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Abstract

after resistance has been established.

Cancer is still the leading cause of death globally. The approval of the therapeutic use of monoclonal antibodies
against immune checkpoint molecules, notably those that target the proteins PD-1 and PD-L1, has changed the
landscape of cancer treatment. In particular, first-line PD-1/PD-L1 inhibitor drugs are increasingly common for the
treatment of metastatic cancer, significantly prolonging patient survival. Despite the benefits brought by immune
checkpoint inhibitors (ICls)-based therapy, the majority of patients had their diseases worsen following a promis-

ing initial response. To increase the effectiveness of ICls and advance our understanding of the mechanisms causing
cancer resistance, it is crucial to find new, effective, and tolerable combination treatments. In this article, we addressed
the potential of ICls for the treatment of solid tumors and offer some insight into the molecular pathways behind
therapeutic resistance to ICls. We also discuss cutting-edge therapeutic methods for reactivating T-cell responsiveness
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Introduction

Immune checkpoint inhibitors (ICIs) are monoclonal
antibodies (mAbs) that target inhibitory checkpoint mol-
ecules expressed by cell membrane of antigen presenting
cells (APCs) and CD4" T cells [1, 2]. The development of
ICIs has opened a new front in the fight against several
types of cancers, including but not limited to melanoma,
kidney, and lung cancer, and is expected to change the
current conventional interventions for diverse cancers
[3].

The activated T cells, B cells, and NK (natural killer)
cells can all express PD-1, a protein that belongs to the
immunoglobulin superfamily [4, 5]. Since PD-1 and
CTLA-4 are expressed on the surface of activated T
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cells, both of them are recognized as essential regula-
tors of the delicate balance between efficient T-lympho-
cyte activation and over activation of T-cell functions
which may result in deleterious immunopathology [6].

A series of downstream targets are released by PD-1
in response to engagement with one of its ligands, pro-
grammed cell death-ligand 1 (PD-L1) or 2 (PD-L2),
ultimately resulting in the inhibition of cytotoxic T
lymphocytes (CTL) (Figs. 1 and 2). Halting CTL activi-
ties is seen as a double-edged sword because it can have
both positive and negative consequences on the host
immunological surveillance mechanisms. While regula-
tion of CTL activity may operate as a brake to reduce
the possibility of autoimmunity against host antigens,
suppression of CTLs activation will be used by develop-
ing tumor cells to elude the host’s immune surveillance,
which will result in tumor progression [7].

By employing ICI mAbs to stop the interaction
between PD-1 and its ligands (PD-L1 and PD-L2),
the PD-1/PD-Ll-induced immunosuppression was
reversed, this in turn, revived the cytotoxic functions of
CTLs against tumor antigens, leading to inhibition of
neoplastic growth [8].

The engagement of CTLA-4 with its ligand (CD80/86)
may also result in immunosuppression against devel-
oping tumor cells, by mediating immune evasion and
escape mechanism of tumor cells [9]. Utilizing ICIs to
block inhibitory PD-1/PD-L1 and CTLA-4/CD80/86
signaling pathways improves the generation of effi-
cient immune responses against cancer cells, revital-
izes tumor antigen recognition, and ultimately leads to
tumor death [10]. Tim-3 (T cell immunoglobulin and
mucin 3), Lag-3 (lymphocyte activation gene 3), VISTA
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(programmed death-1 homolog), and Tigit are other
immune checkpoint molecules/targets [11].

After the FDA’s 2011 approval of the CTLA-4 inhibi-
tor (ipilimumab), six additional ICIs have received FDA
clearance [1]. Of those, three (nivolumab, pembroli-
zumab, and cemiplimab) are PD-1 inhibitors and three
(PD-L1 inhibitors) (atezolizumab, avelumab, and dur-
valumab). Oncologists frequently use these ICIs in their
routine treatment for about 15 different tumor types,
and they have demonstrated impressive success. For key
parameters for use of FDA approved PD-L1 testing for
ICIs, the reader can refer to Wang et al. [12]. Beginning
in 2014 and continuing into 2018, the FDA approved a
number of ICIs targeting PD- 1, and anti-PD-L1 drugs
(Table 1). An innovative PD-1 immune checkpoint inhib-
itor Cemiplimab [1]. The human programmed death
receptor-1 (PD-1) monoclonal antibody cemiplimab
(LIBTAYO®; cemiplimab-rwlc), which binds to PD-1
and prevents it from interacting with PD-L1 and PD-L2,
is being developed by Regeneron Pharmaceuticals and
Sanofi Genzyme. The drug was approved in the USA in
September 2018 for the treatment of patients with met-
astatic cutaneous squamous cell carcinoma or locally
advanced cutaneous squamous cell carcinoma who are
not candidates for curative surgery or curative radiation.
The drug is being studied as a treatment for a variety of
cancers [13].

Melanoma, non-small cell lung cancer (NSCLC), and
glioblastoma (GBM) were among the malignancies for
which ICIs were initially licensed [14, 15]. In ovarian
cancer patients, a subset of patients with advanced dis-
ease and high grade tumors that express PD-L1 may be
effectively treated with anti-PD-1 ICI [16]. PD-1/PD-L1
given alone have unknown effects in triple-negative
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Fig. 1 Immune Checkpoint Inhibitor against Tumor Cell. Through the interaction between PD-1 expressed on the surface of T cells and PD-L1
expressed on the surface of tumor cells, the immunological checkpoint prevents T-cell activation. Through contact between PD-1 on the surface of
T cells and anti-PD-1 antibodies, T cell activation and immunological attack are enabled
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Fig. 2 The interaction between the TCR and the tumor-specific antigen shown in the context of MHC Il results in T cell activation. Following

the activation of a number of downstream targets that PD-1 releases in response to interaction with either of its ligands, programmed cell
death-ligand 1 (PD-L1) or 2 (PD-L2), deactivation of T cells takes place, which ultimately leads to the suppression of cytotoxic T lymphocytes (CTL).
While controlling CTL activity may work as a brake to lower the likelihood of autoimmunity against host antigens, inhibiting CTL activation will be
employed by forming tumor cells to evade the host’s immune surveillance, which will lead to the growth of the tumor. The interaction of ICls mAbs
to PD-1, PD-L1, PD-L2, and CTLA4 restores T cell activation and slows the growth of tumors

breast cancer (TNBC) patients [17]. The combined
use of PD1/PD-L1 inhibitors with chemotherapy sig-
nificantly boosted the pathologic complete response
rates (CR) in TNBC patients, according to an analysis
of 4,187 patients [18]. The growing introduction of ICIs
into clinical practice is often constrained due to their
side effects on immune system, and rarely identified
glomerular disorders [19, 20].

Due to different types of resistance to ICIs (primary
or intrinsic versus secondary or acquired), most cancer
patients receiving ICIs in combination with chemo-
therapy experience disease progression and mortality
[21]. Therefore, new alternative treatment are required
to enhance long-term survival in these patients, both
as a preventive action and in the event that ICI-based
therapy fails [22].When a patient initially responds to
ICI therapy for a brief period of time before displaying
symptoms of clinical or radiologic disease progression,
this is referred to as acquired resistance. Patients with
primary resistance do not respond to ICI treatment at
all and cancer advances quite rapidly [3, 22, 23].

In this review, we will tackle the potential applica-
tion of ICIs therapy in various solid tumor types. A list
of putative underlying molecular pathways associated to
the establishment of ICIs resistance will also be provided.
Moreover, we'll take a close look at the state-of-the-art of
therapeutic strategies being developed to treat ICI-resist-
ant cancers.

Potential of ICls in the treatment of different cancer

ICIs have fundamentally altered how cancer is treated
clinically. The percentage of patients who can ben-
efit from IClIs is rather low, despite the fact that cancer
immunotherapy has so far showed promise in a variety of
cancers. Unavoidable issues include immune-related side
effects and excessive expense. Hence, there is an urgent
need for biomarkers that identify patients who will ben-
efit from ICIs. One reasonable biomarker for predicting
how well anti-PD1/PD-L1 immunotherapies will work is
the expression of programmed cell death-ligand 1 (PD-
L1). Yet, due to its variable definition, threshold, and spa-
tial/temporal variability, its value is currently in question.
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Recently, it was revealed that certain gene mutations,
neoantigen expression, mismatch repair status, deficient
mismatch repair (AMMR), high levels of microsatellite
instability (MSI-H) across the genome, "cold" vs "hot"
and tumor mutational burden (TMB) may all serve as
predictors of ICI treatment efficacy [24]. In Table 2 we
summarized cancer types and features before diving into
the individual cancer description including MSI/dMMR,
"cold" vs "hot", clinical trials and outcomes/response, and
approved commercial products.

Head and neck cancer

Table 1 provides a list of few ongoing clinical trials utiliz-
ing various IClIs types against various cancer types. Head
and neck squamous cell carcinoma (HNSCC) is still
the sixth most prevalent cancer worldwide. More than
830,000 new cases and 430,000 fatalities are included
in annual reports [25]. More than half of patients with
locally advanced HNSCC relapsed despite receiving rou-
tine point-of-care therapy [26]. Two monoclonal anti-
PD-1 antibodies, nivolumab and pembrolizumab, are
the first ICIs approved for the treatment of recurrent
HNSCC [27]. Through the PD-1/PD-L1 pathway, these
immunotherapeutic drugs suppress inhibitory signals to
boost the cellular immune response induced by T cells
[28]. Pembrolizumab was approved for patients whose
tumors are PD-L1 positive, either alone or in conjunction
with chemotherapy [29].

Anti-PD-1 drugs, the current standard of therapy, have
changed how HNSCC is managed with chemotherapeu-
tic and targeted therapies [30]. Overall response is still
relatively mild despite the fact that anti-PD-1 antibodies
are superior to chemotherapy in relation to halting tumor
development and survival [31]. The effectiveness of dur-
valumab for treating HNSCC, either as a single therapy
or when combined with the CTLA-4 inhibitor tremeli-
mumab, compared to chemotherapy was studied in phase
IT and III clinical trials [32—-34]. A very small percentage
of patients in clinical trials looking at ICIs for HNSCC
actually benefit from treatment, according to the data,
highlighting the importance of patient selection before
beginning immunotherapy. Predictive biomarkers are
urgently needed to enable more informed therapy selec-
tion because not all patients respond to ICIs and others
may exhibit more significant tumor responses if treated
with chemotherapy or other therapies. One characteris-
tic of a tumor that can predict response to ICI therapy
in a variety of cancer types is its tumor mutational bur-
den (TMB). In a pan-cancer investigation involving more
than 1600 patients, increased TMB was linked to longer
survival and higher ICI therapy response rates. The opti-
mal predictive cut-point varied greatly by histology, indi-
cating that there is unlikely to be a single tissue-neutral

Page 8 of 20

definition of high TMB that is useful for predicting ICI
response, despite the fact that this effect was observed in
the majority of cancer types, indicating that TMB under-
lies fundamental aspects of immune-mediated tumor
rejection. To possibly develop a tissue-agnostic predic-
tor of effectiveness from ICIs, more thorough predic-
tion models combining TMB with additional parameters,
such as genetic, immunologic, and clinic-pathologic indi-
cators, will be required [35].

Therefore, there is an urgent need for a fuller knowl-
edge of immune resistance mechanisms, which are likely
influenced by the action mode of ICIs. A network meta-
analysis (NMA) study compared anti-PD-1 and anti-PD-
L1-based therapy for HNSCC patients, proving that there
are no differences that are statistically significant between
the two groups [27].

Lung cancer

ICIs can now be used in more situations without concur-
rent chemotherapy or targeted therapy. For NSCLC, ICIs
may be utilized either as first-line or secondary treatment
[36]. For NSCLC patients treated with PD-1 inhibitors as
opposed to chemotherapy, 5-year overall survival (OS)
rates ranged from 13 to 25% [47] in the second line and as
high as 32% in the first line, according to multiple studies
[37].

Validated criteria for long-term immunotherapy
survival have so far demonstrated various degrees of
accuracy. Although PD-L1 expression, tumor muta-
tional burden (TMB), and interferon gamma (INFy) are
believed to be markers of response rates, these char-
acteristics have not consistently applied to all tumor
types, show a range of temporal and spatial variability,
and are changeable with different types of therapy [38].
Recently, a variety of cancer types have been subjected
to a more extensive evaluation of TMB, and it has been
shown that this may not be a good predictor of prog-
nosis [39]. Patients with high TMB who are not treated
often have worse prognoses than individuals with low
TMB, although the use of ICIs has changed this trend.
Patients with non-small cell lung cancer (NSCLC) and
melanoma who have higher TMB are more likely to ben-
efit from ICIs than those who have lower TMB, accord-
ing to numerous studies in particular [39]. Even so, some
studies found no association between TMB and the sur-
vival of patients receiving ICIs, while others even found
the opposite association [40]. Finding relevant predictive
biomarkers could also be more challenging by the current
propensity to combine ICIs with chemotherapy, targeted
drugs, and/or other novel treatments. Numerous studies
have highlighted key aspects of ICI-based survival out-
comes. Extensive research covering tumor microenvi-
ronment (TME) studies, clinical surrogates, and disease
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mutation burden (TMB), and multi-omics data will be
required to ensure the best use of ICIs and combination
therapy. Overall survival (OS) for patients with meta-
static disease significantly increased after the regulatory
approval of PD-1 or PD-L1 inhibitors for NSCLC; cur-
rently, the majority of NSCLC patients receive PD-1/
PD-L1 inhibitors as part of standard care, typically given
as front-line therapy [41, 42]. Other studies showed that
combinations of first-line immunotherapy, whether
or not including chemotherapy, improved long-term
survival, with a 4-year OS of 29% for nivolumab plus
ipilimumab and a 2-year OS of 38% for nivolumab plus
ipilimumab and chemotherapy [43, 44]. Despite the suc-
cessful use of ICIs over the past decade in patients with
NSCLC, lung cancer remains the most common cause of
cancer mortality worldwide [45].

Melanoma

Skin cancer known as melanoma it is well known for
having a relatively low survival rate and is caused by
the misregulated growth of abnormal melanocytes [46].
Interferon therapy and chemotherapy are ineffective
against melanoma, however, relatively recent research
into the molecular basis of the disease resulted in novel
therapeutic approaches: ICIs and targeted therapies. The
first drug for the treatment of melanoma to receive FDA
approval was ipilimumab, a CTLA-4 inhibitor. Pembroli-
zumab was authorized to treat metastatic melanoma just
three years later [47]. Nivolumab was the third ICI to get
worldwide approval in the same year (Jin et al. 2023).

After 5-10 years of treatment, only 22% of melanoma
patients exhibited clinical benefit with ipilimumab,
whereas 40—45% of patients with melanoma showed pos-
itive efficacy from PD-1 inhibitor therapy. Combination
with PD-1 and CTLA-4 inhibitors was more successful
than treatment with either drug alone. Consequently, the
risks occasionally outweigh the benefits [48].

It was reported that a combination therapy using ICls
had a 5-year OS rate of 52% [49]. Even while ICIs greatly
boosted melanoma patients’ chances of survival, 40-65
percent of those taking PD-1 inhibitors and more than 70
percent of those taking CTLA-4 inhibitors did not exhibit
positive response, primarily because of the emergence of
resistance [50]. Additionally, one third of patients that
initially had positive clinical outcomes, subsequently
developed tumors and acquired drug resistance [51].

Renal cell carcinoma
The treatment of metastatic clear cell renal cell carci-
noma (ccRCC) is immunotherapy-based [52].

Examples of broad strategies are ICIs and tyrosine
kinase inhibitors (TKIs) that target the vascular endothe-
lial growth factor receptor (VEGFR). Dual ICIs such as
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ipilimumab and nivolumab (IO/IO) are also exploited
for treatment of ccRCC [66—68]. Several phase III clini-
cal studies using TKI/IO regimens have reported objec-
tive response rates (ORRs) of 58-71% despite the fact
that follow-up time is still insufficient to determine
whether durable responses would be observed [53-56].
In contrast, ipilimumab and nivolumab had a 41% ORR,
but nearly almost 50% of responders had responses last-
ing more than 4 years [57]. The best regimen for a given
patient is unknown because these regimens have not
been properly compared. Furthermore, it is not known if
second-line TKI therapy can prolong survival in patients
who fail to respond to IO/IO as a first line of treatment.
Patients treated with the TKI/IO regimen and ipili-
mumab/nivolumab had equivalent 12-mo PFS and OS
[58]. In cases of metastatic ccRCC after second-line ther-
apy, there was no appreciable difference in PFS between
patients receiving ipilimumab plus nivolumab and those
receiving TKIs and ICIs [59].

Pancreatic cancer

Pancreatic ductal adenocarcinoma (PDAC) still has a
limited role in immunotherapy. According to reports,
PDAC has an immunosuppressive TME and a low TMB,
both of which pose challenges for pancreatic cancer
immunotherapy [60]. For PDAC patients with microsat-
ellite instability or mismatch repair deficiency (MSI-H/
dMMR) who had metastatic or incurable disease, pem-
brolizumab was approved by FDA in May 2017 [61]. The
FDA approval was based on the findings of five clinical
trials that evaluated pembrolizumab in patients with
incurable solid tumors who had received two prior lines
of therapy. Out of 149 MSI-H/dMMR cancer patients
studied over the course of the five studies, 59 responded,
with an objective response rate (ORR) of 36.9% and a
complete response rate (CR) of 7% [76-78]. The study by
Le et al. reported in eight out of the 86 participants in the
trial, the ORR was 62%.

Pembrolizumab was evaluated in a non-randomized,
open-label fashion across many centers and cohorts. In
233 patients with 27 different tumor types, the ORR was
34.4%. Despite these positive pooled response rates to
pembrolizumab in patients with MSI-H/dMMR cancer
who had previously received treatment, the response rate
in the subset of patients with MSI-H/dMMR pancreatic
tumors was not as high. In the pancreatic cancer sub-
group, the median OS was 4.0 months, but the median
time to response was 13.4 months. It is difficult to extrap-
olate these results from a small number of patients with
MSI-H/dMMR pancreatic cancers because the rate of
mismatch repair deficiency in PDAC has been shown to
range from 0.8 to 2% [62-65].
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Long considered to be an immunologically "cold" can-
cer, PDAC has a number of factors that make it difficult
for immunotherapy to be effective [66]. The logical next
step is to try to overcome these obstacles by combining
anti-PD-1/anti-PD-L1 checkpoint inhibitors with other
immunological and targeted therapy (Fig. 3).

In the first phase II randomized clinical study investi-
gating dual immune checkpoint therapy with anti-PD-L1
antibody durvalumab with or without anti-CTLA-4 anti-
body tremelimumab, O'Reilly et al. observed unfavour-
able outcomes in patients with advanced PDAC [67].
Study participants had previously received a chemother-
apy regimen based on fluorouracil or gemcitabine. The
ORR was 3.1% for individuals who received durvalumab
and tremelimumab together. Effective MSI-H/dMMR
immunotherapy for PDAC continues to be elusive, and
clinical research in this area is ongoing. Studies combin-
ing PD-1/PD-L1 suppression with other PDAC therapies
are presently under progress [68].

Breast cancer

Breast cancer can currently be categorized into three
primary subtypes based on the expression of the estro-
gen and progesterone receptors (ER and PR) and HER2
(also known as ERBB2): luminal ER positive and PR posi-
tive (further divided into luminal A and B), HER2 posi-
tive, and triple-negative breast cancer (TNBC) [69, 70].
Breast cancer has recently surpassed lung cancer as the
most common type of cancer in the world, with an esti-
mated 2.3 million new cases annually, or 11.7% of all can-
cer cases [45].

TNBC and HER2 breast cancer subtypes displayed
increased tumor biomarker expression levels in response
to immunotherapy, as well as improved immune infiltra-
tion and immunogenicity [71], 72]. Treatment with PD-1
checkpoint inhibitors showed good efficacy against these
subtypes. For instance, the ORR to atezolizumab therapy
for TNBC is 25%, while for pembrolizumab therapy for
ER + in tamoxifen-taking patients is 4% [69].

Immunotherapy has several disadvantages when uti-
lized to treat breast cancer due to its significant het-
erogeneity. Despite this, PD-1/PD-L1 inhibitors can still
increase the T cell infiltrate in patients’ TME when used
in conjunction with other therapies. This prevents tumor
immune escape and increases the anti-tumor effects of
PD-1/PD-L1 inhibitors [73, 74].

Thirty-two of the 111 patients with metastatic TNBC
who tested positive for PD-L1 expression had received
weekly intravenous pembrolizumab 10 mg/kg. The
median PFS was 1.9 months. One patient (3.7%) experi-
enced complete remission (CR), four (14.8%) experienced
partial remission (PR), and seven (24.9%) experienced
stable status [75, 76].
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Pembrolizumab is administered intravenously every
two weeks in a phase II clinical trial to two cohorts of
patients with metastatic TNBC: (A) an unselected popu-
lation of advanced patients, and (B) a first-line cohort of
PD-L1-positive tumors. The 170 patients in cohort A had
a median OS of 9.0 months, a median PFS of 2.0 months,
and an ORR of 5.7% for PD-L1 positive patients [77]. The
median PFS, median OS, and ORR for the 84 patients
in group B were 2.1 months, 18.0 months, and 21.4%,
respectively [78]. The importance of PD-1/PD-L1 inhibi-
tors in early therapy is demonstrated by the fact that vari-
ous treatment regimens would dramatically impact the
response rate of PD-L1-positive patients. For metastatic
TNBC, PD-1/PD-L1 inhibitors in combination with other
immunotherapies have demonstrated some promising
therapeutic effects, such as the ability of atezolizumab
and nab-paclitaxel to change patient prognosis. A num-
ber of targeted therapies (including radiotherapy, onco-
lytic virus therapy, CDK4/6 inhibitors, MEK inhibitors,
AKT inhibitors, and vaccines) are combined with PD-1/
PD-L1 inhibitors. Clinical prognosis improvements for
people with metastatic TNBC are currently possible [17].

Prostate cancer

The second most common cancer in the world is prostate
cancer (PCa) [79]. Radical prostatectomy or radiation
therapy may be used to treat localized PCa, nonetheless,
the outlook for advanced or metastatic PCa is dismal
[80].

Recent studies have demonstrated excellent responses
to ICIs and/or their combinations regimen in a subset
of patients with high levels of PD-L1 expression in the
tumor, CDK12 mutations, high levels of TMB, or high
levels of microsatellite instability (MSI), and low levels
of mismatch repair (AMMR). Therefore, to improve the
management of this condition, immunotherapy remains
a desirable therapeutic choice for prostate cancer and not
only [81]. As far as PCa concerns, in a phase I trial, two
of fourteen patients with metastatic castration-resistant
prostate cancer (mCRPC) showed PSA declines of >50%
after receiving a single intravenous dose of ipilimumab,
and the drug was accepted well [82].

In a different Phase I trial using tremelimumab (a
humanised anti-CTLA-4 antibody) and androgen depri-
vation using bicalutamide for recurrent prostate cancer,
in three out of eleven patients, the PSA doubling time
was prolonged [83].

Ipilimumab was given to 50 patients in a phase I/
II research for those with metastatic CRPC (mCRPC),
or in combination with radiation. Six patients had sta-
ble illness, one had a full response, and eight had PSA
decreases of less than 50% [84].



Marei et al. Cancer Cell International (2023) 23:64

In a phase 3 trial, radiation was followed by ipilimumab
or a placebo for 799 individuals with mCRPC [85]. The
OS between the ipilimumab and placebo groups did not
differ statistically, nevertheless. Instead, PFS showed a
statistically significant increase [86, 87].

Ipilimumab and nivolumab (anti-PD-1) were admin-
istered in combination to patients with mCRPC in a
phase II clinical trial, which achieved a 25% ORR and was
associated with substantial adverse effects [88]. Atezoli-
zumab, avelumab, and durvalumab given alone or in
combination regimen are additional treatment options
for mCRPC [89]. Since prostate cancer exhibits multiple
immunosuppressive characteristics associated with low
TMB, low expression of PD-L1, and sparse T-cell infil-
tration, it has been referred to as an immunologically
"cool" tumor. Nevertheless, for some people with pros-
tate cancer, immunotherapy is still a viable option. High
MSI/dMMR or CDK12 mutations in prostate cancer may
make them more sensitive to ICIs in clinical settings [90].

Glioblastoma

Anti-PD-1/PD-L1 therapy for glioblastoma (GBM) has
been shown to be both safe and effective in GBM mice
models. Longer life times and a considerable reduction
in tumor mass size has been observed. Clinical trials
including patients with recurrent GBM are now test-
ing PD-L1 [91]. Despite the fact that ICIs are effective
against a number of cancers, the majority of glioblas-
toma (GBM) patients do not react to ICI therapy [92].
Clinical trials in phase 2/3 have not yet proven that the
administration of PD-1 inhibitors to patients with GBM
significantly improves overall survival (OS), either when
combined with other treatments or when used alone
currently considered to be standard of care [93]. Newly
diagnosed = O6-methylguanine-DNA-methyltransferase
(MGMT) methylated GBM, nivolumab was given to
upfront radiation and temozolomide in CheckMate 298
[94].

Recurrent GBM patients received either nivolumab
or bevacizumab, and the results showed that bevaci-
zumab had a longer PES of 3.5 months compared to
nivolumab and no difference in OS [95]. In a phase 2,
there was an advantage in PFS from combination therapy
of 4.1 months over pembrolizumab alone [96]. Recurrent
GBM patients who received nivolumab together with
either bevacizumab (10 mg/kg) or bevacizumab (3 mg/
kg) every two weeks showed no change in PES or OS [97].

Durvalumab’s effects alone or plus radiotherapy in
GBM patients [98], or bevacizumab-refractory recurrent
GBM have been disappointing. Despite these unpleas-
ant results, there is still more to discover. A small group
of GBM patients may benefit from ICI therapy, as evi-
denced by the fact that the median duration of response
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for the few nivolumab responders (7.8%) was statistically
longer than the bevacizumab cohort (11.1 months versus
5.3 months) [95].

Cloughesy et al. discovered that neoadjuvant anti-
PD-1 (pembrolizumab) therapy enhanced CD8+T
cell infiltrate and INFy-related gene expression in the
tumor of recurrent GBM [99]. Instead, a paucity of T
cells but a significant infiltration of immunosuppressive
CD68 + macrophages were discovered by De Groot et al.
in patients’ tumor tissue who had already received treat-
ment, which may play a role in the emergence of resist-
ance to anti-PD-1 therapy [100].

The blood-brain barrier (BBB), which will be covered
in more depth below, makes treating GBM significantly
harder than treating other solid tumors. The BBB creates
a selectively permeable barrier across the majority of cen-
tral nervous system (CNS) blood arteries in order to sep-
arate the tumors from therapeutic access [101]. Due to
aberrant neovasculature and irregular blood flow, GBM
also has a so-called blood-brain tumor barrier (BBTB),
which affects the therapy of the tumor when medications
are administered systemically and further prevents phar-
maceuticals from leaving the circulation [101]. While
creating a treatment for GBM, there are a few approaches
to get around the BBB. The first step is to create a treat-
ment that is better able to cross the BBB’s endothelial
cells. An agent’s ability to create hydrogen bonds, polar-
ity, or lipophilicity can all be decreased to achieve this
[102]. Using the "Trojan horse" technique is a second way
to get around the BBB [102]. In this technique, a sub-
stance that is typically incapable of entering the brain is
coupled to a monoclonal antibody that is directed against
one of the BBB’s transcytosis receptors. The chemical can
enter the brain undetected because the endothelial cell is
prompted to permit entry by the binding of the mono-
clonal antibody to the receptor. Moreover, there has been
some success in using nanotechnology to deliver treat-
ments across the BBB. For instance, a medicinal sub-
stance can pass through the BBB and infiltrate the tumor
when it is carried by a liposome containing an antibody
that targets transferrin [103]. A therapeutic drug can
be delivered to the brain using inorganic nanoparticles
(IONPs) with an iron oxide core while also serving as an
imaging agent for MRI. This enables the tracking of the
delivery of therapeutic agents to the tumor itself [103].
Other studies have shown that certain peptides can be
conjugated with therapeutic molecules to deliver treat-
ment directly to the tumor while sparing the surround-
ing brain from damage, allowing these peptides to cross
through the BBB and home to the tumor [104]. Radia-
tion, electroporation, low intensity ultrasound, among
other methods, can physically damage the BBB, allowing
medicines to enter the brain [105]. Low-intensity pulsed
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ultrasound (LIPU) was utilised in a recent Phase I/Ila
clinical experiment to damage the BBB and let a medi-
cation enter the brain. During the trial, patients had the
SonoCloud-1 device implanted into their skull bones
so that pulsed sonication could be administered. The
research revealed that patients tolerated LIPU well and
that carboplatin could penetrate the brain after being
sonicated [46]. In a canine model, irreversible electropo-
ration (IRE) has been demonstrated to break the BBB
and eradicate tumor cells [106]. The IRE system’s test-
ing revealed some shortcomings that this technology
has been updated to address; this improved technique
is known as high-frequency irreversible electroporation
(H-FIRE). Convection enhanced delivery (CED) also
avoids the BBB and delivers medication directly to the
tumor or to an area around it. ICIs will be better able to
target the immunological checkpoint receptors that are
expressed in the GBM tumor microenvironment and
enable more effector cells to enter the tumor by creat-
ing therapies that are more suited to passing through the
BBB, disrupting the BBB, or bypassing the BBB entirely.
The delivery and concentration of ICI, which interacts
with the tumor and may enhance treatment outcomes in
GBM patients, could be more precisely controlled with
the use of CED.

Mechanisms of ICls resistance

ICIs have fundamentally changed how cancer is treated
for many different tumor types, giving some patients a
level of survival that was previously unattainable. How-
ever, despite many patients first responding favorably
to ICIs, they frequently acquired resistance with time.
The effective development of next-generation immu-
notherapies may be hampered by a lack of understand-
ing of the processes driving acquired resistance to ICIs.
The response rate of PD-1 inhibition in many diseases
(including melanoma, Merkel cell carcinoma, Hodgkin’s
lymphoma, and MSI high malignancies) ranges from 40
to 70% in unselected patients [107]. Unfortunately, the
majority of other recognized advanced cancers such as
advanced non-small-cell lung cancer, advanced or meta-
static urothelial cancer (mUC) and advanced renal-cell
carcinoma only have response rates of 10% to 25% [108—
110]. In conclusion, only a small percentage of them
actually achieve the long-lasting response.

(See figure on next page.)
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In contrast to acquired resistance, which typically
describes patients who initially respond to therapy for a
while before eventually experiencing clinical and/or radi-
ologic disease progression, primary resistance typically
describes patients who don't react at all and instead pro-
gress quickly or eventually with ICIs. In order to fight the
issue of primary resistance, a significant amount of work
has gone into designing combination approaches, typi-
cally with empiric complementary drugs. For instance,
ICIs, multi-target TKIs, and EGFR inhibitors have all
been used in conjunction with chemotherapy in the
treatment of lung, breast, stomach, and renal cell carci-
noma [111]. Additionally, a systematic search for bio-
markers that can anticipate the initial ICI response has
been conducted. PD-L1 expression, tumor mutational
burden, and tumor infiltrating lymphocytes (TILs) have
all been explored as potential predictors, and numer-
ous more markers are now being investigated [112]. On
the other hand, there haven't been any approved phar-
macological advancements for preventing or reversing
acquired resistance.

Clinical evidence and molecular mechanisms associated
with acquired resistance to ICls
Neoantigen-specific T cells may have a significant impact
on how the body reacts to ICIs. Recently, it has been
demonstrated that the long-term effect of ICIs blockage
in NSCLC and melanoma correlates with somatic muta-
tional and neoantigen density. Epigenetic suppression,
immunological evasion, and clinical advancement may
coexist with the absence of somatic mutations encoding
putative tumor-specific neoantigens [113]. The absence
of many neoantigen-specific T lymphocytes raises the
possibility that pressure selection to eradicate these
clones led to the development of acquired resistance
[114]. No loss-of-function mutations in HLA genes such
as B2M, JAK1 or JAK2 were found in a clinical study of
4 patients with NSCLC who had acquired resistance to
ICIs (170). Exome analysis of pre vs post-treatment tis-
sue, however, revealed deletion of a large number of
mutations that were expected computationally to develop
into neoantigens at the time resistance was developed.
Antigen-presenting cells’ Major Histocompatibil-
ity Complexes (MHCs) are required for the activation
of T-cell mediated immunity (Fig. 4). The coordinated

Fig. 3 Blockade of CTLA-4 or PD-1 Signaling in Tumor Immunotherapy. Dendritic cells (DC) and naive T cells interact in the lymph node during

the priming phase. The interaction between the TCR and the tumor-associated antigen shown in the context of MHC Il constitutes the activation
signals. The interaction between CD28 and B7 expressed on the surface of DC is one of the additional activation signals. The immune system attacks
and eliminates tumor cells as a result of the effector phase, which takes place in the peripheral tissue. At this stage, PD-1 and PD-L1 inhibitory
signals on T cells are suppressed, effectively activating T cells against the tumor antigen
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expression of several genes is what allows MHC class I to
deliver tumor antigens [115-117].

The beta-2-microglobulin (B2M) gene is required for
both the stability of the MHC class 1 molecule at the cell
surface and the facilitation of peptide loading (173). Loss
of function mutations in B2M have previously been dem-
onstrated to cause MHC I loss and serve as a biological
pathway for tumor escape from immune detection [118].

One of the common findings in acquired resistance to
ICIs has recently been identified as truncating changes
in B2M. Using data from 4 melanoma patients who had
developed immunotherapy resistance. One patient was
found to have a homozygous acquired truncating B2M
mutation, according to Zaretsky et al. [119]. In melanoma
and other tumor forms, acquired defects in antigen pres-
entation are observed. One patient exhibited B2M loss
of heterozygosity (LOH) and two frameshift mutations,
and another melanoma patient had two frameshifts B2M
changes at the time of disease progression [120]. B2M
changes were shown to be more prevalent in non-
responders to anti-CTLA4 therapy [121].

In several studies of acquired resistance to immune
checkpoints inhibitors in lung cancer, and MMR-d can-
cers were described homozygous deletion of B2M and

Lymph node

Priming phase

Activation &
expansion
‘

T cell

DEIC TCR
T
Activation signals
B7 w ] CD28
T cell inhibitory
signals blocked
\) CTLA-4
Dendritic cell Naive T cell

Page 15 of 20

alterations of B2M respectively [24]. Additionally, 4 of
9 patients and 3 of 9 patients, respectively, had consid-
erably lower levels of the B2M protein and the MHC
class 1 protein without any corresponding B2M molec-
ular changes, according to Gettinger et al. [122]. Other
unknown genomic or nongenomic variables may change
MHC class 1 expression and affect resistance to ICIs
under these circumstances (Fig. 4).

Role of IFN signaling in ICls resistance

The JAK-STAT pathway, which regulates the expression
of MHC class I and PD-L1 in tumor cells, is activated by
the release of IFNy from effector T cells. This signalling
chain reaction may result in tumor cell death [123]. Both
the JAK1 (JAK1 Q503*) and JAK2 genes have acquired
loss-of-function mutations in two individuals who had
side effects with ICIs after 1 and 2 years (JAK2 F547
splice-site mutation) [119].

Increased surface HLA class 1 and PD-L1 expression as
well as considerable IFNy pathway activation are seen in
patients with JAK1/2 heterozygous mutations [124].

Genomics modifications in JAK1, JAK2, or IFNGR1
has been linked to primary immunotherapy resistance
[125]. Ipilimumab, a medication that targets the CTLA-4
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Fig. 4 Combination Treatment of Pancreatic Cancer. In PDAC, the autophagy cargo receptor NBR1 directs an autophagy-dependent pathway
that targets MHC-I molecules for lysosomal degradation. MHC-I is more frequently identified inside autophagosomes and lysosomes than on the
cell surfaces of PDAC cells. Notably, restoring surface levels of MHC-l in syngeneic host mice results in improved antigen presentation, increased
anti-tumor T cell responses, and inhibition of tumor growth. To enhance the anti-tumor immune response, dual ICl therapy (anti-PD1 and
anti-CTLA4 antibodies) is used in conjunction with autophagy suppression, either genetically or pharmacologically with chlorogquine
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protein, was ineffective against melanomas that had dele-
tions (copy number loss) of crucial IFNy pathway genes
including IRF1, IFT1/2, and amplifications (copy number
increase) of IFNy-related pathway inhibitors like SOCS1
and PIAS4 [125]. It is unclear how much other IFNy
pathway chromosomal aberrations besides JAK1 and
JAK2 affect the development of acquired resistance to
ICIs, and there are few clinical reports on the acquisition
of these alterations.

Immunosuppression/exclusion caused by tumors

Loss of the tumor suppressor PTEN raises the expression
of immunosuppressive cytokines and lowers T-cell effec-
tors, which limits T-cell-driven infiltration and immunity.
PTEN is crucial for regulating PI3K activity in preclini-
cal models [126]. A patient with metastatic uterine leio-
myosarcoma who had previously shown a virtually full
response to pembrolizumab for more than 2 years exhib-
ited PTEN deletion, according to a recent study [127].
Similarly, melanoma patients who had acquired resist-
ance to immune therapies, reported PTEN loss [23]. The
generation of immunosuppressive cytokines, modifica-
tions in dendritic cell priming, activation of regulatory T
cells, and a lack of significant T cell infiltration in mela-
noma have all been associated with Wnt/-catenin path-
way activity [128].

Other inhibitory checkpoints

When resistance is gained, the expression of TIMS3,
LAG3, and V-domain Ig suppressor of T cell activation
(VISTA) increases, however it is unclear whether these
modifications are directly linked to resistance [129]. Such
checkpoints may occasionally be linked to T cell deple-
tion and terminal malfunction, but in other contexts they
may also be linked to T cell activation (Blank et al., 2019).
Even with many of the research mentioned above, it can
be challenging to confirm or identify a specific resistance
mechanism. VISTA is a type I transmembrane protein.
In particular for triple-negative breast cancer, VISTA is a
potential immunological therapeutic target because to its
association with immunotherapy resistance. It is found in
regulatory T cells and myeloid-derived suppressor cells
in large concentrations, and functional inhibition of it is
proven to slow tumor growth [130]. It is still unclear how
common acquired resistance to ICIs actually is because
some authors deduce the resistance mechanism from cir-
cumstantial evidence.

Therapeutic strategies for disrupting acquired resistance

Several therapeutic strategies that target one or more
of the major biological pathways, including the IFNy
pathway, other immunological checkpoints, the tumor
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microenvironment, and epigenetic modification, have
been developed to combat acquired resistance to ICls.

Numerous clinical trials focusing on JAK1/2 and STAT
are currently being conducted. In a phase 1/2 research,
advanced NSCLC patients received either osimertinib
alone or in conjunction with the JAK1-selective inhibitor
AZD4205 (NCT03450330). SC-43, a SHP-1 agonist that
inhibits STATS3, is undergoing a phase 1/2 clinical trial for
NSCLC when combined with cisplatin (NCT04733521).

The stimulation of IFN genes (STING) showed an
increase in anti-tumor immunity through the produc-
tion of proinflammatory chemokines and cytokines,
including type I IFNs [131]. STING agonists like
E7766, GSK3745417, and MIW815 are now undergo-
ing clinical studies (NCT04144140, NCT03843359, and
NCT03172936, respectively).

Patients with PD-L1+NSCLC were enrolled in the
phase 2 clinical study (CITYSCAPE) to compare the
anti-TIGIT antibody tiragolumab with atezolizumab ver-
sus placebo plus atezolizumab. Overall response rates
improved (Rodriguez-Abreu et al, 2020). Additional
drugs that target the tumor microenvironment have
been explored such as inhibitors of CSF1R, TGEB, VEGE,
IL-1/6, A2AR, CD73, IDO1, and B7-H4. DNA methyla-
tion and histone alterations are examples of epigenetic
changes [132]. The enzyme DNA methyltransferase
(DNMT), which controls the silence of genes and non-
coding genomic regions, mediates DNA methylation.
Histone modification enzymes like histone methyltrans-
ferase (HMT) and histone deacetylase alter the struc-
ture of chromatin, which affects how genes are regulated
(HDAC) (Kanwal and Gupta, 2012). Immunotherapy
resistance may be treated with epigenetic modification
enzyme inhibitors, such as DNA methyltransferase inhib-
itors (DNMTis), histone methyltransferase inhibitors
(HMTis), and histone deacetylase inhibitors (HDACis)
[133].

According to preclinical research, HDACi and DNMTi
both improve the responsiveness to anti-PD-1 therapy
in a variety of malignancies [134]. Enhancer of zeste
homolog 2 (EZH2), one of the histone methyltransferase
enzymes, is associated to the expansion, migration, and
invasion of malignant cells, such as glioblastoma, ovarian,
and prostate cancer. Inhibiting EZH2 along with anti-
CTLA-4 and IL-2 immunotherapy had silencing effects
on antigen presentation and immune response [135].

The PD-1/PD-L1 pathway is not the only mecha-
nism slowing down antitumor immunity in the major-
ity of cancer patients, and inhibiting the PD-1/PD-L1
axis does not enough stimulate an efficient antitumor
immune response. Certain combinations of treatments,
such as -PD-1/PD-L1 plus radiotherapy, chemotherapy,
angiogenesis inhibitors, targeted therapy, other immune
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checkpoint inhibitors, agonists of the co-stimulatory
molecule, stimulators of interferon genes, faecal microbi-
ota transplantation, epigenetic modulators, or metabolic
modulators, have been shown to have superior antitumor
efficacies and higher response rates. Moreover, -PD-1/
PD-L1 moiety-containing bifunctional or bispecific anti-
bodies also induced stronger antitumor activity. These
combination techniques eliminate immunosuppres-
sive brakes, promote numerous cancer-immunity cycle
activities at once, and manipulate an immunosupportive
tumor microenvironment. We outlined the synergistic
antitumor efficacies and mechanisms of -PD-1/PD-L1 in
this review when used in conjunction with other treat-
ments [136].

Future perspective

Eventually, immunotherapy took a while to break
through a wall of active cancer medications. In the past
ten years, ICI have been developed and approved at an
extraordinary rate for a number of cancer types. ICI
has made great strides, yet the problem of cancer treat-
ment remains. Immune-checkpoint immunotherapy has
unlocked a door, but the case is still open. In the coming
ten years, we want to identify pharmacodynamics char-
acteristics and biomarkers for ICI efficacy and toxicity
prediction in order to optimize ICI regimens and develop
novel combinations.

Conclusions

Clinical research for the next generation of immuno-
therapies for patients with primary and acquired resist-
ance is ongoing despite the lack of notable results. A
deeper comprehension of the underlying biology may
allow for more specific application of immunotherapies
other than immune checkpoint inhibitors, leading to
more effective therapeutic choices. The development of
drugs and cellular therapies to prevent, avoid, or over-
come ICI resistance will eventually be made possible by
this advancement. In order to provide cancer patients a
variety of therapeutic options, it is critical to understand
the mechanisms underlying acquired resistance. In par-
ticular, the activation of the IFNy pathway, inhibition of
TGEp, and co-suppression of immunological checkpoints
like TIGIT have attracted interest as fascinating potential
therapeutic strategies and are awaiting results.
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