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1 Introduction and Preliminaries

Mustafa and Sims [1] introduced the concept of G-metric spaces in the year
2004 as a generalization of the metric spaces. In this type of spaces a non-negative
real number is assigned to every triplet of elements. After that, many papers
relating different “G-metric spaces” have been published by authors (see [2–17]).
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In the present work, we introduce a new notion of generalized G-metric space
called universal metric space of dimension n and study some fixed point results for
two self-mappings f and g on Un-metric spaces. For similar results in this paper
in G-metric space; see [18, 19, 20].

For n ≥ 2, letXn denotes the cartesian product X×· · ·×X and R+ = [0,+∞).
We begin with the following definition.

Definition 1.1. Let X be a non-empty set. Let Un : Xn −→ R+ be a function
that satisfies the following conditions:

(U1) Un(x1, . . . , xn) = 0 if x1 = · · · = xn,

(U2) Un(x1, . . . , xn) > 0 for all x1, . . . , xn with xi 6= xj , for some i, j ∈ {1, . . . , n},

(U3) Un(x1, . . . , xn) = Un(xπ1
, . . . , xπn

), for every permutation (π(1), . . . , π(n)) of
(1, 2, . . . , n),

(U4) Un(x1, x2, . . . , xn−1, xn−1) ≤ Un(x1, x2, . . . , xn−1, xn) for all x1, . . . , xn ∈
X ,

(U5) Un(x1, x2, . . . , xn) ≤ c(Un(x1, a, . . . , a)+Un(a, x2, . . . , xn)), for all x1, . . . , xn,
a ∈ X, 0 < c ≤ 1.

The function Un is called a universal metric of dimension n, or more specifically
a Un-metric on X , and the pair (X,Un) is called a Un-metric space.

In the sequel, for simplicity we assume that c = 1. The following useful
properties of a Un-metric are easily derived from the axioms.

Proposition 1.2. Let (X,Un) be a Un-metric space, then for any x1, ..., xn, a ∈ X
it follows that:

(1) If Un(x1, . . . , xn) = 0, then x1 = · · · = xn,

(2) Un(x1, . . . , xn) ≤
∑n

j=2 Un(x1, . . . , x1, xj),

(3) Un(x1, . . . , xn) ≤
∑n

j=1 Un(xj , a, . . . , a),

(4) Un(x1, x2, . . . , x2) ≤ (n− 1)Un(x1, . . . , x1, x2).

The following are relevant examples of Un-metric spaces. Note that most of
them come from combing all pairwise ordinary distances in a some way.

I) Let (X, d) be a usual metric space, then (X,Sn) and (X,Mn) are Un-metric
spaces, where

Sn(x1, . . . , xn) =
2

n(n− 1)

∑

1≤i<j≤n

d(xi, xj),

Mn(x1, . . . , xn) = max{d(xi, xj) : 1 ≤ i < j ≤ n}.
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II) Let φ be a non-decreasing and concave function with φ(0) = 0. If (X, d) is
a usual metric space, then (X,φn) defined by

φn(x1, . . . , xn) = φ−1

(

∑

1≤i<j≤n

φ(d(xi, xj)

)

is a Un-metric.

III) Let X = C([0, T ]) be the set of all continuous functions defined on [0, T ].
Defined In : Xn −→ R

+ by

In(x1, . . . , xn) =
∑

1≤i<j≤n

supt∈[0,T ]|xi(t)− xj(t)|.

(X, In) is a Un-metric space.

The above examples show that from any metric on X we can construct a
Un-metric. Conversely, for any Un-metric Un on X ,

dU (x, y) = Un(x, y, . . . , y) + Un(x, . . . , x, y),

defines a metric on X .

Definition 1.3. Let (X,Un) be a Un-metric space, then for x0 ∈ X , r > 0, the
Un-ball with center x0 and radius r is

BU (x0, r) = {y ∈ X : Un(x0, y, . . . , y) < r}.

Proposition 1.4. Let (X,Un) be a Un-metric space, then for x0 ∈ X, r > 0,

(1) If Un(x0, x1, . . . , xn) < r, then x1, . . . , xn ∈ BU (x0, r),

(2) If y ∈ BU (x0, r), then there exists, δ > 0 such that BU (y, δ) ⊆ BU (x0, r),

(3) BU (x0,
1
n
) ⊆ BdU

(x0, r) ⊆ BU (x0, r).

Remark 1.5.

(i) It follows from (2) of the above proposition that the family of all Un-balls,
B = {BU (x, r) : x ∈ X, r > 0}, is the base of a topology T (U) on X, the
Un-metric topology.

(ii) It follows from (3) of Proposition 1.4, that Un-metric topology T (U) coin-
cides with the metric topology arising from dU . Thus while ‘isometrically’
distinct, every Un-metric space is topologically equivalent to a metric space.
This allows us to readily transport many concepts and results from metric
spaces into Un-metric space setting.

Definition 1.6. Let (X,Un) be a Un-metric space. The sequence {xk} ⊆ X is
Un-convergent to x if its converges to x in the Un-metric topology, T (U).



432 Thai J. Math. 15 (2017)/ A.D. Nezhad et al.

Proposition 1.7. Let (X,Un) be a U -metric space. Then for a sequence
{xk} ⊆ X, and a point x ∈ X the following are equivalent:

(1) {xk} is Un-convergent to x.

(2) dU (xk, x) → 0, as k → ∞.

(3) U(xk, . . . , xk, x) → 0, as k → ∞.

(4) U(xk, x, . . . , x) → 0, as k → ∞.

(5) U(xm, xk, . . . , xl, x) → 0, as m, k, . . . , l → ∞.

Definition 1.8. Let (X,Un), (Y, Vm) be Universal metric spaces of dimension n,
m respectively, a function f : X −→ Y is Un,m-continuous at point x0 ∈ X if
f−1(BVm

(f(x0), r)) ∈ T (U), for all r > 0. We say f is Un,m-continuous if it is
Un,m-continuous at all points of X ; that is, continuous as a function from X with
the T (U)-topology to Y with the T (V )-topology.

In the sequel, for simplicity we have assume that n = m. Since Un-metric
topologies are metric topologies we have:

Proposition 1.9. Let (X,Un), (Y, Vn) be Un-metric spaces, a function f : X −→
Y is Un-continuous at point x ∈ X if and only if it is Un-sequentially continuous at
x; that is, whenever {xk} is Un-convergent to x we have (f(xk)) is Un-convergent
to f(x).

Proposition 1.10. Let (X,Un) be a Un-metric space. Then the function Un(z1, z2,
. . . , zn) is jointly continuous in all n of its variables.

Now we discuss about concept completeness of Un-metric spaces

Definition 1.11. Let (X,Un) be a Un-metric space, then a sequence {xk} ⊆
X is said to be Un-Cauchy if for every ε > 0, there exists N ∈ N such that
Un(xk, xm, . . . , xl) < ε for all k,m, . . . , l ≥ N .

The next proposition follow directly from the definitions.

Proposition 1.12. In a Un-metric space, (X,Un), the following are equivalent.

(1) The sequence {xk} is Un-Cauchy.

(2) For every ε > 0, there exists N ∈ N such that Un(xm, . . . , xm, xk) < ε, for
all k,m ≥ N .

(3) {xk} is a Cauchy sequence in the metric space (X, dU ).
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2 Main Results

In metric fixed point theory, the concept of altering distance function has been
used by many authors in a number of works on fixed points. An altering distance
function is actually a control function which alters the distance between two points
in a metric space. This concept was introduced by Khan et al. in 1984 in their
well known paper [21] in which addressed a new category of metric fixed point
problems by use of such functions.

Definition 2.1. The function ψ : R+ −→ R+ is called an altering distance func-
tion if the following properties are satisfied:

(a) ψ is continuous and increasing;

(b) ψ(t) = 0 if and only if t = 0.

Definition 2.2. Let (X,Un) be a Un-metric space and f, g : X −→ X be two
mappings. We say that f is a weakly U -contraction mapping of type Bu with
respect to g if for all z1, . . . , zn ∈ X , the following inequality holds:

ψ

(

Un(fz1, fz2, . . . , fzn)

)

≤ ψ

(

1

n

(

n−1
∑

i=1

Un(gzi, . . . , gzi, fzi+1) + Un(gzn, . . . , gzn, fz1)

))

− φ

(

n−1
∑

i=1

Un(gzi, . . . , gzi, fzi+1)ei + Un(gzn, . . . , gzn, fz1)en

)

(2.1)

where

(a) ψ is an altering distance function;

(b) φ : Rn
+ −→ R+ is continuous function with φ(u1, . . . , un) = 0 if and only if

u1 = · · · = un = 0.

Theorem 2.3. Let (X,Un) be a Un-metric space and f, g : X −→ X be two
mappings such that f is a weakly U -contraction mapping of type Bu with respect
to g. Assume that

(i) f(X) ⊆ g(X),

(ii) g(X) is a complete subset of (X,Un),

(iii) The pair {f, g}is weakly compatible.

Then f and g have a unique common fixed point.

Proof. By the fact that f(X) ⊆ g(X), we can construct a sequence {xk} in X such
that gxk+1 = fxk for any k ∈ N. If for some k, gxk+1 = gxk, then gxk = fxk, that
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is, f and g have a common fixed point. Thus, we may assume that gxk+1 6= gxk
for any k ∈ N. For k ∈ N, then by (2.1) and (U5), we get

ψ

(

Un(gxk, . . . , gxk, gxk+1)

)

= ψ

(

Un(fxk−1, . . . , fxk−1, fxk)

)

≤ ψ

(

1

n
((n− 2)Un(gxk−1, . . . , gxk−1, gxk) + Un(gxk−1, . . . , gxk−1, gxk+1)

+ Un(gxk, gxk, . . . , gxk))

)

− φ

( n−2
∑

i=1

Un(gxk−1, . . . , gxk−1, gxk)ei

+ Un(gxk−1, . . . , gxk−1, gxk+1)en−1 + Un(gxk, gxk, . . . , gxk)en

)

≤ ψ

(

1

n
((n− 2)Un(gxk−1, . . . , gxk−1, gxk) + Un(gxk−1, . . . , gxk−1, gxk+1))

)

≤ ψ

(

n− 1

n
Un(gxk−1, . . . , gxk−1, gxk) +

1

n
Un(gxk, . . . , gxk, gxk+1)

)

. (2.2)

Since ψ is increasing, by (2.2), we have

Un(gxk, . . . , gxk, gxk+1)

≤
1

n
((n− 2)Un(gxk−1, . . . , gxk−1, gxk) + Un(gxk−1, . . . , gxk−1, gxk+1))

≤
n− 1

n
Un(gxk−1, . . . , gxk−1, gxk) +

1

n
Un(gxk, . . . , gxk, gxk+1). (2.3)

Then, it follows easily that

Un(gxk, . . . , gxk, gxk+1) ≤ Un(gxk−1, . . . , gxk−1, gxk) for any k ≥ 1. (2.4)

Therefore {Un(gxk, . . . , gxk, gxk+1), k ∈ N} is a decreasing sequence. Hence there
exists r ≥ 0 such that

lim
k→+∞

Un(gxk, . . . , gxk, gxk+1) = r. (2.5)

Letting k → +∞ in (2.3), we get

r ≤
n− 2

n
r +

1

n
lim

k→+∞
Un(gxk−1, . . . , gxk−1, gxk+1) ≤

n− 1

n
r +

1

n
r = r,

which implies that

lim
k→+∞

Un(gxk−1, . . . , gxk−1, gxk+1) = 2r. (2.6)
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Again, from (2.2) we have

ψ

(

Un(gxk, . . . , gxk, gxk+1)

)

≤ ψ

(

1

n
((n− 2)Un(gxk−1, . . . , gxk−1, gxk) + Un(gxk−1, . . . , gxk−1, gxk+1))

)

− φ

( n−2
∑

i=1

Un(gxk−1, . . . , gxk−1, gxk)ei + (gxk−1, . . . , gxk−1, gxk+1)en−1

)

.

Letting k → +∞ and using (2.5), (2.6) and from continuities of ψ and φ, we get

ψ(r) ≤ ψ(r) − φ(r, . . . , r, 2r, 0),

and hence φ(r, . . . , r, 2r, 0) = 0. By a property of φ, we deduce that r = 0, that is,

lim
k→+∞

Un(gxk, . . . , gxk, gxk+1) = 0. (2.7)

Next, we will show that {gxk} is a Un-Cauchy sequence. Suppose, on the contrary,
that {gxk} is not a Un-Cauchy sequence, that is,

lim
m,k→+∞

Un(gxm, . . . , gxm, gxk) 6= 0.

Then, there exists ε > 0 for which we can find two subsequences {gxmi
} and

{gxni
} of {xk} such that ni is the smallest index for which

ni > mi > i, Un(gxmi
, . . . , gxmi

, gxni
) ≥ ε. (2.8)

This means that
Un(gxmi

, . . . , gxmi
, gxni−1) < ε. (2.9)

Now, from (2.8), (2.9), (U5) and item (4) of Proposition 1.2, we have that

ε ≤ Un(gxmi
, . . . , gxmi

, gxni
)

≤ Un(gxmi
, . . . , gxmi

, gxmi+1) + Un(gxmi+1, . . . , gxmi+1, gxni
)

≤ Un(gxmi
, . . . , gxmi

, gxmi+1) + Un(gxmi+1, . . . , gxmi+1, gxni−1)

+ Un(gxni−1, . . . , gxni−1, gxni
)

≤ n Un(gxmi
, . . . , gxmi

, gxmi+1) + Un(gxmi
, . . . , gxmi

, gxni−1)

+ Un(gxni−1, . . . , gxni−1, gxni
)

< n Un(gxmi
, . . . , gxmi

, gxmi+1) + ε+ Un(gxni−1, . . . , gxni−1, gxni
).

Letting i→ +∞ in the above inequalities and using (2.7), we get that

lim
i→+∞

Un(gxmi
, . . . , gxmi

, gxni
) = lim

i→+∞
Un(gxmi+1, . . . , gxmi+1, gxni

)

= lim
i→+∞

Un(gxmi
, . . . , gxmi

, gxni−1)

= ε. (2.10)
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By (2.1), we have

ψ

(

Un(gxmi+1, . . . , gxmi+1, gxni
)

)

= ψ

(

Un(fxmi
, . . . , fxmi

, fxni−1)

)

≤ ψ

(

1

n
((n− 2)Un(gxmi

, . . . , gxmi
, gxmi+1) + Un(gxmi

, . . . , gxmi
, gxni

)

+ Un(gxni−1, . . . , gxni−1, gxmi+1))

)

− φ

( n−2
∑

i=1

Un(gxmi
, . . . , gxmi

, gxmi+1)ei

+ Un(gxmi
, . . . , gxmi

, gxni
)en−1 + Un(gxni−1, . . . , gxni−1, gxmi+1)en

)

≤ ψ

(

1

n
((n− 2)Un(gxmi

, . . . , gxmi
, gxmi+1) + Un(gxmi

, . . . , gxmi
, gxni

)

+ Un(gxni−1, . . . , gxni−1, gxmi+1))

)

. (2.11)

Once again, since ψ is increasing, we get

Un(gxmi+1, . . . , gxmi+1, gxni
)

≤
1

n
((n− 2)Un(gxmi

, . . . , gxmi
, gxmi+1) + Un(gxmi

, . . . , gxmi
, gxni

)

+ Un(gxni−1, . . . , gxni−1, gxmi+1)).

Then, by (U5) and Proposition 1.2, we have

Un(gxmi+1, . . . , gxmi+1, gxni
)

≤
1

n
((n− 2)Un(gxmi

, . . . , gxmi
, gxmi+1) + Un(gxmi

, . . . , gxmi
, gxni

)

+ Un(gxni−1, . . . , gxni−1, gxmi+1))

≤
1

n
((n− 2)Un(gxmi

, . . . , gxmi
, gxmi+1) + Un(gxmi

, . . . , gxmi
, gxni

)

+ (n− 1)Un(gxni−1, gxmi+1, . . . , gxmi+1))

≤
1

n
((n− 2)Un(gxmi

, . . . , gxmi
, gxmi+1) + Un(gxmi

, . . . , gxmi
, gxni

)

+(n− 1)
(

Un(gxmi
, . . . , gxmi

, gxni−1) + Un(gxmi
, gxmi+1, . . . , gxmi+1)

)

)

.

Letting i→ +∞ in the above inequalities, and using (2.7) and (2.10), we get that

Un(gxni−1, . . . , gxni−1, gxmi+1) = (n− 1)ε. (2.12)
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Now, letting i→ +∞ in (2.11) and using (2.7), (2.10), (2.12) and the continuities
of ψ and φ, we have

ψ(ε) ≤ ψ

(

1

n
(ε+ (n− 1)ε)

)

− φ(0, . . . , 0, ε, (n− 1)ε).

Therefore, we get φ(0, . . . , 0, ε, (n − 1)ε) = 0 and hence, by property of φ, we
deduce ε = 0, a contradiction. Thus {gxk} is a Un-Cauchy sequence in g(X).
Since (g(X), Un) is complete, there exist t, u ∈ X such that {gxk} converges to
t = gu, that is,

lim
k→+∞

Un(gxk, gu, . . . , gu) = lim
k→+∞

Un(gxk, . . . , gxk, gu) = 0. (2.13)

Then by Proposition 1.10, we have

lim
k→+∞

Un(gxk, fu, . . . , fu) = Un(gu, fu, . . . , fu), (2.14)

and

lim
k→+∞

Un(gxk, . . . , gxk, fu) = Un(gu, . . . , gu, fu). (2.15)

Let us show that fu = t. By (2.1), we have

ψ

(

Un(gxk+1, . . . , gxk+1, fu)

)

≤ ψ

(

1

n
((n− 2)Un(gxk, . . . , gxk, gxk+1) + Un(gxk, . . . , gxk, fu)

+ Un(gu, . . . , gu, gxk+1))

)

− φ

( n−2
∑

i=1

Un(gxk, . . . , gxk, gxk+1)ei

+ Un(gxk, . . . , gxk, fu)en−1 + Un(gu, . . . , gu, gxk+1)en

)

.

Letting k → +∞ and using (2.7), (2.13) and (2.14) and the continuities of ψ and
φ, we get

ψ

(

Un(gu, . . . , gu, fu)

)

≤ ψ

(

1

n
Un(gu, . . . , gu, fu)

)

− φ

(

0, . . . , 0, Un(gu, . . . , gu, fu), 0)

)

. (2.16)

Since ψ is increasing therefore Un(gu, . . . , gu, fu) = 0 and hence fu = gu = t.
Then, u is a coincidence point of f and g, and since the pair {f, g} is weakly
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compatible, we have ft = gt. Now we prove that ft = gt = t. By (2.1), we have

ψ

(

Un(gt, . . . ,gt, gxk+1)

)

≤ ψ

(

1

n
((n− 2)Un(gt, . . . , gt, ft) + Un(gt, . . . , gt, gxk+1)

+ Un(gxk, . . . , gxk, f t))

)

− φ

( n−2
∑

i=1

Un(gt, . . . , gt, ft)ei

+ Un(gt, . . . , gt, gxk+1)en−1 + Un(gxk, . . . , gxk, f t)en

)

.

Letting k → +∞, we get

ψ

(

Un(gt, . . . , gt, gu)

)

≤ ψ

(

1

n
(Un(gt, . . . , gt, gu) + Un(gu, . . . , gu, gt))

)

− φ

(

Un(gt, . . . , gt, gu)en−1 + Un(gu, . . . , gu, gt)en

)

≤ ψ

(

1

n
Un(gt, . . . , gt, gu) +

n− 1

n
Un(gt, . . . , gt, gu))

)

− φ

(

Un(gt, . . . , gt, gu)en−1 + Un(gu, . . . , gu, gt)en

)

= ψ

(

Un(gt, . . . , gt, gu)

)

− φ

(

Un(gt, . . . , gt, gu)en−1 + Un(gu, . . . , gu, gt)en

)

,

Which is true if φ

(

Un(gt, . . . , gt, gu)en−1 + Un(gu, . . . , gu, gt)en

)

= 0, that is,

gt = gu = t. We conclude that t = gt = ft, and so t is a common fixed point of f
and g. To prove the uniqueness, let t′ be another common fixed point of f and g.
By (2.1), we have

ψ

(

Un(t, t
′, . . . , t′)

)

= ψ

(

Un(ft, ft
′, . . . , f t′)

)

≤ ψ

(

1

n
(Un(gt, . . . , gt, ft

′) + (n− 2)Un(gt
′, . . . , gt′, f t′)

+ Un(gt
′, . . . , gt′, f t))

)

− φ

(

Un(gt, . . . , gt, ft
′)e1

+

n−1
∑

i=2

Un(gt
′, . . . , gt′, f t′)ei + Un(gt

′, . . . , gt′, f t)en

)
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= ψ

(

1

n
(Un(gt, . . . , gt, ft

′) + Un(gt
′, . . . , gt′, f t))

)

− φ

(

Un(gt, . . . , gt, ft
′)e1 + Un(gt

′, . . . , gt′, f t)en

)

≤ ψ

(

1

n
((n− 1)Un(t, t

′, . . . , t′) + Un(t
′, . . . , t′, t))

)

− φ

(

Un(t, . . . , t, t
′)e1 + Un(t

′, . . . , t′, t)en

)

= ψ

(

Un(t, t
′, . . . , t′)

)

− φ

(

Un(t, . . . , t, t
′)e1 + Un(t

′, . . . , t′, t)en

)

.

Therefore, φ

(

Un(t, . . . , t, t
′)e1+Un(t

′, . . . , t′, t)en

)

= 0 and hence Un(t, . . . , t, t
′) =

Un(t
′, . . . , t′, t) = 0. Thus t = t′.

Corollary 2.4. Let (X,Un) be a Un-metric space and f, g : X −→ X be two
mappings such that:

Un(fz1, fz2, . . . , fzn) ≤ α

(

n−1
∑

i=1

Un(gzi, . . . , gzi, fzi+1) + Un(gzn, . . . , gzn, fz1)

)

,

where α ∈ [0, 1
n
). Assume that

(i) f(X) ⊆ g(X),

(ii) g(X) is a complete subspace of (X,Un),

(iii) The pair {f, g}is weakly compatible.

Then f and g have a unique common fixed point.

Proof. It suffices to take ψ(t) = t and φ(
∑n

i=1 ui ei) = ( 1
n
− α)(

∑n

i=1 ui) in
Theorem 2.3.

Corollary 2.5. Let (X,Un) be a complete Un-metric space and f : X −→ X be
such that:

ψ

(

Un(fz1, fz2, . . . , fzn)

)

≤ ψ

(

1

n
(
n−1
∑

i=1

Un(zi, . . . , zi, fzi+1) + Un(zn, . . . , zn, fz1))

)

− φ

( n−1
∑

i=1

Un(zi, . . . , zi, fzi+1)ei + Un(zn, . . . , zn, fz1)en

)

where
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(i) ψ is an altering distance function;

(ii) φ : Rn
+ −→ R+ is continuous function with φ(u1, . . . , un) = 0 if and only if

u1 = · · · = un = 0.

Then f has a unique fixed point.

Proof. It suffices to take g = Idx, the identity mapping on X in Theorem 2.3.

Corollary 2.6. Let (X,Un) be a complete Un-metric space and f : X −→ X be
two mappings such that:

Un(fz1, fz2, . . . , fzn) ≤
1

n

( n−1
∑

i=1

Un(zi, . . . , zi, fzi+1) + Un(zn, . . . , zn, fz1)

)

− φ

( n−1
∑

i=1

Un(zi, . . . , zi, fzi+1)ei + Un(zn, . . . , zn, fz1)en

)

where φ : Rn
+ −→ R+ is continuous function with φ(u1, . . . , un) = 0 if and only if

u1 = · · · = un = 0. Then f has a unique fixed point.

Proof. It follows by taking ψ(t) = t in Corollary 2.5.

Definition 2.7. Let (X,Un) be a Un-metric space and f, g : X −→ X be two
mappings. We say that f is a weakly U -contraction mapping of type Au with
respect to g if for all z1, . . . , zn ∈ X , the following in equality holds:

ψ

(

Un(fz1,fz2, . . . , fzn)

)

≤ ψ

(

1

n

( n−1
∑

i=1

Un(gzi, fzi+1, . . . , fzi+1) + Un(gzn, fz1, . . . , fz1)

))

− φ

( n−1
∑

i=1

Un(gzi, fzi+1, . . . , fzi+1)ei + Un(gzn, fz1, . . . , fz1)en

)

where

(a) ψ is an altering distance function;

(b) φ : Rn
+ −→ R+ is continuous function with φ(u1, . . . , un) = 0 if and only if

u1 = · · · = un = 0.

Using arguments similar to those in Theorem 2.3, we can prove the following
theorem.

Theorem 2.8. Let (X,Un) be a Un-metric space and f, g : X −→ X be two
mappings such that f is a weakly U -contraction mapping of type Au with respect
to g. Assume that
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(i) f(X) ⊆ g(X),

(ii) g(X) is a complete subspace of (X,Un),

(iii) The pair {f, g}is weakly compatible.

Then f and g have a unique common fixed point.

As in the case of Theorem 2.3, we can deduce various corollaries from
Theorem 2.8.

Corollary 2.9. Let (X,Un) be a Un-metric space and f, g : X −→ X be two
mappings such that:

Un(fz1, fz2, . . . , fzn) ≤ α

( n−1
∑

i=1

Un(gzi, fzi+1, . . . , fzi+1) + Un(gzn, fz1, . . . , fz1)

)

,

where α ∈ [0, 1
n
). Assume that

(i) f(X) ⊆ g(X),

(ii) g(X) is a complete subspace of (X,Un),

(iii) the pair {f, g}is weakly compatible.

Then f and g have a unique common fixed point.

Corollary 2.10. Let (X,Un) be a complete Un-metric space and f : X −→ X be
such that:

ψ

(

Un(fz1,fz2, . . . , fzn)

)

≤ ψ

(

1

n

( n−1
∑

i=1

Un(zi, fzi+1, . . . , fzi+1) + Un(zn, fz1, . . . , fz1)

))

− φ

( n−1
∑

i=1

Un(zi, fzi+1, . . . , fzi+1)ei + Un(zn, fz1, . . . , fz1)en

)

where

(i) ψ is an altering distance function,

(ii) φ : Rn
+ −→ R+ is continuous function with φ(u1, . . . , un) = 0 if and only if

u1 = · · · = un = 0.

Then f has a unique fixed point.
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Corollary 2.11. Let (X,Un) be a complete Un-metric space and f : X −→ X be
such that:

Un(fz1,fz2, . . . , fzn)

≤
1

n

( n−1
∑

i=1

Un(zi, fzi+1, . . . , fzi+1) + Un(zn, fz1, . . . , fz1)

)

− φ

( n−1
∑

i=1

Un(zi, fzi+1, . . . , fzi+1)ei + Un(zn, fz1, . . . , fz1)en

)

where φ : Rn
+ −→ R+ is continuous function with φ(u1, . . . , un) = 0 if and only if

u1 = · · · = un = 0. Then f has a unique fixed point.

Remark 2.12. Using arguments similar to those in corollaries 2.10, 2.5 with weak
condition we can prove the following theorem.

Theorem 2.13. Let X be a complete Un-metric space. Suppose the map f :
X −→ X satisfies for all z1, z2, . . . , zn ∈ X

ψ(Un(fz1, fz2, . . . , fzn)) ≤ ψ(Un(z1, z2, . . . , zn))− φ(Un(z1, z2, . . . , zn)), (2.17)

where ψ and φ are altering distance functions. Then f has a unique fixed point
(say u) and f is Un-continuous at u.

Proof. Let x0 be an arbitrary point in X , and let xk+1 = fxk for any k ∈ N.
Assume xk 6= xk−1. For k ∈ N, we use (2.17) and definition of φ

ψ(Un(xk, xk+1, . . . , xk+1)) = ψ(Un(fxk−1, fxk, . . . , fxk))

≤ ψ(Un(xk−1, xk, . . . , xk))− φ(Un(xk−1, xk, . . . , xk))

≤ ψ(Un(xk−1, xk, . . . , xk)). (2.18)

Since ψ is non-decreasing, we get that

Un(xk, xk+1, . . . , xk+1) ≤ Un(xk−1, xk, . . . , xk). (2.19)

If we take tk = Un(xk, xk+1, . . . , xk+1), then from (2.19), we get 0 ≤ tk ≤ tk−1,
so the sequence {tk} is non-increasing, hence it converges to some r ≥ 0. Letting
this in (2.18), then as k → +∞

ψ(r) ≤ ψ(r) − φ(r),

using the continuity of ψ and φ. Then, we find φ(r) = 0, hence by a property of
φ, we have r = 0. We rewrite this as

lim
k→+∞

Un(xk, xk+1, . . . , xk+1) = 0. (2.20)
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Next, we prove that {xk} is a Un-Cauchy sequence. We argue by contradiction.
Assume that {xk} is not a Un-Cauchy sequence. Then, there exists ε > 0 for which
we can find subsequences {xmi

} and {xni
} of {xk} with ni > mi > i such that

Un(xni
, xmi

, . . . , xmi
) ≥ ε. (2.21)

Further, corresponding tomi, we can choose ni in such a way that it is the smallest
integer with ni > mi and satisfying (2.21). Then

Un(xni−1, xmi
, . . . , xmi

) < ε. (2.22)

We have, using (2.22) and the condition (U5), that

ε ≤ Un(xni
, xmi

, . . . , xmi
)

≤ Un(xni
, xni−1, . . . , xni−1) + Un(xni−1, xmi

, . . . , xmi
)

< ε+ Un(xni
, xni−1, . . . , xni−1). (2.23)

In other words, we have:

0 ≤ Un(xni
, xni−1, . . . , xni−1)

= Un(xni−1, . . . , xni−1, xni
)

≤ (n− 1)Un(xni−1, xni
, . . . , xni

).

Letting i → +∞, and using (2.20), we find Un(xni
, xni−1, . . . , xni−1) → 0. We

take this in (2.23)
lim

i→+∞
Un(xni

, xmi
, . . . , xmi

) = ε. (2.24)

Moreover, we have:

Un(xni
, xmi

, . . . , xmi
) ≤ Un(xni

, xni−1, . . . , xni−1) + Un(xni−1, xmi−1, . . . , xmi−1)

+ Un(xmi−1, xmi
, . . . , xmi

),

and

Un(xni−1, xmi−1, . . . , xmi−1) ≤ Un(xni−1, xni
, . . . , xni

) + Un(xni
, xmi

, . . . , xmi
)

+ Un(xmi
, xmi−1, . . . , xmi−1).

Letting i→ +∞ in the above two inequalities and using (2.20)-(2.24)

lim
i→+∞

Un(xni−1, xmi−1, . . . , xmi−1) = ε. (2.25)

Setting z1 = xni−1 and z2 = · · · = zn = xmi−1 in (2.17) and using (2.21), we
obtain thanks to the fact that ψ is increasing

ψ(ε) ≤ ψ(Un(xni
, xmi

, . . . , xmi
)) = ψ(Un(fxni−1, fxmi−1, . . . , fxmi−1))

≤ ψ(Un(xni−1, xmi−1, . . . , xmi−1))− φ(Un(xni−1, xmi−1, . . . , xmi−1)).
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Letting i→ +∞, then using (2.25) and the continuity of ψ and φ, we get

ψ(ε) ≤ ψ(ε)− φ(ε),

yielding that φ(ε) = 0, which is a contradiction since ε > 0. This show that {xk}
is a Un-convergent to some u ∈ X , then

lim
k→+∞

Un(xk, . . . , xk, u) = Un(xk, u, . . . , u) = 0. (2.26)

We show now that u is a fixed point of the map f . From (2.17),

ψ(Un(xk+1, . . . , xk+1, fu)) = ψ(Un(fxk, . . . , fxk, fu))

≤ ψ(Un(xk, . . . , xk, u))− φ(Un(xk, . . . , xk, u)).

Thanks to (2.26) and the continuity of ψ and φ, we find

lim
k→+∞

Un(xk+1, . . . , xk+1, fu) = 0. (2.27)

Again, using the condition (U4) and (U5), one can write

Un(u, . . . , u, fu) ≤ Un(u, . . . , u, xk+1) + Un(xk+1, . . . , xk+1, fu).

Letting k → +∞ in the above inequality and having in mind (2.26) and (2.27),
one finds Un(u, . . . , u, fu) = 0, and then fu = u. Hence u is a fixed point of f .
Let us to show its uniqueness. Let v be another fixed point of f , then

ψ(Un(u, . . . , u, v)) = ψ(Un(fu, . . . , fu, fv))

≤ ψ(Un(u, . . . , u, v))− φ(Un(u, . . . , u, v)).

It follows that φ(Un(u, . . . , u, v)) = 0, and then Un(u, . . . , u, v) = 0, yielding that
u = v. Following Proposition 1.9, to show that f is Un-continuous at u, let {yk}
be any sequence in X such that {yk} is Un-convergent to u. For k ∈ N, we have

ψ(Un(u, . . . , u, fyk)) = ψ(Un(fu, . . . , fu, fyk))

≤ ψ(Un(u, . . . , u, yk))− φ(Un(u, . . . , u, yk)).

Letting k → +∞ and using again the continuity of ψ and φ, the right-hand side
of the above inequality tends to 0, then we obtain

lim
k→+∞

Un(u, . . . , u, fyk) = 0.

Hence {fyk} is Un-convergent to u = fu, so f is Un-continuous at u.

Corollary 2.14. Let X be a complete Un-metric space. Suppose the map f :
X −→ X satisfies for m ∈ N and z1, z2, . . . , zn ∈ X

ψ(Un(f
mz1, f

mz2, . . . , f
mzn)) ≤ ψ(Un(z1, z2, . . . , zn))− φ(Un(z1, z2, . . . , zn)),

where ψ and φ are altering distance functions. Then f has a unique fixed point
(say u), and f is Un-continuous at u.
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Proof. From Theorem 2.13, we conclude that fm has a unique fixed point say u.
Since

fu = f(fmu) = fm+1u = fm(fu),

we have that fu is also a fixed point to fm. By uniques of u, we get fu = u.

Corollary 2.15. Let X be a complete Un-metric space. Suppose the map f :
X −→ X satisfies for all z1, z2, . . . , zn ∈ X

Un(fz1, fz2, . . . , fzn) ≤ α Un(z1, z2, . . . , zn),

where α ∈ [0, 1), then f has a unique fixed point (say u), and f is Un-continuous
at u.

Proof. It suffices to take in Theorem 2.13, ψ(t) = t and (1−α)t for α ∈ [0, 1).

To continue we define a Γ-distance on a complete Un-metric space which is a
generalization of the concept of ω-distance due to Kada et al. [22] and prove fixed
point theorem in partially ordered Un-metric space.

Definition 2.16. Let (X,Un) be a Un-metric space. Then a function Γ : Xn −→
R+ is called an Γ-distance on X if the following conditions are satisfied:

(a) Γ(x1, x2, . . . , xn) ≤ Γ(x1, a, . . . , a) + Γ(a, x2, . . . , xn) for all x1, . . . , xn, a ∈
X ,

(b) for any x1, . . . , xn−1 ∈ X , Γ(x1, . . . , xn−1, .) : X −→ R+ is lower semi
continuous,

(c) for each ε > 0, there exists a δ > 0 such that Γ(x1, a, . . . , a) ≤ δ and
Γ(a, x2, . . . , xn) ≤ δ imply Un(x1, x2, . . . , xn) ≤ ε.

Also, X is said to be Γ-bounded if there is a constant M > 0 such that
Γ(x1, . . . , xn) ≤M for all x1, . . . , xn ∈ X .

Example 2.17. Let (X, d) be a metric space and Un : Xn −→ R+ defined by

Un(x1, . . . , xn) = max{d(xi, xj) : 1 ≤ i < j ≤ n},

for all x1, . . . , xn ∈ X. Then Γ = Un is a Γ-distance on X.

Proof. (a) and (b) are immediate. We show (c). Let ε > 0 be given and put
δ = ε/2. If Un(x1, a, . . . , a) ≤ δ and Un(a, x2, . . . , xn) ≤ δ then d(x1, a) ≤ δ,
d(a, xi) ≤ δ for i = 2, . . . , n and d(xi, xj) ≤ δ for 2 ≤ i < j ≤ n, which implies
that Un(x1, . . . , xn) ≤ 2δ = ε.

Example 2.18. Let (X, d) be a usual metric space, then (X,Un) is Un-metric
space, where

Un(x1, . . . , xn) =
2

n(n− 1)

∑

1≤i<j≤n

d(xi, xj)
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Then the function Γ : Xn −→ R+ defined by

Γ(x1, . . . , xn) =
2

n(n− 1)

n
∑

i=2

d(x1, xi)

for all x1, . . . , xn ∈ X is a Γ-distance on X.

Proof. The proofs of (a) and (b) are obvious. we show (c). Let ε > 0 be given
and put δ = ε

n2−2n+2 . If Γ(x, a, . . . , a) ≤ δ and Γ(a, x2, . . . , xn) ≤ δ, we have,

respectively, d(x1, a) ≤ nδ
2 and d(a, xi) ≤ n(n−1)δ

2 for i = 2, . . . , n. which imply
that Un(x1, . . . , xn) ≤ (n2 − 2n+ 2)δ = ε.

Lemma 2.19. Let (X,Un) be Un-metric space and Γ be a Γ-distance on X. Let
{xk}, {yk} be sequence in X, {δk} and {βk} be sequences in R+ converging to zero
and let z1, . . . , zn, a ∈ X. Then we have the following:

(1) If Γ(yk, xk, . . . , xk) ≤ δk and Γ(xk, ym, . . . , yl, zn) ≤ βk for any l ≥ · · · ≥
m ≥ k ∈ N, then Un(yk, ym, . . . , yl, zn) → 0 and hence yk → zn.

(2) If Γ(xk, xm, . . . , xl) ≤ δk for any l ≥ · · · ≥ m ≥ k ∈ N, then {xk} is an
Un-Cauchy sequence.

(3) If Γ(xk, a, . . . , a) ≤ δk for any k ∈ N, then {xk} is an Un-Cauchy sequence.

Proof. From definition of Γ-distance, there exists a δ > 0 such that Γ(v1, a, . . . , a) ≤
δ and Γ(a, v2, . . . , vn−1, zn) ≤ δ imply Un(v1, . . . , vn−1, zn) ≤ ε. Choose N ∈ N

such that δk ≤ δ and βk ≤ δ for every k ≥ N . Then we have, for any l ≥ · · · ≥
m ≥ k ≥ N ,

Γ(yk, xk, . . . , xk) ≤ δk ≤ δ, Γ(xk, ym, . . . , yl, zn) ≤ βk ≤ δ

and hence Un(yk, ym, . . . , yl, zn) ≤ ε, so that {yk} converges to zn.
Now we prove (2). Let ε > 0 be given. As in the proof of (1), choose δ > 0

and then N ∈ N. Then, for any l ≥ · · · ≥ m ≥ k ≥ N ,

Γ(xk, xk+1, . . . , xk+1) ≤ δk ≤ δ, Γ(xk+1, xm, . . . , xl) ≤ δk+1 ≤ δ,

and hence Un(xk, xm, . . . , xl) ≤ ε. This implies that {xk} is an Un-Cauchy se-
quence. Condition (3) is a special case of (2).

Definition 2.20. Suppose (X,≤) is a partially ordered set and F : X −→ X
is a mapping of X into itself. We say that F is non-decreasing if x ≤ y implies
F (x) ≤ F (y) for x, y ∈ X .

Theorem 2.21. Suppose (X,≤) is a partially ordered set. Suppose that there
exists a Un-metric on X such that (X,Un) is a complete Un-metric space and Γ
is an Γ-distance on X and F is a non-decreasing mapping from X into itself. Let
X be Γ-bounded. Suppose that there exists r ∈ [0, 1) such that

Γ(Fx, F 2x, . . . , F 2x, Fv) ≤ rΓ(x, Fx, . . . , Fx, v)
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for x ≤ Fx and v ∈ X. Also for every x ∈ X

inf{Γ(x, F kx, Fmx, . . . , F lx, y) : x ≤ Fx} > 0 for l > · · · > m > k ∈ N (2.28)

for every y ∈ X with Fy 6= y. If there exists an x0 ∈ X with x0 ≤ Fx0, then F
has a fixed point. Moreover, if Fw = w, then Γ(w, . . . , w) = 0.

Proof. If Fx0 = x0, then the proof is finished. Suppose that Fx0 6= x0. Since
x0 ≤ Fx0 and F is non-decreasing, we obtain

x0 ≤ Fx0 ≤ F 2x0 ≤ · · · ≤ F k+1x0 ≤ · · · .

For all k ∈ N and t ≥ 0,

Γ(F kx0, F
k+1x0, . . . , F

k+1x0, F
k+tx0) ≤ rΓ(F k−1x0, F

kx0, . . . , F
kx0, F

k+t−1x0)

≤ · · · ≤ rkΓ(x0, Fx0, . . . , Fx0, F
tx0).

Thus, for any l1 > l2 > · · · > lk−1 > lk in which li + l′i = li−1, l
′
i ∈ N i = 2, . . . , k,

we have

Γ(F lkx0,F
lk−1x0, . . . , F

l1x0)

≤ Γ(F lkx0, F
lk+1x0, . . . , F

lk+1x0) + Γ(F lk+1x0, F
lk−1x0, . . . , F

l1x0)

≤ Γ(F lkx0, F
lk+1x0, . . . , F

lk+1x0) + Γ(F lk+1x0, F
lk+2x0, . . . , F

lk+2x0)

+ Γ(F lk+2x0, F
lk−1x0, . . . , F

l1x0)

≤ Γ(F lkx0, F
lk+1x0, . . . , F

lk+1x0) + Γ(F lk+1x0, F
lk+2x0, . . . , F

lk+2x0)

+ · · ·+ Γ(F lk−1−2x0, F
lk−1−1x0, . . . , F

lk−1−1x0)

+ Γ(F lk−1−1x0, F
lk−1x0, F

lk−2x0, . . . , F
l1x0)

≤

lk−1−1
∑

i=lk

Mri

≤
rlk

1− r
M.

By (2) of Lemma 2.19, {F lkx0} is a Un-Cauchy sequence. Since X is Un-complete,
{F lkx0} coverges to a point z ∈ X . Let lk ∈ N be fixed. Then, by the lower semi-
continuity of Γ, we have, for l2 > · · · > lk−1 > lk

Γ(F lkx0, F
lk−1x0, . . . , F

l2x0, z) ≤ lim inf
p→∞

Γ(F lkx0, F
lk−1x0, . . . , F

l2x0, F
px0)

≤
rlk

1− r
M.

Assume that Fz 6= z. By (2.28), we have for l > · · · > m > k ∈ N

0 < inf{Γ(F lkx0, F
lk+kx0, F

lk+mx0, . . . , F
lk+lx0, y)} ≤ inf

rlk

1− r
M = 0

which is a contradiction. Therefore, we have Fz = z. Now, if Fw = w, we have
Γ(w, . . . , w) = Γ(Fw, F 2w, . . . , F 2w,Fw) ≤ rΓ(w,Fw, . . . , Fw,w) = rΓ(w, . . . , w)
and so Γ(w, . . . , w) = 0.
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3 Conclusion

In this work, we established some common fixed point results for two mapping
f, g : X −→ X satisfying contractive condition of types Au and Bu. Also we
studied some fixed point consequences for a self mapping in a complete Un-metric
space X under condition related to altering distance functions. Last result of our
paper is a fixed point theorem involving Γ-distance.

Acknowledgement : The authors are extremely grateful to the referee for mak-
ing valuable suggestions leading to an improvement of the paper.
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