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Abstract

Cardiovascular disease (CVD) is the leading cause of death worldwide. A search for more effective treatments of CVD is increasingly
needed. Major advances in nanotechnology opened new avenues in CVD therapeutics. Owing to their special properties, iron oxide, gold and
silver nanoparticles (NPs) could exert various effects in the management and treatment of CVD. The role of iron oxide NPs in the detection
and identification of atherosclerotic plaques is receiving increased attention. Moreover, these NPs enhance targeted stem cell delivery,
thereby potentiating the regenerative capacity at the injured sites. In addition to their antioxidative and antihypertrophic capacities, gold NPs
have also been shown to be useful in the identification of plaques and recognition of inflammatory markers. Contrary to first reports
suggestive of their cardio-vasculoprotective role, silver NPs now appear to exert negative effects on the cardiovascular system. Indeed, these
NPs appear to negatively modulate inflammation and cholesterol uptake, both of which exacerbate atherosclerosis. Moreover, silver NPs may
precipitate bradycardia, conduction block and sudden cardiac death. In this review, we dissect the cellular responses and toxicity profiles of
these NPs from various perspectives including cellular and molecular ones.
© 2021 The Authors. Published by Elsevier Inc. This is an open access article under the CCBY license (http://creativecommons.org/licenses/by/4.0/).
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Cardiovascular disease (CVD) is the primary cause of global
mortality.1 According to the World Health Organization
(WHO), CVD accounts for around 31% of all deaths.1 Of
this heavy proportion, 85% is due to myocardial infarction and
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Figure 1. The key therapeutics of CVD. CVD management entails both non-pharmacological and pharmacological therapies. Among the widely-applied
pharmacological therapies, aspirin, β-blockers, statins, angiotensin-converting enzyme inhibitors (ACEi), and angiotensin II receptor blockers (ARB) are given
to most CVD patients to reduce the risk of CVD progression and complications. Aspirin is a potent anti-thrombotic medication employed in primary and
secondary prevention of CVD. β-Blockers are heart rate-lowering medications used to improve left ventricular (LV) filling, and mismatch of oxygen supply and
demand. Statins are cholesterol-lowering medications employed in treating and reverting atherosclerosis. ACEis and ARBs are anti-hypertensive medications
used to optimize blood pressure in hypertensive patients and prevent cardiac remodeling in CVD patients.
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reduced by a series of primary interventions that include
smoking cessation, physical activity or weight control among
others.1–3 Similarly, people with a risky CVD profile require a
thorough assessment and management of CVD modifiable risk
factors that include diabetes mellitus, hypertension and
hyperlipidemic disorders.1 ,4–6 These preventive measures
include both medical and behavioral interventions.1 ,6 ,7 For
instance, adequate control of blood pressure or glucose level
would greatly reduce the occurrence and recurrence of CVD.-
1,6–8 To this end, many highly effective medications are used
to control these risk factors and thus to prevent their subsequent
cardiovascular complications (Figure 1). These medications
primarily include aspirin, angiotensin-converting enzyme
inhibitors (ACEis), beta-blockers or statins as anti-thrombotic,
anti-hypertensive, or anti-arrhythmic and anti-atherosclerotic,
respectively.1,7–13

In addition to these conventional therapies, novel tools and
inventions have emerged as potentially more effective therapeu-
tic modalities, and are indeed being applied in the treatment of
CVD complications. These new interventions are directed
toward specific molecular and genetic targets. They are
employed primarily in the management of genetic and familial
CVD.14 ,15 In this context, genetic therapy was formally
approved for the treatment of familial hypertriglyceridemia
caused by lipoprotein lipase (LPL) deficiency.14 Furthermore,
gene therapy was heavily investigated in the treatment of
arrhythmias, coronary heart diseases and myocardial failure.16–
19 Similarly, stem cell application was recently introduced as a
potential regenerative tool for the treatment of heart failure
secondary to sustained ischemia.20–23

Despite all these interventions, CVD continues to be a
significant global burden that prompts a quest for further
investigations. In this review, we discuss the potential therapeu-
tic effects of the latest nano-inventions in managing CVD. We
focus mainly on the advantages of utilizing metal-based
nanoparticles in CVD treatment.

Image of Figure 1


Figure 2. Cardiotoxic effects of AgNPs. This schematic diagram shows the cardiovascular sequelae of AgNP administration. Initially, AgNPs enter the cell and
induce oxidative stress causing the release of ROS and subsequently the activation of NF-kB. NF-kB localizes to the nucleus and combines with a specific
sequence of DNA to induce the transcription of various inflammatory mediators. Then, many inflammatory cytokines and modulators, including interleukins and
VCAM-1/ICAM-1, are upregulated. The enhanced expression of these inflammatory molecules predisposes in turn to endothelial injury, thrombosis,
atherosclerosis, and further cardiovascular complications. Additionally, caspase-3 is activated indirectly by the inflammatory cascade of AgNPs, and cellular
apoptosis is prompted by this activation.
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Nanomedicine and CVD

New diagnostic, therapeutic and prognostic tools are used to
assess, evaluate and treat various cardiovascular conditions.
Nanomedicine has gained increased attention over the last few
decades. Indeed, it has been perceived as a pivotal, harmless and
powerful platform that can be employed in the management of
angiogenic, inflammatory, ischemic and metabolic disorders
such as atherosclerosis, hyperlipidemia and hypertension.24–27

Moreover, nanomedicine is currently being used in imaging
techniques, design of medical tools, drug delivery, stem cell
applications and wound healing.28–35 This drastic improvement
adds to the previously discovered applications which included
anti-bacterial, anti-viral and anti-fungal effects of nanoparticles
(NPs).28 ,29,36–39

Nanoparticles (NPs) exert their various distinctive biological
effects in size, shape, and concentration-dependent manners.28
,40–42 These physicochemical properties represent the major
determinants of NPs biological activities. Indeed, the therapeutic
effects and in vivo toxicities of NPs are governed by these
properties.43–45 Moreover, different physiological targets might
respond differently to the applied NPs, and vice versa.28,43
Different classes of NPs have been fostered and examined in a
multitude of in-vitro and in-vivo studies.46 ,47 They include
organic NPs like dendrimers and lipid-based NPs, inorganic NPs
like carbon- and metal-based NPs, and organic–inorganic hybrid
NPs like magnetoliposomes.47 The selection of the proper class
of NPs is based on the physiologic milieu as well as the
therapeutic aim of NPs use. For instance, organic NPs are proven
to be highly biodegradable and biocompatible vehicles for drug
and cell delivery. They are characterized by their eased
fabrication and increased biological stability. Lipid-based NPs
are also distinguished by their cell membrane like chemistry.47

On the contrary, inorganic NPs are recognized by their electrical
properties that allow magnetic-guided delivery of therapeutics
and diagnostic imaging. Inorganic NPs can be easily coupled to a
wide range of ample biologics. They enable adequate tissue
penetration and are timely degraded. Hybrid NPs own properties
of both organic and inorganic NPs.47

NPs have shown promising potentials in in vivo studies and
are currently approved by the Food and drug administration
(FDA).44,48–50 They were introduced to the market and were
safely applied in cancer treatment, genetic interventions, and
imaging techniques as well as in the treatment of multiple

Image of Figure 2


Table 1
Experimental trials implicating iron oxide nanoparticles in the evaluation and treatment of CVD.

Study Description Year of
publication

Ref.

Treatment of infarcted heart tissue via the capture and local delivery
of circulating exosomes through antibody-conjugated magnetic
nanoparticles

Antibody-conjugated magnetic nanoparticles targeting CD63 or
myosin-light-chain surface markers were applied in rabbit and rat
models with myocardial infarction. Favorable cardiac events were
attained. An improvement in infarct recovery, angiogenesis, and
cardiac contractility was achieved in these models.

2020 84

Molecular imaging of activated platelets via antibody-targeted ultra-
small iron oxide nanoparticles displaying unique dual MRI
contrast.

Ultra-small iron oxide nanoparticles acted as MRI contrast agent
employed in the detection of vascular thrombi in both in vivo (animal)
and in vitro studies.

2017 85

In vivo MRI tracking of transplanted superparamagnetic iron oxide-
labeled bone marrow mesenchymal stem cells in rats with
myocardial infarction.

Superparamagnetic iron oxide allowed tracking of bone marrow
mesenchymal stem cells migration to the infarcted region that was
assessed using serial MRI.

2015 86

Abdominal aortic aneurysm growth predicted by uptake of ultra-
small superparamagnetic particles of Iron oxide: A pilot study.

Ultra-small iron oxide nanoparticles are used as MRI contrast agent.
Subsequently, the extent of iron oxide nanoparticles uptake is used to
predict risk of abdominal aortic aneurysm progression and rupture in
asymptomatic patient.

2011 87

In vivo MRI imaging of injected mesenchymal stem cells in rat
myocardial infarction; simultaneous cell tracking and left
ventricular function measurement.

Superparamagnetic iron oxide nanoparticles added magnetic
properties to the injected mesenchymal stem cells and allowed
tracking of these cells by MRI.

2009 88

In vivo MRI imaging of mesenchymal stem cells in myocardial
infarction.

Ferumoxide was combined with mesenchymal stem cells in order to
allow tracking of these cells by MRI, in a swine model of myocardial
infarction.

2003 89
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immunological and infectious diseases.44,49,50 In 1995, the first
nanomedicine (Doxil®) was employed in the treatment of
relapsing ovarian cancer and Kaposi's sarcoma.44,51 ,52 This
preparation has enabled tunable and well-controlled release of
doxorubicin as well as improved doxorubicin's bioavailability
and duration of action.44,51

Similarly, nanotechnologies have allowed thorough DNA
analysis and genomic detection.44,53 Gold NP (AuNP)-based
genetic technologies have been approved by the FDA. They are
currently implied in the detection of various genetic and
molecular biomarkers.44 , 53 Furthermore, other NPs, most
importantly superparamagnetic iron oxide nanoparticles
(SPIONs), are recognized as effective and safe MRI contrast
agents for specific molecule-targeting or therapeutic assessment.-
42,44 ,53–55 Interestingly, delicate manipulation of NPs physico-
chemical properties greatly facilitates the emergence of patient-
specific medical interventions. Subsequently, this furthers the era
of targeted and personalized medicine.44

Unlike their increased utilization in cancer and genetic
diseases, the use of NPs in managing or treating CVD is
relatively in its infancy. This review highlights the cardiovas-
cular effects of metal-based NPs, and their promising CVD
therapeutic potentials. Herein, we address the importance of iron
oxide, gold and silver nanoparticles in CVD management, owing
to the extensive biomedical evaluation of these nanoelements in
animal and in vitro studies. We shed light on the application of
these NPs in detecting atherosclerosis, delivering drugs and stem
cells, and manufacturing synthetic cardioprotective molecules
like HDL.

Iron oxide NPs, atherosclerosis and heart failure

Due to their unique chemical and magnetic properties, iron
oxide NPs have been employed in numerous biomedical
applications. They are clinically approved as biocompatible
systems for drug delivery and as MRI contrast agents.25 ,41

Additionally, recent studies underscore the importance of these
chemically inert molecules in delivery and tracking of
mesenchymal stem cells. They have been used in treating
debilitating conditions such as multiple sclerosis and myocardial
failure.41 Furthermore, iron oxide NPs were utilized in tumor
detection and evaluation by virtue of their exclusive magnetic
properties and extensive biostability.41 Additionally, one of
these iron-derived nanomaterials, ferumoxytol, has been ap-
proved for treating iron deficiency anemia in patients with
chronic kidney disease.25,56 ,57

For CVD management, iron oxide NPs have been investi-
gated only in animal and in vitro studies. Recent evidence
highlights few potential applications of these iron nanoelements
in diagnosis, evaluation and treatment of various life-threatening
CVDs.24,58 ,59 Indeed, iron oxides NPs are primarily designated
for atherosclerotic plaque tailoring and stem cell applications.60–
66 A recent animal study highlighted their involvement in the
radiological detection of atherosclerotic plaques.63 Moreover,
these NPs were utilized for detecting the presence of CD163, a
marker of M2 macrophages, in atherosclerotic lesions.63,67–69

To this end, iron oxide NPs were actually used as MRI contrast
agent and were tagged by anti-CD163 antibodies.63 M2
macrophages represent a subtype of monocyte-derived macro-
phages that are commonly encountered in atheroma and most
importantly in asymptomatic lesions, where they are abundant.-
63 ,69 ,70 These macrophages elicit a protective anti-inflammatory
role by secreting various anti-inflammatory molecules such as
IL10, TGF-β and IL1 receptor antagonist.63,67 ,70–73 Ultimately,
employment of safe techniques in the detection of these
atherosclerotic lesions would substantially help in mitigating
the progression of atherosclerosis and the ensuing health effects.
Thus, as MRI contrast agents, these iron-derived nanomaterials



Table 2
Studies discussing the role of AuNPs in CVD evaluation.

Study Description Year of
publication

Ref.

Gold nanorod-based nanoplatform catalyzes constant NO
generation and protects from cardiovascular injury

A nitric oxide synthase (NOS)-like nanoplatfrom was fostered and used to
ensure continuous supply of NO. The use of this technology may attenuate
and prevent cardiac injury.

2020 107

Light-induced release of the cardioprotective peptide
angiotensin-(1-9) from thermosensitive liposomes with
gold nanoclusters

Gold NPs-based nanosystem was used to optimize the delivery of
angiotensin-(1-9) to the myocardium. This can improve in turn
hypertension and myocardial remodeling.

2020 108

Labeling monocytes with AuNPs to track their recruitment in
atherosclerosis with computed tomography.

Inflammatory cells' predilection for atherosclerotic lesions was assessed using
CT scan. This was permitted because of the optical properties of the AuNPs to
which the cells were tagged.

2016 109

Syntheses and characterization of lisinopril-coated AuNPs as
highly stable targeted CT contrast agents in cardiovascular
diseases

Lisinopril-coated AuNPs acted as CT contrast agent allowing the
visualization of heart and lungs; tissues where angiotensin converting
enzyme is mainly secreted.

2012 110

Intravascular photoacoustic imaging of exogenously labeled
atherosclerotic plaque through luminal blood.

Gold nanorods enabled assessment and evaluation of rabbits atherosclerotic
lesions using intravascular photoacoustic imaging.

2012 111

Atherosclerotic plaque composition: analysis with multicolor
CT and targeted AuNPs.

Mice atherosclerotic lesions were evaluated through the employment of
HDL-coated AuNPs as contrast media for spectral CT scan.

2010 112

Plasmonic intravascular photoacoustic imaging for detection
of macrophages in atherosclerotic plaques.

AuNPs permitted detection and localization of macrophage rich atheroma via
intravascular photoacoustic imaging.

2009 113
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would be superior to the classical contrast medium, gadolinium,
which induces nephrotoxicity in susceptible patients with
compromised renal functions.41,63

Iron oxide NPs are shown to be involved in the magnetic-
guided delivery of mesenchymal stem cells to the infarcted
myocardium.60–62,64 Indeed, the use of these magnetic elements
seems to improve several aspects of stem cell therapy. It
enhances the regenerative capacity of stem cells by promoting
their availability in the vicinity of the injured site.74–77 Stem cell
therapy is originally limited by the increased migratory rate of
these cells to alternative organs. This limitation is reflected by
the very small percentage (~3.5%) of injected mesenchymal stem
cells being detected at the ischemic site several weeks after
infusion of cells.78,79 By enhancing availability of stem cells in
the myocardium, combined with diminished migration of these
cells to other organs, the use of iron oxide NPs in heart failure
management will be a favorable and attractive approach.

Magnetic-guided delivery of superparamagnetic iron oxide
NPs-labeled mesenchymal cells has shown better preservation of
myocardial functions denoted by left ventricular ejection fraction
(EF) and fractional shortening (FS). Lower levels of myocardial
fibrosis were also detected.64 As such, iron oxide NPs are
favored over classical contrast agents by virtue of their low
toxicity. Interestingly, this toxicity can also be further reduced by
coating NPs with biocompatible and biodegradable agents such
as polyethylene glycol, polydopamine, and chitosan- or dextran-
based polysaccharrides.64 ,74 Coating is a major determinant of
the toxicity and biodistribution of NPs, particularly small sized
NPs with a diameter of less than 40 nm. In one study, Kania et
al suggested that the coating of iron oxide NPs with chitosan
derivatives enhances their blood circulation through the
reduction of their degradation and elimination by the
reticuloendothelial system, and confines their biodistribution
to the liver and kidneys.80 They argued that their hepatic
localization infers a shorter T2 relaxation time which favors
then their use as T2 contrast agent particularly when screening
for liver diseases. The prolonged circulation and the delayed
elimination of these chitosan-coated iron oxide NPs may allow
also extended imaging and evaluation.80 These findings
suggest that coating is a key modulator of NPs physiologic
function and toxicity.

Furthermore, other studies highlight the intrinsic cardiopro-
tective properties of these iron-derived nanoparticles and their
ability to guide mesenchymal stem cells to the infarcted site even
in the absence of applied magnetic beams.74,81 Additional
studies have endorsed the use of these NPs in diagnosing
atherosclerosis and thrombosis.82 ,83 As mentioned earlier,
monocytes are important contributors to atherosclerosis devel-
opment and progression to thrombosis.83 They can be detected
through both active and passive targeting. For instance, these
cells are involved in uptaking and degrading NPs, and are thus
expected to be targeted passively by the administration of these
elements. Moreover, they can be targeted by the addition of
monocyte-specific ligands to the surface of iron oxide NPs.83

This allows precise and exclusive targeting of monocytes. These
target-specific iron oxide NPs can be applied in identifying
additional contributors to atherosclerosis and thrombosis like
endothelial cells, platelets, and vascular smooth muscle cells.82,83

Table 1 displays a few additional studies highlighting the
therapeutic roles of these NPs.

Overall, animal and in vitro studies reveal promising
therapeutic potentials for iron oxide NPs in CVD management.
Nonetheless, lack of human experiments necessitates further
research in this field.
Gold nanoparticles, drug delivery and cardiac remodeling

Like iron oxide NPs, AuNPs have been heavily investigated
and applied in various fields including biological, chemical and
medical ones. Due to their exceptional bio-optical properties,
AuNPs are currently employed as contrast agents for most
radiological modalities like photoacoustic imaging, optical



Figure 3. Favorable cardiovascular effects of Iron Oxide and Gold NPs, along with the undesirable cardiovasculopathic effects of AgNPs. Both iron oxide
and gold NPs have been used in detecting and evaluating atherosclerotic plaques. The role of iron oxide NPs in optimizing stem cells delivery to infarcted tissues
has been discussed. Similarly, gold NPs have been found to have intrinsic cardioprotective properties and associated with improved cardiac remodeling. Gold
NPs were likely utilized in the manufacturing of synthetic HDL and improvement of CVD profile. On the contrary, AgNPs have been widely recognized for their
cardiovasculo-toxic effects denoted by (1) atherosclerosis initiation, (2) cardiac rhythm disruption, and (3) vasoconstriction.
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coherence tomography, surface enhanced Raman scattering,
computed tomography (CT) scan, intravascular ultrasound and
X-ray imaging. 32 , 90–92 Besides, owing to their feasible
synthesis, relative ease of manipulation and unique biofunctio-
nalization, these elements can react with various biochemical
agents.32 ,93 Indeed, their vast application in drug delivery and
specific molecule targeting is explained by these distinctive
properties.

AuNPs were initially fostered for cancer management and
employed as drug delivery systems, contrast media and radio-
enhancers.94–96 However, little is currently known regarding
their therapeutic applications in the cardiovascular field.32

Recent evidence, emanating from pre-clinical and in vitro
studies, accentuates the promising potential of AuNPs in both
CVD imaging and treatment. 32 ,97,98 By acting as probes
targeting specific atheromarkers, AuNPs can be used for the
radiological detection and evaluation of atherosclerosis.32 For
instance, incorporation of these biologically and optically unique
molecules in the bioimaging of atherosclerosis allows precise
targeting of various inflammatory markers such as intercellular
adhesion molecule-1 (ICAM-1), vascular cell adhesion mole-
cule-1 (VCAM-1) and α5β3-integrin. These markers are
expressed by activated endothelial cells, monocytes and smooth
muscle cells during the different phases of the inflammatory
process.99–101 Additionally, AuNPs tagged with anti-collagen I
peptides allow the detection of cardiac scarred tissues, and thus
provide an impressive evaluation of myocardial ischemia.102

AuNPs also display potential cardioprotective properties.
This is largely due to their anti-oxidative and anti-hypertrophic
effects which are exerted via the downregulation of β-
adrenoceptors and the subsequent decrease in the ERK1/2-
mediated hypertrophic pathway.103 Indeed, β-adrenoceptors are
the key mediators of myocardial hypertrophy and thus, inhibiting
them is key for improving heart failure mortality.104–106
A role for AuNPs in modulating levels of lipoproteins has
been suggested. Indeed, these nano-elements enable effective
replication of HDL as well as the production of synthetic HDL-
like molecules that can impart both diagnostic and therapeutic
roles in atherosclerosis management.98 These synthetic mole-
cules are made of AuNPs mixed with the key biological
constituents of HDL, namely, apolipoprotein A1 and
phospholipids.98 Consequently, fostering of such molecules
carrying HDL-like biological properties augments HDL plasma
levels and imparts, in turn, a significant atheroprotection.98

Table 2 describes additional studies examining the cardiovascu-
lar effects of AuNPs.
Silver nanoparticles and cardiotoxicity

Silver nanoparticles (AgNPs) are important tools applied in
multiple fields including health care and medical ones. The use
of AgNPs is largely due to their distinctive physicochemical
properties reflected by their electrical, optical, biological, and
thermal characteristics.114–117 AgNPs have gained increased
attention over the past few decades and have been increasingly
used in medical and non-medical disciplines.118 As a result,
human exposure to AgNPs is considered relatively common
because of their widespread distribution.119 ,120

Synthetic AgNPs have been previously utilized in imaging
modalities and drug-delivery systems.121,122 Coating of cardiac
stents and pacemakers with these particles has been applied to
reduce the risk of acquired foreign body associated infections.122

This favorable reduction of infections is attributed to the
antimicrobial effects of AgNPs. However, there has been
growing confirmation that AgNPs utilization is not without
side effects, and that it may indeed be associated with cellular
damage.123,124 Moreover, AgNPs have been correlated with the
initiation of atherosclerosis.125 , 126 The most plausible

Image of Figure 3


Table 3
Additional experimental trials on AgNPs toxicities.

Study Description Year of publication Ref.

Comparison of silver nanoparticle-induced
inflammatory responses between healthy
and metabolic syndrome mouse models

AgNPs were administered to healthy mice and metabolic syndrome mouse
models to assess the
impact of metabolic syndrome on AgNPs biodistribution and toxicity.
Comparable
AgNPs toxicities were encountered in the two groups of mice.

2020 168

Exacerbation of nanoparticle-induced acute
pulmonary inflammation in a mouse model
of metabolic syndrome

AgNPs-associated pulmonary toxicity was enhanced in metabolic syndrome
mouse models. AgNPs-induced inflammation and pulmonary toxicity were
attenuated by statins.

2020 169

Non-cytotoxic silver nanoparticle levels perturb
human embryonic stem cell-dependent
specification of the cranial placode in part
via FGF signaling.

AgNPs were studied for potential teratogenicity. It was postulated that AgNPs
may impair human embryogenesis.

2020 170

Early postnatal exposure to a low dose of
nanoparticulate silver induces alterations in
glutamate transporters in brain of immature
rats.

AgNPs were studied for post-natal neurotoxicity in immature rats. It was
speculated that AgNPs may accumulate in the brain for a long period which
disrupt then proper brain development.

2020 171

Hepatic histopathological and ultrastructural
alterations induced by 10 nm silver
nanoparticles.

The hepatoxicity of AgNPs was assessed in healthy mice. It was hypothesized
that AgNPs can disrupt liver structure and physiology even at the ultracellular
level.

2020 172

Pulmonary exposure to silver nanoparticles
impairs cardiovascular homeostasis: effects
of coating, dose and time

Inhaled AgNPs were found to be cardio- and pulmo-toxic in healthy mice. They
exerted oxidative damage and pro-thrombosis.

2019 162

Evaluation of cardiovascular responses to silver
nanoparticles (AgNPs) in spontaneously
hypertensive rats

AgNPs cardiovascular toxicity was assessed in hypertensive and healthy rats,
respectively. AgNPs' cardiotoxicity, reflected by vasoconstriction and
myocardial damage, was amplified by hypertension.

2018 143
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mechanism proposed to explain this association is AgNP-
induced oxidative damage (Fig. 2).127,128

The small size of AgNPs allows them to readily enter the
blood circulation. Owing to this property, the endothelial lining
of blood vessels displays the highest exposure to these
nanoparticles and is the most susceptible to their side effects.129

Subsequently, endothelial damage may precipitate a multitude of
pathophysiological conditions such as myocardial infarction and
atherosclerosis.130 It was also shown that administration of
AgNPs evokes oxidative stress, damage to cell membrane,
apoptosis, and inhibition of cell proliferation.126 Moreover,
AgNPs upregulate the expression of inflammatory interleukins
and the recruitment of monocytes, which are both considered
mediators of atherosclerosis.126 , 131 Adhesion molecules
expressed in early atherosclerosis are also elevated following
exposure to these NPs.126,132,133 Likewise, an increase in the
expression of VCAM-1 and ICAM-1 is thought to be triggered
by AgNPs.125 Other studies have also reported that AgNPs also
have an activating effect on NLR pyrin domain containing 3
(NLRP3) inflammasome in human macrophages.134 Important-
ly, NLR family pyrin domain containing 3 (NLRP3) is indicative
of increased risk of atherogenesis.135 Taken together, these
results support the notion that AgNPs may indeed promote an
atherosclerotic milieu.

In atherosclerosis, the uptake of cholesterol by macrophages
is a major contributor to the formation of an atherosclerotic
plaque. Because of their antigen-presenting and phagocytic
properties, macrophages are among the first cells to respond to
and interact with AgNPs. This interaction is mediated via
superficial scavenger receptors expressed on macrophage plasma
membrane.136–138 In this context, a close association exists
between lipid metabolism or atherosclerosis and scavenger
receptors.139 Interestingly, a size-dependent modification of
macrophage function was observed in one study. Indeed, the
addition of small-sized AgNPs (20 nm) resulted in reduced
uptake of cholesterol by macrophages.140 On the contrary, the
utilization of large AgNPs (110 nm) had no effect on
macrophages' uptake of cholesterol.140 Hence, one can postulate
that this structural modification imparts a dramatic functional
effect that can be employed in mitigating the progression of
atherosclerosis. Yet, further studies are needed to elucidate the
exact vasculopathic effects of these particles.

It appears that AgNPs modulate myocardial voltage-gated
sodium (INa) and potassium (IK) current channels, transmem-
brane potential (TMP), and heart rhythm. AgNPs impart a
depolarizing effect on the resting potential in a concentration-
dependent manner. They also decrease the action potential
amplitude and the maximal depolarization velocity (Vmax) by
inhibiting sodium and potassium channels.141 Moreover, AgNPs
cause a significant prolongation of the action potential duration,
indicative of slowing down of the repolarization speed.141 As a
result, it is speculated that AgNPs may cause bradyarrhythmias,
cardiac conduction block, sudden cardiac death and cardiac
asystole (Figure 3).141 Indeed, direct testing showed that AgNPs
have an inhibiting effect on heart rate at higher
concentrations.141

There are other effects that AgNPs impart onto the
cardiovasculature. For instance, some studies report that
AgNPs enhance cardiac contractility and cause vasoconstriction.-
135 This potentiation constriction may then explain AgNP-
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increased velocity of blood flow.142 Similarly, AgNPs appear to
suppress the expression of nitric oxide synthase, which in turn
leads to a decrease in the production of nitrogen oxide, a potent
vasodilator.143 By suppressing levels of NO and creating an
oxidative milieu,143 it becomes evident how AgNPs can further
exacerbate cardiovascular events.

With the increase in commercial use of AgNPs, and given
their various effects on the cardiovascular system, further
investigations are certainly warranted especially because most
of the available literature is not conclusive. In addition,
discrepancies in the parameters used in the analysis of AgNPs
as a function of concentration, size, and mode of exposure
suggest the need for a more cohesive experimental approach in
order to obtain a clearer image of their effects.
Toxicities of iron oxide, gold and silver nanoparticles

The toxicity profile of NPs is dependent on many factors such
as size, shape, coating, method of production, dispersion, and
charge.144–155 As a consequence of this, research into nanopar-
ticle toxicity has suffered due to the lack of established protocols
and guidelines in the characterization and production of
nanoparticles.156 For instance, studies have found that smaller
NP size is linked to higher toxicity.146,147,157,158 In addition,
different NP coatings affect toxicities primarily through the
modification of uptake and localization.148,151,152,158 Mecha-
nistically, it is widely agreed that nanoparticles exert many of
their toxic effects through the production of reactive oxygen
species (ROS), which is a major instigator of oxidative stress.

Silver nanoparticles

Like other NPs, AgNPs create a pro-oxidant milieu, although
the exact mechanism for this increased ROS remains elusive.-
146,159–163 Some hypotheses pin this increased ROS production
on intracellular Ag+ release and accumulation. However, recent
reports suggest that AgNPs themselves and not the released ions
lead to the production of ROS.151,157,164

Various and accumulating evidences establish AgNP toxicity
on an array of bodily systems. Indeed, AgNPs have been found
to cause toxic effects on the liver, bone marrow, lungs, thymus,
spleen, kidneys, vasculature, sperm cells, heart, and skin.165 At
the subcellular level, evidence suggests that these NPs cause
defective ubiquitination autophagosome-lysosome fusion.166

Since several studies showed that AgNPs are genotoxic, future
long term research into the role of these particles in cancer
becomes of interest.157,159,160,162,164 Interestingly, while some
studies argue that these particles largely spare the blood–brain
barrier (BBB) from toxicity, other reports noted changes in BBB
permeability as a result of AgNP administration, opening up
interesting avenue for future applications.167 Table 3 includes a
few additional animal and in-vitro studies examining the
potential toxicities of AgNPs.

Gold nanoparticles

Studies conducting direct comparisons between different
types of NPs have established that despite similarities in toxic
profiles of NPs, some interesting differences exist. Indeed, a
comparison between AuNPs and AgNPs found that while both
deposit in the mononuclear phagocyte system, their distribution
varies according to their metal composition. For instance, AuNPs
accumulate in the liver while AgNPs were mostly found in other
organs like the kidney and heart.173,174 Furthermore, a study
examining the effect of protein coronas on the toxicity profiles of
NPs found that some variants of these albumin or serum protein
coronas may decrease hepatic uptake of AuNPs and ROS-
mediated hepatotoxicity, and thus may improve the toxicity
profile of these particles. This finding raises in turn the
possibility that further advances in the production of AuNPs'
coating materials could eventually decrease their overall
toxicity.175

Iron nanoparticles

Unlike the aforementioned NPs, iron oxide NPs toxic effects
were the least studied. Yet, CNS toxicity caused by a positive
feedback loop mediated by the Fenton reaction and protein
aggregation has been documented.176,177 Moreover, in one
study examining a variety of cell lines, it was found that iron
oxide NPs may play a significant role in downregulating the
expression of Id-family of genes, which are genetic sequences
intimately linked to growth and development.178 Recently, it was
found that human monocytes responded to these NPs by
executing an autophagic program in order to decrease the
cytotoxic effects of the nanoparticles. However, the mechanism
for this increased autophagy is not yet fully understood.179
Conclusion

New paths in the comprehension of nanoparticles and their
application in CVD management are opening. While iron oxide
NPs and AuNPs have shown promising roles in the detection and
treatment of atherosclerotic plaques, AgNPs have been recently
associated with unfavorable cardiovascular effects. Hence, it is
of great importance to further investigate the adverse effects
associated with these different nanoparticles, taking into account
their various routes of administration and the contradictory
findings associated with their distinct properties including
concentrations, sizes, shapes, and ionic charges. Nonetheless,
we argue that nanoparticles can play a decisive role in the
treatment of CVD. We also anticipate that nanotechnology will
be one of the attractive therapeutic approaches for managing
CVD in the foreseeable future.
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