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1 Introduction
The concept of metric spaces has been generalized in many directions.
The notion of a b-metric space was studied by Czerwik in [, ] and many fixed point

results were obtained for single and multivalued mappings by Czerwik and many other
authors.
On the other hand, the notion of a -metric was introduced by Gähler in [], having

the area of a triangle in R
 as the inspirative example. Similarly, several fixed point results

were obtained for mappings in such spaces. Note that, unlike many other generalizations
of metric spaces introduced recently, -metric spaces are not topologically equivalent to
metric spaces and there is no easy relationship between the results obtained in -metric
and in metric spaces.
In this paper, we introduce a new type of generalized metric spaces, which we call

b-metric spaces, as a generalization of both -metric and b-metric spaces. Then we
prove some fixed point theorems under various contractive conditions in partially ordered
b-metric spaces. These include Geraghty-type conditions, conditions using comparison
functions and almost generalized weakly contractive conditions. We illustrate these re-
sults by appropriate examples, as well as an application to integral equations.

2 Mathematical preliminaries
The notion of a b-metric space was studied by Czerwik in [, ].

Definition  [] Let X be a nonempty set and s ≥  be a given real number. A function
d : X ×X →R

+ is a b-metric on X if, for all x, y, z ∈ X, the following conditions hold:

(b) d(x, y) =  if and only if x = y,
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(b) d(x, y) = d(y,x),
(b) d(x, z) ≤ s[d(x, y) + d(y, z)].

In this case, the pair (X,d) is called a b-metric space.

Note that a b-metric is not always a continuous function of its variables (see, e.g., [,
Example ]), whereas an ordinary metric is.
On the other hand, the notion of a -metric was introduced by Gähler in [].

Definition  [] Let X be a nonempty set and let d : X → R be a map satisfying the
following conditions:
. For every pair of distinct points x, y ∈ X , there exists a point z ∈ X such that

d(x, y, z) �= .
. If at least two of three points x, y, z are the same, then d(x, y, z) = .
. The symmetry: d(x, y, z) = d(x, z, y) = d(y,x, z) = d(y, z,x) = d(z,x, y) = d(z, y,x) for all

x, y, z ∈ X .
. The rectangle inequality: d(x, y, z) ≤ d(x, y, t) + d(y, z, t) + d(z,x, t) for all x, y, z, t ∈ X .
Then d is called a -metric on X and (X,d) is called a -metric space.

Definition  [] Let (X,d) be a -metric space, a,b ∈ X and r ≥ . The set B(a,b, r) = {x ∈
X : d(a,b,x) < r} is called a -ball centered at a and b with radius r.
The topology generated by the collection of all -balls as a subbasis is called a -metric

topology on X.

Note that a -metric is not always a continuous function of its variables, whereas an
ordinary metric is.

Remark 
. [] It is straightforward from Definition  that every -metric is non-negative and

every -metric space contains at least three distinct points.
. A -metric d(x, y, z) is sequentially continuous in each argument. Moreover, if a

-metric d(x, y, z) is sequentially continuous in two arguments, then it is
sequentially continuous in all three arguments; see [].

. A convergent sequence in a -metric space need not be a Cauchy sequence; see [].
. In a -metric space (X,d), every convergent sequence is a Cauchy sequence if d is

continuous; see [].
. There exists a -metric space (X,d) such that every convergent sequence in it is a

Cauchy sequence but d is not continuous; see [].

For some fixed point results on -metric spaces, the readers may refer to [–].
Now, we introduce new generalized metric spaces, called b-metric spaces, as a gener-

alization of both -metric and b-metric spaces.

Definition  Let X be a nonempty set, s ≥  be a real number and let d : X → R be a
map satisfying the following conditions:
. For every pair of distinct points x, y ∈ X , there exists a point z ∈ X such that

d(x, y, z) �= .
. If at least two of three points x, y, z are the same, then d(x, y, z) = .
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. The symmetry: d(x, y, z) = d(x, z, y) = d(y,x, z) = d(y, z,x) = d(z,x, y) = d(z, y,x) for all
x, y, z ∈ X .

. The rectangle inequality: d(x, y, z) ≤ s[d(x, y, t) + d(y, z, t) + d(z,x, t)] for all
x, y, z, t ∈ X .

Then d is called a b-metric on X and (X,d) is called a b-metric space with parameter s.

Obviously, for s = , b-metric reduces to -metric.

Definition  Let {xn} be a sequence in a b-metric space (X,d).
. {xn} is said to be b-convergent to x ∈ X , written as limn xn = x, if for all a ∈ X ,

limn d(xn,x,a) = .
. {xn} is said to be a b-Cauchy sequence in X if for all a ∈ X , limn d(xn,xm,a) = .
. (X,d) is said to be b-complete if every b-Cauchy sequence is a b-convergent

sequence.

The following are some easy examples of b-metric spaces.

Example  Let X = [,+∞) and d(x, y, z) = [xy + yz + zx]p if x �= y �= z �= x, and otherwise
d(x, y, z) = , where p ≥  is a real number. Evidently, from convexity of function f (x) = xp

for x ≥ , then by Jensen inequality we have

(a + b + c)p ≤ p–
(
ap + bp + cp

)
.

So, one can obtain the result that (X,d) is a b-metric space with s ≤ p–.

Example  Let a mapping d :R → [, +∞) be defined by

d(x, y, z) =min
{|x – y|, |y – z|, |z – x|}.

Then d is a -metric on R, i.e., the following inequality holds:

d(x, y, z) ≤ d(x, y, t) + d(y, z, t) + d(z,x, t),

for arbitrary real numbers x, y, z, t. Using convexity of the function f (x) = xp on [,+∞)
for p≥ , we obtain that

dp(x, y, z) =
[
min

{|x – y|, |y – z|, |z – x|}]p
is a b-metric on R with s < p–.

Definition  Let (X,d) and (X ′,d′) be two b-metric spaces and let f : X → X ′ be a map-
ping. Then f is said to be b-continuous at a point z ∈ X if for a given ε > , there exists
δ >  such that x ∈ X and d(z,x,a) < δ for all a ∈ X imply that d′(fz, fx,a) < ε. The mapping
f is b-continuous on X if it is b-continuous at all z ∈ X.

Proposition  Let (X,d) and (X ′,d′) be two b-metric spaces. Then a mapping f : X → X ′

is b-continuous at a point x ∈ X if and only if it is b-sequentially continuous at x; that is,
whenever {xn} is b-convergent to x, {fxn} is b-convergent to f (x).
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We will need the following simple lemma about the b-convergent sequences in the
proof of our main results.

Lemma  Let (X,d) be a b-metric space and suppose that {xn} and {yn} are b-convergent
to x and y, respectively. Then we have


s
d(x, y,a)≤ lim inf

n→∞ d(xn, yn,a) ≤ lim sup
n→∞

d(xn, yn,a)≤ sd(x, y,a),

for all a in X . In particular, if yn = y is constant, then


s
d(x, y,a)≤ lim inf

n→∞ d(xn, y,a) ≤ lim sup
n→∞

d(xn, y,a) ≤ sd(x, y,a),

for all a in X .

Proof Using the rectangle inequality in the given b-metric space, it is easy to see that

d(x, y,a) = d(x,a, y)≤ sd(x,a,xn) + sd(a, y,xn) + sd(y,x,xn)

≤ sd(x,a,xn) + s
[
d(a, y, yn) + d(y,xn, yn) + d(xn,a, yn)

]
+ sd(y,x,xn)

and

d(xn, yn,a) = d(xn,a, yn) ≤ sd(xn,a,x) + sd(a, yn,x) + sd(yn,x,xn)

≤ sd(xn,a,x) + s
[
d(a, yn, y) + d(yn,x, y) + d(x,a, y)

]
+ sd(yn,x,xn).

Taking the lower limit as n → ∞ in the first inequality and the upper limit as n → ∞ in
the second inequality we obtain the desired result.
If yn = y, then

d(x, y,a)≤ sd(x, y,xn) + sd(y,a,xn) + sd(a,x,xn)

and

d(xn, y,a) ≤ sd(xn, y,x) + sd(y,a,x) + sd(a,xn,x). �

3 Main results
3.1 Results under Geraghty-type conditions
In , Geraghty [] proved a fixed point result, generalizing the Banach contraction
principle. Several authors proved later various results using Geraghty-type conditions.
Fixed point results of this kind in b-metric spaces were obtained by Ðukić et al. in [].
Following [], for a real number s ≥ , let Fs denote the class of all functions β :

[,∞)→ [, s ) satisfying the following condition:

β(tn)→ 
s

as n→ ∞ implies tn →  as n→ ∞.

http://www.fixedpointtheoryandapplications.com/content/2014/1/144
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Theorem  Let (X,	) be a partially ordered set and suppose that there exists a b-metric
d on X such that (X,d) is a b-complete b-metric space. Let f : X → X be an increasing
mapping with respect to 	 such that there exists an element x ∈ X with x 	 fx. Suppose
that

sd(fx, fy,a) ≤ β
(
d(x, y,a)

)
M(x, y,a) (.)

for all a ∈ X and for all comparable elements x, y ∈ X, where

M(x, y,a) =max

{
d(x, y,a),

d(x, fx,a)d(y, fy,a)
 + d(fx, fy,a)

}
.

If f is b-continuous, then f has a fixed point. Moreover, the set of fixed points of f is well
ordered if and only if f has one and only one fixed point.

Proof Starting with the given x, put xn = f nx. Since x 	 fx and f is an increasing func-
tion we obtain by induction that

x 	 fx 	 f x 	 · · · 	 f nx 	 f n+x 	 · · · .

Step I: We will show that limn d(xn,xn+,a) = . Since xn 	 xn+ for each n ∈ N, then by
(.) we have

sd(xn,xn+,a) = sd(fxn–, fxn,a) ≤ β
(
d(xn–,xn,a)

)
M(xn–,xn,a)

≤ 
s
d(xn–,xn,a) ≤ d(xn–,xn,a), (.)

because

M(xn–,xn,a) =max

{
d(xn–,xn,a),

d(xn–, fxn–,a)d(xn, fxn,a)
 + d(fxn–, fxn,a)

}

=max

{
d(xn–,xn,a),

d(xn–,xn,a)d(xn,xn+,a)
 + d(xn,xn+,a)

}

= d(xn–,xn,a).

Therefore, the sequence {d(xn,xn+,a)} is decreasing. Then there exists r ≥  such that
limn d(xn,xn+,a) = r. Suppose that r > . Then, letting n→ ∞, from (.) we have


s
r ≤ sr ≤ lim

n
β
(
d(xn–,xn,a)

)
r ≤ r.

So, we have limn β(d(xn–,xn,a)) ≥ 
s and since β ∈Fs we deduce that limn d(xn–,xn,a) = 

which is a contradiction. Hence, r = , that is,

lim
n
d(xn,xn+,a) = . (.)

Step II: As {d(xn,xn+,a)} is decreasing, if d(xn–,xn,a) = , then d(xn,xn+,a) = . Since
from part  of Definition , d(x,x,x) = , we have d(xn,xn+,x) =  for all n ∈ N. Since

http://www.fixedpointtheoryandapplications.com/content/2014/1/144
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d(xm–,xm,xm) = , we have

d(xn,xn+,xm) =  (.)

for all n ≥ m – . For  ≤ n <m – , we havem –  ≥ n + , and from (.) we have

d(xm–,xm,xn+) = d(xm–,xm,xn) = . (.)

It implies that

d(xn,xn+,xm) ≤ sd(xn,xn+,xm–) + sd(xn+,xm,xm–) + sd(xm,xn,xm–)

= sd(xn,xn+,xm–).

Since d(xn,xn+,xn+) = , from the above inequality, we have

d(xn,xn+,xm) ≤ sm–n–d(xn,xn+,xn+) =  (.)

for all  ≤ n <m – . From (.) and (.), we have

d(xn,xn+,xm) =  (.)

for all n,m ∈ N.
Now, for all i, j,k ∈ N with i < j, we have

d(xj–,xj,xi) = d(xj–,xj,xk) = . (.)

Therefore, from (.) and triangular inequality

d(xi,xj,xk) ≤ s
[
d(xi,xj,xj–) + d(xj,xk ,xj–) + d(xk ,xi,xj–)

]
= sd(xi,xj–,xk)≤ · · · ≤ sj–id(xi,xi,xk) = .

This proves that for all i, j,k ∈N

d(xi,xj,xk) = . (.)

Step III: Now, we prove that the sequence {xn} is a b-Cauchy sequence. Using the rect-
angle inequality and by (.) we have

d(xn,xm,a)≤ sd(xn,xm,xn+) + sd(xm,a,xn+) + sd(a,xn,xn+)

≤ sd(xn,xn+,xm) + s
[
d(xm,xm+,a) + d(xn+,xm+,a)

+ d(xm,xm+,xn+)
]
+ sd(xn,xn+,a)

≤ sd(xn,xn+,xm) + sd(xm,xm+,a) + sβ
(
d(xn,xm,a)

)
M(xn,xm,a)

+ sd(xm,xm+,xn+) + sd(xn,xn+,a).

http://www.fixedpointtheoryandapplications.com/content/2014/1/144
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Letting m,n→ ∞ in the above inequality and applying (.) and (.) we have

lim
m,n→∞d(xn,xm,a)≤ s lim

m,n→∞β
(
d(xn,xm,a)

)
lim

m,n→∞M(xn,xm,a). (.)

Here

d(xn,xm,a)≤ M(xn,xm,a)

=max

{
d(xn,xm,a),

d(xn, fxn,a)d(xm, fxm,a)
 + d(fxn, fxm,a)

}

=max

{
d(xn,xm,a),

d(xn,xn+,a)d(xm,xm+,a)
 + d(xn+,xm+,a)

}
.

Letting m,n→ ∞ in the above inequality we get

lim
m,n→∞M(xn,xm,a) = lim

m,n→∞d(xn,xm,a). (.)

Hence, from (.) and (.), we obtain

lim
m,n→∞d(xn,xm,a)≤ s lim

m,n→∞β
(
d(xn,xm,a)

)
lim

m,n→∞d(xn,xm,a). (.)

Now we claim that limm,n→∞ d(xn,xm,a) = . If, to the contrary, limm,n→∞ d(xn,xm,a) �=
, then we get


s

≤ lim
m,n→∞β

(
d(xn,xm,a)

)
.

Since β ∈Fs we deduce that

lim
m,n→∞d(xn,xm,a) = , (.)

which is a contradiction. Consequently, {xn} is a b-Cauchy sequence in X. Since (X,d) is
b-complete, the sequence {xn} b-converges to some z ∈ X, that is, limn d(xn, z,a) = .
Step IV: Now, we show that z is a fixed point of f .
Using the rectangle inequality, we get

d(fz, z,a) ≤ sd(fz, fxn, z) + sd(z,a, fxn) + sd(a, fz, fxn).

Letting n → ∞ and using the continuity of f , we have fz = z. Thus, z is a fixed point of f .
Step V: Finally, suppose that the set of fixed point of f is well ordered. Assume, to the

contrary, that u and v are two distinct fixed points of f . Then by (.), we have

sd(u, v,a) = sd(fu, fv,a)≤ β
(
d(u, v,a)

)
M(u, v,a)

= β
(
d(u, v,a)

)
d(u, v,a) <


s
d(u, v,a), (.)

http://www.fixedpointtheoryandapplications.com/content/2014/1/144
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because

M(u, v,a) =max

{
d(u, v,a),

d(u, fu,a)d(v, fv,a)
 + d(fu, fv,a)

}

=max
{
d(u, v,a), 

}
= d(u, v,a).

Thus, we get sd(u, v,a) < 
s d(u, v,a), a contradiction. Hence, f has a unique fixed point.

The converse is trivial. �

Note that the continuity of f in Theorem  can be replaced by certain property of the
space itself.

Theorem  Under the hypotheses of Theorem , without the b-continuity assumption
on f , assume that whenever {xn} is a nondecreasing sequence in X such that xn → u, one
has xn 	 u for all n ∈ N. Then f has a fixed point. Moreover, the set of fixed points of f is
well ordered if and only if f has one and only one fixed point.

Proof Repeating the proof of Theorem , we construct an increasing sequence {xn} in X
such that xn → z ∈ X. Using the assumption on X we have xn 	 z. Now, we show that
z = fz. By (.) and Lemma ,

s
[

s
d(z, fz,a)

]
≤ s lim sup

n→∞
d(xn+, fz,a)

≤ lim sup
n→∞

β
(
d(xn, z,a)

)
lim sup
n→∞

M(xn, z,a),

where

lim
n→∞M(xn, z,a) = lim

n
max

{
d(xn, z,a),

d(xn, fxn,a)d(z, fz,a)
 + d(fxn, fz,a)

}

= lim
n
max

{
d(xn, z,a),

d(xn,xn+,a)d(z, fz,a)
 + d(xn+, fz,a)

}
= 

(
see (.)

)
.

Therefore, we deduce that d(z, fz,a) ≤ . As a is arbitrary, hence, we have z = fz.
The proof of uniqueness is the same as in Theorem . �

If in the above theorems we take β(t) = r, where  ≤ r < 
s , then we have the following

corollary.

Corollary  Let (X,	) be a partially ordered set and suppose that there exists a b-metric
d on X such that (X,d) is a b-complete b-metric space. Let f : X → X be an increasing
mapping with respect to 	 such that there exists an element x ∈ X with x 	 fx. Suppose
that for some r, with  ≤ r < 

s ,

sd(fx, fy,a) ≤ rM(x, y,a)

holds for each a ∈ X and all comparable elements x, y ∈ X, where

M(x, y,a) =max

{
d(x, y,a),

d(x, fx,a)d(y, fy,a)
 + d(fx, fy,a)

}
.

http://www.fixedpointtheoryandapplications.com/content/2014/1/144
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If f is continuous, or, for any nondecreasing sequence {xn} in X such that xn → u ∈ X one
has xn 	 u for all n ∈N, then f has a fixed point. Additionally, the set of fixed points of f is
well ordered if and only if f has one and only one fixed point.

Corollary  Let (X,	) be a partially ordered set and suppose that there exists a b-metric
d on X such that (X,d) is a b-complete b-metric space. Let f : X → X be an increasing
mapping with respect to 	 such that there exists an element x ∈ X with x 	 fx. Suppose
that

d(fx, fy,a) ≤ αd(x, y,a) + β
d(x, fx,a)d(y, fy,a)

 + d(fx, fy,a)

for each a ∈ X and all comparable elements x, y ∈ X, where α,β ≥  and α + β ≤ 
s .

If f is continuous, or, for any nondecreasing sequence {xn} in X such that xn → u ∈ X one
has xn 	 u for all n ∈ N, then f has a fixed point. Moreover, the set of fixed points of f is
well ordered if and only if f has one and only one fixed point.

Proof Since

αd(x, y,a) + β
d(x, fx,a)d(y, fy,a)

 + d(fx, fy,a)

≤ (α + β)max

{
d(x, y,a),

d(x, fx,a)d(y, fy,a)
 + d(fx, fy,a)

}
.

Putting r = α + β , the conditions of Corollary  are satisfied and f has a fixed point. �

Example  Let X = {(α, ) : α ∈ [, +∞)}∪{(, )} ⊂R
 and let d(x, y, z) denote the square

of the area of triangle with vertices x, y, z ∈ X, e.g.,

d
(
(α, ), (β , ), (, )

)
= (α – β).

It is easy to check that d is a b-metric with parameter s = . Introduce an order 	 in X by

(α, )	 (β , ) ⇐⇒ α ≥ β ,

with all other pairs of distinct points in X incomparable.
Consider the mapping f : X → X given by

f (α, ) =
(

α


, 

)
for α ∈ [, +∞) and f (, ) = (, ),

and the function β ∈F given as

β(t) =
 + t
 + t

for t ∈ [, +∞).

Then f is an increasing mapping with (α, ) 	 f (α, ) for each α ≥ . If {xn} = {(αn, )}
is a nondecreasing sequence in X, converging to some z = (γ , ), then (αn, ) 	 (γ , ) for

http://www.fixedpointtheoryandapplications.com/content/2014/1/144
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all n ∈ N. Finally, in order to check the contractive condition (.), only the case when
x = (α, ), y = (β , ), a = (, ) is nontrivial. But then d(x, y,a) = (α – β) and

sd(fx, fy,a) = d
((


α, 

)
,
(


β , 

)
, (, )

)
=  · 


(α – β) ≤ 


(α – β)

≤ β
(
d(x, y,a)

)
d(x, y,a)≤ β

(
d(x, y,a)

)
M(x, y,a).

All the conditions of Theorem  are satisfied and f has two fixed points, (, ) and (, ).
Note that the condition (stated in Theorem  and Theorem ) for the uniqueness of a fixed
point is here not satisfied.

3.2 Results using comparison functions
Let Ψ denote the family of all nondecreasing and continuous functions ψ : [,∞) →
[,∞) such that limn ψn(t) =  for all t > , where ψn denotes the nth iterate of ψ . It is
easy to show that, for each ψ ∈ Ψ , the following are satisfied:
(a) ψ(t) < t for all t > ;
(b) ψ() = .

Theorem  Let (X,	) be a partially ordered set and suppose that there exists a b-metric
d on X such that (X,d) is a b-complete b-metric space. Let f : X → X be an increasing
mapping with respect to 	 such that there exists an element x ∈ X with x 	 fx. Suppose
that

sd(fx, fy,a) ≤ ψ
(
M(x, y,a)

)
, (.)

where

M(x, y,a) =max

{
d(x, y,a),

d(x, fx,a)d(y, fy,a)
 + d(fx, fy,a)

}
,

for some ψ ∈ Ψ and for all elements x, y,a ∈ X, with x, y comparable. If f is b-continuous,
then f has a fixed point. In addition, the set of fixed points of f is well ordered if and only if
f has one and only one fixed point.

Proof Since x 	 fx and f is an increasing function, we obtain by induction that

x 	 fx 	 f x 	 · · · 	 f nx 	 f n+x 	 · · · .

By letting xn = f nx, we have

x 	 x 	 x 	 · · · 	 xn 	 xn+ 	 · · · .

If there exists n ∈ N such that xn = xn+, then xn = fxn and so we have nothing to prove.
Hence, we assume that xn �= xn+ for all n ∈N.
Step I. We will prove that limn d(xn,xn+,a) = . Using condition (.), we obtain

d(xn+,xn,a)≤ sd(xn+,xn,a) = sd(fxn, fxn–,a)≤ ψ
(
M(xn,xn–,a)

)
.
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Here

M(xn–,xn,a) =max

{
d(xn–,xn,a),

d(xn–, fxn–,a)d(xn, fxn,a)
 + d(fxn–, fxn,a)

}

= d(xn–,xn,a).

Hence,

d(xn,xn+,a)≤ sd(xn,xn+,a)≤ ψ
(
d(xn–,xn,a)

)
< d(xn–,xn,a). (.)

By induction, we get

d(a,xn+,xn) ≤ ψ
(
d(a,xn,xn–)

) ≤ ψ(d(a,xn–,xn–)) ≤ · · · ≤ ψn(d(a,x,x)).
As ψ ∈ Ψ , we conclude that

lim
n
d(xn,xn+,a) = . (.)

From similar arguments as in Theorem , since {d(xn,xn+,a)} is decreasing, we can con-
clude that

d(xi,xj,xk) =  (.)

for all i, j,k ∈N.
Step II. We will prove that {xn} is a b-Cauchy sequence. Suppose the contrary. Then

there exist a ∈ X and ε >  for which we can find two subsequences {xmi} and {xni} of {xn}
such that ni is the smallest index for which

ni >mi > i and d(xmi ,xni ,a) ≥ ε. (.)

This means that

d(xmi ,xni–,a) < ε. (.)

From (.) and using the rectangle inequality, we get

ε ≤ d(xmi ,xni ,a) ≤ sd(xmi ,xni ,xmi+) + sd(xmi+,xni ,a) + sd(xmi+,xmi ,a).

Taking the upper limit as i → ∞, from (.) and (.) we get

ε

s
≤ lim sup

i→∞
d(xmi+,xni ,a). (.)

From the definition ofM(x, y,a) we have

M(xmi ,xni–,a) =max

{
d(xmi ,xni–,a),

d(xmi , fxmi ,a)d(xni–, fxni–,a)
 + d(fxmi , fxni–,a)

}

=max

{
d(xmi ,xni–,a),

d(xmi ,a,xmi+)d(xni–,a,xni )
 + d(xmi+,xni ,a)

}
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and if i→ ∞, by (.) and (.) we have

lim sup
i→∞

M(xmi ,xni–,a)≤ ε.

Now, from (.) we have

sd(xmi+,xni ,a) = sd(fxmi , fxni–,a) ≤ ψ
(
M(xmi ,xni–,a)

)
.

Again, if i → ∞ by (.) we obtain

ε = s · ε

s
≤ s lim sup

i→∞
d(xmi+,xni ,a) ≤ ψ(ε) < ε,

which is a contradiction. Consequently, {xn} is a b-Cauchy sequence in X. Therefore, the
sequence {xn} b-converges to some z ∈ X, that is, limn d(xn, z,a) =  for all a ∈ X.
Step III. Now we show that z is a fixed point of f .
Using the rectangle inequality, we get

d(z, fz,a) ≤ sd(z, fz, fxn) + sd(fxn, fz,a) + sd(fxn, z,a).

Letting n → ∞ and using the continuity of f , we get

d(z, fz,a) ≤ .

Hence, we have fz = z. Thus, z is a fixed point of f .
The uniqueness of the fixed point can be proved in the same manner as in Theorem .

�

Theorem  Under the hypotheses of Theorem , without the b-continuity assumption
on f , assume that whenever {xn} is a nondecreasing sequence in X such that xn → u ∈ X,
one has xn 	 u for all n ∈N. Then f has a fixed point. In addition, the set of fixed points of
f is well ordered if and only if f has one and only one fixed point.

Proof Following the proof of Theorem , we construct an increasing sequence {xn} in X
such that xn → z ∈ X. Using the given assumption on X we have xn 	 z. Now, we show
that z = fz. By (.) we have

sd(fz,xn,a) = sd(fz, fxn–,a)≤ ψ
(
M(z,xn–,a)

)
, (.)

where

M(z,xn–,a) =max

{
d(z,xn–,a),

d(z, fz,a)d(xn–, fxn–,a)
 + d(fz, fxn–,a)

}
.

Letting n → ∞ in the above relation, we get

lim sup
n→∞

M(z,xn–,a) = . (.)

http://www.fixedpointtheoryandapplications.com/content/2014/1/144
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Again, taking the upper limit as n → ∞ in (.) and using Lemma  and (.) we get

s
[

s
d(z, fz,a)

]
≤ s lim sup

n→∞
d(xn, fz,a)

≤ lim sup
n→∞

ψ
(
M(z,xn–,a)

)
= .

So we get d(z, fz,a) = , i.e., fz = z. �

Corollary  Let (X,	) be a partially ordered set and suppose that there exists a b-metric
d on X such that (X,d) is a b-complete b-metric space. Let f : X → X be an increasing
mapping with respect to 	 such that there exists an element x ∈ X with x 	 fx. Suppose
that

sd(fx, fy,a) ≤ rM(x, y,a),

where  ≤ r <  and

M(x, y,a) =max

{
d(x, y,a),

d(x, fx,a)d(y, fy,a)
 + d(fx, fy,a)

}
,

for all elements x, y,a ∈ X with x, y comparable. If f is continuous, or, whenever {xn} is a
nondecreasing sequence in X such that xn → u ∈ X, one has xn 	 u for all n ∈N, then f has
a fixed point. Moreover, the set of fixed points of f is well ordered if and only if f has one
and only one fixed point.

Example  Let X = {A,B,C,D} be ordered by A � B � C, with all other pairs of distinct
points incomparable. Define d : X →R by

d(A,B,C) = , d(A,B,D) = , d(A,C,D) = , d(B,C,D) = ,

with symmetry in all variables and with d(x, y, z) =  when at least two of the arguments
are equal. Then it is easy to check that (X,d) is a complete b-metric space with s = 

 .
Consider the mapping f : X → X given as

f =

(
A B C D
A A B D

)

and a comparison functionψ(t) = 
 t. Then f is a nondecreasingmappingw.r.t.	 and there

exists x ∈ X such that x 	 fx. The only nontrivial cases for checking the contractive
condition (.) are when a = D and x = A, y = C or x = B, y = C (or vice versa). Then we
have

sd(fA, fC,D) =


d(A,B,D) =



<



·  =ψ() = ψ
(
d(A,C,D)

) ≤ ψ
(
M(A,C,D)

)
,

resp.

sd(fB, fC,D) =


d(A,B,D) =



=



·  = ψ() = ψ
(
d(B,C,D)

) ≤ ψ
(
M(B,C,D)

)
.
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Hence, all the conditions of Theorem  are fulfilled. The mapping f has two fixed points
(A and D).

3.3 Results for almost generalized weakly contractive mappings
Berinde in [–] initiated the concept of almost contractions and obtained many inter-
esting fixed point theorems. Results with similar conditions were obtained, e.g., in [] and
[]. In this section, we define the notion of almost generalized (ψ ,ϕ)s,a-contractive map-
ping and we prove some new results. In particular, we extend Theorems ., . and .
of Ćirić et al. in [] to the setting of b-metric spaces.
Recall that Khan et al. introduced in [] the concept of an altering distance function as

follows.

Definition [] A function ϕ : [, +∞) → [, +∞) is called an altering distance function,
if the following properties hold:
. ϕ is continuous and nondecreasing.
. ϕ(t) =  if and only if t = .

Let (X,d) be a b-metric space and let f : X → X be a mapping. For x, y,a ∈ X, set

Ma(x, y) =max

{
d(x, y,a),d(x, fx,a),d(y, fy,a),

d(x, fy,a) + d(y, fx,a)
s

}

and

Na(x, y) =min
{
d(x, fx,a),d(x, fy,a),d(y, fx,a),d(y, fy,a)

}
.

Definition  Let (X,d) be a b-metric space.We say that amapping f : X → X is an almost
generalized (ψ ,ϕ)s,a-contractive mapping if there exist L ≥  and two altering distance
functions ψ and ϕ such that

ψ
(
sd(fx, fy,a)

) ≤ ψ
(
Ma(x, y)

)
– ϕ

(
Ma(x, y)

)
+ Lψ

(
Na(x, y)

)
(.)

for all x, y,a ∈ X.

Now, let us prove our new result.

Theorem  Let (X,	) be a partially ordered set and suppose that there exists a b-metric
d on X such that (X,d) is a b-complete b-metric space. Let f : X → X be a continuous
mapping, nondecreasing with respect to 	. Suppose that f satisfies condition (.), for all
elements x, y,a ∈ X, with x, y comparable. If there exists x ∈ X such that x 	 fx, then f
has a fixed point. Moreover, the set of fixed points of f is well ordered if and only if f has
one and only one fixed point.

Proof Starting with the given x, define a sequence {xn} in X such that xn+ = fxn, for all
n ≥ . Since x 	 fx = x and f is nondecreasing, we have x = fx 	 x = fx, and by
induction

x 	 x 	 · · · 	 xn 	 xn+ 	 · · · .
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If xn = xn+, for some n ∈ N, then xn = fxn and hence xn is a fixed point of f . So, we may
assume that xn �= xn+, for all n ∈N. By (.), we have

ψ
(
d(xn,xn+,a)

) ≤ ψ
(
sd(xn,xn+,a)

)
= ψ

(
sd(fxn–, fxn,a)

)
≤ ψ

(
Ma(xn–,xn)

)
– ϕ

(
Ma(xn–,xn)

)
+ Lψ

(
Na(xn–,xn)

)
, (.)

where

Ma(xn–,xn)

=max

{
d(xn–,xn,a),d(xn–, fxn–,a),d(xn, fxn,a),

d(xn–, fxn,a) + d(xn, fxn–,a)
s

}

=max

{
d(xn–,xn,a),d(xn,xn+,a),

d(xn–,xn+,a)
s

}

≤ max

{
d(xn–,xn,a),d(xn,xn+,a),

d(xn–,xn+,xn) + d(xn+,a,xn) + d(a,xn–,xn)


}
(.)

and

Na(xn–,xn)

=min
{
d(xn–, fxn–,a),d(xn–, fxn,a),d(xn, fxn–,a),d(xn, fxn,a)

}
=min

{
d(xn–,xn,a),d(xn–,xn+,a), ,d(xn,xn+,a)

}
= . (.)

From (.)–(.) and the properties of ψ and ϕ, we get

ψ
(
d(xn,xn+,a)

)
≤ ψ

(
max

{
d(xn–,xn,a),d(xn,xn+,a),

d(xn–,xn+,xn) + d(xn+,a,xn) + d(a,xn–,xn)


})

– ϕ

(
max

{
d(xn–,xn,a),d(xn,xn+,a),

d(xn–,xn+,a)
s

})
. (.)

If

max

{
d(xn–,xn,a),d(xn,xn+,a),

d(xn–,xn+,xn) + d(xn+,a,xn) + d(a,xn–,xn)


}

= d(xn,xn+,a),
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then by (.) we have

ψ
(
d(xn,xn+,a)

) ≤ ψ
(
d(xn,xn+,a)

)
– ϕ

(
max

{
d(xn–,xn,a),d(xn,xn+,a),

d(xn–,xn+,a)
s

})
,

which gives a contradiction.
If d(xn–,xn+,xn) = , then

max

{
d(xn–,xn,a),d(xn,xn+,a),

d(xn–,xn+,xn) + d(xn+,a,xn) + d(a,xn–,xn)


}

= d(xn–,xn,a),

therefore (.) becomes

ψ
(
d(xn,xn+,a)

) ≤ ψ
(
d(xn,xn–,a)

)
– ϕ

(
max

{
d(xn–,xn,a),d(xn,xn+,a),

d(xn–,xn+,a)
s

})

≤ ψ
(
d(xn,xn–,a)

)
. (.)

Thus, {d(xn,xn+,a) : n ∈N∪{}} is a nonincreasing sequence of positive numbers. Hence,
there exists r ≥  such that

lim
n
d(xn,xn+,a) = r.

Letting n → ∞ in (.), we get

ψ(r)≤ ψ(r) – ϕ

(
max

{
r, r, lim

n

d(xn–,xn+,a)
s

})
≤ ψ(r).

Therefore,

ϕ

(
max

{
r, r, lim

n

d(xn–,xn+,a)
s

})
= ,

and hence r = . Thus, we have

lim
n
d(xn,xn+,a) = , (.)

for each a ∈ X.
Note that if d(xn–,xn+,xn) �=  and

max

{
d(xn–,xn,a),d(xn,xn+,a),

d(xn–,xn+,xn) + d(xn+,a,xn) + d(a,xn–,xn)


}

=
d(xn–,xn+,xn) + d(xn+,a,xn) + d(a,xn–,xn)


.
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Then, by (.) and taking a = xn–, we have

ψ
(
d(xn,xn+,xn–)

)
≤ ψ

(
d(xn–,xn+,xn) + d(xn+,xn–,xn) + d(xn–,xn–,xn)



)

– ϕ

(
max

{
d(xn–,xn,xn–),d(xn,xn+,xn–),

d(xn–,xn+,xn–)
s

})
,

which gives d(xn–,xn+,xn) = , a contradiction.
Next, we show that {xn} is a b-Cauchy sequence in X. For this purpose, we use the

following relation (see (.) and (.)):

d(xi,xj,xk) = , (.)

for all i, j,k ∈N (note that this can obtained as {d(xn,xn+,a) : n ∈N∪{}} is a nonincreas-
ing sequence of positive numbers).
Suppose the contrary, that is, {xn} is not a b-Cauchy sequence. Then there exist a ∈ X

and ε >  for which we can find two subsequences {xmi} and {xni} of {xn} such that ni is
the smallest index for which

ni >mi > i, d(xmi ,xni ,a)≥ ε. (.)

This means that

d(xmi ,xni–,a) < ε. (.)

Using (.) and taking the upper limit as i → ∞, we get

lim sup
n→∞

d(xmi ,xni–,a)≤ ε. (.)

On the other hand, we have

d(xmi ,xni ,a)≤ sd(xmi ,xni ,xmi+) + sd(xni ,a,xmi+) + sd(a,xmi ,xmi+).

Using (.), (.), (.), and taking the upper limit as i→ ∞, we get

ε

s
≤ lim sup

n→∞
d(xmi+,xni ,a). (.)

Again, using the rectangular inequality, we have

d(xmi+,xni–,a) ≤ sd(xmi+,xni–,xmi ) + sd(xni–,a,xmi ) + sd(a,xmi+,xmi ),

and

d(xmi ,xni ,a)≤ sd(xmi ,xni ,xni–) + sd(xni ,a,xni–) + sd(a,xmi ,xni–).
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Taking the upper limit as i→ ∞ in the first inequality above, and using (.), (.), and
(.) we get

lim sup
n→∞

d(xmi+,xni–,a)≤ εs. (.)

Similarly, taking the upper limit as i → ∞ in the second inequality above, and using (.),
(.), and (.), we get

lim sup
n→∞

d(xmi ,xni ,a) ≤ εs. (.)

From (.), we have

ψ
(
sd(xmi+,xni ,a)

)
= ψ

(
sd(fxmi , fxni–,a)

)
≤ ψ

(
Ma(xmi ,xni–)

)
– ϕ

(
Ma(xmi ,xni–)

)
+ Lψ

(
Na(xmi ,xni–)

)
, (.)

where

Ma(xmi ,xni–)

=max

{
d(xmi ,xni–,a),d(xmi , fxmi ,a),d(xni–, fxni–,a),

d(xmi , fxni–,a) + d(fxmi ,xni–,a)
s

}

=max

{
d(xmi ,xni–,a),d(xmi ,xmi+,a),d(xni–,xni ,a),

d(xmi ,xni ,a) + d(xmi+,xni–,a)
s

}
, (.)

and

Na(xmi ,xni–)

=min
{
d(xmi , fxmi ,a),d(xmi , fxni–,a),d(xni–, fxmi ,a),d(xni–, fxni–,a)

}
=min

{
d(xmi ,xmi+,a),d(xmi ,xni ,a),d(xni–,xmi+,a),d(xni–,xni ,a)

}
. (.)

Taking the upper limit as i → ∞ in (.) and (.) and using (.), (.), (.), and
(.), we get

lim sup
n→∞

Ma(xmi–,xni–)

=max

{
lim sup
n→∞

d(xmi ,xni–,a), , ,

lim supn→∞ d(xmi ,xni ,a) + lim supn→∞ d(xmi+,xni–,a)
s

}

≤ max

{
ε,

εs + εs
s

}
= ε. (.)
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So, we have

lim sup
n→∞

Ma(xmi–,xni–)≤ ε, (.)

and

lim sup
n→∞

Na(xmi ,xni–) = . (.)

Now, taking the upper limit as i → ∞ in (.) and using (.), (.), and (.) we
have

ψ

(
s · ε

s

)
≤ ψ

(
s lim sup

n→∞
d(xmi+,xni ,a)

)

≤ ψ
(
lim sup
n→∞

Ma(xmi ,xni–)
)
– lim inf

n→∞ ϕ
(
Ma(xmi ,xni–)

)
≤ ψ(ε) – ϕ

(
lim inf
n→∞ Ma(xmi ,xni–)

)
,

which further implies that

ϕ
(
lim inf
n→∞ Ma(xmi ,xni–)

)
= ,

so lim infn→∞ Ma(xmi ,xni–) = , a contradiction to (.). Thus, {xn+ = fxn} is a b-Cauchy
sequence in X.
As X is a b-complete space, there exists u ∈ X such that xn → u as n→ ∞, that is,

lim
n
xn+ = lim

n
fxn = u.

Now, using continuity of f and the rectangle inequality, we get

d(u, fu,a) ≤ sd(u, fu, fxn) + sd(fu,a, fxn) + sd(a,u, fxn).

Letting n → ∞, we get

d(u, fu,a) ≤ s lim
n
d(u, fu, fxn) + s lim

n
d(fu,a, fxn) + s lim

n→∞d(a,u, fxn) = .

Therefore, we have fu = u. Thus, u is a fixed point of f .
The uniqueness of fixed point can be proved as in Theorem . �

Note that the continuity of f in Theorem  can be replaced by a property of the space.

Theorem  Under the hypotheses of Theorem , without the continuity assumption on f ,
assume that whenever {xn} is a nondecreasing sequence in X such that xn → x ∈ X, one has
xn 	 x, for all n ∈ N. Then f has a fixed point in X.Moreover, the set of fixed points of f is
well ordered if and only if f has one and only one fixed point.
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Proof Following similar arguments to those given in the proof of Theorem , we construct
an increasing sequence {xn} in X such that xn → u, for some u ∈ X. Using the assumption
on X, we have xn 	 u, for all n ∈N. Now, we show that fu = u. By (.), we have

ψ
(
sd(xn+, fu,a)

)
= ψ

(
sd(fxn, fu,a)

)
≤ ψ

(
Ma(xn,u)

)
– ϕ

(
Ma(xn,u)

)
+ Lψ

(
Na(xn,u)

)
, (.)

where

Ma(xn,u)

=max

{
d(xn,u,a),d(xn, fxn,a),d(u, fu,a),

d(xn, fu,a) + d(fxn,u,a)
s

}

=max

{
d(xn,u,a),d(xn,xn+,a),d(u, fu,a),

d(xn, fu,a) + d(xn+,u,a)
s

}
(.)

and

Na(xn,u) =min
{
d(xn, fxn,a),d(xn, fu,a),d(u, fxn,a),d(u, fu,a)

}
=min

{
d(xn,xn+,a),d(xn, fu,a),d(u,xn+,a),d(u, fu,a)

}
. (.)

Letting n → ∞ in (.) and (.) and using Lemma , we get


s d(u, fu,a)

s
≤ lim inf

n→∞ Ma(xn,u) ≤ lim sup
n→∞

Ma(xn,u)

≤ max

{
d(u, fu,a),

sd(u, fu,a)
s

}
= d(u, fu,a), (.)

and

Na(xn,u) → .

Again, taking the upper limit as i → ∞ in (.) and using Lemma  and (.) we get

ψ
(
d(u, fu,a)

)
= ψ

(
s · 

s
d(u, fu,a)

)
≤ ψ

(
s lim sup

n→∞
d(xn+, fu,a)

)

≤ ψ
(
lim sup
n→∞

Ma(xn,u)
)
– lim inf

n→∞ ϕ
(
Ma(xn,u)

)
≤ ψ

(
d(u, fu,a)

)
– ϕ

(
lim inf
n→∞ Ma(xn,u)

)
.

Therefore,ϕ(lim infn→∞ Ma(xn,u)) ≤ , equivalently, lim infn→∞ Ma(xn,u) = . Thus, from
(.) we get u = fu and hence u is a fixed point of f . �

Corollary  Let (X,	) be a partially ordered set and suppose that there exists a b-metric
d on X such that (X,d) is a b-complete b-metric space. Let f : X → X be a nondecreasing
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continuous mapping with respect to 	. Suppose that there exist k ∈ [, ) and L ≥  such
that

d(fx, fy,a) ≤ k
s
max

{
d(x, y,a),d(x, fx,a),d(y, fy,a),

d(x, fy,a) + d(y, fx,a)
s

}

+
L
s
min

{
d(x, fx,a),d(y, fx,a)

}
,

for all elements x, y,a ∈ X with x, y comparable. If there exists x ∈ X such that x 	 fx,
then f has a fixed point.Moreover, the set of fixed points of f is well ordered if and only if f
has one and only one fixed point.

Proof Follows from Theorem  by taking ψ(t) = t and ϕ(t) = ( – k)t, for all t ∈ [, +∞).
�

Corollary  Under the hypotheses of Corollary , without the continuity assumption of f ,
let for any nondecreasing sequence {xn} in X such that xn → x ∈ X we have xn 	 x, for all
n ∈N. Then f has a fixed point in X.

4 An application to integral equations
As an application of our results, inspired by [], we will consider the following integral
equation:

x(t) = h(t) +
∫ T


g(t, s)F

(
s,x(s)

)
ds, t ∈ I = [,T]. (.)

Consider the set X = CR(I) of all real continuous functions on I , ordered by the natural
relation

x 	 y ⇐⇒ x(t)≤ y(t) for all t ∈ I,

and take arbitrary real p > . We will use the following assumptions.
(I) h : I →R, g : I ×R → [, +∞) and F : I ×R→ R are continuous functions;
(II) for x, y ∈ X,

x 	 y �⇒
∫ T


g(·, s)F(

s,x(s)
)
ds≤

∫ T


g(·, s)F(

s, y(s)
)
ds;

(III) for some  ≤ r <  and all x, y,a ∈ X, with x and y comparable (w.r.t. 	),

p–
[
max
≤t≤T

min

{∣∣∣∣
∫ T


g(t, s)

[
F
(
s,x(s)

)
– F

(
s, y(s)

)]
ds

∣∣∣∣,∣∣∣∣h(t) +
∫ T


g(t, s)F

(
s, y(s)

)
ds – a(t)

∣∣∣∣,∣∣∣∣h(t) +
∫ T


g(t, s)F

(
s,x(s)

)
ds – a(t)

∣∣∣∣
}]p

≤ r
[
max
≤t≤T

min
{∣∣x(t) – y(t)

∣∣, ∣∣y(t) – a(t)
∣∣, ∣∣x(t) – a(t)

∣∣}]p;
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(IV) there exists x ∈ X such that x(t) ≤ h(t) +
∫ T
 g(t, s)F(s,x(s))ds for all t ∈ I .

Let d : X ×X ×X → [,∞) be defined by

d(x, y, z) =
[
max
≤t≤T

min
{∣∣x(t) – y(t)

∣∣, ∣∣y(t) – z(t)
∣∣, ∣∣x(t) – z(t)

∣∣}]p.
Then (X,d) is a b-complete b-metric space, with s ≤ p– (similarly as in Example ).We
have the following result.

Theorem  Let the functions h, g , F satisfy conditions (I)-(IV) and let the space (X,	,d)
satisfy the requirement that if {xn} is a sequence in X,nondecreasingw.r.t.	, and converging
(in d) to some u ∈ X, then xn 	 u for all n ∈ N. Then the integral equation (.) has a
solution in X.

Proof Define the mapping f : X → X by

fx(t) = h(t) +
∫ T


g(t, s)F

(
s,x(s)

)
ds, t ∈ I.

Then all the conditions of Corollary  are fulfilled. In particular, condition (III) implies
that, for all x, y,a ∈ X, with x, y comparable, we have

sd(fx, fy,a) ≤ p–d(fx, fy,a) ≤ rd(x, y,a)≤ rM(x, y,a).

Hence, using Corollary , we conclude that there exists a fixed point x ∈ X of f , which is
obviously a solution of (.). �
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