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Abstract: The main purpose of this paper is to find some fixed point results with a new approach,
particularly in those cases where the existing literature remains silent. More precisely, we introduce partial
completeness, f -orbitally completeness, a new type of contractions and many other notions. We also
ensure the existence of fixed points for non-contraction maps in the class of incomplete partial b-metric
spaces. We have reported some examples in support of our results.
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1 Introduction

The Banach contraction principle plays a significant role in the development of fixed point theory. Banach
[1] explained the uniqueness of a fixed point for a contraction map in complete metric spaces. The Banach
contraction principle has been generalized by many researchers either by generalizing the distance space
or modifying the contraction. In 1989, Bakhtin [2] generalized metric spaces by introducing the concept of
b-metric spaces. In 1994, Matthews [3] introduced the concept of a partial metric space, in which a self-
distance of any point may not be zero. Ran-Reurings [4] generalized the Banach contraction principle in
setting of ordered metric spaces. The key feature in the Ran-Reurings theorem is that the contractive
condition on the nonlinear map is only assumed to hold on the comparable elements instead of the whole
space as in the Banach contraction principle. In 2005, Nieto and Rodríguez-López [5] proved a fixed point
theorem by relaxing some conditions in Ran-Reurings [4]. In 2008, Suzuki [6] proved a fixed point
theorem by assuming a contraction condition on those elements which satisfy the given condition.
Recently in 2013, Shukla [7] generalized both b-metrics and partial metrics by introducing a partial b-
metric. There is a bulk of literature on fixed point in all these spaces, see [8–35]. Almost all the existing
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fixed point results involve the completeness of the underlying space. The main aim of this paper is to
ensure the existence of fixed points either without assuming the completeness of the space or the
contraction condition is not satisfied. In this direction, we give a brief introduction of our newly
introduced concepts, especially partial completeness, a new contraction condition and many other
concepts to tackle the problem as pointed out above. The contraction condition is not assumed to hold on
the whole space, but we choose a subset with some given properties, on which the contraction condition is
assumed to hold. Particularly, we prove fixed point results for non-contraction maps in the setting of
ordered partial incomplete b-metric spaces. We give some examples in support of our obtained theorems.
Before going to the main result, we recall some definitions.

Definition 1.1. [2] Let X be a nonempty set and × → [ ∞)b X X: 0, be a function verifying:
(1) ( ) =b ρ ξ, 0 iff =ρ ξ ;
(2) ( ) = ( )b ρ ξ b ξ ρ, , ;
(3) There exists ≥s 1 such that ( ) ≤ [ ( ) + ( )]b ρ ξ s b ρ τ b τ ξ, , , ,
for all ∈ρ ξ τ X, , . Then, b is called a b-metric on X and ( )X b, is called a b-metric space with a
coefficient ≥s 1.

Definition 1.2. [3] Let X be a nonempty set and × → [ ∞)p X X: 0, be a function such that:
(1) ( ) = ( ) = ( )p ρ ρ p ρ ξ p ξ ξ, , , iff =ρ ξ ;
(2) ( ) ≤ ( )p ρ ρ p ρ ξ, , ;
(3) ( ) = ( )p ρ ξ p ξ ρ, , ;
(4) ( ) ≤ ( ) + ( ) − ( )p ρ ξ p ρ τ p τ ξ p τ τ, , , , ,
for all ∈ρ ξ τ X, , . Then, p is called a partial metric on X and ( )X p, is called a partial metric space.

Definition 1.3. [7,36] Let X be a nonempty set and × → [ ∞)d X X: 0, be a function such that:
(1) ( ) = ( ) = ( )d ρ ρ d ρ ξ d ξ ξ, , , iff =ρ ξ ;
(2) ( ) ≤ ( )d ρ ρ d ρ ξ, , ;
(3) ( ) = ( )d ρ ξ d ξ ρ, , ;
(4) There exists ≥s 1 such that ( ) ≤ [ ( ) + ( )] − ( )d ρ ξ s d ρ τ d τ ξ d τ τ, , , , ,
for all ∈ρ ξ τ X, , . Then, d is called a partial b-metric on X and ( )X d, is called a partial b-metric space with
coefficient ≥s 1.

Example 1.1. Set >p 1. The function [ ∞) → [ ∞)d : 0, 0,2 2 given as

( ) = ( { }) + | − |d ρ ξ ρ ξ ρ ξ, max , ,p p

for all ∈ρ ξ X, , is a partial b-metric (here, = >
−s 2 1p 1 ). It is neither a partial metric nor a b-metric.

Definition 1.4. [7] Given a sequence { }ζn in a partial b-metric space ( )X d, .
(1) { }ζn converges to ∈ζ X (written as =

→∞

ζ ζlim
n n ) if

( ) = ( )

→∞

d ζ ζ d ζ ζlim , , .
n n

(2) { }ζn is called Cauchy in X if ( )

→∞

d ζ ζlim ,
n m n m,

exists and is finite.

(3) ( )X d, is said complete if for every Cauchy sequence { }ζn , there is ∈ζ X so that

( ) = ( ) = ( )

→∞ →∞

d ζ ζ d ζ ζ d ζ ζlim , lim , , .
n m n m n n,

Here, the limit of a convergent sequence may not be unique.

Example 1.2. [7] Take ( ) = { } +d ρ ξ ρ ξ a, max , for all ∈ [ ∞)ρ ξ, 0, , where >a 0. Then, ( )X d, is a partial
b-metric space with an arbitrary coefficient ≥s 1. If =ζ 1n for each ∈n �, then =

→∞

ζ ηlim
n n , for each ≥η 1.
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Definition 1.5. [36] Let ( ≼)X, be a partially ordered set and d be a partial b-metric on X. Then, the triplet
( ≼)X d, , is called an ordered partial b-metric space.

Definition 1.6. [37] Let f be a self-map on a metric space ( )X d, . For ⊂A X, define ( ) =δ A { ( )d α βsup , :
∈ }α β A, . For each ∈θ X and ≥n 1, take

( ) = { … }O θ n θ fθ f θ f θ, , , , , n2

and

( ∞) = { …}O θ θ fθ f θ, , , , .2

The metric space ( )X d, is called f-orbitally complete if each Cauchy sequence contained in ( ∞)O θ,
converges in X.

2 Results and discussions

First, we introduce some definitions.

Definition 2.1. Let f be a self-map on a metric space ( )X d, . For a subset ⊆A X with ∈θ A, state

( ) = { … }O θ n θ fθ f θ f θ, , , , ,A
n2

and

( ∞) = { …}O θ θ fθ f θ, , , , .A
2

We say that ( )X d, is f-orbitally complete with respect to A, if every Cauchy sequence contained in ( ∞)O θ,A
converges in A.

Now, we give some examples to illustrate Definition 2.1.

Example 2.1. Let = (− )X 1, 2 be endowed with the usual metric of � . Define →f X X: by ( ) =f ζ ζ
2 , for all

∈ζ X . Let = [ )A 0, 1 . Then, ( )X d, is f-orbitally complete with respect to A.

Example 2.2. Let =X � be endowed with the usual metric. Define →f X X: by ( ) =f ζ ζ 2, for all ∈ζ X . Let
= [ )A 0, 1 . Again ( )X d, is f-orbitally complete with respect to A.

Definition 2.2. Let ( ≼)X d, , be an ordered partial b-metric space. Then, for any subset ⊆A X , ( ≼)X d, , is
said to be f -orbitally complete with respect to A, if every strictly increasing Cauchy sequence contained in

( ∞)O θ,A for some ∈θ A converges in A and the limit of the sequence is a strict upper bound of the
sequence, i.e., if { }ζn is a strictly increasing Cauchy sequence contained in ( ∞)O ζ ,A , then there is ∈ζ A
such that →ζ ζn and ≺ζ ζn , for all ∈n �.

We present some examples in support of Definition 2.2.

Example 2.3. Let = (− )X 2, 3 be endowed with usual metric and ≼ be defined as the natural ordering ≤.

Consider ( ) =f ζ ζ
3 for all ∈ζ X . Take = (− ]A 1, 0 . Note that ( ≼)X d, , is f -orbitally complete with respect

to A.

Example 2.4. Let = (−∞ )X , 1 be endowed with the usual metric and ≼ be the natural ordering ≤. Take
( ) =f ζ ζ 3 for all ∈ζ X . Let = (− ]A 1, 0 . Then, ( ≼)X d, , is f -orbitally complete with respect to A.
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Before going to the main results of this section, we present some examples to support our claim of
ensuring the existence of a fixed point in cases where known results are not applicable.

Example 2.5. Let = ( ]X 0, 2 be endowed with the usual metric and ≼ be the natural ordering ≤. Define
→f X X: by

( ) =

< <

≤ ≤

f ζ
ζ

ζ ζ

, 0 1,

, 1 2.
ζ
1
2







Clearly, X is not f-orbitally complete. It can be verified by taking =ζ 2
3 and the sequence

{ = ( ) }a f ζ n, evenn
n in ( ∞)O ζ , . But, if we take = [ ]A 1, 2 , then X is f-orbitally complete with respect to A.

Example 2.6. Let = ( ∞)X 0, be endowed with the usual metric and ≼ be the natural ordering ≤. Define
→f X X: by

( ) =

< <

f ζ
ζ

ζ
, 0 1,
, otherwise.

ζ
3







Clearly, X is not f-orbitally complete. If we take = [ ∞)A 1, , then X is f-orbitally complete with respect to A.

The following result is useful enough in the context of partial b-metric spaces.

Lemma 2.1. Let ( ≼)X d, , be a partial b-metric space with a coefficient ≥s 1. For each sequence { }ζn in X, we
have

( ) ≤ ( ) + ( ) + ⋯+ ( ) + ( )
+ + +

− −

− −

− −

−
d ζ ζ sd ζ ζ s d ζ ζ s d ζ ζ s d ζ ζ, , , , , ,n m n n n n

m n
m m

m n
m m1

2
1 2

1
2 1

1
1

for all ∈n m, � with <n m.

Proof. By using triangular inequality, one writes

( ) ≤ [ ( ) + ( )] − ( )

≤ [ ( ) + ( )]

≤ ( ) + [ ( ( ) + ( )) − ( )]

≤ ( ) + [ ( ( ) + ( ))]

= ( ) + ( ) + ( )

+ + + +

+ +

+ + + + + +

+ + + +

+ + + +

d ζ ζ s d ζ ζ d ζ ζ d ζ ζ
s d ζ ζ d ζ ζ
sd ζ ζ s s d ζ ζ d ζ ζ d ζ ζ
sd ζ ζ s s d ζ ζ d ζ ζ
sd ζ ζ s d ζ ζ s d ζ ζ

, , , ,
, ,

, , , ,
, , ,
, , , .

n m n n n m n n

n n n m

n n n n n m n n

n n n n n m

n n n n n m

1 1 1 1

1 1

1 1 2 2 2 2

1 1 2 2

1
2

1 2
2

2

Continuing in this way, we get

( ) ≤ ( ) + ( ) + ⋯+ ( ) + ( )
+ + +

− −

− −

− −

−
d ζ ζ sd ζ ζ s d ζ ζ s d ζ ζ s d ζ ζ, , , , , .n m n n n n

m n
m m

m n
m m1

2
1 2

1
2 1

1
1 □

Theorem 2.1. Let ( ≼)X d, , be an ordered partial b-metric space with a coefficient ≥s 1. Suppose that the set
= { ∈ ≼ ( )}A θ X θ f θ: is nonempty and that

( ( )) ≤ ( ( ))d ξ f ξ λd ζ f ζ, , , (1)

for all ∈ζ ξ A, with ≺ζ ξ , where ∈λ 0, s
1







. If further, ( ) ⊆f A A and ( ≼)X d, , is f -orbitally complete with

respect to A, then there is a fixed point of f in A.

Proof. Since ≠ ∅A , let ∈ζ A0 . Then, ( ) ∈f ζ A0 . If ( ) =f ζ ζ0 0, we are done. Otherwise, we choose = ( )ζ f ζ1 0 .
Now, ( ) ∈f ζ A1 , and if ( ) =f ζ ζ1 1, then we are through. Otherwise, choose = ( )ζ f ζ2 1 . Now, ( ) ∈f ζ A2 . As

∈ζ ζ A,0 1 with ≺ζ ζ0 1, then by (1), we have

( ( )) ≤ ( ( ))d ζ f ζ λd ζ f ζ, , .1 1 0 0 (2)
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Again, as ∈ζ ζ A,1 2 with ≺ζ ζ1 2, then by (1), we have

( ( )) ≤ ( ( ))d ζ f ζ λd ζ f ζ, , .2 2 1 1 (3)

Using (2) in (3), we get

( ( )) ≤ ( ( ))d ζ f ζ λ d ζ f ζ, , .2 2
2

0 0

Continuing similarly, we obtain

( ( )) ≤ ( ( ))d ζ f ζ λ d ζ f ζ, , .n n
n

0 0 (4)

Continuing the process, we get a strictly increasing sequence { }ζn in A so that

= ( )
+

ζ f ζ .n n1 (5)

Now, we show that { }ζn is a Cauchy sequence in ( ∞)O ζ ,A 0 . For this, take ∈n m, � with <n m. From Lemma
2.1, one writes

( ) ≤ ( ) + ( ) + ⋯+ ( ) + ( )
+ + +

− −

− −

− −

−
d ζ ζ sd ζ ζ s d ζ ζ s d ζ ζ s d ζ ζ, , , , , .n m n n n n

m n
m m

m n
m m1

2
1 2

1
2 1

1
1 (6)

Now, by using (5) and (4), we get

( ) ≤ ( ( )) + ( ( )) + ⋯+ ( ( )) + ( ( ))

≤ [ + + ⋯+ + ] ( ( ))

≤ [ + + ⋯+( ) + ( ) ] ( ( ))

≤ [ + + ⋯+( ) + ( ) ] ( ( ))

≤

−

+ +

− −

− −

− −

− −

+ − − − − − −

− − − − −

− − − −

d ζ ζ sd ζ f ζ s d ζ f ζ s d ζ f ζ s d ζ f ζ
sλ s λ s λ s λ d ζ f ζ

sλ sλ sλ s sλ d ζ f ζ
sλ sλ sλ sλ d ζ f ζ

sλ
sλ

, , , , ,
,

1 ,
1 ,

1

n m n n n n
m n

m m
m n

m m
n n m n m m n m

n m n m n

n m n m n

n

2
1 1

1
2 2

1
1 1

2 1 1 2 1 1
0 0

2 1 1
0 0

2 1
0 0

(7)

→ → ∞n m0, as , . (8)

That is,

( ) =

→∞

d ζ ζlim , 0.
n m n m,

Thus, the strictly increasing sequence { }ζn is Cauchy in ( ∞)O ζ ,A 0 . But since ( ≼)X d, , is f -orbitally complete
with respect to A, there is ∈u A so that →ζ un and ≺ζ un for each ∈n �.

Since ∈ζ u A,n with ≺ζ un for all ∈n �, by (1) and (4), we have

( ( )) ≤ ( ( )) ≤ ( ( ))
+d u f u λd ζ f ζ λ d ζ f ζ, , , .n n

n 1
0 0

Making → ∞n leads to ( ( )) =d u f u, 0. Hence, u is a fixed point of f in A. □

Corollary 2.1. It is clear from Eq. (4) and (7) that Theorem 2.1 still holds if Eq. (1) is replaced by

( ( )) ≤

+

( ( ))d ξ f ξ
s δ

d ρ f ρ, 1 , ,

for ∈ρ ξ A, with ≺ρ ξ , where >δ 0.

3 Fixed point theorems in partially complete spaces

Definition 3.1. Let { }ζn be a sequence in an ordered set ( ≼)X, . An element ∈ζ X is an upper bound of { }ζn if
≼ζ ζn , for each ∈n �. Such ζ is said to be a strict upper bound of { }ζn if ≺ζ ζn , for each ∈n �.

Still in the direction that the ordered partial b-metric space is not complete, we introduce the concept
of partial completeness with respect to a subset A.
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Definition 3.2. Let ( ≼)X d, , be an ordered partial b-metric space ( ≥ )s 1 . For ⊆A X , the triplet ( ≼)X d, , is
said partially complete with respect to A, if every strictly increasing Cauchy sequence in A has a strict
upper bound in A, i.e., if { }ζn is a strictly increasing Cauchy sequence in A, then there exists ∈ζ A such that

≺ζ ζ ,n for each ∈n .�

Example 3.1. Endow =X � with the usual metric of � and the natural order ≤. Note that ( ≤)X d, , is an
ordered partial b-metric space (with =s 1), but it is not complete. However, if we take = ( ] ∩A 1, 3 �, then
( ≤)X d, , is partially complete with respect to A. Here, 3 is the strict upper bound for every strictly
increasing Cauchy sequence in A.

The main objective of this concept is to present some fixed point results in noncomplete metric spaces.
Here, we have dropped the contraction condition prescribed by Banach.

Remark 3.1. Let ( ≼)X, be a totally ordered set. Then, every ordered complete metric space ( ≼)X d, , is
partially complete with respect to A, where A is any closed subset of X. The converse of the above
statement is not true in general. It can be seen by taking = ( )X 0, 5 and = ( ]A 1, 3 . With the usual metric
and the natural ordering ≤, X is partially complete with respect to A, but it is not complete. Also, if we take

= [ ]A 1, 3 , then X is still not complete, but it is partially complete with respect to A.

Theorem 3.1. Let f be a self-map on an ordered partial b-metric space ( ≼ ≥ )X d s, , , 1 such that the set
= { ∈ ≼ ( )}A ζ X ζ f ζ: is nonempty and

( ( )) ≤ ( ( ))d ξ f ξ λd ζ f ζ, , , (9)

for all ∈ζ ξ A, with ≺ζ ξ , where ∈λ 0, s
1







. If further, ( ) ⊆f A A and ( ≼)X d, , is partially complete with

respect to A, then f has a fixed point in A.

Proof. Going through the same lines of proof of Theorem 2.1, we get a strictly increasing Cauchy sequence
{ }ζn in A such that

= ( )
+

ζ f ζ ,n n1 (10)

( ( )) ≤ ( ( ))d ζ f ζ λ d ζ f ζ, , .n n
n

0 0 (11)

Since ( ≼)X d, , is partially complete with respect to A, there is ∈ζ A such that ≺ζ ζn , for each ∈n �. Thus,
from (9) and (11), we get

( ( )) ≤ ( ( )) ≤ ( ( ))
+d ζ f ζ λd ζ f ζ λ d ζ f ζ, , , .n n

n 1
0 0

Since ≥s 1, we have that ( ( )) =d ζ f ζ, 0, i.e., ζ is the fixed point of f in A. □

Example 3.2. Let =X � be endowed with ( ) = | − | − { }d ζ ξ ζ ξ ζ ξ, min , . Let≼ be the natural order≤. Note that
( ≼)X d, , is an ordered partial b-metric space (with =s 2), which is not complete. Consider →f X X: by

( ) =

≤ ≤
+

f ζ
ζ

ζ

, 0 1,

, otherwise.

ζ 1
2
2









Since X is not a complete partial b-metric space, we cannot apply the previous results. Take

= ≥ ∪ { }
−A n: 1 12 1

2

n

n








. Here, ( ) ⊆f A A and ≤ ( )ζ f ζ for each ∈ζ A. Also, ( ≼)X d, , is partially complete

with respect to A. Therefore, it remains to prove that (9) is satisfied. Let ∈ζ ξ A, be such that <ζ ξ . We

have ( ( )) =
−d ζ f ζ, ζ1 3
2 , ( ( )) =

−d ξ f ξ, ξ1 3
2 and − ≥ξ ζ2 1

3 . For =λ 1
2 , one writes
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( ( )) − ( ( )) =

−

−

−

=

− −

≥λd ζ f ζ d ξ f ξ ζ ξ ξ ζ, , 1 3
4

1 3
2

6 3 1
4

0.

Hence, all the conditions of Theorem 3.1 hold and f has a fixed point in A, which is, =u 1.

Example 3.3. Let = (−∞ ] ∩X , 0 � be endowed with ( ) = | − | − { }d ζ ξ ζ ξ ζ ξ, min , and ≼ be the natural
order ≤. Note that ( ≼)X d, , is an ordered partial b-metric space (with =s 2), which is not complete. Take

( ) =

− < ≤

≤ −

f ζ
ζ

ζ ζ

, 1 0,

, 1.

ζ
5

3









Take = = ≥ = − ∪ { }+A a a n a: , 0 with 0n n
a

1 5 0
1
2

n







. Then, = − − − … ∪ { }A , , , 01
2

1
10

1
50









. Here, ( ) ⊆f A A

and ≤ ( )ζ f ζ for each ∈ζ A. Also, ( ≼)X d, , is partially complete with respect to A. Therefore, it remains to

prove that (9) is satisfied. Let ∈ζ ξ A, such that <ζ ξ . We have ( ( )) = −d ζ f ζ, ζ11
5 , ( ( )) = −d ξ f ξ, ξ11

5 and

− ≥ξ ζ4 0. For =λ 1
4 , one writes

( ( )) − ( ( )) = − + = [ − ] ≥λd ζ f ζ d ξ f ξ ζ ξ ξ ζ, , 11
20

11
5

11
20

4 0.

Thus, ( ( )) ≤ ( ( ))d ξ f ξ λd ζ f ζ, , . Hence, all the conditions of Theorem 3.1 hold and f has a fixed point in A.

Corollary 3.1. Let f be a self-map on an ordered partial b-metric space ( ≼ ≥ )X d s, , , 1 . Assume that ( )f X is
nonempty with ≼ ( )ζ f ζ , for each ∈ ( )ζ f X , and

( ( )) ≤ ( ( ))d ξ f ξ λd ζ f ζ, , , (12)

for all ∈ ( )ζ ξ f X, with ≺ ≠ ( )ζ ξ ζ f ζ, and ≠ ( )ξ f ξ , where ∈λ 0, s
1







. Furthermore, if ( ≼)X d, , is partially

complete with respect to ( )f X , then f has a fixed point in ( )f X .

Proof. As ( ) ≠ ∅f X , let ∈ ( )ζ f X0 . Note that ≼ ( )ζ f ζ0 0 . If = ( )ζ f ζ0 0 , then we have nothing to prove.
Otherwise, choose = ( ) ∈ ( )ζ f ζ f X1 0 . Then, again ≼ ( )ζ f ζ1 1 . If = ( )ζ f ζ1 1 , then we are through. Otherwise,
choose = ( ) ∈ ( )ζ f ζ f X2 1 . Continuing the same process, we get a strictly increasing sequence { }ζn in ( )f X
such that

= ( )
+

ζ f ζ .n n1 (13)

Now, repeating the process as in Theorem 2.1, we get for each ∈n �,

( ( )) ≤ ( ( ))d ζ f ζ λ d ζ f ζ, , .n n
n

0 0 (14)

Let ∈n m, � with <n m. Using Lemma 2.1, (14) and the fact that ≥s 1, we get

( ) → → ∞d ζ ζ n m, 0, as , .n m

Thus, { }ζn is a strictly increasing Cauchy sequence in ( )f X . But, ( ≼)X d, , is partially complete with respect
to ( )f X , then { }ζn has a strict upper bound in ( )f X , say ζ .

Since ∈ ( )ζ ζ f X,n , for each n with ≺ζ ζn , by (12) and (14), we have

( ( )) ≤ ( ( ))
+d ζ f ζ λ d ζ f ζ, , .n 1

0 0

As ≥s 1, so we have ( ( )) =d ζ f ζ, 0, so ζ is a fixed point of f in ( )f X . □

Now, we present an example where the given partial b-metric space is not complete. In such a case,
Corollary 3.1 can be applied and a fixed point result is obtained.
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Example 3.4. Let = = ≥ = −+A a a n a: , 0 with 2n n
a

1 3 0
n







and = ( ] ∩B 0, 3 �. Then, = − − −A 2, , ,2

3
2
9





− − …, ,2
27

2
81




. Consider = ∪X A B. If we take ≼ as the natural ordering ≤ and ( ) = | − |d ζ ξ ζ ξ, , then ( ≼)X d, ,

is an ordered partial b-metric space with =s 1. Choose

( ) =

∈

∈

f ζ
ζ A

ζ ζ A
,
, .

ζ

c
3







(15)

Here, ( ) =f X X . Also, every strictly increasing Cauchy sequence has a strict upper bound in ( )f X . Thus,
( ≼)X d, , is partially complete with respect to ( )f X . Note that ≼ ( )ζ f ζ , for each ∈ ( )ζ f X . Let ∈ ( )ζ ξ f X, with

< ≠ ( )ζ ξ ζ f ζ, and ≠ ( )ξ f ξ . We have ∈ζ ξ A, , where < ⇒ − ≥ζ ξ ξ ζ3 0. Furthermore, for such ∈ζ ξ A, ,
( ( )) = −d ζ f ζ, ζ2

3 and ( ( )) = −d ξ f ξ, ξ2
3 . For =λ 1

3 , one writes

( ( )) − ( ( )) = − + = ( − ) ≥λd ζ f ζ d ξ f ξ ζ ξ ξ ζ, , 2
9

2
3

2
9

3 0.

Hence, ( ( )) ≤ ( ( ))d ξ f ξ λd ζ f ζ, , for all ∈ ( )ζ ξ f X, with < ≠ ( )ζ ξ ζ f ζ, and ≠ ( )ξ f ξ . Thus, all the assumptions
of Corollary 3.1 hold and there is at least one fixed point of f in ( )f X .

4 A fixed point result with a continuous partial b-metric

In this section, we assume that the partial b-metric is continuous. Following [38], we state the following.

Theorem 4.1. Let ( )S p,1 and ( )S p,2 be two partial b-metric spaces, ⊆A S1 and ∈c A. Given a function
→f A S: 2. Then, if f is continuous at c, then for each convergent sequence { }ζn to some ∈c A, we have { ( )}f ζn

is convergent to ( )f c .

Theorem 4.2. Let ( ≼)X d, , be a complete ordered partial b-metric space ( ≥ )s 1 and f be a continuous self-
mapping on X. Let = { ∈ ≼ ( )} ≠ ∅A ζ X ζ f ζ: such that ( ) ⊆f A A. Assume that

( ( )) ≤ ( ( ))d ξ f ξ λd ζ f ζ, , , (16)

for all ∈ζ ξ A, with ≺ζ ξ , where ∈λ 0, s
1







. Suppose in addition that the partial b-metric is continuous, then f

has a fixed point in X.

Proof. Since ≠ ∅A , let ∈ζ A0 . By definition of A, we have ≼ ( )ζ f ζ0 0 . As ( ) ⊆f A A, we have ( ) ∈ζ f ζ A,0 0 . If
( ) =f ζ ζ0 0, then we are done. Otherwise, choose ∈ζ A1 such that ≺ ( ) =ζ f ζ ζ0 0 1. Again, ≼ ( )ζ f ζ1 1 . If = ( )ζ f ζ1 1 ,

then nothing to prove. Otherwise, we choose ∈ζ A2 such that ≺ ( ) =ζ f ζ ζ1 1 2. Continuing in this process, we
get an increasing sequence { }ζn in A such that

= ( )
+

ζ f ζ .n n1 (17)

Also, { }ζn is a Cauchy sequence in X (see the proof of Theorem 2.1). Hence, there is at least one ∈ζ X such
that →ζ ζn . Since f is continuous, we get ( ) → ( )f ζ f ζn . By taking → ∞n , we obtain that

( ( )) =

→∞

d ζ f ζlim , 0
n n n

As the partial b-metric is assumed to be continuous, we get that

( ) =

→∞ →∞

d ζ f ζlim , lim 0,
n n n n










so ( ( )) =d ζ f ζ, 0. Hence, ( ) =f ζ ζ . □
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Example 4.1. Let =X � be endowed with ( ) = | − |d ζ ξ ζ ξ, . Let ≼ be the natural order ≤. Note that ( ≼)X d, ,
is an ordered partial b-metric space (with =s 1). Define →f X X: by

( ) =

≤

>

f ζ
ζ

ζ ζ

, 0,

, 0.

ζ
3

2









Clearly, for =ζ 1 and =ξ 3, we have ( ) > ( )d fζ fξ kd ζ ξ, , for each ∈ ( )k 0, 1 . Consider = { =+A a a:n n 1

≥ = −n a, 0 witha
3 0

1
2

n 


. Note that = − − − …A , , ,1

2
1
6

1
18








. Here, ( ) ⊆f A A and ≤ ( )ζ f ζ for each ∈ζ A. Then,

it remains to prove that (16) is satisfied. Let ∈ζ ξ A, be such that <ζ ξ . For = ∈ [ )λ 0, 11
2 , we have

( ( )) − ( ( )) = − + = [ − ] ≥λd ζ f ζ d ξ f ξ ζ ξ ξ ζ, ,
3

2
3

1
3

2 0.

Thus, ( ( )) ≤ ( ( ))d ξ f ξ λd ζ f ζ, , . Hence, all the conditions of Theorem 4.2 hold and f has a fixed point in X.

5 Conclusion

We proved some fixed point theorems with a new approach. In this direction, we introduced partial
completeness, f -orbitally completeness, a new contraction type and other notions. The aim was to find the
existence of a fixed point in the cases where many known results cannot work. The proof for uniqueness of
a fixed point needs further explorations. It would be very interesting to analyze the existing literature in
light of the results discussed in this paper. Particularly, if we replace Banach contraction by other newly
introduced contractions, we may get further interesting results.

Acknowledgments: The publication of this article was funded by the Qatar National Library. The authors
highly appreciate the efforts of referees and editor of this paper who helped us to improve it in several
places.
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