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Abstract
The purpose of this paper is to introduce common fixed point results for two pairs of weakly compatible self-mappings in

partial metric space using C-class functions on (ψ,ϕ)-contractive condition. Example and application on integral equations are
presented to illustrate the main result. Our results extend and generalize well know results in the literature.
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1. Introduction and mathematical preliminaries

In 1994, Matthews [17] introduced the notion of partial metric spaces and obtained various fixed point
theorems. In fact, he showed that the Banach contraction mapping theorem can be generalized to the
partial metric context.

Later on, Romaguera [30] introduced the notions of 0-Cauchy sequences and 0-complete partial met-
ric spaces and proved some characterizations of partial metric spaces in terms of completeness and 0-
completeness. Afterwards, several authors obtained some fixed point results for mappings satisfying
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different contractive conditions (see [1, 3–9, 13–16, 28–31]). In 2014 the concept of C-class functions (see
Definition 1.6) was introduced by Ansari in [3]. For more results on common fixed point for different
metric spaces see the references [2, 10–12, 18–27].

The purpose of this paper is to introduce common fixed point results for two pairs of weakly compati-
ble self-mappings in partial metric space using C-class functions on (ψ,ϕ)-contractive condition. Example
and application on integral equations are presented to illustrate the main result.

Definition 1.1. ([17]). A partial metric on a nonempty set X is a function p : X×X→ R+ such that for all
a,b, c ∈ X:

(P1) p(a,a) = p(a,b) = p(b,b)⇒ a = b;
(P2) p(a,a) 6 p(a,b);
(P3) p(a,b) = p(b,a);
(P4) p(a,b) 6 p(a, c) + p(c,b) − p(c, c).

A partial metric space is a pair (X,p) such that X is a nonempty set and p is a partial metric on X.

Suppose that (X,p) be a partial metric space, then the function dp : X×X −→ R+ given by

dp(x,y) = 2p(x,y) − p(x, x) − p(y,y)

is a (usual) metric on X. Each partial metric p on X generates a T0 topology τp on X with a base of the
family of open p-balls {Bp(x, ε) : x ∈ X, ε > 0}, where

Bp(x, ε) = {y ∈ X : p(x,y) < p(x, x) + ε}

for all x ∈ X and ε > 0.

Definition 1.2 ([17, 29]). Let (X,p) be a partial metric space. Then

(1) a sequence {an} in (X,p) converges to a point a ∈ X if and only if p(a,a) = limn→∞ p(an,a);
(2) a sequence {an} in (X,p) is called a Cauchy sequence if limn,m→∞ p(an,am) exists and finite;
(3) (X,p) is said to be complete if every Cauchy sequence {an} in X converges with respect to τp to a

point a ∈ X such that p(a,a) = limn,m→∞ p(an,am);
(4) a sequence {an} in (X,p) is called a 0-Cauchy sequence if limn,m→∞ p(an,am) = 0. The space (X,p)

is said to be 0-complete if every 0-Cauchy sequence in X converges with respect to τp to a point
a ∈ X such that p(a,a) = 0.

Lemma 1.3 ([17, 29]). Let (X,p) be a partial metric space and {an} be any sequence in X. Then

(i) {an} is a Cauchy sequence in (X,p) if and only if it is a Cauchy sequence in the metric space (X,dp);
(ii) the space (X,p) is complete if and only if the metric space (X,dp) is complete;

(iii) every 0-Cauchy sequence in (X,p) is Cauchy in (X,dp);
(iv) if (X,p) is complete, then it is 0-complete.

The converse assertions of (iii) and (iv) do not hold (see example in [30]).
It is easy to see that every closed subset of a 0-complete partial metric space is 0-complete.

Lemma 1.4 ([1, 29]). Assume an → a as n → ∞ in a partial metric space (X,p) such that p(a,a) = 0. Then
limn→∞ p(an,b) = p(a,b) for all b ∈ X.

Lemma 1.5 ([1, 14]). Suppose that (X,p) be a complete partial metric space. Then

(1) if p(a,b) = 0, then a = b;
(2) if a 6= b, then p(a,b) > 0.
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Definition 1.6 ([3]). A mapping f : [0,∞)× [0,∞) → R is called C-class function if it is continuous and
satisfies following axioms:

(1) f(a,b) 6 a;
(2) f(a,b) = a implies that either a = 0 or b = 0; for all a,b ∈ [0,∞).

We denote C-class functions as C.

Example 1.7 ([3]). The following functions f : [0,∞)× [0,∞)→ R are elements of C for all a,b ∈ [0,∞):

1. f(a,b) = a− b, f(a,b) = a⇒ b = 0;
2. f(a,b) = ma, 0<m<1, f(a,b) = a⇒ a = 0;
3. f(a,b) = (a+ s)(1/(1+b)r) − s; s > 1, r ∈ (0,∞), f(a,b) = a⇒ b = 0;
4. f(a,b) = a− ( 1+a

2+a)(
b

1+b), f(a,b) = a⇒ b = 0;

5. f(a,b) = n
√

ln(1 + an), f(a,b) = a⇒ a = 0;
6. f(a,b) = φ(a), f(a,b) = a ⇒ a = 0, here φ : [0,∞) → [0,∞) is an upper semicontinuous function

such that φ(0) = 0, and φ(b) < b for b > 0.

Definition 1.8 ([15]). A function ψ : [0,∞)→ [0,∞) is called an altering distance function if it satisfies the
following conditions:

1. ψ is continuous and nondecreasing;
2. ψ(a) = 0 if and only if a = 0.

We denote by Ψ the set of all altering distance functions.

Definition 1.9. The function ϕ : [0,∞) → [0,∞) is called an Ultra-altering distance function, if the
following conditions hold:

1. ϕ is continuous;
2. ϕ(b) 6= 0 when b 6= 0.

We denote by Φ the set of all ultra altering distance functions.

Lemma 1.10 ([28]). Let (X,p) be a partial metric space and {an} a sequence in X such that limn→∞ p(an,an+1) =
0. If {a2n} is not a Cauchy sequence in (X,p), then there exist ε > 0 and two sequences {m(k)} and {n(k)} of positive
integers such that m(k) > n(k) > k and the following four sequences tend to ε > 0, when k→∞.

p(a2n(k),a2m(k)+1), p(a2n(k),a2m(k)), p(a2n(k)−1,a2m(k)+1), p(a2n(k)−1,a2m(k)). (1.1)

2. Main results

The following lemmas will be needed in sequel.

Lemma 2.1. Let (X,p) be a partial metric space and (xn) be a sequence such that limn→∞ p(xn, xn+1) = 0, then
the sequence (xn) is Cauchy sequence iff (x2n) is Cauchy subsequence.

Proof. Assume that (x2n) is Cauchy subsequence. Using the property (P2) of partial metric space and
limn→∞ p(xn, xn+1) = 0, we deduce that limn→∞ p(xn, xn) = 0.

Let m,n ∈ N. We will consider three cases:

Case (1). n and m are even. Then there exist n1 and m1 such that n = 2n1 and m = 2m1, hence

lim
n,m→∞p(xn, xm) = lim

n1,m1→∞p(x2n1 , x2m1) = 0.
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Case (2). One of n and m is even, say n, and the other is odd. Then there exist n1 and m1 such that
n = 2n1 and m = 2m1 + 1, and so by (p4 ) we get

p(xn, xm) = p(x2n1 , x2m1+1) 6 p(x2n1 , x2m1) + p(x2m1 , x2m1+1) − p(x2m1 , x2m1).

Hence,

lim
n,m→∞p(xn, xm) = lim

n1,m1→∞p(x2n1 , x2m1+1)

6 lim
n1,m1→∞p(x2n1 , x2m1) + lim

m1→∞p(x2m1 , x2m1+1) − lim
m1→∞p(x2m1 , x2m1) = 0.

Case (3). n and m are odd. Then there exist n1 and m1 such that n = 2n1 + 1 and m = 2m1 + 1, so by
(p4) we get

p(xn, xm) = p(x2n1+1, x2m1+1)

6 p(x2n1 , x2n1+1) + p(x2n1 , x2m1+1) − p(x2n1 , x2n1)

6 p(x2n1 , x2n1+1) + p(x2n1 , x2m1) + p(x2m1 , x2m1+1) − p(x2n1 , x2n1) − p(x2m1 , x2m1).

Hence,

lim
n,m→∞p(xn, xm) = lim

n1,m1→∞p(x2n1+1, x2m1+1)

6 lim
n1,m1→∞p(x2n1 , x2n1+1) + lim

m1→∞p(x2n1 , x2m1) + lim
m1→∞p(x2m1 , x2m1+1)

− lim
n1→∞p(x2n1 , x2n1) − lim

m1→∞p(x2m1 , x2m1) = 0.

Therefore, the sequence (xn) is Cauchy sequence.

Lemma 2.2. Let (X,p) be a complete partial metric space and (xn) a Cauchy sequence with limn→∞ p(xn, xn) = 0,
then the sequence (xn) is 0-Cauchy sequence. Further if (xn) converges to x, then limn→∞ p(xn, x) = 0

Proof. Since (xn) is a Cauchy sequence in a complete partial metric space, there exist x ∈ X such that
limn,m→∞ p(xn, xm) = p(x, x).

By lemma 1.3, we have (X,dp) is complete metric space and (xn) is Cauchy in (X,dp). Therefore,
limn,m→∞dp(xn, xm)=0, then limn,m→∞[2p(xn, xm)−p(xn, xn)−p(xm, xm)]=0. But limn→∞p(xn, xn)=0,
thus limn,m→∞ 2p(xn, xm) = 0 which implies 0 = limn,m→∞ p(xn, xm) = p(x, x).

Also, (xn) is Cauchy in a complete metric space (X,dp), then limn→∞ dp(xn, x) = 0 which implies
that limn→∞[2p(xn, x) − p(xn, xn) − p(x, x)] = 0, thus limn→∞ p(xn, x) = 0.

From Lemma 2.2 and (p2) we deduce the following lemma.

Lemma 2.3. Let (X,p) be a complete partial metric space and (xn) a Cauchy sequence with limn→∞p(xn, xn+1)=0.
Then the sequence (xn) is 0-Cauchy sequence.

Theorem 2.4. Let F,G,S, and T be four self-maps of a complete partial metric space (X,p) such that

(i) FX ⊆ TX and GX ⊆ SX;
(ii) one of the ranges SX and TX is a closed subset of (X,p);

(iii) the pairs {F,S} and {G, T } are weakly compatible and

ψ(2p2(Fx,Gy)) 6 f(ψ(M(x,y)),ϕ(M(x,y))) for all x,y ∈ X, (2.1)

where ϕ ∈ Φ,ψ ∈ Ψ, f ∈ C and

M(x,y) = max


p2(Sx, Ty),p2(Fx,Sx),p2(Gy, Ty),

p(Sx, Ty)p(Fx, Ty),p(Fx,Sx)p(Fx, Ty),
p(Gy, Ty)p(Fx, Ty), 1

4 [p(Sx,Gy) + p(Fx, Ty)]2

 (2.2)

for all x,y ∈ X.
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Then F,G,S, and T have a unique common fixed point in X.

Proof. Let x0 ∈ X be arbitrary point. Since FX ⊆ TX, then there exist a point x1 ∈ X such that Fx0 = Tx1,
also since GX ⊆ SX, then there exist x2 ∈ X such that Gx1 = Sx2. Continuing in this process we can
construct two sequences {xn} and {yn} in X satisfying

y2n = Fx2n = Tx2n+1 and y2n+1 = Gx2n+1 = Sx2n+2 (2.3)

for all n ∈ N.
The next step, we prove that {yn} is a Cauchy sequence in the partial metric space (X,p). From (2.2)

and (2.3) we have

M(x2n, x2n+1) = max



p2(Sx2n, Tx2n+1),p2(Fx2n,Sx2n),
p2(Gx2n+1, Tx2n+1),

p(Sx2n, Tx2n+1)p(Fx2n,Tx2n+1),
p(Fx2n,Sx2n)p(Fx2n, Tx2n+1),

p(Gx2n+1, Tx2n+1)p(Fx2n, Tx2n+1),
1
4 [p(Sx2n,Gx2n+1) + p(Fx2n, Tx2n+1)]

2



= max


p2(y2n−1,y2n),p2(y2n,y2n−1),p2(y2n+1,y2n),

p(y2n−1,y2n)p(y2n,y2n),
p(y2n,y2n−1)p(y2n,y2n),
p(y2n+1,y2n)p(y2n,y2n),

1
4 [p(y2n−1,y2n+1) + p(y2n,y2n)]

2

 .

(2.4)

Note that
p(y2n,y2n) 6 p(y2n−1,y2n) (2.5)

and
p(y2n−1,y2n+1) 6 p(y2n−1,y2n) + p(y2n,y2n+1) − p(y2n,y2n),

which implies
p(y2n−1,y2n+1) + p(y2n,y2n) 6 p(y2n−1,y2n) + p(y2n,y2n+1)

which yields that,

p(y2n−1,y2n+1) + p(y2n,y2n)

2
6 max{p(y2n−1,y2n),p(y2n,y2n+1)}

and so,
1
4
[p(y2n−1,y2n+1) + p(y2n,y2n)]

2 6 max{p2(y2n−1,y2n),p2(y2n,y2n+1)}. (2.6)

Therefore, using (2.5) and (2.6) the above equation (2.4) becomes

M(x2n, x2n+1) = max{p2(y2n−1,y2n),p2(y2n,y2n+1)}

for all n ∈N. By using (2.1) with x = x2n, y = y2n+1, we obtain

ψ(2p2(y2n,y2n+1)) = ψ(2p2(Fx2n,Gx2n+1))

6 f(ψ(M(x2n, x2n+1)),ϕ(M(x2n, x2n+1))) (2.7)

6 f
(
ψ(max{p2(y2n−1,y2n),p2(y2n,y2n+1)}),ϕ(max{p2(y2n−1,y2n),p2(y2n,y2n+1)})

)
.

Analogously we can show that

ψ(2p2(y2n+1,y2n+2)) 6 f
(
ψ(max{p2(y2n,y2n+1),p2(y2n+1,y2n+2)}),

ϕ(max{p2(y2n,y2n+1),p2(y2n+1,y2n+2)})
)

.
(2.8)
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Note that (2.7) and (2.8) imply that for all n > 1

ψ(2p2(yn,yn+1)) 6 f
(
ψ(max{p2(yn−1,yn),p2(yn,yn+1)}),ϕ(max{p2(yn−1,yn),p2(yn,yn+1)})

)
. (2.9)

If there exists n ∈N such that p2(yn−1,yn) = 0, then we have yn−1 = yn. It follows from (2.9), properties
of f, and the nondecreasing property of ψ that

ψ(p2(yn,yn+1)) 6 ψ(2p2(yn,yn+1)) 6 f(ψ(p
2(yn,yn+1)),ϕ(p2(yn,yn+1))) 6 ψ(p

2(yn,yn+1)).

Hence,
f(ψ(p2(yn,yn+1)),ϕ(p2(yn,yn+1))) = ψ(p

2(yn,yn+1)).

So, ψ(p2(yn,yn+1)) = 0 or ϕ(p2(yn,yn+1)) = 0, which implies that p2(yn,yn+1) = 0 and so yn = yn+1.
Thus yn−1 = yn = yn+1.

Continuing in this process we deduce that yn−1 = yn = yn+1 = yn+2 = · · · . Then {yn} is a Cauchy
sequence in (X,p).

Without loss of generality, we may assume that p2(yn−1,yn) > 0 for each n ∈N. Then from (2.9) and
using the fact that f(s, t) 6 s for all s, t > 0, we have

ψ(2p2(yn,yn+1)) 6 ψ(max{p2(yn−1,yn),p2(yn,yn+1)}).

By nondecreasing property of ψ we have

2p2(yn,yn+1) 6 max{p2(yn−1,yn),p2(yn,yn+1)},

which implies that
max{p2(yn−1,yn),p2(yn,yn+1)} = p

2(yn−1,yn).

Therefore, the sequence {p2(yn,yn+1)} is bounded below and non-increasing, hence there exist r > 0 such
that

lim
n→∞p2(yn,yn+1) = r.

By taking n→∞ in (2.9) and using continuity of ψ and ϕ, we deduce that

ψ(r) 6 ψ(2r) 6 f(ψ(r),ϕ(r)) 6 ψ(r).

So, ψ(r) = 0 or ϕ(r) = 0, which implies that r = 0. Hence,

lim
n→∞p2(yn,yn+1) = 0 , lim

n→∞p2(yn,yn) = 0. (2.10)

Now, we prove that the sequence {y2n} is a Cauchy in the partial metric space (X,p). Suppose that the
sequence {y2n} is not a Cauchy sequence in (X,p), then there exist ε > 0 and two sequences {m(k)} and
{n(k)} as in Lemma 1.10 such that all sequences in (1.1) are tend to ε > 0, when k → ∞. Now, for
x = x2n(k) and y = x2m(k)+1 in equation (2.1), we get

ψ(2p2(Fx2n(k),Gx2m(k)+1)) 6 f(ψ(M(x2n(k), x2m(k)+1)),ϕ(M(x2n(k), x2m(k)+1))), (2.11)

where

M(x2n(k), x2m(k)+1) = max



p2(Sx2n(k), Tx2m(k)+1),p2(Fx2n(k),Sx2n(k)),
p2(Gx2m(k)+1, Tx2m(k)+1),

p(Sx2n(k), Tx2m(k)+1)p(Fx2n(k), Tx2m(k)+1),
p(Fx2n(k),Sx2n(k))p(Fx2n(k), Tx2m(k)+1),

p(Gx2m(k)+1, Tx2m(k)+1)p(Fx2n(k), Tx2m(k)+1),
1
4 [p(Sx2n(k),Gx2m(k)+1) + p(Fx2n(k), Tx2m(k)+1)]

2





Z. Mustafa, et al., J. Math. Computer Sci., 18 (2018), 216–231 222

= max



p2(y2n(k)−1,y2m(k)),p2(y2n(k),y2n(k)−1),
p2(y2m(k)+1,y2m(k)),

p(y2n(k)−1,y2m(k))p(y2n(k),y2m(k)),
p(y2n(k),y2n(k)−1)p(y2n(k),y2m(k)),
p(y2m(k)+1,y2m(k))p(y2n(k),y2m(k)),

1
4 [p(y2n(k)−1,y2m(k)+1) + p(y2n(k),y2m(k))]

2


.

Using Lemma 1.10 and equation (2.10) in the above inequality, we have

lim
k→∞M(x2n(k), x2m(k)+1)→ max{ε2, 0, 0, ε2, 0, 0, ε2}.

Therefore, taking k→∞ in inequality (2.11 ) and using the properties of f we get

ψ(ε2) 6 ψ(2ε2) 6 f(ψ(ε2),ϕ(ε2)) 6 ψ(ε2).

So, ψ(ε2) = 0 or ϕ(ε2) = 0, hence we get ε = 0 which contradicts being ε > 0. Thus {y2n} is a Cauchy
sequence in (X,p), hence by lemma 2.1 we deduce that the sequence {yn} is Cauchy sequence. Since (X,p)
is complete. As a result of Lemma 2.2 we have

p(y,y) = lim
n→∞p(yn,y) = lim

n,m→∞p(yn,ym) = 0,

and so,
p2(y,y) = lim

n→∞p2(yn,y) = lim
n,m→∞p2(yn,ym) = 0. (2.12)

This implies that
lim
n→∞p2(y2n,y) = lim

n→∞p2(y2n+1,y) = 0. (2.13)

It follows from (2.3) and (2.13) that

lim
n→∞p2(Fx2n,y) = lim

n→∞p2(Tx2n+1,y) = 0

and
lim
n→∞p2(Gx2n+1,y) = lim

n→∞p2(Sx2n+2,y) = 0. (2.14)

Assume that S(X) is a closed subset of the complete partial metric space (X,p). From (2.14), there
exists u ∈ X such that y = Su. We claim that p2(Fu,y) = 0. Otherwise, p2(Fu,y) > 0. By (p2), (p4), and
(2.1) we infer that

p2(y, Fu) 6 [p(y,Gx2n+1) + p(Fu,Gx2n+1) − p(Gx2n+1,Gx2n+1)]
2

6 p2(y,Gx2n+1) + p
2(Fu,Gx2n+1) + p

2(Gx2n+1,Gx2n+1) + 2p(y,Gx2n+1)p(Fu,Gx2n+1)

6 p2(y,Gx2n+1) + p
2(Fu,Gx2n+1) + p

2(y,Gx2n+1) +
[
p2(y,Gx2n+1) + p

2(Fu,Gx2n+1)
]

= 3p2(y,Gx2n+1) + 2p2(Fu,Gx2n+1)),

which implies that

ψ(p2(y, Fu) − 3p2(y,y2n+1)) 6 ψ(2p2(Fu,Gx2n+1)) 6 f(ψ(M(u, x2n+1)),ψ(M(u, x2n+1))). (2.15)

On the other hand, it follows from (2.3) and (p4), that

M(u, x2n+1) = max


p2(Su, Tx2n+1),p2(Fu,Su),p2(Gx2n+1, Tx2n+1),

p(Su, Tx2n+1)p(Fu, Tx2n+1),p(Fu,Su)p(Fu, Tx2n+1),
p(Gx2n+1, Tx2n+1)p(Fu, Tx2n+1),
1
4 [p(Su,Gx2n+1) + p(Fu, Tx2n+1)]

2


= max


p2(y,y2n),p2(Fu,y),p2(y2n+1,y2n),
p(y,y2n)p(Fu,y2n),p(Fu,y)p(Fu,y2n),

p(y2n+1,y2n)p(Fu,y2n),
1
4 [p(y,y2n+1) + p(Fu,y2n)]

2

 .

(2.16)
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By taking the limit as n→∞ in (2.16), and using (2.12) and (2.13) we deduce that

lim
n→∞M(u, x2n+1) = p

2(Fu,y). (2.17)

By taking the limit as n→∞ in (2.15) and using (2.13) and the continuity of ψ we obtain

ψ( lim
n→∞p2(y, Fu) − 3p2(y,y2n+1)) 6 f( lim

n→∞ψ(M(u, x2n+1)), lim
n→∞ϕ(M(u, x2n+1)))

which implies, by (2.17), that,

ψ(p2(y, Fu)) 6 f(ψ(p2(Fu,y)),ϕ(p2(Fu,y))) 6 ψ(p2(y, Fu)).

Hence, ψ(p2(y, Fu)) = 0 or ϕ(p2(y,Fu)) = 0, which implies that p2(y, Fu) = 0, so

Fu = y = Su. (2.18)

That is, u is a coincidence point of F and S. In view of y = Fu ∈ FX ⊆ TX, we deduce that there exists
v ∈ X such that y = Tv.

Now we show that p2(Gv,y) = 0. Otherwise p2(Gv,y) > 0. Using (2.1) we infer that

ψ(2p2(y,Gv)) = ψ(2p2(Fu,Gv)) 6 f(ψ(M(u, v)),ϕ(M(u, v))). (2.19)

In light of y = Su = Fu = Tv, we get that

M(u, v) = max


p2(Su, Tv),p2(Fu,Su),p2(Gv, Tv),

p(Su, Tv)p(Fu, Tv),p(Fu,Su)p(Fu, Tv),
p(Gv, Tv)p(Fu, Tv), 1

4 [p(Su,Gv) + p(Fu, Tv)]2


= max

{
p2(y,y),p2(y,y),p2(Gv,y),p2(y,y),

p2(y,y),p(Gv,y)p(y,y), 1
4 [p(y,Gv) + p(y,y)]2}

}
= p2(Gv,y) ( since p(y,y) = 0).

(2.20)

By using (2.19), (2.20), and the property of f, we deduce that

ψ(p2(Gv,y)) 6 ψ(2p2(Gv,y)) 6 f(ψ(p2(Gv,y)),ϕ(p2(Gv,y))) 6 ψ(p2(Gv,y)).

Hence, ψ(p2(Gv,y)) = 0 or ϕ(p2(Gv,y)) = 0, which implies that p2(Gv,y) = 0 and so

Gv = y = Tv. (2.21)

That is, v is a coincidence point of G and T . Since the pair {F,S} is weakly compatible, it follows from
(2.18) that

Fy = FSu = SFu = Sy. (2.22)

Now we show that p2(Fy,y) = 0.

p2(Fy,y) 6 [p(Fy,y2n+1) + p(y2n+1,y) − p(y2n+1,y2n+1)]
2

6 p2(Fy,y2n+1) + p
2(y2n+1,y) + p2(y2n+1,y2n+1) + 2p(Fy,y2n+1)p(y2n+1,y)

= p2(Fy,Gx2n+1) + p
2(y2n+1,y) + p2(y2n+1,y2n+1) + 2p(Fy,Gx2n+1)p(y2n+1,y)

6 p2(Fy,Gx2n+1) + p
2(y2n+1,y) + p2(y2n+1,y2n+1) +

[
p2(Fy,G2n+1) + p

2(y2n+1,y)
]

= 2p2(Fy,Gx2n+1) + 2p2(y2n+1,y) + p2(y2n+1,y2n+1),
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which implies that

ψ(p2(Fy,y) − 2p2(y2n+1,y) − p2(y2n+1,y2n+1))

6 ψ(2p2(Fy,Gx2n+1)) 6 f(ψ(M(y, x2n+1)),ϕ(M(y, x2n+1))).
(2.23)

On the other hand,

M(y, x2n+1) = max


p2(Sy, Tx2n+1),p2(Fy,Sy),p2(Gx2n+1, Tx2n+1),

p(Sy, Tx2n+1)p(Fy, Tx2n+1),p(Fy,Sy)p(Fy, Tx2n+1),
p(Gx2n+1, Tx2n+1)p(Fy, Tx2n+1),
1
4 [p(Sy,Gx2n+1) + p(Fy, Tx2n+1)]

2


= max


p2(Fy,y2n),p2(Fy, Fy),p2(y2n+1,y2n),
p2(Fy,y2n),p(Fy, Fy)p(Fy,y2n),

p(y2n+1,y2n)p(Fy,y2n),
1
4 [p(Fy,y2n+1) + p(Fy,y2n)]

2

 .

(2.24)

Letting n→∞ in (2.24), and using (2.10), we get that

lim
n→∞M(y, x2n+1) = p

2(Fy,y). (2.25)

By taking the limit as n → ∞ in (2.23), and in view of (2.25), (2.10), (2.13), and the property of ψ, we
obtain

ψ(p2(Fy,y)) 6 ψ(2p2(Fy,y)) 6 f(ψ(p2(Fy,y)),ϕ(p2(Fy,y))) 6 ψ(p2(Fy,y)).

So, ψ(p2(Fy,y)) = 0 or ϕ(p2(Fy,y)) = 0, which gives that p2(Fy,y) = 0, and so by (2.22),

Fy = y = Sy. (2.26)

Since the pair {G, T } is weakly compatible, it follows from (2.21) that

Gy = GTv = TGv = Ty. (2.27)

We now prove that p2(y,Gy) = 0. By virtue of (2.1) and (2.26), we obtain

ψ(2p2(y,Gy)) = ψ(2p2(Fy,Gy)) 6 f(ψ(M(y,y)),ϕ(M(y,y))). (2.28)

On the other hand, using (2.2), (2.26), (2.27), (2.12), and (p2), we have that

M(y,y) = max


p2(Sy, Ty),p2(Fy,Sy),p2(Gy, Ty),

p(Sy, Ty)p(Fy, Ty),p(Fy,Sy)p(Fy, Ty),
p(Gy, Ty)p(Fy, Ty), 1

4 [p(Sy,Gy) + p(Fy, Ty)]2


= max


p2(y,Gy),p2(y,y),p2(Gy,Gy),p2(y,Gy),
p(y,y)p(y,Gy),p(Gy,Gy)p(y,Gy),

1
4 [p(y,Gy) + p(y,Gy)]2

 = p2(y,Gy).

Now using (2.28) and the properties of f, we deduce that

ψ(p2(y,Gy)) 6 ψ(2p2(y,Gy)) 6 f(ψ(M(y,y)),ϕ(M(y,y)))

6 f(ψ(p2(y,Gy)),ϕ(p2(y,Gy))) 6 ψ(p2(y,Gy)),

which implies f(ψ(p2(y,Gy)),ϕ(p2(y,Gy))) = ψ(p2(y,Gy)). So, ψ(p2(y,Gy)) = 0 or ϕ(p2(y,Gy)) = 0,
hence p2(y,Gy) = 0. Therefore

Gy = y = Ty. (2.29)
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Now, combining (2.26) and (2.29), we obtain

y = Fy = Gy = Sy = Ty.

That is, y is a common fixed point of F,G,S, and T . To prove the uniqueness, suppose that z is another
common fixed points of F,G,S and T , and z 6= y, then using the contractive condition (2.1), (2.2), and (p2),
we have

ψ(2p2(y, z)) 6 ψ(p2(y, z)) = ψ(2p2(Fy,Gz))

6 f(ψ

max


p2(Sy, Tz),p2(Fy,Sy),p2(Gz, Tz),

p(Sy, Tz)p(Fy, Tz),p(Fy,Sy)p(Fy, Tz),
p(Gz, Tz)p(Fy, Tz), 1

4 [p(Sy,Gz) + p(Fy, Tz)]2


 ,

ϕ

max


p2(Sy, Tz),p2(Fy,Sy),p2(Gz, Tz),

p(Sy, Tz)p(Fy, Tz),p(Fy,Sy)p(Fy, Tz),
p(Gz, Tz)p(Fy, Tz), 1

4 [p(Sy,Gz) + p(Fy, Tz)]2


)

= f(ψ

(
max

{
p2(y, z),p2(y,y),p2(z, z),p2(y, z),
p(y,y)p(y, z),p(z, z)p(y, z),p2(y, z)

})
,

ϕ

(
max

{
p2(y, z),p2(y,y),p2(z, z),p2(y, z),
p(y,y)p(y, z),p(z, z)p(y, z),p2(y, z)

})
)

6 f(ψ

(
max

{
p2(y, z),p2(y, z),p2(y, z),p2(y, z),
p(y, z)p(y, z),p(y, z)p(y, z),p2(y, z)

})
,

ψ

(
max

{
p2(y, z),p2(y, z),p2(y, z),p2(y, z),
p(y, z)p(y, z),p(y, z)p(y, z),p2(y, z)

})
)

= f(ψ
(
p2(y, z)

)
,ϕ
(
p2(y, z)

)
) 6 ψ

(
p2(y, z)

)
.

So, ψ(p2(y, z)) = 0 or ϕ(p2(y, z)) = 0, hence p2(y, z) = 0, which is a contradiction. Thus it should be
z = y. Consequently, F,G,S, and T have a unique common fixed point. Now, if T(X) is a closed subset of
the complete partial metric space (X,p), then the proof is similar to the above arguments. This completes
the proof.

3. Some corollaries and examples

In Theorem 2.4, by taking ψ(t) = I and f(a,b) = φ(a), where φ : [0,∞) → [0,∞) is a continuous
function such that φ(a) = a, iff a = 0, φ(a) < a for a > 0, and

∑
n>1[φ

n(a)]
1
2 converges for all a > 0 we

get the following corollary which is a generalization of Theorem 2.1 in [31].

Corollary 3.1. Let F,G,S, and T be four self-maps of a complete partial metric space (X,p) such that

(i) FX ⊆ TX and GX ⊆ SX;
(ii) one of the ranges SX and TX is a closed subset of (X,p);

(iii) the pairs {F,S} and {G, T } are weakly compatible and

2p2(Fx,Gy)) 6 φ(M(x,y)), ∀x,y ∈ X,

where φ is as above and M(x,y) is as in (2.2) of Theorem 2.4 for all x,y ∈ X.

Then F,G,S, and T have a unique common fixed point in X.

Corollary 3.2. Let F,G,S, and T be four self-maps of a complete partial metric space (X,p) such that

1. FX ⊆ TX and GX ⊆ SX;
2. one of the ranges SX and TX is a closed subset of (X,p);
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3. the pairs {F,S} and {G, T } are weakly compatible and

2p2(Fx,Gy) 6 a1p
2(Sx, Ty) + a2p

2(Fx,Sx) + a3p
2(Gy, Ty)

+ a4p(Sx, Ty)p(Fx, Ty) + a5p(Fx,Sx)p(Fx, Ty) + a6p(Gy, Ty)p(Fx, Ty)
(3.1)

holds for all x,y ∈ X, where ai > 0 (i = 1, 2, 3, · · · , 6) with a1 + a2 + a3 + a4 + a5 + a6 < 1.

Then F,G,S, and T have a unique common fixed point in X.

Proof. Let

M(x,y) = max


p2(Sx, Ty),p2(Fx,Sx),p2(Gy, Ty),

p(Sx, Ty)p(Fx, Ty),p(Fx,Sx)p(Fx, Ty),
p(Gy, Ty)p(Fx, Ty), 1

4 [p(Sx,Gy) + p(Fx, Ty)]2


for all x,y ∈ X. Then we have

a1p
2(Sx, Ty) + a2p

2(Fx,Sx) + a3p
2(Gy, Ty) + a4p(Sx, Ty)p(Fx, Ty)

+ a5p(Fx,Sx)p(Fx, Ty) + a6p(Gy, Ty)p(Fx, Ty) 6 (a1 + a2 + a3 + a4 + a5 + a6)M(x,y).

So, if the condition (3.1) hold, then

2p2(Fx,Gy) 6 (a1 + a2 + a3 + a4 + a5 + a6)M(x,y).

Let k = a1 + a2 + a3 + a4 + a5 + a6 and φ(s) = ks, then the result is obtained from Corollary 3.1.

Remark 3.3. In Theorem 2.4 if we take

1. S = T , or
2. S = T and F = G, or
3. S = T = I, where I is the identity mapping, or
4. S = T = I, and F = G, where I is the identity mapping,

then we get several new results of unique common fixed point for two and three mappings, and a unique
fixed point for one mapping.

By taking f(a,b) = a− ( 1+a
2+a)(

b
1+b) in Theorem 2.4 we deduce the following corollary.

Corollary 3.4. Let F,G,S, and T be four self-maps of a complete partial metric space (X,p) such that

(i) FX ⊆ TX and GX ⊆ SX;
(ii) one of the ranges SX and TX is a closed subset of (X,p);

(iii) the pairs {F,S} and {G, T } are weakly compatible and

ψ(2p2(Fx,Gy)) 6 ψ(M(x,y)) − (
1 +ψ(M(x,y))
2 +ψ(M(x,y))

)(
ϕ(M(x,y)

1 +ϕ(M(x,y)
), (3.2)

where ϕ ∈ Φ, ψ ∈ Ψ, f ∈ C, and M(x,y) is as in (2.2) of Theorem 2.4 for all x,y ∈ X.

Then F,G,S, and T have a unique common fixed point in X.

By taking F(a,b) = n
√

ln(1 + an) in Theorem 2.4 we deduce the following corollary.

Corollary 3.5. Let F,G,S, and T be four self-maps of a complete partial metric space (X,p) such that

(i) FX ⊆ TX and GX ⊆ SX;
(ii) one of the ranges SX and TX is a closed subset of (X,p);
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(iii) the pairs {F,S} and {G, T } are weakly compatible and

ψ(2p2(Fx,Gy)) 6 n
√

ln(1 + (ψ(M(x,y)))n), (3.3)

where, ψ ∈ Ψ, f ∈ C, and M(x,y) is as in (2.2) of Theorem 2.4 for all x,y ∈ X.

Then F,G,S, and T have a unique common fixed point in X.

By taking f(a,b) = (a+ 3)(1/(1+b)2) − 3 in Theorem 2.4 we deduce the following corollary.

Corollary 3.6. Let F,G,S, and T be four self-maps of a complete partial metric space (X,p) such that

(i) FX ⊆ TX and GX ⊆ SX;
(ii) one of the ranges SX and TX is a closed subset of (X,p);

(iii) the pairs {F,S} and {G, T } are weakly compatible and

ψ(2p2(Fx,Gy)) 6 (ψ(M(x,y)) + 3)(1/(1+ϕ(M(x,y)))2) − 3, (3.4)

where ϕ ∈ Φ, ψ ∈ Ψ, f ∈ C, and M(x,y) is as in (2.2) of Theorem 2.4 for all x,y ∈ X.

Then F,G,S, and T have a unique common fixed point in X.

Remark 3.7. In Corollaries 3.4, 3.5, and 3.6 if we take

1. S = T , or
2. S = T and F = G, or
3. S = T = I, where I is the identity mapping, or
4. S = T = I, and F = G, where I is the identity mapping,

then we get several new results of unique common fixed point for two and three mappings and a unique
fixed point for one mapping.

In Theorem 2.4, by taking ψ(t) = t we get the following corollary.

Corollary 3.8. Let F,G,S, and T be four self-maps of a complete partial metric space (X,p) such that

(i) FX ⊆ TX and GX ⊆ SX;
(ii) one of the ranges SX and TX is a closed subset of (X,p);

(iii) the pairs {F,S} and {G, T } are weakly compatible and

2p2(Fx,Gy) 6 f(M(x,y),ϕ(M(x,y))), ∀x,y ∈ X, (3.5)

where ϕ ∈ Φ and f ∈ C and M(x,y) is as in (2.2) of Theorem 2.4 for all x,y ∈ X.

Then F,G,S, and T have a unique common fixed point in X.

Now, we give example to support Theorem 2.4.

Example 3.9. Let X = [0, 1], and (X,d) be a partial metric space defined by p(x,y) = max{x,y} for all
x,y ∈ X. Let F,G,S, and T be four self mappings defined by

Fx =
x2

4
, Gx =

x

2
, Sx = x2, Tx =

3x
4

, for all x ∈ [0, 1].

Clearly, the subspace SX = X is closed, FX ⊂ SX and GX ⊂ TX. Also, it is easy to show that the pairs
{F,S} and {G, T } are weakly compatible. In order to check condition (2.1) for all x,y ∈ X and ψ(t) = t3,
ϕ(t) =

√
t for all t ∈ R+ and f(a,b) = 8a

10 we consider the following two cases:
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Case 1. If y 6 x2

2 , then

p2(Fx,Gy) = (p(
x2

4
,
y

2
))2 = (max{

x2

4
,
y

2
})2 =

x4

16
and

p2(Fx,Sx) = (p(
x2

4
, x2))2 = (max{

x2

4
, x2)})2 = x4.

Hence we deduce that

2p2(Fx,Gy) =
x4

8
=

1
8
p2(Fx,Sx),

ψ(2p2(Fx,Gy)) =
x12

83 6
8

10
x12 = f(ψ(p2(Fx,Sx)),ϕ(p2(Fx,Sx))) 6 f(ψ(M(x,y)),ϕ(M(x,y))).

Case 2. If x
2

2 < y, then

p2(Fx,Gy) = p2
(
x2

4
,
y

2

)
=

(
max

{
x2

4
,
y

2

})2

=
y2

4

and

p2(Gy, Ty) = p2
(
y

2
,

3y
4

)
= (max{

y

2
,

3y
4
})2 =

9y2

16
.

Therefore, we get that

2p2(Fx,Gy) =
y2

2
=

8
9
p2(Gy, Ty),

ψ(2p2(Fx,Gy)) =
y6

8
6

8
10

93

163y
6 = f(ψ(p2(Gy, Ty)),ϕ(p2(Gy, Ty))) 6 f(ψ(M(x,y)),ϕ(M(x,y))).

Hence, all conditions of Theorem 2.4 are satisfied. Moreover, 0 is the unique common fixed point of F,G,S,
and T .

4. Application to integral equation

In this section, we will use Theorem 2.4 with S = T = I, where I is the identity mapping to show that
there is a solution to the following integral equations:

x(t) = h1(x(t)) +

∫t
0
m(t, s)H1(s, x(s))ds, t ∈ [0, 1], (4.1)

x(t) = h2(x(t)) +

∫t
0
m(t, s)H2(s, x(s))ds, t ∈ [0, 1], (4.2)

where,

1. h1(t),h2(t) : [0, 1]→ R are continuous;
2. m(t, s) : [0, 1]× [0, 1]→ R+ are continuous functions;
3. Hi(t, s) : [0, 1]× R→ R are continuous functions for i = 1, 2.

Let X = C([0, 1]) be the set of all real continuous functions on [0, 1], endowed with the partial metric

p(u, v) = max{ sup
t∈[0,1]

|u(t)|, sup
t∈[0,1]

|v(t)|}, for all u, v ∈ X.

Clearly, (X,p) is a complete partial metric space.
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Theorem 4.1. The integral equations (4.1) and (4.2) have a solution u such that u ∈ C([0, 1]) if the following
conditions are holds:

1. supt∈[0,1]m(t, s) 6 1√
3
;

2. |Hi(s, t)| 6 1
2 |t|; i = 1, 2;

3. |hi(t)| 6
1

2
√

3
|t|; i = 1, 2.

Proof. Define mappings F,G : X→ X by

Fx(t) = h1(x(t)) +

∫t
0
m(t, s)H1(s, x(s))ds, t ∈ [0, 1],

Gx(t) = h2(x(t)) +

∫t
0
m(t, s)H2(s, x(s))ds, t ∈ [0, 1],

and S = T = I, where I is the identity mapping. Clearly the conditions (i) and (ii) of Theorem 2.4 are
satisfied also the pairs (F,S) and (G, T) are weakly compatible. Now we prove condition (2.1) of Theorem
2.4 is satisfied. Let x(t),y(t) ∈ X. Then, for all t ∈ [0, 1], we have

|F(x(t))| 6 |h1(x(t))|+ |

∫t
0
m(t, s)H1(s, x(s)) ds|

6 |h1(x(t))|+

∫t
0
|m(t, s)||H1(s, x(s))| ds

6 |h1(x(t))|+

∫t
0

1√
3
|H1(s, x(s))|ds

6
1

2
√

3
sup
t∈[0,1]

|x(t)|+

∫t
0

1
2
√

3
sup
t∈[0,1]

|x(t)|

=
1

2
√

3
sup
t∈[0,1]

|Sx(t|+

∫t
0

1
2
√

3
sup
t∈[0,1]

|Sx(t)|

6
1

2
√

3
sup
t∈[0,1]

|Sx(t|+

∫ 1

0

1
2
√

3
sup
t∈[0,1]

|Sx(t)|

=
1√
3

sup
t∈[0,1]

|Sx(t)|.

Thus,

sup
t∈[0,1]

|F(x(t))| 6
1√
3

sup
t∈[0,1]

|Sx(t)|.

Similarly,

sup
t∈[0,1]

|G(y(t))| 6
1√
3

sup
t∈[0,1]

|Ty(t)|.

Hence,

p(F(x(t)),G(y(t))) 6
1√
3
p(Sx(t), Ty(t)),

which implies,

2p2(F(x(t)),G(y(t))) 6
2
3
p2(Sx(t), Ty(t))

6
2
3
M(x,y) = ψ(M(x,y)) −ϕ(M(x,y)) = f(ψ(M(x,y)),ϕ(M(x,y))).

Therefore, ψ(2p2(F(x(t)),G(y(t)))) 6 f(ψ(M(x,y)),ϕ(M(x,y))), where f(a,b) = a − b,ψ(t) = t and
ϕ(t) = t

3 . Hence, all conditions of Theorem 2.4 hold and the mappings F,G,S, and T has a common
fixed point u(t) ∈ C([0, 1]), which is a solution to the equations (4.1) and (4.2).
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