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Abstract
In [S. Sedghi, N. Shobe, H. Y. Zhou, Fixed Point Theory Appl., 2007 (2007), 13 pages], Sedghi et al. introduced the notion

of D∗-metric space and in [S. Sedghi, N. Shobe, A. Aliouche, Mat. Vesnik, 64 (2012), 258–266] the authors claimed that every
G-metric space is D∗-metric. In this short paper we present examples to show that D∗-metric need not be G-metric as well as
the G-metric need not be D∗-metric.
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1. Introduction and preliminaries

In 2005, Zead and Sims [5] introduced the notion of G-metric spaces as a generalization of the concept
of ordinary metric spaces as follows.

Definition 1.1 ([5]). A G-metric space is a pair (A,G), where A is a nonempty set, and G : A×A×A →
[0,∞) such that for all κ, λ,$, ζ ∈ A we have

(G1) G(κ, λ,$) = 0, if κ = λ = $;
(G2) 0 < G(κ, κ, λ), for all κ, λ ∈ A, with κ 6= λ;
(G3) G(κ, κ, λ) 6 G(κ, λ,$), for all κ, λ,$ ∈ A, with $ 6= λ;
(G4) G(κ, λ,$) = G(κ,$, λ) = G(λ,$, κ) = · · · , (symmetry in all three variables); and
(G5) G(κ, λ,$) 6 G(κ, ζ, ζ) +G(ζ, λ,$), for all κ, λ,$, ζ ∈ A, (rectangle inequality).

The function G is called a G-metric on A.

Many authors obtained fixed point results for different contractive mappings in the frame work of
G-metric space, for more details we refer the reader to [1–5].

In 2007, Sedghi et al. introduced the concept of D∗-metric space as follows.

Definition 1.2 ([8]). A D∗-metric space is a pair (A,D∗) where A is a nonempty set, and D∗ : A×A×A→
[0,∞) such that for all κ, λ,$, ζ ∈ A we have
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(D∗1) D∗(κ, λ,$) > 0;

(D∗2) D∗(κ, λ,$) = 0, iff κ = λ = $;

(D∗3) D∗(κ, λ,$) = D∗(κ,$, λ) = D∗(λ,$, κ) = · · · , (symmetry in all three variables); and

(D∗4) D∗(κ, λ,$) 6 D∗(κ, λ, ζ) +D∗(ζ,$,$), for all κ, λ,$, ζ ∈ A.

The function D∗ is called a D∗-metric on A.

Many authors obtained fixed point results under some contractive conditions, see [6, 8]. Note that
every D∗-metric on A defines a metric dD∗ on A by

dD∗(κ, λ) = D∗(κ, λ, λ), ∀κ, λ ∈ A.

Lemma 1.3 ([8]). Let (A,D∗) be a D∗-metric space. Then D∗ is symmetric, i.e., D∗(κ, λ, λ) = D∗(κ, κ, λ).

Lemma 1.4 ([8]). Let A be a D∗-metric space, then the function D∗(κ, λ,$) is jointly continuous on A×A×A.

2. Main results

In [7, Remark 1.3], Sedghi et al. claimed that ”every G-metric space is D∗-metric”. The following
example shows that this claim need not be true in general.

Example 2.1 ([3]). Let A = N, be the set of all natural numbers, and define G : A×A×A → R such that
for all κ, λ,$ ∈ A:

• G(κ, λ,$) = 0, if κ = λ = $;

• G(κ, λ, λ) = κ+ λ, if κ < λ;

• G(κ, λ, λ) = κ+ λ+ 1
2 , if κ > λ;

• G(κ, λ,$) = κ+ λ+$, if κ 6= λ 6= $ and symmetry in all three variables.

Then, (A,G) is a G-metric space. But if κ < λ, we have G(κ, λ, λ) = κ+ λ 6= κ+ λ+ 1
2 = G(λ, κ, κ) that

is G is not symmetric, also triangle inequality of D∗-metric does not satisfy, in fact

G(2, 2, 3) =
11
2

� 5 = G(2, 2, 2) +G(2, 3, 3).

So, it is not D∗-metric.

In fact, every non-symmetric G-metric space is not D∗-metric. Now we present an example shows that
D∗-metric need not to be G-metric.

Example 2.2. Let A = R be the set of all real numbers and define D∗ : A×A×A → R such that for all
κ, λ,$ ∈ A, D∗(κ, λ,$) = |κ+ λ− 2$|+ |λ+$− 2κ|+ |$+ κ− 2λ|. Then (A,D∗) is a D∗-metric space [8].
But D∗ is not G-metric since (G3) is not satisfied. In fact, D∗(5, 5, 10) = 20 � 18 = D∗(5, 10, 9).

However, the following is an example of both G-metric and D∗-metric.

Example 2.3. Let A = R, be the set of all real numbers, and define G : A×A×A → [0,∞) such that for
all κ, λ,$ ∈ A:

• G(κ, λ,$) = 0, if κ = λ = $;

• G(κ, λ, λ) = G(κ, κ, λ) = |κ|+ |λ|, if κ 6= λ;
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• G(κ, λ,$) = |κ|+ |λ|+ |$|, if κ 6= λ 6= $.

Then, (A,G) is a G-metric space and D∗-metric space.

Proposition 2.4. Every G-metric space define a D∗-metric space.

Proof. Let (A,G) be a G-metric space, then G-metric space defines a metric space (A,dG) by

dG(κ, λ) = G(κ, λ, λ) +G(λ, κ, κ),

hence D∗ : A×A×A→ [0,∞) by

D∗(κ, λ,$) = max{dG(κ, λ),dG(λ,$),dG($, κ)},

or
D∗(κ, λ,$) = dG(κ, λ) + dG(λ,$) + dG($, κ),

for all κ, λ,$ ∈ A is D∗-metric on A.

Proposition 2.5. Every D∗-metric space define a G-metric space.

Proof. Let (A,D∗) be a D∗-metric space, then D∗-metric space defines a metric space (A,dD∗) by

dD∗(κ, λ) = D∗(κ, λ, λ),

hence G : A×A×A→ [0,∞) by

G(κ, λ,$) = max{dD∗(κ, λ),dD∗(λ,$),dD∗($, κ)},

or
G(κ, λ,$) = dD∗(κ, λ) + dD∗(λ,$) + dD∗($, κ),

for all κ, λ,$ ∈ A is G-metric on A.
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