a) and (3c). The displacement �uθðr;θ; ky;ωÞ is an odd
function of θ and a Fourier sine series is used in Eq. (3b).

In a similar way, the stress components σrrðr;θ; y; tÞ, σrθðr;θ; y; tÞ, and σryðr;θ; y; tÞ are transformed to the frequency–
wavenumber domain. The stresses are subsequently decomposed using a Fourier series expansion in the circumferential
direction:

�σ rrðr;θ; ky;ωÞ ¼ ∑
1

n ¼ 0
~σ rrðr;n; ky;ωÞ cos ðnθÞ (4a)

�σ rθðr;θ; ky;ωÞ ¼ ∑
1

n ¼ 0
~σ rθðr;n; ky;ωÞ sin ðnθÞ (4b)

�σ ryðr;θ; ky;ωÞ ¼ ∑
1

n ¼ 0
~σ ryðr;n; ky;ωÞ cos ðnθÞ (4c)
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Henceforth, all equations are derived in the frequency–wavenumber domain ðr;n; ky;ωÞ. A summation for all harmonic
components n¼ 0;…;nmax (Eqs. (3) and (4)) and a double inverse Fourier transform finally results in the response in the
space–time domain ðr;θ; y; tÞ.

The double Fourier transform to the frequency–wavenumber domain and the subsequent Fourier series expansion of the
displacement and traction components allow for the analytical solution of wave propagation in the tunnel and the
surrounding full space. Forrest and Hunt [6] employ wave potentials to demonstrate that the solution of elastic wave
propagation can be written as

~uðr;n; ky;ωÞ ¼ ~Urðr;n; ky;ωÞ ~Cðn; ky;ωÞ (5)

and

~σ ðr;n; ky;ωÞ ¼ ~Trðr;n; ky;ωÞ ~Cðn; ky;ωÞ (6)

where the vectors ~uðr;n; ky;ωÞ ¼ f ~ur ; ~uθ ; ~uygT and ~σ ðr;n; ky;ωÞ ¼ f ~σ rr ; ~σ rθ ; ~σ rygT collect the radial, circumferential and
longitudinal displacement and stress components, respectively. ~Cðn; ky;ωÞ is a 6�1 vector of coefficients determined from
the boundary conditions and ~Urðr;n; ky;ωÞ and ~Trðr;n; ky;ωÞ are the 3�6 displacement and stress matrices calculated at
radius r, respectively. The elements of the first, the third and the fifth column of matrices ~Urðr;n; ky;ωÞ and ~Trðr;n; ky;ωÞ are
a function of the modified Bessel function In(r) of the first kind, while the elements of the second, the fourth and the sixth
column are functions of the modified Bessel function Kn(r) of the second kind. The matrices ~Urðr;n; ky;ωÞ and ~Trðr;n; ky;ωÞ
are given in the closed form by Forrest and Hunt [6]. It should be noted that, in the original formulation, the longitudinal
direction is along the z-axis instead of the y-axis.

Once the unknown vector of coefficients ~Cðn; ky;ωÞ has been determined from the boundary conditions, the
displacements ~uðr;n; ky;ωÞ and stresses ~σ ðr;n; ky;ωÞ are found from Eqs. (5) and (6), respectively.

The displacement and stress solutions (5) and (6) are next used for the efficient solution of the 3D dynamic interaction
between the tunnel and the full space. This requires the calculation of a coefficient vector ~CT ðn; ky;ωÞ for the tunnel and a
coefficient vector ~CF ðn; ky;ωÞ for the full space, where the subscripts T and F refer to the tunnel and the full space,
respectively (Fig. 3).

2.1.1. Wave propagation in the tunnel wall
The necessary equations to model a tunnel wall with internal radius ri and external radius ro are derived from Eqs. (5)

and (6), which are directly applied at the internal radius ri and the external radius ro. This results in (Fig. 3b)

~uT1ðn; ky;ωÞ ¼ ~UT1ðn; ky;ωÞ ~CT ðn; ky;ωÞ (7)

and

~τ T1ðn; ky;ωÞ ¼ � ~TT1ðn; ky;ωÞ ~CT ðn; ky;ωÞ (8)

on the tunnel wall (r¼ ri), and

~uT2ðn; ky;ωÞ ¼ ~UT2ðn; ky;ωÞ ~CT ðn; ky;ωÞ (9)

and

~τ T2ðn; ky;ωÞ ¼ ~TT2ðn; ky;ωÞ ~CT ðn; ky;ωÞ (10)

on the tunnel–soil interface (r¼ ro), where ~uT1 and ~uT2 are the displacement vectors of the tunnel at the internal and
external radii of the tunnel, respectively; ~τ T1 and ~τ T2 are the traction vectors calculated at the internal and external radii of
the tunnel, respectively (Fig. 3b). The subscript T refers to the tunnel, subscript 1 to the internal radius of the tunnel and
subscript 2 to the external radius. The minus sign in Eq. (8) originates from the negative orientation of the unit outward
vector on the tunnel wall.

2.1.2. Wave propagation in a full space with a cylindrical cavity
Eqs. (5) and (6) are evaluated at r¼ ro (Fig. 3c):

~uF ðn; ky;ωÞ ¼ ~UF ðn; ky;ωÞ ~CF ðn; ky;ωÞ (11)

~τ F ðn; ky;ωÞ ¼ � ~TF ðn; ky;ωÞ ~CF ðn; ky;ωÞ (12)

where ~uF and ~τ F are the displacement and traction vectors in the full space at r¼ ro respectively. ~CF is a 3�1 vector of
constants. The subscript F is used to indicate values for the full space with a cylindrical cavity. The minus sign in Eq. (12)
originates from the orientation of the unit outward normal vector on the surface of the cavity in the negative radial
direction.

For a full space with a cylindrical cavity, the displacement should vanish at a large radius when the excitation source is
applied at the surface of the cavity. These radiation conditions are accounted for by omitting the coefficients in the vector ~CF

associated with the modified Bessel function In(r) of the first kind, since this function tends to infinity when its argument
tends to infinity. As a result, the vector ~CF is reduced to a 3�1 vector and the matrices ~UF and ~TF reduce to 3�3 matrices.
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2.1.3. Solution of the coupled tunnel–soil interaction problem
The coefficient vectors ~CT and ~CF are determined from the boundary conditions on the tunnel wall at r¼ ri and the

continuity of displacements and equilibrium of tractions at the tunnel–soil interface at r¼ ro.
At the tunnel invert, a vertical point load Fz is applied whereas the rest of the tunnel wall remains traction free. This

allows us to write the traction vector on the tunnel wall (r¼ ri) as

τT1 θ; y; t
� �¼

0
0

δðθÞδðtÞ
ri

8><
>:

9>=
>; (13)

The traction vector is subsequently transformed to the frequency–wavenumber domain and decomposed into harmonic
components n:

~τ T1ðn; ky;ωÞ ¼
0
0

~qrðn; ky;ωÞ

8><
>:

9>=
>; (14)

where ~qr ¼ 1=ð2πriÞ for n¼0 and ~qr ¼ 1=ðπriÞ for n¼ 1;2;…;1. At the tunnel–soil interface, displacement compatibility
requires

~uT2 ¼ ~uF (15)

while the equilibrium of tractions reads as (Fig. 3c)

~τ T2þ ~τ F ¼ 0 (16)

Eqs. (15) and (16) account for the 3D interaction between the tunnel and the full space. The boundary condition (14) at the
tunnel wall, the continuity of displacements (15) and the equilibrium of forces (16) allow for the solution of the coefficient
vectors ~CT and ~CF as the solution of Eqs. (8)–(12). Substituting the values of the displacement vectors ~uT2 and ~uF from
Eqs. (7) and (11) in Eq. (15) results in

~UT2
~CT ¼ ~UF

~CF (17)

Similarly, substituting the values of the traction vectors ~τ T2 and ~τ F from Eqs. (8) and (12) in Eq. (16) results in

~TT2
~CT � ~TF

~CF ¼ 0 (18)

Introducing Eq. (17) into Eq. (18) results in

ð ~TT2� ~TF
~U
�1
F

~UT2Þ ~CT ¼ 0 (19)

From Eqs. (8) and (19), the following expression is obtained:

� ~TT1

~TT2� ~TF
~U
�1
F

~UT2

2
4

3
5 ~CT ¼

~τ T1

0

� �
(20)

The vector ~CT obtained from this equation is finally substituted in Eqs. (7) and (8) to obtain the displacement and the
traction at the tunnel–soil interface for a tunnel embedded in a full space:

~uT2 ¼ ~UT2

� ~TT1

~TT2� ~TF
~U
�1
F

~UT2

2
4

3
5

�1
~τ T1

0

� �
(21)

~τ T2 ¼ ~TT2

� ~TT1

~TT2� ~TF
~U
�1
F

~UT2

2
4

3
5

�1
~τ T1

0

� �
(22)

2.2. Step 2: calculating the equivalent loads

In the second calculation step, equivalent loads in a full space are determined that produce the same displacement at the
tunnel–soil interface as calculated by the PiP model in the first calculation step.

The full space response is computed with the PiP model, where a solid cylinder with a radius ro is coupled to a full space
with a cylindrical cavity with radius ro (Fig. 4).

The formulation presented in Section 2.1 is used to calculate the tractions ~τ applied at the cylinder with r¼ ro in the full
space, i.e. at the interface of the two sub-models, which produce the displacement ~uT2. This entails the calculation of
coefficient vectors ~CC and ~CF for the cylinder and the full space, respectively, where the subscript C refers to the solid
cylinder and the subscript F refers to the full space.



Fig. 4. Calculation step 2: (a) the full space response is computed as the dynamic interaction between (b) a solid cylinder and (c) a full space with a
cylindrical cavity.
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The displacement and the traction vector at the outer surface of the solid cylinder are derived from (Fig. 4b)

~uC ¼ ~UC
~CC (23)

~τ C ¼ ~TC
~CC (24)

where ~CC is a vector with (auxiliary) coefficients and ~UC and ~TC are the matrices derived from Eqs. (5) and (6), respectively.
The expressions for the displacement and the traction vector at the cavity surface are equal to (Fig. 4c)

~uF ¼ ~UFCF (25)

~τ F ¼ � ~TFCF (26)

where ~CF is a vector with (auxiliary) coefficients and ~UF and ~TF are the matrices derived from Eqs. (5) and (6), respectively.
The minus sign in Eq. (26) originates from the orientation of the unit outward normal vector on the surface of the cavity in
the negative radial direction.

Continuity of displacements at the interface between the solid cylinder and the surface of the cavity requires

~uC ¼ ~uF (27)

Both displacement vectors are also equal to ~uT2, which allows us to express the vectors ~CC and ~CF as a function of the
displacement vector ~uT2:

~CC ¼ ~U
�1
C ~uT2 (28)

~CF ¼ ~U
�1
F ~uT2 (29)

The traction vector ~τ to be applied in the full space at the interface between the solid cylinder and the cavity surface in
order to cause the displacement ~uT2 finally follows from the force equilibrium:

~τ� ~τ C� ~τ F ¼ 0 (30)

Introduction of the expressions (24) and (26) and accounting for the solutions (28) and (29) result in the following
expression:

~τ ¼ ð ~TC
~U
�1
C � ~TF

~U
�1
F Þ ~uT2 (31)

Eq. (31) represents the equivalent traction, applied at a radius r¼ ro in a full space, that produces the same displacement on
the tunnel–soil interface as computed in the first calculation step. A summation for all harmonic components n¼ 0;…;nmax

(Eqs. (3) and (4)) results in the traction �τ ðθ; ky;ωÞ in the frequency–wavenumber domain.
The tractions �τ ðθ; ky;ωÞ are next replaced by a set of equivalent loads �Fjðky;ωÞ ¼ f �F rj; �F θj; �F yjg

T
, applied at 2M�1 points at

the positions ðro;θjÞ (Fig. 5). These equivalent loads are derived from the principle of virtual work, imposing that the virtual
work of the tractions �τ ðθ; ky;ωÞ is equal to the virtual work of the equivalent loads �F jðky;ωÞ:

Z 2π

0
�vTðθ; ky;ωÞ �τ ðθ; ky;ωÞ dθ¼ ∑

2M�1

j ¼ 1
�vTðθj; ky;ωÞ �F jðky;ωÞ (32)

where �vðθ; ky;ωÞ ¼ f �vrj; �vθj; �vyj; gT is a vector of virtual displacements on a circle with radius r¼ ro. The virtual displacement
vector is constructed from a linear shape function NjðθÞ, as shown in Fig. 6. This allows us to compute the components of the



Fig. 6. Shape function NðθjÞ.

Fig. 5. Equivalent loads Fj (j¼ 1;…;2M�1) applied at the position ðro ; θjÞ.
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equivalent loads �F jðky;ωÞ as

�F jðky;ωÞ ¼
Z 2π

0
NjðθÞ �τ ðθ; ky;ωÞ dθ (33)

Finally, the force vector �F jðky;ωÞ ¼ f �F rj; �F θj; �F yjg
T
is transformed to the Cartesian frame of reference, resulting in components

�F xj, �F yj, and �F zj.
For the vertical loading under consideration, the distribution of equivalent loads is symmetric. Therefore, the evaluation

of Eq. (33) can be limited to the loads on the left-hand side of the tunnel cross section (j¼ 1;…;M, Fig. 5) for computational
efficiency. Symmetry conditions directly yield the forces on the right-hand side of the tunnel.

2.3. Step 3: calculating the far-field displacement

The equivalent loads �F jðky;ωÞ ¼ f �F xj; �F yj; �F zjg
T
, resulting from the dynamic interaction between a tunnel and a

homogeneous full space, are applied in calculation step 3 to a multi-layered half-space (Fig. 2c).
The response of the multi-layered half-space due to the set of equivalent loads �Fjðky;ωÞ ¼ f �F xj; �F yj; �F zjg

T
is equal to

�ukðx; ky; z;ωÞ ¼ ∑
2M�1

j ¼ 1

�F ijðky;ωÞ �uG
ikðxj; zj; x; ky; z;ωÞ (34)

where �uG
ikðx0; z0; x; ky; z;ωÞ is Green's displacement in the direction k due to an impulsive load applied in the direction i at the

position ðx0; z0Þ in the multi-layered half-space. Due to the invariance of the multi-layered half-space in the x-direction, a
shift can be applied to both the source coordinate x0 and the receiver coordinate x. This allows us to rewrite Eq. (34) as

�ukðx; ky; z;ωÞ ¼ ∑
2M�1

j ¼ 1

�F ijðky;ωÞ �uG
ikð0; zj; x�xj; ky; z;ωÞ (35)

Green's displacement �uG
ikðx0; z0; x; ky; z;ωÞ for a multi-layered half-space is computed numerically by means of the direct

stiffness method [24,25], since no closed form solutions are available [23]. In the direct stiffness method, the 3D Green's
functions are commonly computed in a cylindrical coordinate system ðr;θ; zÞ. A semi-analytical solution is found after the
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transformation of the radial coordinate r to the wavenumber kr. More details on the solution of Green's function can be
found in references [24,25].

Green's function can also be described in the Cartesian frame of reference ðx; y; zÞ; a transformation of the coordinates
x and y to the wavenumbers kx and ky allows for a semi-analytical solution for Green's function ��uG

ikðz0; kx; ky; z;ωÞ. More
details on this approach can be found in references [17,18].

The latter approach is followed in this paper for the calculation of ��uG
ikðz0; kx; ky; z;ωÞ. A Fourier transform from the

coordinate x to the wavenumber kx allows us to write Eq. (35) as

��ukðkx; ky; z;ωÞ ¼ ∑
2M�1

j ¼ 1

�F ijðky;ωÞ ��uG
ikðzj; kx; ky; z;ωÞe� ikxxj (36)

As Green's functions ��uG
ikðzj; kx; ky; z;ωÞ are efficiently evaluated using the direct stiffness method, the evaluation of Eq. (36)

directly yields the response ��ukðkx; ky; z;ωÞ of the multi-layered half-space. A triple inverse Fourier transform results in the
displacement ukðx; y; z; tÞ.

3. Case histories

In order to assess the applicability of the proposed method, five cases are selected (Fig. 7). In all cases, the tunnel has an
inner radius ri ¼ 2:75 m and an outer radius ro ¼ 3:0 m and is made of concrete with Young's modulus E¼ 50 GPa, Poisson's
ratio ν¼0.3 and a density ρ¼ 2500 kg=m3. Attenuation is introduced through a loss factor η¼0.03 associated with both
Lamé constants.

Case 1 (Fig. 7a) is the reference case of a tunnel embedded in a full space with a shear wave velocity Cs ¼ 200 m=s, a
dilatational wave velocity Cp ¼ 400 m=s, a density ρ¼ 1800 kg=m3, and a loss factor η¼0.04 associated with both Lamé
constants.

Case 2 (Fig. 7b) corresponds to a tunnel embedded in a homogeneous half-space, with the same properties as the full
space in case 1. The depth De of the tunnel is varied from 5 to 20 m (Table 1). For a depth De ¼ 5 m (case 2a), it can be
expected that reflected waves at the free surface influence the tunnel wall displacements. For larger depths (e.g. De ¼ 20 m,
case 2c), reflected waves are expected to have a minor influence.

In case 3 (Fig. 7c), a tunnel embedded in a layered half-space is considered. The layered half-space consists of a soft layer
on top of a homogeneous half-space. The properties of the half-space are the same as in case 1. The soft layer has a shear
wave velocity Cs ¼ 100 m=s, a dilatational wave velocity Cp ¼ 200 m=s, a density ρ¼ 1800 kg=m3, and a loss factor η¼0.04
associated with both Lamé constants. The corresponding stiffness contrast between the layer and the half-space equals 4,
which is large. The tunnel depth is fixed to 20 m and the thickness of the soft layer is varied according to the values in
Fig. 7. Tunnel embedded in (a) a full space (case 1), (b) a homogeneous half-space (case 2), (c) a layered half-space (case 3), (d) a layer on bedrock (case 4)
and (e) a layered half-space (case 5).



Table 2
Soil layering for case 5.

Layer thickness (m) Cs (m/s) Cp (m/s) ρ (kg/m3)

1 50 100 1100
3 100 200 1500
1 50 100 1100
20 200 400 1800
1 300 600 1800

Fig. 8. 2.5D finite element mesh of the tunnel used in the coupled FE–BE calculations.

Table 1
Tunnel depth and layer geometry used in the case study.

Case Depth De (m) Layer thickness h (m)

2a 5 –

2b 10 –

2c 20 –

3a 20 5
3b 20 10
3c 20 20
4a 20 25

4b 20 30
4c 20 50

5 20 –

Fig. 9. Real part of the vertical displacement in the soil for case 1 at 10 Hz, as computed with the coupled FE–BE model (left) and the extended PiP model
(center). The insertion gain IGzðx;ωÞ between both solutions is also plotted (right).
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Fig. 11. Real part of the vertical displacement in the soil for cases 2a, 2b, and 2c at 10 Hz, as computed with the coupled FE–BE model (left) and the
extended PiP model (center). The insertion gain IGzðx;ωÞ between both solutions is also plotted (right).

Fig. 10. Real part of the vertical displacement in the soil for case 1 at 50 Hz, as computed with the coupled FE–BE model (left) and the extended PiP model
(center). The insertion gain IGzðx;ωÞ between both solutions is also plotted (right).
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Table 1. In the case where the depth De is equal to the layer thickness h, the interface between the soil layer and the half-
space intersects the tunnel, which is expected to importantly affect the tunnel response. At a small layer thickness (e.g.
h¼ 5 m, case 3a) the effect of waves reflected on the interface is expected to have a small influence on the tunnel response.

In case 4 (Fig. 7d), a tunnel embedded in a layer on a bedrock is considered. The soil layer has the same properties as the
soil in case 1. The tunnel depth is fixed to 20 m and the soil layer thickness is varied from 25 to 50 m (Table 1). In case 4a, the
distance between the bedrock and the tunnel invert equals 2:125 m and it is expected that the wave reflected on the
bedrock influences the tunnel wall displacements. At larger layer thicknesses (e.g. h¼ 50 m, case 4c), the reflected waves are
expected to have a minor influence.

In case 5, the tunnel is embedded in a multi-layered half-space with soft top layers (Table 2). The soil layering is inspired
by soil conditions prevailing in the Groene Hart region in the Netherlands, where the Groene Hart tunnel has been
constructed [15]. The site is characterized by peat and clay inclusions with underlying sand layers. The tunnel depth is fixed
to 20 m.

The response of the tunnel and the soil due to a harmonic point load at the tunnel invert is computed in the frequency
range between 1 and 80 Hz with a step of 1 Hz. All results are calculated first in the wavenumber domain using the
methodology described in the previous section. The results are subsequently transformed to the spatial domain using a
double inverse discrete Fourier transform. The results of the PiP model are calculated using a personal computer with 1 GB
RAM and 2.4 GHz processor.
Fig. 12. Real part of the vertical displacement in the soil for cases 2a, 2b, and 2c at 50 Hz, as computed with the coupled FE–BE model (left) and the
extended PiP model (center). The insertion gain IGzðx;ωÞ between both solutions is also plotted (right).



Fig. 13. Modulus of the displacement ûx in three points (0 m, 0 m, 0 m), (20 m, 0 m, 0 m), and (20 m, 20 m, 0 m) on the free surface for cases 2a, 2b, and 2c,
as computed with the coupled FE–BE model (solid line) and the extended PiP model (dashed line). It should be noted that, at the point (0 m, 0 m, 0 m), the
displacement component ûx is equal to zero as a result of symmetry.

Fig. 14. Modulus of the displacement ûy in three points (0 m, 0 m, 0 m), (20 m, 0 m, 0 m), and (20 m, 20 m, 0 m) on the free surface for cases 2a, 2b, and 2c,
as computed with the coupled FE–BE model (solid line) and the extended PiP model (dashed line). It should be noted that, at the points (0 m, 0 m, 0 m) and
(20 m, 0 m, 0 m), the displacement component ûy is equal to zero as a result of symmetry.
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M.F.M. Hussein et al. / Journal of Sound and Vibration 333 (2014) 6996–7018 7009
The results are compared with the results obtained with a fully coupled 2.5D FE–BE model [18]. The 2.5D finite element
mesh consists of a regular mesh of 120 8-node serendipity elements (Fig. 8). The boundary element mesh conforms with the
finite element mesh and consists of 40 quadratic node-collocated elements of equal size. The boundary integral equation is
integrated using 6 Gaussian integration points per element.

The FE–BE results are calculated using a single hexa-core Xeon 5650 Westmere 2.66 GHz CPU processor of the high
performance cluster at KU Leuven. Frequencies higher than 80 Hz are not considered due to the high computational cost of
the FE–BE model as a result of the finer mesh required. The considered frequency range is of practical interest for ground-
borne vibration in buildings and is sufficient for the validation of the models developed in this work.

The computation time for the problem under consideration for each frequency and wavenumber is about 5 s for the
extended PiP calculation and about 100 s for the coupled FE–BE calculation. The high computational cost of the coupled FE–
BE model is related to the calculation of the tunnel response, where source locations of Green's functions are considered at
every boundary element node. The computational advantage of the extended PiP model results from the use of an
approximate solution of the tunnel response. For the computation of the radiated wavefield in the soil from the tunnel
response, there is no significant gain in computation time between both methods. Regarding memory requirements, both
models require less than 1 GB of RAM. This is related to the use of a 2.5D model, where the 2D FE and BE meshes have a
limited amount of degrees of freedom.

3.1. Case 1: reference case of a tunnel embedded in a full space

In order to verify the correctness of the implementation, the vertical displacement in the soil for case 1 of a tunnel
embedded in a full space is first computed using both the coupled FE–BE model and the extended PiP model. In the
extended PiP model, equivalent loads are computed that produce the same displacement at the tunnel–soil interface. The
analytical full space Green's functions [17] are subsequently used to compute the radiated wavefield. Figs. 9 and 10 show the
resulting vertical displacement in the soil at 10 Hz and 50 Hz, respectively, as computed with both methods. As expected, a
very good correspondence is observed.
Fig. 15. Modulus of the displacement ûz in three points (0 m, 0 m, 0 m), (20 m, 0 m, 0 m), and (20 m, 20 m, 0 m) on the free surface for cases 2a, 2b, and 2c,
as computed with the coupled FE–BE model (solid line) and the extended PiP model (dashed line).
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In order to further compare both solution methods, the insertion gain between both solutions is computed as

IGz x;ωð Þ ¼ 20 log10
juzðx;ωÞj
ju0

z ðx;ωÞj

� �
(37)

where ju0
z ðx;ωÞj is the reference solution computed with the fully coupled FE–BE model and juzðx;ωÞj is the solution

obtained with the extended PiP model.
Figs. 9 and 10 show the insertion gain at 10 Hz and 50 Hz, respectively, demonstrating that, for the full space solution,

the insertion gain IGzðx;ωÞ remains negligible at 10 Hz, while a small error is observed at 50 Hz. This is attributed to
the different discretization methods used for the computation of the radiated wavefield. In the coupled FE–BE model, the
integral representation theorem is applied over the soil–tunnel interface [18] while the extended PiP model uses equivalent
loads. The difference between both solutions remains small, however, and can be further reduced by considering a higher
number of boundary elements in the coupled FE–BE model and equivalent loads in the extended PiP model.
3.2. Case 2: tunnel embedded in a homogeneous half-space

In case 2, a tunnel embedded in a homogeneous half-space is considered where the tunnel depth is varied from 5 to
20 m. Figs. 11 and 12 show the wavefield in cases 2a, 2b and 2c as computed with the fully coupled FE–BE model and with
Fig. 16. Real part of the vertical displacement in the soil for cases 3a, 3b, and 3c at 10 Hz, as computed with the coupled FE–BE model (left) and the
extended PiP model (center). The insertion gain IGzðx;ωÞ between both solutions is also plotted (right).
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the extended PiP model at 10 Hz and 50 Hz, respectively. For a tunnel depth of 5 m (case 2a), the wavefield computed with
the extended PiP model deviates from the reference solution, as a result of the influence of the free surface on the tunnel
response. Visual comparison of the wave fields allows, however, us to conclude that the extended PiP model results in a
good qualitative prediction of the soil response.

The insertion gain is also plotted in Figs. 11 and 12. The insertion gain is small below the load point in cases 2b and 2c,
whereas significant differences are observed above the tunnel in all cases. However, the insertion gain plots should be
interpreted with care, due to the presence of zones of constructive and destructive interference, resulting from the
superposition of direct waves and waves reflected at the free surface. A small spatial shift of the interference pattern may
therefore result in a large insertion gain. This is specifically true at higher frequencies, where smaller wavelengths result in a
closer spacing of the zones of constructive and destructive interference. This is apparent in the insertion gain plots for all
cases 2a, 2b, and 2c (Figs. 11 and 12): the large insertion gain corresponds to a large relative error, but this is due to small
Fig. 17. Real part of the vertical displacement in the soil for cases 3a, 3b, and 3c at 50 Hz, as computed with the coupled FE–BE model (left) and the
extended PiP model (center). The insertion gain IGzðx;ωÞ between both solutions is also plotted (right).
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spatial shifts of the interference pattern. Accounting for these effects, it can be concluded that both solutions are in good
agreement, especially for cases 2b and 2c with a large tunnel depth.

The displacements at the free surface are important for engineering practice, since vibrations at ground surface are
frequently used in the assessment of underground train induced vibrations and vibration countermeasures in the track
structure. Figs. 13–15 show the modulus of the three displacement components in three points (0 m, 0 m, 0 m), (20 m, 0 m,
0 m), and (20 m, 20 m, 0 m) on the free surface for cases 2a, 2b, and 2c, as computed with the coupled FE–BE model and the
extended PiP model. It should be noted that, at the point (0 m, 0 m, 0 m), the displacement components ûx and ûy are equal
to zero as a result of symmetry. Similarly, at the point (20 m, 0 m, 0 m) the displacement component ûy equals zero.

For case 2a, a difference between both solutions is observed as a result of the reflection of waves at the free surface. The
displacements are not accurately computed, but still acceptable for environmental vibration studies in an early design stage.
For cases 2b and 2c, the accuracy of the PiP approach is very good.
3.3. Case 3: tunnel embedded in a layered half-space

In case 3, a tunnel embedded in a layered half-space is considered. The layered half-space consists of a soft layer on top of
a homogeneous half-space where the layer thickness is varied from 5 to 20 m. Figs. 16 and 17 show the wavefield as
computed with the fully coupled FE–BE model and the extended PiP model at 10 Hz and 50 Hz, respectively.

A visual comparison of the wave fields allows to conclude that the extended PiP model results in a good qualitative
prediction of the soil response for cases 3a and 3b. At both frequencies, the wave patterns in the soft top layer are similar,
but spatial shifts of the interference pattern result in large insertion gains. This demonstrates that the PiP model is of
practical use as a scoping tool in an early design stage.

In case 3c, the interface between the soft soil layer and the half-space intersects the tunnel. The response of the stiff
underlying half-space is well predicted by the extended PiP model, whereas a large error is made in the soft top layer. This is
explained as follows. In the case of the extended PiP calculation, the tunnel displacement corresponds to the case of the
tunnel embedded in a full space with the same properties as the half-space (case 1). This allows to correctly compute the
response of the bottom half of the tunnel wall, whereas the response of the top half of the tunnel wall is overestimated.
Fig. 18. Modulus of the displacement ûz in three points at (0 m, 0 m, 0 m), (20 m, 0 m, 0 m), and (20 m, 20 m, 0 m) on the free surface for cases 3a, 3b, and
3c, as computed with the coupled FE–BE model (solid line) and the extended PiP model (dashed line).
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In the case of the coupled FE–BE model, the tunnel imposes its stiffness to the soft top soil layer that results in a smaller
response.

One could alternatively consider the properties of the soft layer (or an average value) for the calculation of the tunnel
response in the extended PiP calculation. This would result, however, in an overestimation of the overall response. For the
present case where the tunnel intersects a layer interface, the dynamic interaction between the tunnel and the multi-
layered half-space is clearly different from the assumption made in calculation step 1 of the PiP model.

The present case demonstrates that an accurate solution can be obtained at all frequencies if the distance between the
tunnel and the free surface or the layer interface is larger than one or two times the tunnel diameter. This distance should
not be interpreted in terms of number of wavelengths, since the tunnel and the near field soil (quasi-static) response
predominantly depend on the soil properties near the tunnel.

Fig. 18 shows the modulus of the vertical displacement in three points (0 m, 0 m, 0 m), (20 m, 0 m, 0 m), and (20 m, 20 m,
0 m) on the free surface for cases 3a, 3b, and 3c, as computed with the coupled FE–BE model and the extended PiP model. A
similar observation is made as in case 2 : if the tunnel and the layer interface are sufficiently spaced, the correspondence
between both methods is very good. Under these conditions, the extended PiP model can be used as an accurate tool for
environmental vibration studies in an early design stage. In case 3c, a large error is observed, in correspondence with Figs. 16
and 17.
Fig. 19. Real part of the vertical displacement in the soil for cases 4a, 4b, and 4c at 10 Hz, as computed with the coupled FE–BE model (left) and the
extended PiP model (center). The insertion gain IGzðx;ωÞ between both solutions is also plotted (right).
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3.4. Case 4: tunnel embedded in a layer on a bedrock

In case 4, a tunnel embedded in a layer on a bedrock is considered where the layer thickness is varied from 25 to 50 m.
Figs. 19 and 20 show the wavefield in cases 4a, 4b and 4c as computed with the fully coupled FE–BE model and with the
extended PiP model at 10 Hz and 50 Hz, respectively.

In case 4a, the distance between the tunnel and the bedrock is small, resulting in an increased soil impedance at the
bottom of the tunnel at 10 Hz. Accordingly, this results in a limited vertical displacement of the load point and an overall
reduction of response of the tunnel and the soil with respect to case 1. The extended PiP calculation overestimates the
tunnel response and the amplitude of the radiated wavefield. At 50 Hz, this effect is less pronounced and the resulting
wavefields computed with the fully coupled FE–BE model and the extended PiP approach are compared well. However,
spatial shifts of the interference pattern, resulting from the superposition of direct waves and waves reflected at the free
surface and the bedrock, can be observed. The insertion gain plots should therefore be interpreted with care. A similar
observation can be made for cases 4b and 4c at both 10 Hz and 50 Hz. Both solutions are in agreement, apart from small
spatial shifts in the interference pattern.

Fig. 21 shows the modulus of the vertical displacement in three points (0 m, 0 m, 0 m), (20 m, 0 m, 0 m), and (20 m, 20 m,
0 m) on the free surface. For case 4a, the extended PiP calculation overestimates the tunnel response due to the close
Fig. 20. Real part of the vertical displacement in the soil for cases 4a, 4b, and 4c at 50 Hz, as computed with the coupled FE–BE model (left) and the
extended PiP model (center). The insertion gain IGzðx;ωÞ between both solutions is also plotted (right).
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distance between the tunnel and the bedrock. This further results in a large overestimation of the free field displacements in
all three points considered.

For the cases 4b and 4c, the correspondence is good between both solutions. However, the difference is larger than in the
previous cases 2 and 3, since the bedrock is located below the tunnel, which has a larger effect on the dynamic tunnel–soil
interaction. However, the accuracy of the extended PiP model is still acceptable for environmental vibration studies.
Fig. 21. Modulus of the displacement ûz in three points at (0 m, 0 m, 0 m), (20 m, 0 m, 0 m), and (20 m, 20 m, 0 m) on the free surface for cases 4a, 4b, and
4c, as computed with the coupled FE–BE model (solid line) and the extended PiP model (dashed line).

Fig. 22. Real part of the vertical displacement in the soil for case 5 at 10 Hz, as computed with the coupled FE–BE model (left) and the extended PiP model
(center). The insertion gain IGzðx;ωÞ between both solutions is also plotted (right).
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3.5. Case 5: tunnel embedded in a multi-layered half-space

In case 5, the tunnel is embedded in a multilayered half-space characterized by soft top layers (Table 2). Figs. 22 and 23
show the wavefield as computed with the fully coupled FE–BE model and with the extended PiP model at 10 Hz and 50 Hz,
respectively.

A visual comparison of the wave fields allows to conclude that the extended PiP model results in a good qualitative
prediction of the soil response. At both frequencies, the wave patterns in the soft top layer are similar, but spatial shifts of
the interference pattern result in large insertion gains.

Fig. 24 shows the modulus of the vertical displacement in three points (0 m, 0 m, 0 m), (20 m, 0 m, 0 m), and (20 m,
20 m, 0 m) on the free surface. A similar observation is made as in the previous cases: since the distance between the tunnel
and the layer interfaces is sufficiently large, the correspondence between both methods is very good. Under these
Fig. 23. Real part of the vertical displacement in the soil for case 5 at 50 Hz, as computed with the coupled FE–BE model (left) and the extended PiP model
(center). The insertion gain IGzðx;ωÞ between both solutions is also plotted (right).

Fig. 24. Modulus of the displacement ûz in three points at (0 m, 0 m, 0 m), (20 m, 0 m, 0 m), and (20 m, 20 m, 0 m) on the free surface for case 5, as
computed with the coupled FE–BE model (solid line) and the extended PiP model (dashed line).
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Fig. 25. Modulus of the displacement ûz in three points at (0 m, 0 m, �2 m), (20 m, 0 m, �2 m), and (20 m, 20 m, �2 m) for case 5, as computed with the
coupled FE–BE model (solid line) and the extended PiP model (dashed line).



Fig. 26. Modulus of the displacement ûz in three points at (0 m, 0 m, �5 m), (20 m, 0 m, �5 m), and (20 m, 20 m, �5 m) for case 5, as computed with the
coupled FE–BE model (solid line) and the extended PiP model (dashed line).

M.F.M. Hussein et al. / Journal of Sound and Vibration 333 (2014) 6996–7018 7017
conditions, the extended PiP model can be used as an accurate design tool. This also holds in the present case of a
complicated soil layering where wave propagation is governed by strong reflections on layer interfaces.

Figs. 25 and 26 show the modulus of the vertical displacement in three points on the interface between soil layers at a
depth of 1 m and 5 m, respectively. The difference between both models is comparable to the results at the free surface. This
is due to the fact that the radiation of waves in calculation step 3 fully accounts for wave propagation in the layered soil.

4. Conclusion

The previous study demonstrates that the extended PiP model allows to accurately predict the response of the multi-
layered half-space. While spatial shifts of the interference pattern resulting from the superposition of direct waves and
waves reflected at the free surface and the bedrock can be observed, the overall response of the multi-layered half-space is
well predicted in most cases. Therefore, the extended PiP model provides a computationally efficient design tool to predict
vibration from underground tunnels in an early design phase. The extended PiP model is also applicable to assess the
performance of vibration countermeasures, such as under sleeper pads or a floating slab track.

If the distance between the tunnel and the free surface or the layer interface is small, the accuracy deteriorates, but is still
acceptable. As a general rule, a good solution is obtained if the distance between the tunnel and the free surface or layer
interface is not larger than two times the tunnel diameter.
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