J. Math. Computer Sci., 22 (2021), 128-130

Some remarks concerning D*-metric spaces

Zead Mustafa*, M. M. M. Jaradat

Department of Mathematics, Statistics and Physics, Qatar University, Doha, Qatar.

Abstract

In [S. Sedghi, N. Shobe, H. Y. Zhou, Fixed Point Theory Appl., **2007** (2007), 13 pages], Sedghi et al. introduced the notion of D*-metric space and in [S. Sedghi, N. Shobe, A. Aliouche, Mat. Vesnik, **64** (2012), 258–266] the authors claimed that every G-metric space is D*-metric. In this short paper we present examples to show that D*-metric need not be G-metric as well as the G-metric need not be D*-metric.

Keywords: Metric space, D*-metric space, G-metric space.

2020 MSC: 47H10, 46B20.

©2021 All rights reserved.

Check for updates

1. Introduction and preliminaries

In 2005, Zead and Sims [5] introduced the notion of G-metric spaces as a generalization of the concept of ordinary metric spaces as follows.

Definition 1.1 ([5]). A G-metric space is a pair (A, G), where A is a nonempty set, and $G : A \times A \times A \rightarrow [0, \infty)$ such that for all $\kappa, \lambda, \varpi, \zeta \in A$ we have

- (G1) $G(\kappa, \lambda, \varpi) = 0$, if $\kappa = \lambda = \varpi$;
- (G2) $0 < G(\kappa, \kappa, \lambda)$, for all $\kappa, \lambda \in A$, with $\kappa \neq \lambda$;
- (G3) $G(\kappa, \kappa, \lambda) \leq G(\kappa, \lambda, \varpi)$, for all $\kappa, \lambda, \varpi \in A$, with $\varpi \neq \lambda$;
- (G4) $G(\kappa, \lambda, \varpi) = G(\kappa, \varpi, \lambda) = G(\lambda, \varpi, \kappa) = \cdots$, (symmetry in all three variables); and
- (G5) $G(\kappa, \lambda, \varpi) \leq G(\kappa, \zeta, \zeta) + G(\zeta, \lambda, \varpi)$, for all $\kappa, \lambda, \varpi, \zeta \in A$, (rectangle inequality).

The function G is called a G-metric on A.

Many authors obtained fixed point results for different contractive mappings in the frame work of G-metric space, for more details we refer the reader to [1-5].

In 2007, Sedghi et al. introduced the concept of D*-metric space as follows.

Definition 1.2 ([8]). A D*-metric space is a pair (A, D^*) where A is a nonempty set, and D* : $A \times A \times A \rightarrow [0, \infty)$ such that for all $\kappa, \lambda, \varpi, \zeta \in A$ we have

*Corresponding author

doi: 10.22436/jmcs.022.02.04

Email address: zead@qu.edu.qa (Zead Mustafa)

Received: 2020-05-18 Revised: 2020-06-03 Accepted: 2020-06-15

- (D^*1) $D^*(\kappa, \lambda, \varpi) \ge 0;$
- $(D^*2) \quad D^*(\kappa,\lambda,\varpi) = 0, \text{ iff } \kappa = \lambda = \varpi;$
- (D*3) $D^*(\kappa, \lambda, \varpi) = D^*(\kappa, \varpi, \lambda) = D^*(\lambda, \varpi, \kappa) = \cdots$, (symmetry in all three variables); and
- $(\mathsf{D}^*4) \quad \mathsf{D}^*(\kappa,\lambda,\varpi) \leqslant \mathsf{D}^*(\kappa,\lambda,\zeta) + \mathsf{D}^*(\zeta,\varpi,\varpi), \text{ for all } \kappa,\lambda,\varpi,\zeta \in \mathsf{A}.$

The function D^* is called a D^* -metric on A.

Many authors obtained fixed point results under some contractive conditions, see [6, 8]. Note that every D^{*}-metric on A defines a metric d_{D^*} on A by

$$d_{D^*}(\kappa, \lambda) = D^*(\kappa, \lambda, \lambda), \quad \forall \kappa, \lambda \in A.$$

Lemma 1.3 ([8]). Let (A, D^*) be a D*-metric space. Then D* is symmetric, i.e., D* $(\kappa, \lambda, \lambda) = D^*(\kappa, \kappa, \lambda)$.

Lemma 1.4 ([8]). Let A be a D^{*}-metric space, then the function D^{*}(κ , λ , ϖ) is jointly continuous on A × A × A.

2. Main results

In [7, Remark 1.3], Sedghi et al. claimed that "every G-metric space is D*-metric". The following example shows that this claim need not be true in general.

Example 2.1 ([3]). Let A = N, be the set of all natural numbers, and define $G : A \times A \times A \rightarrow \mathbf{R}$ such that for all $\kappa, \lambda, \varpi \in A$:

- $G(\kappa, \lambda, \varpi) = 0$, if $\kappa = \lambda = \varpi$;
- $G(\kappa, \lambda, \lambda) = \kappa + \lambda$, if $\kappa < \lambda$;
- $G(\kappa, \lambda, \lambda) = \kappa + \lambda + \frac{1}{2}$, if $\kappa > \lambda$;
- $G(\kappa, \lambda, \varpi) = \kappa + \lambda + \varpi$, if $\kappa \neq \lambda \neq \varpi$ and symmetry in all three variables.

Then, (A, G) is a G-metric space. But if $\kappa < \lambda$, we have $G(\kappa, \lambda, \lambda) = \kappa + \lambda \neq \kappa + \lambda + \frac{1}{2} = G(\lambda, \kappa, \kappa)$ that is G is not symmetric, also triangle inequality of D*-metric does not satisfy, in fact

$$G(2,2,3) = \frac{11}{2} \nleq 5 = G(2,2,2) + G(2,3,3).$$

So, it is not D*-metric.

In fact, every non-symmetric G-metric space is not D*-metric. Now we present an example shows that D*-metric need not to be G-metric.

Example 2.2. Let $A = \mathbf{R}$ be the set of all real numbers and define $D^* : A \times A \times A \to \mathbf{R}$ such that for all $\kappa, \lambda, \varpi \in A$, $D^*(\kappa, \lambda, \varpi) = |\kappa + \lambda - 2\varpi| + |\lambda + \varpi - 2\kappa| + |\varpi + \kappa - 2\lambda|$. Then (A, D^*) is a D^* -metric space [8]. But D^* is not G-metric since (G3) is not satisfied. In fact, $D^*(5, 5, 10) = 20 \leq 18 = D^*(5, 10, 9)$.

However, the following is an example of both G-metric and D*-metric.

Example 2.3. Let $A = \mathbf{R}$, be the set of all real numbers, and define $G : A \times A \times A \rightarrow [0, \infty)$ such that for all $\kappa, \lambda, \omega \in A$:

- $G(\kappa, \lambda, \varpi) = 0$, if $\kappa = \lambda = \varpi$;
- $G(\kappa, \lambda, \lambda) = G(\kappa, \kappa, \lambda) = |\kappa| + |\lambda|$, if $\kappa \neq \lambda$;

• $G(\kappa, \lambda, \varpi) = |\kappa| + |\lambda| + |\varpi|$, if $\kappa \neq \lambda \neq \varpi$.

Then, (A, G) is a G-metric space and D*-metric space.

Proposition 2.4. *Every* G*-metric space define a* D**-metric space.*

Proof. Let (A, G) be a G-metric space, then G-metric space defines a metric space (A, d_G) by

 $d_{G}(\kappa,\lambda) = G(\kappa,\lambda,\lambda) + G(\lambda,\kappa,\kappa),$

hence $D^* : A \times A \times A \rightarrow [0, \infty)$ by

$$D^{*}(\kappa, \lambda, \varpi) = \max\{d_{G}(\kappa, \lambda), d_{G}(\lambda, \varpi), d_{G}(\varpi, \kappa)\},\$$

or

$$D^*(\kappa,\lambda,\varpi) = d_G(\kappa,\lambda) + d_G(\lambda,\varpi) + d_G(\varpi,\kappa),$$

for all κ , λ , $\omega \in A$ is D*-metric on A.

Proposition 2.5. *Every* D**-metric space define a* G*-metric space.*

Proof. Let (A, D^*) be a D*-metric space, then D*-metric space defines a metric space (A, d_{D^*}) by

$$d_{D^*}(\kappa, \lambda) = D^*(\kappa, \lambda, \lambda)$$

hence $G : A \times A \times A \rightarrow [0, \infty)$ by

$$G(\kappa, \lambda, \varpi) = \max\{d_{D^*}(\kappa, \lambda), d_{D^*}(\lambda, \varpi), d_{D^*}(\varpi, \kappa)\},\$$

or

$$\mathsf{G}(\kappa,\lambda,\varpi) = \mathsf{d}_{\mathsf{D}^*}(\kappa,\lambda) + \mathsf{d}_{\mathsf{D}^*}(\lambda,\varpi) + \mathsf{d}_{\mathsf{D}^*}(\varpi,\kappa),$$

for all $\kappa, \lambda, \varpi \in A$ is G-metric on A.

References

- M. M. M. Jaradat, Z. Mustafa, S. U. Khan, M. Arshad, J. Ahmad, Some fixed point results on G-metric and G_b-metric spaces, Demonstr. Math., 50 (2017), 190–207. 1
- [2] S. U. Khan, J. Ahmad, M. Arshad, T. Rasham, Some new fixed point theorems in C*-algebra valued G_b-metric spaces, J. Adv. Math. Stud., **12** (2019), 22–29.
- [3] Z. Mustafa, Some new common fixed point theorems under strict contractive conditions in G-metric spaces, J. Appl. Math., **2012** (2012), 21 pages. 2.1
- [4] Z. Mustafa, M. Arshad, S. U. Khan, J. Ahmad, M. M. M. Jaradat, *Common fixed point for multivalued mappings in G-metric spaces with applications*, J. Nonlinear Sci. Appl., **10** (2017), 2550–2564.
- [5] Z. Mustafa, B. Sims, A new approach to generalized metric spaces, J. Nonlinear Convex Anal., 7 (2006), 289–297. 1, 1.1, 1
- [6] S. Sedghi, N. Shobe, Common Fixed Point Theorems for two mappings in D*-Metric Spaces, Math. Aeterna, 2 (2012), 89–100. 1
- [7] S. Sedghi, N. Shobe, A. Aliouche, A generalization of fixed point in S-metric spaces, Mat. Vesnik, 64 (2012), 258–266. 2
- [8] S. Sedghi, N. Shobe, H. Y. Zhou, A common fixed point theorem in D*-metric spaces, Fixed Point Theory Appl., 2007 (2007), 13 pages. 1.2, 1, 1.3, 1.4, 2.2