
Journal of Cleaner Production 378 (2022) 134203

Available online 10 October 2022
0959-6526/© 2022 Elsevier Ltd. All rights reserved.

Urban resilience and livability performance of European smart cities: A 
novel machine learning approach 

Adeeb A. Kutty a, Tadesse G. Wakjira b, Murat Kucukvar a,*, Galal M. Abdella a, Nuri C. Onat c 

a Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, Qatar 
b Department of Civil and Architectural Engineering, College of Engineering, Qatar University, Qatar 
c Qatar Transportation and Traffic Safety Center, College of Engineering, Qatar University, Qatar   

A R T I C L E  I N F O   

Handling Editor: Maria Teresa Moreira  

Keywords: 
City resilience 
Machine learning 
Predictive model 
Smart cities 
Urban livability 

A B S T R A C T   

Smart cities are centres of economic opulence and hope for standardized living. Understanding the shades of 
urban resilience and livability in smart city models is of paramount importance. This study presents a novel two- 
stage data-driven framework combining a multivariate metric-distance analysis with machine learning (ML) 
techniques for resilience and livability assessment of smart cities. A longitudinal dataset for 35 top-ranked Eu-
ropean smart cities from 2015 till 2020 applied as the case study under the proposed framework. Initially, a 
metric distance-based weighting approach is used to weight the indicators and quantify the scores across each 
aspect under city resilience and urban livability. The key aspects under city resilience include social, economic, 
infrastructure and built environment and, institutional resilience, while under urban livability, the aspects 
include accessibility, community well-being, and economic vibrancy. Fuzzy c-means clustering as an unsuper-
vised machine learning technique is used to sort smart cities based on the degree of performance. In addition, an 
intelligent approach is presented for the prediction of the degree of livability, resilience, and aggregate per-
formance of smart cities based on various supervised ML techniques. Classification models such as Naïve Bayes, 
k-nearest neighbors (kNN), support vector machine (SVM), Classification and Regression Tree (CART) and, 
ensemble models including Random Forest (RF) and Gradient Boosting machine (GBM) were used. Three co-
efficients (accuracy, Cohen’s Kappa (κ) and average area under the precision-recall curve (AUC-PR)) along with 
confusion matrix were used to appraise the performance of the classifier ML models. The results revealed GBM as 
the best classification and predictive model for the resilience, livability, and aggregate performance assessment. 
The study also revealed Copenhagen, Geneva, Stockholm, Munich, Helsinki, Vienna, London, Oslo, Zurich, and 
Amsterdam as the smart cities that co-create resilience and livability in their development model with superior 
performance.   

1. Introduction 

1.1. Overview 

With an estimated population growth of 6.7 billion in cities globally 
by 2050, multifaceted intelligent urban systems form the norm (Sun 
et al., 2020). In the midst of unfettered urban flux, Laissez-faire ur-
banization has drenched the leapfrogging possibilities of smart solutions 
and digital intelligent platforms to turn cities into more liveable units 
thus, failing to offer a dignified standard of living to the urban in-
habitants (Calzada, 2017). Digital solutions provide opportunities for 
development, at the same time pave ways for abuse and entail a litany of 

challenges (DeRolph et al., 2019). The use of smart technologies in cities 
have intensified beyond borders of utilitarianism to the extent of 
implying pressure on infrastructure (Lee et al., 2021). When rethinking 
strategic autonomy in the digital era, smarter cities, a paradigm beyond 
smart cities framed to optimize challenges, present a mesmeric case in 
tremendously ameliorating interconnectivity with less focus on creating 
value for urban inhabitants (Boykova et al., 2016). These smarter cities 
are moving up the ladder of digital development where 
techno-centricity takes the driver’s seat (Yigitcanlar and Lee, 2014). 
Digital solutions in cities scale with users (Hatuka and Zur, 2020). 
However, embarking on technological development beyond a point 
where technology has met the user requirement, involves risk. Despite 
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smart technologies being a prerequisite in intuitively bridging gaps and 
concerns of urban inhabitants, the bureaucratic barriers have led to an 
uncoordinated drive for the technologies to scale when attempting to 
engage city residents for these technologies to work (Ramboll, 2020). 
Smart city experience of today focus on city dwellers as a means for 
testing smart solutions with less concern being paid on their values, 
beliefs, and livability (Mouratidis, 2021). When scaling technological 
developments within the urban context, the concept of livability re-
quires special attention, as people and their interactions are the key 
drivers for technologies to find their application in the smart ecosystem 
(Sutriadi and Noviansyah, 2021). To continue, without human settle-
ments, cities don’t exist and thus focusing on the concerns of city resi-
dents and including the dimensions of people and communities with 
economic and environment pillars when addressing the concept of smart 
city is crucial for sustainable outcomes. However, being smart and 
sustainable too cannot fully improve all the key “quality-of-life” aspects 
and foster livability (Yigitcanlar and Lee, 2014). 

The concept of livability can transform intelligent units into habit-
able spaces (Pan et al., 2021). However, techno-centric development 
must not only focus on livability as the soul to an endurable unit, but 
also on the ability of a city to rebound post stress, thus offering a 
dignified standard of living to the urban inhabitants. Cities are often 
vulnerable to unexpected predicaments such as economic upheaval, 
anthropogenic disruptions, climate change, geopolitical instability, 
public health crisis, and diplomatic embargos (Ukkusuri et al., 2021). 
Smart cities of today despite realizing the importance of resilience are no 
exception to these uncertainties. The Covid-19 outbreak in Wuhan, 
central China is a classic exhibition of insufficient city resilience (Chu 
et al., 2021). The Covid-19 pandemic has left lime lighted questions on 
urban resilience and livability of tech-driven smart cities around the 
globe (Feng et al., 2022). The pandemic paradigm has left opportunities 
for smart, sustainable, and mega-cities to optimize urban systems to 
cope with future external disruptions for a sustainable, liveable, and 
resilient habitable unit. Thus, it is seen that the failure of holistic 
thinking in optimizing development challenges has resulted in sceptics 
raising concerns on whether the aspiring smarter cities of today or the 
cities that claim to be smart and sustainable hold a striking balance 
between livability and resilience. Thus, the central agenda when making 
incremental technological improvements in smart and sustainable cities 
must include the traditional involvement of people and strategies to 
address the challenges in an urban scale; in short, resilience and 
livability. Thus, co-creating livability and resilience in cities to scale 
artificial intelligence (AI) solutions in a sustainable manner has become 
a top priority. It is incredibly important to explore and understand how 
smart cities address the concept of resilience and livability and to what 
extent ranked smart cities address these paradigms in planning for next 
generation cities. It is unclear so as to, ‘Where does the world cities that 
are smart, smarter, and smart-sustainable fall within the dimensions of 
resilience and livability?’ 

1.2. Research significance and objectives 

Smart cities are complex urban ecological systems built to optimize 
challenges and improve the residents quality of life with the ubiquitous 
use of data (Alsarayreh et al., 2020; Shehab et al., 2021; Kutty et al., 
2022). However, the vision of smart cities goes beyond the use of in-
formation and communication technologies (ICT) for better resource use 
and fewer emissions for most (see: Albino et al., 2015; Mohanty et al., 
2016; Akande et al., 2019; Sharifi, 2019). While, it means smarter urban 
transport networks, upgraded water supply and waste disposal facilities 
and more efficient ways to light and heat buildings for some (see: 
Ahvenniemi et al., 2017; IEEE, 2022). It also means a more interactive 
and responsive city administration, safer public spaces, capacity to 
absorb, recover and prepare for future shocks and, meeting the needs of 
an aging population for others (see: UNESC, 2016; ITU, 2016). Despite 
the literature explaining the concept of smart cities abundantly, with the 

concept expanding over the years, currently there is still not yet a 
common and acceptable definition for the smart city concept (Arafah, 
and Winarso, 2017). To support the implementation of the multifarious 
smart city concept, it is crucial to measure the performance of cities with 
the aim to historically document their strengths and weaknesses, for the 
scope of future improvements and to inform interested stakeholders 
about the level achieved in different target goals. Smart city assessment 
tools and models present city-rankings, revealing the best (and the 
worst) places for certain activities, which is pointed out by literature to 
be a central instrument for assessing the attractiveness of urban regions. 
Several smart city assessment tools and frameworks exist such as the 
smart ranking systems developed by the University of Vienna, the 
Intelligent Community Forum’s Smart21 communities, the Global 
Power City Index, the Smarter Cities Ranking, the World’s Smartest 
Cities, the IBM Smart City, and the McKinsey Global Institute rankings 
(Albino et al., 2015). However, an exhaustive overview of the frame-
works, rating systems, and number of indicators, for the aforementioned 
smart city assessment tools and models, conducted by Albino et al. 
(2015), revealed a lack of thematic focus on the multi-dimensional 
concept of the expanding smart city concept and the omission of the 
indicator typologies. 43 indicator frameworks were scanned for in-
dicators that could be related to the CITYkeys pre-selected subthemes 
and thus potentially be used for the CITYkeys framework. Based on this 
inventory analyzed by Neumann et al. (2015), it is reported that in 
general terms, the analyzed frameworks suggested that the availability 
of the key performance indicators (KPIs) were saturated. It also reported 
the following gaps in terms of the indicator availability: multilevel 
governance and economic vibrancy, education, employment, scalability, 
accessibility, and replicability. The report suggests that there was a 
significant variation in the coverage of different sub-themes, including 
for instance the “energy and mitigation” and “environment” sub-themes 
(Neumann et al., 2015). To continue, there have also been several ap-
proaches to standardize the indicators from which the frameworks or 
rankings can provide an assessment for smart city implementation. 
Recently, Huovila et al. (2019) provided a quite extensive comparative 
analysis of existing standardized indicators for smart city assessment. 
The analysis provided by Huovila et al. (2019) indicated that there is a 
lack of balance between the different indicators, namely between the 
indicators related to sustainability and smartness. There is also a strong 
emphasis on the smartness indicators (ISO-37120:2018, 2018; Sharifi, 
2019). Huovila et al. (2019) affirms that International Organization for 
Standardization (ISO), European Telecommunications Standards Insti-
tute (ETSI), and Sustainable Development Goal 11 are well documented, 
but the International Trade Union (ITU) standards have a short defini-
tion of the indicators. The well-known indicator sets proposed by the 
ITU under the ‘United 4 Sustainable Smart City’ (U4SSC) initiative to 
shape future cities focus only on integrating sustainability with smart-
ness under the dimensions: Economy, Environmental and, Society and 
Culture (ITU, 2016). Despite targeting the soul agenda of urban smart-
ness and sustainability, the initiative promises on making future cities 
more resilient. However, the indicators under U4SSC fails to address 
urban resilience in depth across multiple dimensions of resilience. 

Thus, it is seen that many of the existing smart city assessment 
frameworks and tools are mainly used for promotional purposes and 
very few for an evaluation of what actually should be done in order to 
increase the performance of future developments in terms of resilience 
and livability along with urban smartness. When a city is planned to be 
smart, it is a must to prepare the city to be resilient at all times (Arafah 
and Winarso, 2017). Further, to mitigate the negative effects of urban-
ization in cities, it is an essential target of sustainable smart cities to 
transform dwelling units into livable spaces (i.e., urban livability) - a 
concept clearly underrepresented in the smart city frameworks analyzed 
(Benita et al., 2021). Thus, envisioned to discretely answer the call of 
improved local livability and susceptance to unexpected predicaments, 
it is seen that the effective implementation of city resilience and urban 
livability face numerous obstacles. A recent review published by 
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Ramirez Lopez and Grijalba Castro (2021) on resilience in smart cities 
revealed a lack of integrity in practically addressing the 
multi-dimensional facets of city resilience, where a biocentric vision of 
territorial urban planning and capacity building is undertaken than a 
human centric approach to better living. Similarly, a review conducted 
by Paul and Sen (2020) revealed that the developed western cities that 
often act as benchmarks for Dickenson cities account the livability from 
a physical aspect (such as mobility options, transit-oriented design, and 
fiscal supremacies) than from a socio-economic perspective. It is to note 
that, shocks are meant to occur within cities that are termed smart, but 
to what speed can the cities rebound to their natural state is a question 
that institutions and policy makers must answer to better protect cities 
when under chaos. This requires a standardized lens for city leaders to 
analyse the resilience capacity to position adaptation to unexpected 
predicaments and livability frame of reference to envision a human 
centric development targeted for better living standards. 

In vain, the livability and resilience paradigm have been used 
interchangeably in several contexts targeting the soul agenda; quality of 
life with a smart growth strategy to rebound post-stress. Given the 
intrinsic element of kinship between urban resilience and livability, it is 
crucial for planners and policy makers to analyse these paradigms under 
a generalized frame of reference tailored across multiple aspects. Thus, 
investigating smart city development from a broader strategic vision in 
light of resilience capacity and livability is crucial. For the same, several 
assessment approaches exist such as the non-parametric optimization 
based techniques like the data envelopment analysis, composite index 
based scoring, GIS and remote sensing based assessments and many 
more. Machine learning (ML), a subset of artificial intelligence (AI) has 
recently gained immense attention owing to its ability to effectively 
determine the relationship between the input features and the response 
variable (s) in a complex system (Wakjira et al. 2021, 2022; Hwang 
et al., 2021). Despite their great capability, machine learning models are 
rarely applied in the field of resilience and livability assessments in an 
urban scale. In this research, a large dataset of smart cities has been 
collected and used to propose a novel machine learning based frame-
work for the assessment of resilience and livability of smart cities. 
Several machine learning classification and predictive models are built 
to understand the level of resilience and livability of smart cities based 
on a pre-defined set of indicators under multiple aspects. Thus, the ML 
algorithms would predict whether a city/smart city with specific 
ranking is resilient, livable and whether or not they co-create resilience 
and livability in their urban development model. To this end, this 
research targets to achieve the following objectives as to;  

a) Present a novel two-stage framework combining metric-distance 
based multivariate analysis with machine learning techniques for 
the assessment of urban livability and resilience of smart cities based 
on various influential indicators.  

b) Conduct a comprehensive assessment of city resilience and livability 
of 35 leading European smart cities as the case to identify their 
coping capacities based on their clustered performance as high, 
medium, and low. 

c) Predict the degree of livability and resilience, as categorical vari-
ables, based on the values of the indicators under each aspect of 
resilience and livability using machine learning classifiers.  

d) Compare and select the best classifiers based on coefficients such as 
model accuracy and precision to predict the degree of aggregate 
performance as the classification output. 

2. Background review 

2.1. The evolution of urban resilience and livability 

Ecological modernization and socio-biophysical uncertainties in 
cities have raised consensus of urban planners in the opinion to include 
the concepts of livability and resilience in the existing development 

model. Since the classical era, Aristotle in his best-known work Ēthika 
Nikomacheia mentions the term “Eudaimonia” which means living a 
reconciled life (Yu, 2001). American psychologist Carol Ryff in 1989 
extended Aristotle’s Eudemonic well-being of what she regarded as 
psychological well-being under: autonomy, personal growth, 
self-acceptance, sense of purpose in life, environmental mastery and 
positive relations with others (Ryff, 1989). Thus, livability is known 
from ancient time dating back to Plato and Aristotle, with a plethora of 
conceptualization at different period of time. The late 1960s and 1970s 
saw the emergence of livability with The Electors Action Movement 
(TEAM) in Vancouver, as a people-centric concept to the then existing 
growth-centred approach on the economy. Geographer David Lay 
argued on the existing livability approach of late 1970s as a discursive 
approach to showcase political power amidst the quality-of-life propo-
sition (Lay, 1980). In 1981, Donald Appleyard, an American landscaper, 
introduced livability in the field of urban planning and design for the 
first time through his book ‘Liveable streets, protected neighbourhoods’. 
Appleyard et al. (1981) characterised livability as an unmeasurable 
definition to the quality of life through urban redevelopment plans, 
focusing on the infrastructure and transportation sector. Appleyard 
mentions that cities have different stage of attractiveness and thus 
different stage of livability. A Liveable city is one where people aspire to 
live and can afford to live (Newman, 1999). The late 1990s′ in the view 
of scholars was an era that focused on livability discourse as a means to 
address the concerns of the elite class and nobles; a neo-liberal agenda 
(Uitermark, 2009). The 21st century saw the use of livability as an 
integrative concept that connected human values with the social envi-
ronment, rather than a profit-centred development agenda. Brenner 
et al. (2009) in his publication ‘Cities for People, Not for Profit’, ex-
emplifies livability as “an alternative, post-capitalist form of urbaniza-
tion.” There are many criteria that define livability of a city, where the 
criteria defining livability is either objective or subjective to an in-
dividual’s personality, culture, national background, traditions, and 
expectations. Dutch sociologists Tonkens and Constandse however ar-
gues on the objective notion of livability in cities, as it rips 
human-centric urbanization with the division of functionalism on cities, 
thus tarnishing the social fabric of community-living (Kaal, 2011). Thus, 
livability in modern era is a malleable concept translated into spatial 
levels to add quality to human lives, conceptualized under diverse 
contexts (Higgs et al., 2019). 

Livability is obtained by re-creating small neighbourhoods so-called 
new urban villages with an eye to combat unprecedented urbanization 
(Weichselgartner and Kelman, 2014; Benita et al., 2021). These so-called 
urban villages are a part of complex ecological systems that are sus-
ceptible to several shocks and operate under numerous exogenous and 
endogenous uncertainties. Dealing with uncertainties is crucial for cities 
to thrive when attempting to recover from adversity (Nitschke et al., 
2021). Building resilience in ecological systems is a vital endeavour 
towards reducing the exposure to extreme events and peace-building in 
city (Sanchez et al., 2018). Etymologically the word “resilience” origi-
nates from the Latin word “resilio”, meaning “to-bounce back” (Many-
ena et al., 2011). Resilience planning dates back to the ancient era, long 
since the Romans in 4th Century BC built the Cloaca Maxima sewer 
pipeline; a flood resilient sewerage network system (Galderisi et al., 
2020). Resilient studies focus on understanding a systems performance 
pre and post disruptive events (Hudec et al., 2018). Reggiani et al. 
(2015) identifies resilience as; the ability of a regional system to return 
to equilibria post disruption (engineering resilience), or the extent to 
which urban systems can handle chronic stresses and shocks (ecological 
resilience). Martin (2012) recognizes adaptive resilience as the ability of 
a system to reorganize post stress to facilitate system operation through 
endless change and reduced recursion of shocks. While Lagravinese 
(2015) defines economic resilience as an adaptive capacity of region-
s/local areas to resist recessionary shocks. Socio-ecological resilience as 
identified by Rodin (2014), recognizes urban system as a nonlinear 
system susceptible to change in an evolutionary pattern. The fact that 
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cities are socio-ecological systems, which feature dynamic interactions 
across time and space, implies that the adaptive approach to resilience 
can provide a more suitable theoretical basis for conceptualizing urban 
resilience (Sharifi and Yamagata, 2016). To achieve, maintain, and 
strengthen these abilities, any urban system should entail the following 
criteria: robustness, stability, flexibility, resourcefulness, coordination 
capacity, redundancy, diversity, foresight capacity, independence, 
connectivity and interdependence, collaboration capacity, agility, 
adaptability, self-organization, creativity and innovation, efficiency, 
and equity (Sharifi and Yamagata, 2016). A detailed explanation to 
these criteria can be found in Sharifi and Yamagata (2014, 2016). The 
degree of resilience can support explanations on why some regions are 
capable to withstand stress and the reason some adversely affected re-
gions recover in a relatively brief period of time post disaster compared 
to other regions. When thinking about these criteria as the base of urban 
resilience system, it should not be forgotten that synergies and trade-offs 
exist between some of them. For instance, improving redundancy may 
have adverse implications for efficiency of the system. Or a balance 
point between independence and connectivity may differ from one 
context to another and, generally, finding balance between these two 
may turn out to be challenging (Sharifi and Yamagata, 2016). Thus, the 
concept of urban resilience and livability is multi-dimensional and does 
not hold a ‘fixed boundary’ in terms of its definition and interpretation. 

2.2. Are smart cities addressing resilience and livability? 

Transforming a city into being smart with the use of innovative 
technologies is vital and inseparable to achieve better living standards 
for urban residents (Mdari et al., 2022). Smart cities are vessels of in-
telligence and an efficient incubator of empowered spaces which clearly 
holds tight the importance of the themes: intelligence, well-being, 
resilience, and spatial development (Rios, 2012). Although these con-
cepts are of high importance, they are addressed only marginally by 
several authors in their proposed definitions of the smart city. Livable 
cities shape residents to be better citizens, intelligent scientists, potential 
workforce, effective policy reformers and better enablers of smart ser-
vices (Kutty et al., 2020; Kutty et al., 2020a). While resilient cities act as 
shields against undesirable externalities by working in ‘smarter ways’ 
with relentless focus on civic life and communities’ adaptive capacities 
(Patel and Nosal, 2016). Thus, an intimate philosophical kinship exist 
between these paradigms. In vain, livability and resilience paradigm 
have been used interchangeably in several context targeting the soul 
agenda; quality of life with a smart growth strategy. 

Despite philosophical kinship between both the paradigms, their 
application has spanned across diverse dimensions specific to social 
needs and diverse functionalism of cities. Although the objectives 
remain same, i.e., to enhance quality of living and provide a sustainable 
way of life to the inhabitants, most cities have diversified this objective 
to attain city specific goals to meet the needs of city dwellers. The 
Russian capital city Moscow addresses the bedeviled road traffic 
congestion issues by initiating alternative mobility plans and imple-
menting intelligent transport systems (a clear example of pan-city 
development) geared at delivering a sustainable mode of work and life 
to the citizens (Golubchikov and Thornbush, 2020; Danilina and Slep-
nev, 2018; Chudiniva and Afonina, 2018). In Jaffa-Tel Aviv, the smart 
city practice is viewed as an ideal strategy to tackle the prevailing 
challenges of education, health, sanitation, and culture to promote 
sustainable development and community well-being (Toch and Feder, 
2016). In the case of Singapore, the smart city program focuses on big 
data by implementing a nationwide network of digital sensors intended 
to provide city officials with real-time information on the happenings of 
the city by gathering, allocating, analyzing, and interpreting the data 
with the sole objective of transforming the country into an intelligent 
nation (Shamsuzzoha et al., 2021). Thus, offering a dignified standard of 
living to the citizens through smart practices. While the Msheireb 
downtown smart city project in Doha, Qatar which is an urban 

regenerative development program built with a strong and unique 
Qatari identity complementing Islamic architectural language aims at 
delivering a better and a greener standard of living to its citizens and 
expat community (Kucukvar et al., 2021; Sharif and Pokharel, 2021). 
The city intends to practice green transportation system by adopting 
zero emission mobility-electric tram system (Kucukvar et al., 2022; 
Kutty et al., 2020b). In addition, it also focuses on another important 
goal, which is to transmit knowledge and diversify the broadband con-
nectivity. This initiative would aid the community to attract foreign 
investments into their market thus helping in boosting the smart econ-
omy with a touch of livability (Ringel, 2021). To understand the 
vulnerability of smart city development to climate change, nature 
based-solutions are integrated with built-up spaces to improve livability 
under the Smart City Mission in Bhubaneshwar, India (Pandey, 2021). 
Livability conditions were assessed in the city of Bhopal, India for smart 
mobility services based on socio-economic profiling (Chatterjee et al., 
2020). Administrators in the city of Bhopal believe smart transportation 
as a measure to integrate community needs for economic and social 
development. Thus, a smart city can be viewed as a multi-objective 
concept tailored to achieve livability. 

Reconfiguring urban development in light of sustainability requires 
integrating resilient features with digitalized smart solutions (Shmelev, 
2016). The existing research on the urban resilience framework is 
mainly divided into two directions. One is a comprehensive resilience 
framework research based on multiple dimensions. The Rockefeller 
Foundation and ARUP proposed the city resilience framework (CRF) in 
2014, which includes Health & Wellbeing, Economy & Society, Infra-
structure & Environment and Leadership & Strategy (Arup and Rock-
efeller Foundation, 2014). Cutter et al. (2008) developed the disaster 
resilience of place (DROP) and baseline resilience indicators for com-
munities (BRIC) to provide the baseline of measuring community resil-
ience from the perspective of community capital. Jabareen (2013) 
attempted to establish a multidisciplinary conceptual framework to 
support urban resilience, thus proposing the resilient city planning 
framework (RCPF). Moreover, the disaster resilience scorecard devel-
oped by UNISDR assessed community resilience from the perspective of 
ten key tasks of disaster prevention and mitigation (UNISDR, 2004). A 
quick risk evaluation tool developed by UNISDR assessed community 
resilience from the perspective of required abilities to cope with com-
mon disasters derived from the Sendai Framework for Disaster Risk 
Reduction 2015–2030 (UNISDR, 2014). The other direction is an urban 
resilience framework based on specific risks or a single system. A 
resilience-based ontology was structured to assess and elaborate the real 
time data streams from smart city technologies in the city of Florence, 
Italy under the RESOLUTE project (Bellini et al., 2017). A real-time 
assessment of dynamic resilience of smart infrastructures was made 
possible through the Smart Resilience Project (SRP) by constructing a 
benchmarking matrix, the “resilience cube” (Jovanovic et al., 2019). 
The impact of critical infrastructure retrofits; smart rainwater harvesting 
mechanism on urban resilience was studied by Oberascher et al. (2021). 
To understand the impact of smart city development on urban resilience 
in China, Zhou et al. (2021) constructed an urban resilience model, 
where policy performance was assessed using the PSM-DID approach. 
While, based on the geomorphological characteristics, a mixed approach 
using machine learning (ML) classifiers and GIS was used to identify the 
hotspot areas prone to flood in Lisbon city, Portugal by Motta et al. 
(2021). A flood risk index was then constructed for the city within every 
100 m3 cell. To improve the power distribution network resilience in 
Milan, Italy, Bosisio et al. (2021) used ML with GIS algorithm to un-
derstand the surges in the network under variable load conditions. 

2.3. Bringing machine learning to smart city research 

Machine learning (ML) is a hypernym term that encompasses several 
tools and techniques to explicitly perform tasks based on self-learning 
and adapting to patterns on their own (Alpaydin, 2020; Abdella et al., 
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2020). ML models assist in understanding system behaviours by 
executing functions through learned trends and patterns rather than any 
predefined set of procedural codes (Abdella et al., 2021). ML techniques 
also play a significant role in the areas that aim to foster smartness and 
sustainability from a city level perspective. Majumdar et al. (2021) used 
ML approaches to predict the congestion propagations on road networks 
using a LSTM network architecture based on motor vehicle speed data. A 
univariate and multivariate predictive model was built, and the pre-
dictive accuracy of the models were estimated. Wang and Gohary (2017) 
proposed several data-driven predictive models to understand the level 
of building energy in terms of consumption for smart infrastructures. 
Here, prediction using the smart metrices from historic data, along with 
feature selection identifying the required data quantity were based on 
ML algorithms. While, LASSO algorithm dealt with feature selection, 
three ML techniques were used for model implementation and testing. 
Nutkiewicz et al. (2017) combined data driven machine learning model 
with an energy simulation model to address the influence of transition 
spaces on building energy usage. The integrated model provided rec-
ommendations in addressing sustainable practises at the building 
design, management, and energy utilization phases. Li et al. (2019) 
developed and implemented an improved deep machine learning model 
by integrating genetic algorithms (GAs) and the extended Kalman filter 
(EKF) for effective computation, prediction, and accuracy of infra-
structure smartness. This modified deep belief network (DBN) was 
trained using a back-propagation algorithm (BP-DBN), or new algorithm 
based on EKF. Gómez et al. (2020) used supervised modelling to develop 
a sustainability category forecasting framework to assess the compre-
hensive community perspective at micro territorial levels. The 
decision-making model used ML tools such as decision trees (DT), sup-
port vector machines (SVM), and artificial neural networks (ANN) to 
develop a sustainabile development index (SDI). Considering time 
dimensionality, Sehovac et al. (2019) developed a novel energy load 
forecasting method integrating RNN with Sequence-to-Sequence (S2S) 
deep learning algorithm. Two S2S models namely Gated Recurrent Unit 
(GRU) and LSTM were used to test electrical data consumed by a single 
building level post-smart retrofits at different forecasting lengths. 

2.4. Research novelty and state-of-the art 

It is seen that urban resilience and livability paradigms share 
multidimensionality (Bruzzone et al., 2021). Most of the existing resil-
ience framework do not address socioecological and multi-dimensional 
facets of city resilience (Zhou et al., 2021). Indeed, most of the urban 
resilience assessments focus on addressing risk-specific events including 
natural calamities like flood, earthquake etc. with mere consideration of 
social connectivity, institutional resilience, and infrastructural aspects. 
Similarly, the current livability indices address quality of life from a 
materialistic point of view, ignoring well-being and other social aspects. 
The well-known Economist Intelligence Unit (EIU) ‘Global Livability 
Index’ (GLI) fails in addressing many environmental factors such as the 
access of green urban areas, sports, and recreational facilities, popula-
tion claiming to suffer from noise pollution and, to what extend the 
citizens are active in the city (O’Sullivan, 2020). 

In addition, most of the studies have used ML techniques to under-
stand the smartness of cities across each Giffinger’s dimensions with 
relatively no studies focusing on the use of ML techniques to understand 
resilience and livability in smart cities as a joint analysis. To continue, 
none of the studies have attempted to capture resilience and livability 
using ML techniques from a broader picture including a mix of materi-
alistic and socio-economic conditions, political commitments, and resi-
dent engagement all under an indicandum. The use of ML classifiers in 
predicting the degree of resilience and livability of smart cities across a 

broad spectrum of themes is unique. Furthermore, the subjective 
weights assigned to indicators often increases uncertainty in the scores 
analyzed (Becker et al., 2017; Gan et al., 2017). Similarly, the use of 
equal weights for indicators ignores the relative importance and 
trade-offs between the indicators used in the assessment process (Para-
cchini et al., 2008; Greco et al., 2019). Composite indices developed by 
international organizations and institutions choose simplicity as the best 
methodological option. The current existing livability indices such as the 
OECD ‘Better Life Index’ and the EIU Global Livability Index, which act 
as the ‘best’ among many existing performance assessment frameworks 
for livability are all based on equal weights assigned to each indicator, 
dimensions, and sub-dimensions. Similarly, the well-established Arup 
‘City Resilience Framework’ uses expert-based weights for all the in-
dicators, aspects, and sub-aspects within the framework to construct a 
composite index to quantify resilience. Research has it that, unbiased 
and credible weighting schemes can deliver impressive gains in classi-
fication accuracy, while offering greater transparency, interpretability, 
and robustness (Card et al., 2019). Thus, to this end, this research at-
tempts to close the prevailing knowledge gaps by proposing a novel 
two-stage joint assessment framework for resilience and livability 
assessment with several novel elements within as follows;  

a) First of its kind joint analysis in smart cities using machine learning 
techniques that considers the intricate facet of connectivity lodged in 
the urban resilience and livability concepts for smart cities.  

b) The livability assessment presented in this research includes a mix of 
materialistic and socio-economic conditions that intertwine each 
other to support the multidimensional perspective of livability; a 
unique approach least applied to the current existing livability 
frameworks.  

c) The urban resilience indicators chosen for the assessment is unique in 
its ability to access the potential response capacity of city from a 
multi-dimensional perspective that includes political commitments 
and resident engagement.  

d) An unbiased novel weighting scheme based on the relative metric- 
distance with reference to a benchmark entity being processed in 
the observed set is used to score and rank the performance of smart 
cities under multiple aspects of the resilience and livability 
framework. 

3. Methodology 

Integrated approaches can appear to be overly complex, however 
offers ways to resolve vagueness and uncertainties. The current study 
proposes a novel two-stage assessment framework combining multi-
variate analysis and various machine learning models for the first time 
to thoroughly investigate the resilience and livability of smart cities over 
time using a set of indicators. For this purpose, 35 leading European 
smart cities were chosen as the case study with data spanning across 
2015 till 2020. To build consensus on the weights assigned to indicators, 
it is important to use concrete methods that remove subjective prefer-
ences unlike the most commonly sought equal weights and expert-based 
weights. For the same, in stage 1, a novel metric-distance based 
weighting and scoring approach is used initially to assign weights to all 
the indicators and obtain desired scores for each aspect under resilience 
(social, economic, infrastructure and built environment and, institu-
tional resilience) and livability (accessibility, community well-being and 
economic vibrancy). In stage 2, two types of data-driven analysis are 
performed namely; clustering as one of the unsupervised machine 
learning technique and classification, a supervised ML technique. The 
Fuzzy c-means clustering algorithm as a simple clustering technique is 
used to identify the optimum number of clusters and label the smart 
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cities to different clusters based on their performance as high, medium, 
and low. The classification techniques, Naïve Bayes, k-nearest neighbor 
(kNN), support Vector Machine (SVM), Classification and regression tree 
(CART), Random Forest (RF), and Gradient Boosting Machine (GBM) are 
used to predict the level of livability and resilience of smart cities, as 
categorical variables, based on the values of the indicators under each 
aspect of resilience and livability. A total of 68 indicators (30 livability 
indicators and 38 resilience indicators) were used in computing the 
aggregate performance and building predictive models. The schematics 
of the machine learning techniques and proposed model in this study is 
shown in Fig. 1. 

3.1. Research data and description 

In this study, 35 top ranked European smart cities selected as per the 
ranks published in the IMD-SUTD Smart City Index 2020 were chosen to 
study the resilience and livability performance of smart cities. The Smart 
City Index 2020 ranks cities based on economic and technological data, 
as well as by their citizens’ perceptions of how “smart” their cities are. 
Due to these cities covering nearly three-quarter of the list of top 50 
leading global smart cities, the sample size is fairly large for the results 
to be economically extrapolated to a global level when understanding 
resilience and livability in the current smart city development models. 
For the purpose of the present study, it is important to establish a 
working definition of livability and resilience in the context of smart 
cities. Livability describes the frame conditions of a decent life for all the 
inhabitants of cities, regions and communities including their physical 
and mental wellbeing. Livability is based on the principles of sustain-
ability and smartness and thus is sensitive to nature and the protection of 
its resource. As a special focus to improve livability in smart territories, 
we consider three prime aspects that are relevant to livability namely; 
accessibility (Ziemke et al., 2018), community well-being (Phillips et al., 
2014; Chao et al., 2017), and economic vibrancy (Schnitzler and 
Shmelev, 2019). Accessibility is that aspect which aims to create an 
urban environment that all citizens have easy access to urban services, 
as accessibility reflects the quality of an urban environment; Planning 
for community wellbeing means identifying strategies and actions that 
will help people live healthy, happy, and fulfilled lives; Economic 
vibrancy is the characteristics of an economy that is vibrant and 
continuously contributing to the health and well-being of people and 
communities by providing economic security and access to opportu-
nities. While resilience describes the vulnerability of a city to various 
shocks and disturbances from the outside world and itself. Thus, resil-
ience assessment in smart cities helps in understanding and thus guiding 
the future of the city with the concept of adaptability. We consider the 
fact that the resilience of a system depends on the resilience of 
sub-systems, which comprise infrastructure and built environment 
resilience (Masoomi, and van de Lindt, 2019), institutional resilience 
(Guiraudon, 2014), economic resilience (Williams and Vorley, 2014; 
Bastaminia et al., 2017) and social resilience (Säumel et al., 2019; 
Copeland et al., 2020). Social resilience is a function that involves de-
mographic characteristics and people’s ability to acquire resources; 
economic resilience refers to the economic vitality of a local community 
and the diversity of the economic environment, which can ultimately be 
attributed to ensuring the stability of residents’ livelihoods; institutional 
resilience refers to the region has extensive disaster experience, disaster 
reduction planning and resources, including local government efforts to 
increase disaster awareness and residents’ disaster preparedness; infra-
structure resilience refers to the ability of a community to recover from 
and respond to disasters and infrastructure damage. To continue, a core 
component of completing a resilience and livability assessment is 
identifying the initial indicators to assess resilience and livability and 

measure their progress over time. However, the indicators are not 
conceived as a defined set of measurements but rather as a guide to 
understanding and strengthening resilience and livability in cities that 
are claimed to be smart. The main purpose of the indicators is to assist 
communities in developing livability/resilience-strengthening strategies 
that encourage innovation, socio-ecosystem protection, and beneficial 
interactions across several urban aspects relevant to resilience and 
livability. While there are no cardinal rules or set procedures to be fol-
lowed in selecting indicators, all the indicators for this study were 
selected from the existing literature on resilience and livability across 
multiple aspects (see Table S1 and Table S2) according to whether or not 
they are relevant to the issue they are intended to describe, thus helping 
maximize the usefulness of the information for decision-making. All the 
data for each indicator across years from 2015 till 2020 were collected 
from the city statistics database of European commission (https://ec. 
europa.eu/eurostat/web/cities/data/database) and the OECD regional 
and cities statistics (https://stats.oecd.org/). The indicators and aspects 
selected for urban livability and city resilience along with their desir-
ability values are presented in Table S1 and S2 (Appendix A), respec-
tively. A correlation matrix is often used to summarize data, as an input 
into a more advanced analysis, and as a diagnostic for advanced ana-
lyses. The correlation matrix, which shows the correlation coefficients 
between the indicators under various aspects of urban livability and city 
resilience used in the study is shown in Figs. 2 and 3, respectively. This 
matrix is symmetrical, with the same correlation shown above the main 
diagonal being a mirror image of the values below the main diagonal. 
Table S3 and Table S4 in appendix present the descriptive statistics of all 
the urban livability and city resilience indicators for the average annual 
data (see Fig. 3). 

3.2. Non-dimensional normalization 

Multi-criteria performance indicators have different measuring units 
(Abdella et al., 2019). To remove the variability and achieve dimen-
sional consistency, all these compound indicators must be normalized 
(Abdella et al., 2017). Research has shown that normalizing data before 
evaluating it on classifiers impact the classification performance 
(Quackenbush, 2002). Several data normalization techniques exist in 
literature such as; linear scaling (Latha and Thangasamy, 2011), 
median-MAD normalization (Eesa and Arabo, 2017) clipping (Choi 
et al., 2016), z-score (Saranya and Manikandan, 2013), log scaling 
(Shier, 2004), Double-sigmoid (Jain et al., 2005), Tan-h normalization 
(Farmanbar and Toygar, 2016) and many more. Some of these 
normalization techniques have been used and tested for accuracy by 
many researchers for the improvement of the classification performance 
in the area of machine learning. However, these pre-processing methods 
cannot be generalized, and no method has yet been claimed to be su-
perior to the other (Singh and Singh, 2020). That being said, Min-max 
[0, 1] normalization method was reported the best when compared to 
some existing normalization methods (e.g., z-score, tanh, 
Quadric-Line-Quadric, mean-centred, Sigmoidal, and decimal scaling) 
for the classification of data on SVM (Lin et al., 2008), Induction Deci-
sion Tree classifier (Al-Shalabi and Shaaban, 2006), k-NN (Su et al., 
2016), Probabilistic Neural Network (Kadir et al., 2013) and XGBoost 
(Borkin et al., 2019) classifiers. Thus, in this study, in the data 
pre-processing stage, the linear min-max scaling, a common data 
normalization technique is used, which when applied to data belonging 
to various field has shown significant accuracy on the classification 
performance. The overall indicator-matrix in time t, t + 1,…, t + N,

denoted by Xk
ijt,t+1 … t + N, when considering the ith indicator column 

under the kth aspect for the jth smart city under study is as shown below:  
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Fig. 1. Proposed machine learning techniques for the resilience and livability assessment of smart cities.  
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Fig. 2. Correlation matrix for all the indicators under each aspect of urban livability.  

Fig. 3. Correlation matrix for all the indicators under each aspect of urban resilience.  

A.A. Kutty et al.                                                                                                                                                                                                                                 



Journal of Cleaner Production 378 (2022) 134203

9

where i = 1,2,3 …. m; j = 1,2,3 … n and; Xk
ijt, Xk

ijt+1, and Xk
ijt + N represent 

the ith indicator column under the kth aspect over time t, t+1, and t + N, 
respectively for the jth smart city considered for the assessment. 
Initially, the indicators are categorized based on the degree of desir-
ability i.e., on how an indicator would contribute to the outcome of the 
phenomenon to be estimated (see Table S1 and Table S2). If the indi-
cator value contributes in a positive manner to the desired outcome, it is 
ascribed as a positive-indicator (e.g., in the selected city resilience in-
dicators, the indicator “span of bicycle network per km2” has ‘positive’ 
desirability). Other else, the indicator is attributed as a 
negative-indicator (e.g., the indicator “Percentage of population with no 
access to health insurance coverage” has ‘negative’ desirability among 
the other urban livability indicators). 

The normalized scores for the positive-indicators are calculated 
using Eq. (1): 

Xk
ijs = k +

(
Xk

ijs − Mink
js

)
(K1 − k0)

(
Maxk

js − Mink
js
) ;∀s= t, t+ 1,…, t + N (1)  

where Mink
js and Maxk

js are the minimum and maximum values of the jth 
smart city under the kth aspect for over the respective time ‘s’. Eq. (1) is 
further modified to find the normalized scores of the negative-indicators 
(i.e., to reverse the desirability on the normalized score) as shown in Eq. 
(2); 

Xk
ijs = k +

(
Mink

js − Xk
ijs

)
(k0 − K1)

(
Maxk

js − Mink
js
) ;∀s= t, t+ 1,…, t + N (2)  

K1 with an assigned value of 1 is the upper bound, while k0 with an 
assigned value of 0 is the lower bound of the normalized data set. 
Assigning 1 and 0 to the upper and lower bound respectively can give a 
range of unit length to the resulting normalized scores. 

3.3. Metric-distance based weighting and scoring 

Multi-criteria performance assessment combines numerous heter-
ogenous indicators across several aspects in a standardized manner to a 
single synthetic score that explains the behaviour of the phenomenon to 
be measured. In this step, we propose a novel three-step multivariate 
metric-distance based approach to weight the indicators and obtain a 
homogenized score for each aspect under city resilience and urban 
livability. 

First, for a selected set of standardized indicators, Xk
ij =

[
Xk

1j , Xk
2j, …, Xk

mj

]
determined to represent the decision-making 

entities (in this case, European smart cities), the metric distance of a 
homogenous decision-making entity eu = (Xk

1u , Xk
2u , …, Xk

mu) with 
respect to a benchmark entity ev = (Xk

1v, Xk
2v; …, Xk

mv) is calculated using 
Eq. (3) as; 

D(v, u)=
∑m

i=1

|di(v, u)|
σ
(
Xk

i
)

∏i− 1

J
⌢
=1

(
1 − R J

⌢
i

)
(3)  

where, R J
⌢

i is the partial correlation coefficient between Xk
i and Xk

j | (i >

J
⌢

); σ(Xk
i ) is the standard deviation of Xk

i , and di (v, u) is the distance 

between the values of indicator Xk
iu and Xk

iv (i.e., discriminate effect), 
which is obtained using Eq. (4) as: 

di (v, u)= xk
iv– xk

iu, i ∈ {1, 2,…,m} (4) 

To rule out the presence of negative correlation and negative partial 
correlation coefficient, Eq. (3) is further modified to form Eq. (5) as: 

D2(v, u)=
∑m

i=1

⃒
⃒d2

i (v, u)
⃒
⃒

σ2
(
Xk

i
)

∏i− 1

J
⌢
=1

(
1 − R2

J
⌢

i

)
(5) 

Second, adequate weights are assigned to each independent variable 
(indicators). For the same, the stability of each indicator in the overall- 
indicator matrix is looked into by determining the Pearson correlation 
(r) between the calculated metric distances and the indicators. The 
proposed metric-distance approach assigns importance to each indicator 
based on the empirical Pearson’s correlation, rather than subjective 
weights. Furthermore, the calculated metric-distance values and each 
indicator in the overall-indicator matrix are continuous variables, thus 
making bivariate correlation a suitable approach for the analysis. In this 
step, the new weight (wi) is assigned to each indicator (using Eq. (6)) 
established by weighting the Pearson’s r, i.e., the values of the corre-
lation coefficients are divided by the aggregate correlations; where 

∑

wi = 1. 

wi =
ri

∑m
i=1ri

, ∀i = 1, 2,…,m (6)  

ri is the bivariate correlation between the calculated metric-distance 
value and the value of the ith indicator. 

∑m
i=1ri is the sum of all Pear-

son’s correlation coefficients between the indicators and the obtained 
metric-distance value. It is to note that, to calculate the metric-distance, 
a fictive decision-making entity with minimum values for each of the 
indicators in the indicator-matrix is utilized as the benchmark entity, 
since the metric-distance values in the “n-dimensional space” for other 
entities is calculated based on the distance from the benchmark entity. 

Third, the composite score (Sj) for each entity (i.e., smart city) under 
the respective aspect is obtained by following the aggregation process in 
Eq. (7) as: 

Sj =
∑m

i=1
wixk

ij (7)  

3.4. Fuzzy c-means clustering 

Fuzzy c-means algorithm is an unsupervised fuzzy partitioning 
technique used first by Dunn (1973) to partition a dataset X into fuzzy 
groups as outputs with a certain degree of membership. The membership 
matrix [Yjk](c • n) indicates the degree of membership of the jth smart city 
to the kth fuzzy cluster as in Eq. (8), where Yjk ∈ [0, 1]. 

Mf (Y)=

⎧
⎨

⎩

Y ∈ Rc.n

⃒
⃒
⃒
⃒
⃒

∑c

k=1
Yjk = 1; 0 <

∑n

j=1
Yjk < n

Yjk ∈ [0, 1]; 1 ≤ k ≤ c; 1 ≤ j ≤ n

⎫
⎬

⎭
(8) 

Accordingly, with random value initialization of Yjk, Eq. (9) itera-
tively minimizes the objective function: 

Xk
ijt,t+1…t+N =

⎡

⎢
⎢
⎢
⎢
⎣

Xk11t Xk11t + 1 … Xk11t + N Xk21t Xk21t + 1 … Xk21t + N … Xkm1t Xkm1t + 1 … Xkm1t + N
Xk12t Xk12t + 1 … Xk12t + N Xk22t Xk22t + 1 … Xk22t + N … Xkm2t Xkm2t + 1 … Xkm2t + N
Xk13t Xk13t + 1 … Xk13t + N Xk23t Xk23t + 1 … Xk23t + N … Xkm3t Xkm3t + 1 … Xkm3t + N

⋮ ⋮ … ⋮ ⋮ ⋮ … ⋮ … ⋮ ⋮ … ⋮
Xk1nt Xk1nt + 1 … Xk1nt + N Xk2nt Xk2nt + 1 … Xk2nt + N … Xkmnt Xkmnt + 1 … Xkmnt + N

⎤

⎥
⎥
⎥
⎥
⎦
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Kw =
∑c

k=1

∑n

j=1
Yw

jk ‖ xj − ck‖
2  

where, {ck}
c
k=1 represents the centroids of ‘c’ fuzzy clusters, ′w′ is a 

weighting exponent on the membership matrix highlighting the degree 
of fuzziness in the classification output with 1< w <∞, and ‖ ⋅ ‖ is the 
Euclidean p-norm of xj and ck in ℝn. 

The degree of fuzzy membership attributed to each cluster, at every 
iteration, starting from random ‘c’ cluster centroids is calculated using 
Eq. (10) as follows; 

Yjk =
1

∑c
p=1

(
‖xj − ck‖

‖xj − cp‖

) 2
w− 1

(10) 

According to the fuzzy membership values, the centroid of each 
cluster is then computed using Eq. (11) as follows; 

Ck =

∑n
j=1Yw

jk ⋅xj
∑n

j=1Yw
jk

(11) 

The iterative optimization is terminated on satisfying the condition 
in Eq. (12) i.e., when the centroid of each cluster remains the same. 
⃒
⃒Kt

w − Kt− 1
w < ε

⃒
⃒ (12)  

3.5. Classification predictive models 

A total of six classification algorithms are then examined in this study 
to propose the best predictive model with the highest predictive per-
formance/accuracy for resilience, livability, and aggregate performance 
of smart cities. 

3.5.1. Naïve Bayes 
Naïve Bayes classifier is a supervised learning algorithm that is based 

on Bayes’ theorem with a strong (naïve) independence assumption be-
tween the input features. This assumption enables the multiplication of 
the conditional probabilities to determine the response variable. Given a 
class variable y based on n input features {xi}

n
i=1, the Bayes’ theorem 

states (see Eq. (13)) as: 

P(y|x1, x2,…, xn)=
P(y)P(x1, x2,…, xn|y)

P(x1, x2,…, xn)
=

P(y)
∏n

i=1P(xi|y)
P(x1, x2,…, xn)

(13)  

3.5.2. k-nearest neighbor 
K-nearest neighbors (KNN) is a non-parametric machine learning 

algorithm that uses the observations of K nearest neighbors to make 
predictions. It can be used for both regression and classification prob-
lems. Given a training dataset (X,Y) = {(xi, yi)}

n
i=1, where X is the input 

variables and Y is a class label, kNN estimates the conditional proba-
bility of Y given X and groups an observation to the class with the 
highest probability. Given a positive integer q, the KNN algorithm first 
identifies q observations that are closest to a test observation x and es-
timates the conditional probability of observation x to be in class e as in 
Eq. (14): 

pk(X)=
1
q
∑

i ε Nq

I(yi = e) (14)  

where Nq is the set of q observations closest to a test observation and 
I(yi = e) is an indicator variable equal to unity if a given observation 
(xi, yi) is in class e and zero otherwise. 

3.5.3. Support vector machine 
Support vector machine (SVM) is a popular supervised ML algorithm 

that can be used for classification as well as regression problems. The 
goal of SVM is to map the input data into high-dimensional space where 
they can be linearly separable by implementing kernel function. Given a 

training dataset {(xi, yi)}
N
i=1 , the objective of SVM is to find a classifi-

cation rule to predict the label of the response variable by solving the 
following the optimization problem in Eq. (15): 

min
W,b,ξ

1
2

W2 + C
∑N

i=1
ξi (15)  

subject to : yi
(
WT φ(xi)+ b

)
≥ 1 − ξi,∀i (16)  

ξi ≥ 0, ∀i (17)  

where C > 0 is a regularization parameter introduced to penalize the 
misclassified points via the slack variables ξi, b is the intercept, and W is 
the weight. 

The solution to the optimization problem in Eq. (15) through Eq. (17) 
is given by Eq. (18) as follows: 
∑

iε SV
yiαiK(xi, x) + b (18)  

where K(xi, x) is the kernel function, SV denotes support vectors, which 
are subsets of training data points, and αi is Lagrange multiplier. 

The four popular kernel types include linear kernel, polynomial 
kernel, hyperbolic tangent (sigmoid) kernel, and radial basis function 
(RBF). 

3.5.4. Classification and Regression Tree (CART) 
Classification and regression tree (CART) also referred to as decision 

tree is a set of non-parametric supervised learning algorithms that can be 
used for both classification and regression predictive modelling prob-
lems by learning a simple tree model (Breiman et al., 1984). The CART 
method splits the feature space into multiple smaller disjoint regions 
with similar response values using a set of rules to predict a class label 
(in classification) and value (in regression) of the response variable. 
Each internal node in CART specifies a test on an attribute of the data, 
while each branch represents the test output. The root node, which is the 
topmost node in CART denotes the most relevant feature, while the leaf 
node or terminal node provides the predicted class label. Given training 
dataset of N size, the algorithm firstly partitions the predictors space into 
D disjoint regions: {R1,R2,…,RD} based on the Gini Index (Alpaydin, 
2020). In the next step, tree pruning is performed to reduce overfitting. 
The performance of the CART model can be optimized by tuning its 
hyperparameters including the maximum depth of the tree, minimum 
number of samples required to split an internal node, and minimum 
number of samples required to be at a leaf/terminal node. 

3.5.5. Ensemble models: Random forest, gradient boosting 
Ensemble models are supervised machine learning paradigm that 

integrate multiple single learners (a.k.a. base learners or weak learners) 
into one model to reduce variance error, bias, and produce a strong 
model with enhanced generalization capability and superior perfor-
mance (Breiman et al., 1984). The most popular type of meta-algorithms 
that combine base learners are bootstrap aggregation (bagging) (Brei-
man, 1996) and boosting (Sutton, 2005) ensembles. In bagging 
ensemble (e.g., random forest), multiple base learners are trained 
independently in parallel on a different bootstrap sample, while in 
boosting ensemble (e.g., gradient boosting) the base models are trained 
sequentially. 

As its name suggests, random forest (RF) is a forest of randomly 
created CART models. Each decision tree predictor in the RF algorithm 
uses bootstrap samples, which are samples drawn from the original 
dataset with replacement. Moreover, random subsets of input features 
are considered when splitting nodes in the decision tree on the best split 
among a random subset of the features selected at every node (Svetnik 
et al., 2003). The split at each node is performed in two steps. Firstly, a 
random subset of input features is selected from the bootstrap sample 
(Svetnik et al., 2003). The best subset feature is then selected to perform 

A.A. Kutty et al.                                                                                                                                                                                                                                 



Journal of Cleaner Production 378 (2022) 134203

11

the decision split at each node of a decision tree (Svetnik et al., 2003). 
Each tree predictor outputs a class prediction, then the final prediction 
of the RF classifier is taken as the class with the most votes. Similarly, 
gradient boosting machine (GBM) is a powerful boosting algorithm, 
which combines a sequence of weak learners to generate an additive 

model whose performance is significantly enhanced compared to the 
base learners (Bishop, 2006). In the first step, equal weight is assigned to 
each data point. In the subsequent steps, the model is retrained by 
assigning more weight to the observations that were incorrectly classi-
fied by the base learner in the previous step. In each step, the GBM 

Fig. 4. 10-fold cross validation with grid search for hyperparameter tuning.  

Table 1 
Resilience performance for all the 35 smart cities across each aspect of urban resilience for the average data over time 2015–2020.  

Smart Cities S1 Rank EC2 Rank IB3 Rank IN4 Rank 

Brussels 0.7190 13 0.7469 19 0.6268 19 0.6490 13 
Sofia 0.4215 31 0.6144 28 0.5665 25 0.2782 32 
Prague 0.6951 15 0.8338 14 0.6928 13 0.4078 27 
Copenhagen 0.8258 8 0.9754 3 0.9554 1 0.8224 2 
Munich 0.7469 10 0.8937 8 0.7168 8 0.5941 17 
Tallinn 0.7414 11 0.8700 9 0.6575 16 0.6215 15 
Dublin 0.6158 19 0.5958 32 0.6840 15 0.6956 9 
Athens 0.2534 33 0.6114 29 0.5872 21 0.5633 18 
Bilbao 0.6491 18 0.6421 25 0.6962 9 0.5497 19 
Lyon 0.5846 20 0.7783 18 0.6961 10 0.6610 11 
Dusseldorf 0.4961 26 0.7122 23 0.5092 28 0.3881 30 
Bologna 0.5437 23 0.6053 31 0.4949 32 0.3292 31 
Hamburg 0.6979 14 0.7003 24 0.5019 29 0.6506 12 
St. Petersburg 0.4545 27 0.7883 17 0.6293 18 0.5463 20 
Marseille 0.5460 22 0.8040 16 0.6437 17 0.5974 16 
Geneva 0.8376 7 0.8274 15 0.8698 2 0.8136 5 
Budapest 0.5662 21 0.7422 20 0.6010 20 0.4833 24 
Manchester 0.8748 4 0.7242 22 0.6892 14 0.5049 22 
Amsterdam 0.8965 1 0.9459 4 0.8388 3 0.7907 6 
Vienna 0.8586 6 0.8431 12 0.7860 4 0.6467 14 
Warsaw 0.5163 25 0.8384 13 0.4679 33 0.4495 25 
Lisbon 0.4402 30 0.7280 21 0.5678 24 0.4449 26 
Bucharest 0.4534 28 0.6320 26 0.4979 30 0.2253 34 
Krakow 0.6574 17 0.9099 5 0.4954 31 0.4955 23 
Bratislava 0.5275 24 0.6106 30 0.5862 22 0.3914 29 
Helsinki 0.6749 16 0.9033 6 0.7820 5 0.6883 10 
Stockholm 0.8634 5 1.0009 1 0.7511 6 0.8171 4 
London 0.8757 3 0.8562 11 0.6960 11 0.8184 3 
Zaragoza 0.7200 12 0.8563 10 0.7341 7 0.7257 8 
Oslo 0.7992 9 0.9826 2 0.5791 23 0.8924 1 
Zurich 0.8873 2 0.9019 7 0.6956 12 0.7901 7 
Moscow 0.3697 32 0.4339 33 0.5313 27 0.4015 28 
Kiev 0.0978 35 0.2879 35 0.2841 35 0.2518 33 
Rome 0.4418 29 0.6197 27 0.5404 26 0.5443 21 
Ankara 0.1529 34 0.3669 34 0.3172 34 0.1120 35 

S1: Social; EC2: Economic; IB3: Infrastructure and Built Environment; IN4: Institutional. 
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introduces a base learner (decision tree) to overcome the shortcomings 
of the existing base learner(s). The learning rate controls how hard each 
base learner attempts to correct the errors of the previous learner in the 
sequence. 

3.6. Hyperparameter optimization 

The predictive performance of the ML model is highly dependent on 
the values of its hyperparameters which are the parameters that control 
the learning process of the model (Abdella et al., 2021). Hence, it is 
crucial to explore the combination of the hyperparameters that produce 
the best model. In the current study, a tuning technique known as grid 
search, that exhaustively searches the optimum values of hyper-
parameters considering all possible combinations of user-specified 
hyperparameters was used to optimize the hyperparameters, as shown 
in Fig. 4. Besides, standard k-fold cross-validation is used to overcome 
the problem of overfitting (Abdella and Shaaban, 2021). The k-fold 
cross-validation is performed in the following procedures: (a) split the 
training dataset into k equal parts, (b) use k − 1 parts to train the model 
and the remaining one part to validate the model, (c) repeat step (b) 
until each part is used for both the training and validation set, and (d) 
finally compute the performance of the model as the average perfor-
mance of the k estimations. Grid search is combined with 10-fold 
cross-validation (k = 10) in this study to optimize the hyper-
parameters of the classification algorithms, as shown in Fig. 4. 

4. Results and discussion 

4.1. Scoring and performance assessment 

In this section, we assess the resilience capacity, livability, and then 
estimate the aggregate performance of all the 35 European smart cities 
to address the research question on to what level the smart cities of 
today co-create resilience and livability in their development model. For 
the same, scores across each aspect under resilience and livability were 
calculated using the novel three-step multivariate metric-distance based 
approach proposed in section 3.3 through Eqs. (3)–(7), to weight the 
indicators and obtain a homogenized score for each aspect under city 
resilience and urban livability and presented in Table 1 and Table 2, 
respectively. It is seen that, when understanding social resilience, 
Amsterdam is the most socially resilient smart city with a performance 
score (Ss) of 0.8965, followed by Zurich (Ss = 0. 8873) and London (Ss =

0. 8757) in the 2nd and 3rd place, respectively. However, Kiev, Ankara, 
and Athens are most vulnerable to social upheavals in city, which is 
evident from the significantly low social resilience performance of 
0.0978 (rank = 35), 0.1529 (rank = 34) and, 0.2534 (rank = 33), 
respectively. Under economic resilience, Stockholm, Oslo, and Copen-
hagen with a score of 1.0009, 0.9826, and 0.9754 perform significantly 
well and are ranked 1st, 2nd, and 3rd, respectively in the order of their 
economic resilience. While the least resilient smart city to economic 
shocks is the Ukrainian city of Kiev (SEC = 0.2879). The second to the 
least resilient city is Ankara (SEC = 0.3669, rank = 34) followed by 
Moscow (SEC = 0.4339, rank = 33). Kiev still remains the least resilient 
city under the infrastructure and build environment aspect with a score 
(SIB) of 0.2841. This translates the fact that, Kiev despite being a well- 
established east European smart city, the ability to absorb, and 
recover from the escalating climate change, disaster and environment 
related risks is relatively low. The same is true in the case of Ankara (SIB 
= 0.3172, rank = 34) and Warsaw (SIB = 0.4679, rank 33) as well. On 
the contrary, the capital of Denmark, Copenhagen has well designed 
infrastructural resilience in their planning model, which is well reflected 
in their performance (SIB = 0.9554, rank = 1). Along with Copenhagen 
stands Geneva and Amsterdam are in the 2nd and 3rd place, respectively 
under the same aspect. It is seen that Oslo is the most efficient smart city 
in terms of enforcing normative practices in adverse operating envi-
ronments with an institutional resilience score (SIN) of 0.8924. While 
Copenhagen with a score of 0.8224 and the English city of London (SIN 
= 0.8184) also adopt well to changing conditions and thus, institu-
tionally resilient with ranks 2nd and 3rd, respectively. On the other 
hand, Ankara (SIN = 0.1120, rank = 35), Bucharest (SIN = 0.2253, rank 
= 34), and Kiev (SIN = 0.2518, rank = 33) pose insufficient institutional 
resilience relative to the existing smart cities. 

When studying urban livability of smart cities, it is seen that Geneva 
follows an inclusive urban development pattern with better access to 
facilities for its people. This is well evident when observing the acces-
sibility score (SAC = 1.0721) of the ‘peace capital’ of world under the 
said dimension. London (SAC = 1.0271, rank = 2) and Stockholm (SAC =

0.9807, rank = 3) are no exception for people to get around and live in 
the city. On the contrary, Athens with a score of 0.2344 is ranked the 
least accessible smart city followed by Bucharest (SAC = 0.3394, rank =
34) and the Turkish city of Ankara (SAC = 0.3659, rank = 33). Under the 
community well-being aspect, the north central Swiss state of Zurich is 
the best performing smart city with a score SCWB = 0.6867. London 
continues its reign as the 2nd best liveable smart city (SCWB = 0.6389) 
committed to build a community with lifelong wellness along with Kiev 
ranked the 3rd (SCWB = 0.6047). However, Ankara (SCWB = 0.1241) 
remains the least liveable city followed by Bucharest (SCWB = 0.1393) 
and St. Petersburg (SCWB = 0.1469) under the community well-being 
aspect. A well-orchestrated response towards economic vibrancy is 
seen in the case of Munich with a score (SEV) of 0.8656. London (SEV =

0.7699; rank = 2) and Zurich (SEV = 0.7220; rank = 3) are no far behind 
in realizing urban vibrancy in their planning model. While Kiev with a 

Table 2 
Livability performance for all the 35 smart cities across each aspect of urban 
livability for the average data over time 2015–2020.  

Smart Cities AC1 Rank CWB2 Rank EV3 Rank 

Brussels 0.8187 15 0.3404 17 0.4963 18 
Sofia 0.4115 32 0.3585 15 0.3558 29 
Prague 0.6835 21 0.3836 12 0.5506 13 
Copenhagen 0.9416 8 0.3588 14 0.6308 9 
Munich 0.9508 6 0.3382 18 0.8656 1 
Tallinn 0.5179 30 0.2349 28 0.4911 19 
Dublin 0.8671 11 0.4511 8 0.4660 21 
Athens 0.2344 35 0.1672 31 0.1204 34 
Bilbao 0.8172 16 0.3186 22 0.4575 23 
Lyon 0.8339 14 0.3899 11 0.5363 14 
Dusseldorf 0.6874 20 0.3976 10 0.2740 31 
Bologna 0.6150 26 0.2452 27 0.3249 30 
Hamburg 0.8149 17 0.2178 29 0.4342 25 
St. Petersburg 0.6044 27 0.1469 33 0.4634 22 
Marseille 0.6286 25 0.1683 30 0.4793 20 
Geneva 1.0721 1 0.3012 25 0.6195 10 
Budapest 0.6814 22 0.3285 20 0.4966 17 
Manchester 0.9429 7 0.3098 23 0.6660 7 
Amsterdam 0.9776 4 0.5017 5 0.6942 4 
Vienna 0.8617 12 0.3022 24 0.6631 8 
Warsaw 0.6510 23 0.5417 4 0.4297 26 
Lisbon 0.7045 19 0.3460 16 0.5071 16 
Bucharest 0.3394 34 0.1393 34 0.3812 27 
Krakow 0.7255 18 0.3201 21 0.5110 15 
Bratislava 0.5851 28 0.1552 32 0.4379 24 
Helsinki 0.8544 13 0.3330 19 0.5690 11 
Stockholm 0.9807 3 0.4963 6 0.6774 5 
London 1.0271 2 0.6389 2 0.7699 2 
Zaragoza 0.8830 9 0.3731 13 0.5558 12 
Oslo 0.9756 5 0.4457 9 0.6729 6 
Zurich 0.8812 10 0.6867 1 0.7220 3 
Moscow 0.5780 29 0.4782 7 0.3562 28 
Kiev 0.4468 31 0.6047 3 0.0823 35 
Rome 0.6416 24 0.2754 26 0.1976 33 
Ankara 0.3659 33 0.1241 35 0.2466 32 

AC1: Accessibility; CWB2: Community well-being; EV3: Economic vibrancy. 
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performance score of 0.0823 is ranked the least economically vibrant 
smart city, followed by Athens (SEV = 0.1204; rank = 34) and Rome (SEV 
= 0.1976; rank = 33). 

4.2. Clustered performance assessment 

As discussed in section 3.4, Fuzzy c-means algorithm is used to 
cluster the smart cities based on the scores obtained under each aspect of 
livability and resilience. The number of clusters considered were within 
the range of [3, 10], and the optimum number of clusters were deter-
mined using two performance measures: namely, partition coefficient 
(PE) and partition entropy coefficient (PEC). The maximum value of PEC 
and the minimum value of PE corresponds to a good partition. The re-
sults of fuzzy c-means suggested that the optimum number of clusters 
corresponds to three, as can be observed in Fig. 5(a)− 5(c) showing the 
distribution of PEC and PE with the number of clusters for livability, 
resilience, and aggregate performance, respectively. 

Fig. 6(a)− 6(c) shows the results of fuzzy c-means cluster analysis 
using the optimum number of clusters for urban livability, city resil-
ience, and aggregate performance, respectively as high, medium, or low. 
As can be observed in these figures, most of the smart cities fall under the 
medium level of livability (43%), while 31% and 26% of the smart cities 
fall under high and low levels of livability, respectively. With regard to 
the resilience level, the majority of the smart cities (51%) fall under the 
medium level of resilience, while 40% and 9% of the smart cities fall 
under the high and low levels of resilience, respectively. In Fig. 6(a), 
Copenhagen, Geneva, Amsterdam, Stockholm, London, Vienna, Man-
chester, Munich, Zaragoza, Oslo, and Zurich were grouped under the 
high livability performance class. However, all these smart cities 
remained unchanged with smart cities such as Lyon, Tallinn and Hel-
sinki newly added to the high performing category while clustering 
cities based on resilience (Fig. 6(b)). When attempting to understand the 
smart cities that co-create resilience and livability together in their 
development model, it is seen that, all the smart cities that are under the 
high livability performing class remains the same except for Manchester 
being replaced by the Finnish city of Helsinki. It is seen that Bologna, 
Sofia, Athens, St. Petersburg, Bratislava, Bucharest, Kiev, Rome, and 
Ankara fall under the low performance cluster for livability. When 
taking a look into the smart cities classed under the aggregate category, 
we can see that St. Petersburg is pushed to the medium performance 
class while Moscow is added to the low performance cluster. All the 

other smart cities under the low livability performance cluster remains 
same in the low aggregate performance cluster, Fig. 6(c). While Kiev and 
Ankara remain in the low performance class in all the three assessments 
conducted with Moscow added to the list under resilience. The trend in 
performance of each of the European smart cities under livability, 
resilience, and aggregate categorization over time from 2015 till 2020 
are shown in Fig. 7(a)− (c), respectively. 

4.3. Classification models 

Different ML algorithms were trained on the annual data for the 
smart cities (a total of 210 data points) to predict the level (high, me-
dium, or low) of livability and resilience of the smart cities based on the 
values for the indicators under each aspect. Besides, ML-based models 
were proposed to predict the level of aggregate performance of smart 
cities based on the values for the indicators under the livability and 
resilience aspects. To assess the degree of livability of smart cities, the 
indicators under each aspect of livability, namely; accessibility, com-
munity well-being, and economic vibrancy (a total of 10 indicators for 
each aspect) were considered as input features. Thus, the input vector 
for the assessment of livability level comprised 30 predictors. Similarly, 
for resilience level, the indicators related to social resilience, economic 
resilience, infrastructure and built environment, and institutional resil-
ience (a total of 38 indicators) were used as predictors that determined 
the response variable, namely, the level of resilience. The dataset was 
split into train and test sets that comprised of 80% and 20% of the 
complete dataset, respectively. The optimized hyperparameters for each 
model is presented in Table 3. 

To compare the classification models, the coefficients namely; 
overall accuracy (ACC), Cohen’s Kappa (κ), and the average area under 
the precision-recall curve (AUC-PR) were used. Table 4 through Table 6 
presents the accuracy, Cohen’s Kappa, and average AUC-PR of each 
model on the training and test datasets. Among the single models, CART 
showed the highest performance in predicting the level of livability in 
smart cities on the training dataset (95% accuracy), however, it showed 
low performance on the test dataset (78% accuracy). Similarly, despite a 
perfect agreement and an excellent level precision in the training group 
of the model created by CART (κ = 0.926; AUC-PR = 0.979), the 
resulting value showed only a moderate agreement (κ = 0.471) and 
marginal precision (AUC-PR = 0.642) in the testing group. These results 
show the low generalization ability of a single CART model. As listed in 

Fig. 5. Variation of performance measures with the number of clusters.  
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Fig. 6. Distribution of the smart cities based on the level of (a) livability (b) resilience (c) aggregate performance.  
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Fig. 7. Progressive performance of smart cities over time (2015–2020) categorized into high, medium, and low.  
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Tables 4 and 5, the ensemble models showed higher accuracy compared 
to the single models. Among all models, the GBM model showed the 
most accurate prediction on the test dataset (95% accuracy), while the 
Naïve Bayes model showed the least predicted performance on the test 
dataset. Similarly, the GBM showed the best performance in predicting 
the level of resilience on the training dataset (ACC = 1.00, κ = 1.00, 
AUC-PR = 1.00). The accuracy of the GBM model in predicting the de-
gree of resilience was 93% on the test dataset compared to 90%, 85%, 
80%, 76%, and 73% for RF, CART, SVM, kNN, and Naïve Bayes, 
respectively, as listed in Table 5. Random forest is the second-best model 
in predicting the level of livability and resilience of the smart cities, as 
listed in Tables 4 and 5. The predictive accuracies of the ML algorithms 

for aggregate performance level are listed in Table 6. The Naïve Bayes 
classifier showed the least performance on the test set, as listed in 
Table 6. The GBM exhibited the highest performance with accuracies of 
99% and 90% on the training and test sets, respectively. Similarly, in the 
training group, the GBM model exhibited a strong agreement (κ =
0.991) and a superior level of precision (AUC-PR = 1.00). Similarly, it 
showed the highest AUC-PR value of 0.913 and Cohen’s Kappa κ value of 
0.816 in the testing group. Precision-recall curve based on the test 
dataset for livability, resilience and aggregate performance is shown in 
Figures S1(a)–(c), respectively. For brevity, the precision-recall curve 
based on the train dataset is shown in Figures S2(a)–(c) (SI file). 

The performance of the ensemble models, particularly, RF and GBM 
models, is further investigated with the aid of a confusion matrix, which 
is a table presenting the actual level versus the predicted level of 
livability, resilience, and aggregate performance of smart cities. Other 
performance metrics include recall and precision. Precision refers to the 
percentage of the correctly predicted level of livability or resilience of 
the smart cities by the ML model. In addition, the actual livability/ 
resilience/aggregate performance level that are correctly predicted by 
the algorithm is recall. Fig. 8(a)-8(d) show the confusion matrix for the 
level of livability on both the train and test sets using the RF and GBM 
models, while Fig. 9(a)-9(d) show the confusion matrix using the RF and 
GBM for the resilience level of the smart cities. In these figures, the di-
agonal elements show the number of correctly predicted livability/ 
resilience levels along with recall in percentage. The proposed GBM 
showed high precision, recall, and accuracy in identifying the level of 
livability and resilience of the smart cities, as shown in Fig. 8(a)-8(d) and 
Fig. 9(a)-9(d), respectively. Fig. 10(a)-10(d) show the confusion matrix 
for aggregate performance level based on the proposed RF and GBM 
models, where AP stands for aggregate performance. As can be observed 
in these figures, the proposed GBM model showed high accuracy, recall, 
and precision in predicting the aggregate performance level for the 
smart cities on both the training and test sets. Thus, it can be concluded 
that the proposed GBM can effectively be used to predict the level of 
livability, resilience, and aggregate performance of future smart cities. 
Fig. 11(a)-(c) show the Spider diagram denoting the balanced accuracy 
(ACC), precision (AUC-PR), and agreement (κ) on the classification 
outputs for all the different classifiers to establish resilience, livability, 
and aggregate performance assessment. Furthermore, to enhance the 
use-case of the machine learning models discussed, a suit of computa-
tional ML models as a web-based application to predict the level of 
resilience and livability for any unknown smart city (X) under respective 
aspects of resilience and livability is created. The data-driven web-based 
application contains two main layers namely; Back-end and Front-end. 
Back-end or data access layer contains machine-learning models for 
analyzing the data inputs to each aspects under resilience and livability. 
Front-end contains the web-based link (assessable via mobile and web 
browser), which acts as the interface the decision maker will use to make 
predictions on whether a respective smart city is high, medium or low 
performing in terms of resilience and livability (Web application link: 
https://appsmartcity.herokuapp.com/). 

5. Conclusion 

This study proposed a novel two-stage assessment framework 
combining metric distance-based multivariate analysis and numerous 
machine learning models for the first time to thoroughly investigate the 
resilience and livability of smart cities for a selected set of indicators 
over time. The metric-distance based multivariate analysis includes a 
novel weighting approach to weight indicators and obtain the composite 
scores for each aspect under the resilience and livability paradigm. The 
rationale behind the proposed weighting scheme is “weights based on 
the correlation matrix.” The new weighting scheme is unbiased in the 
sense that it is data-driven, and that no expert opinion has been included 
in the weighting process. Fuzzy c-means clustering as an unsupervised 
partitioning algorithm with six supervised classification techniques 

Table 3 
Optimal values for the hyper-parameters of the ML models.  

Model Hyper-parameters Optimal values   

Livability Resilience Aggregate 

kNN k 12 11 15 
CART Maximum depth 4 7 7 
SVM Kernel poly poly poly 

C 0.01 0.01 0.1 
RF Number of estimators 13 50 14 

Maximum depth 4 9 4 
Minimum sample split 2 2 2 
Minimum sample leaf 1 1 1 
Maximum features auto auto auto 

GB Number of estimators 10 5 3 
Maximum depth 3 10 3 
Learning rate 0.05 0.2 0.5 
Maximum features sqrt sqrt sqrt  

Table 4 
Performance of different models in predicting livability level.  

Model Accuracy Cohen’s Kappa Average AUCPR 

Train set Test set Train set Test set Train set Test set 

Naïve Bayes 0.85 0.76 0.761 0.595 0.931 0.792 
kNN 0.85 0.88 0.759 0.793 0.910 0.910 
SVM 0.90 0.83 0.843 0.714 0.990 0.936 
CART 0.95 0.78 0.926 0.471 0.979 0.642 
RF 0.99 0.88 0.982 0.795 0.999 0.907 
GBM 0.97 0.95 0.954 0.916 0.996 0.960  

Table 5 
Performance of different models in predicting resilience level.  

Model Accuracy Cohen’s Kappa Average AUCPR 

Train set Test set Train set Test set Train set Test set 

Naïve Bayes 0.82 0.73 0.722 0.565 0.901 0.800 
kNN 0.79 0.76 0.683 0.607 0.880 0.850 
SVM 0.85 0.80 0.775 0.681 0.961 0.916 
CART 0.98 0.85 0.973 0.792 0.991 0.812 
RF 1.00 0.90 1.000 0.837 1.000 0.909 
GBM 1.00 0.93 1.000 0.877 1.000 0.954  

Table 6 
Performance of different models in predicting aggregate performance level.  

Model Accuracy Cohen’s Kappa Average AUCPR 

Train set Test set Train set Test set Train set Test set 

Naïve Bayes 0.89 0.73 0.835 0.543 0.961 0.751 
kNN 0.80 0.78 0.681 0.623 0.882 0.877 
SVM 0.99 0.76 0.991 0.578 0.999 0.932 
CART 0.99 0.76 1.000 0.292 1.000 0.502 
RF 0.98 0.85 0.972 0.733 0.999 0.896 
GBM 0.99 0.90 0.991 0.816 1.000 0.913  
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formed the basis of the 2-stage framework. Thirty-five (35) top-ranked 
European smart cities were taken as the case to study the co-creation 
of resilience and livability in the current existing development models 
of smart cities using the proposed framework. The metric distance based 
multivariate analysis used to score and rank the smart cities helps in 
understanding the composite performance of cities under the respective 
aspects of resilience and livability for a defined set of indicators. Such an 
approach can help smart cities to progressively monitor their perfor-
mance over time. The results of the multivariate analysis revealed only 
31% of the smart cities as high performing in terms of both resilience 
and livability. While 43% of smart cities marginally co-create resilience 
and livability in their smart development models, nearly 26% of smart 
cities need to make considerable improvements in moving from the low 
performing to the high performing class while structuring smart city 
policies. Different machine learning classifiers were used in the study to 
predict the level of resilience, livability, and aggregate performance. 
Parameters such as ACC, Kappa (κ), and AUC-PR were used to identify 
the quality and predictive capacity of each model. The models which 
showed the highest value across each parameter was selected as the best 
quality model. The comparison of different classifiers revealed the 
proposed GBM classifier as the most accurate classifier model that can be 
used to predict the level of livability, resilience, and aggregate perfor-
mance of future smart cities. It is seen that ensemble modelling delivers 
accurate and superior predictive models over any single learning model. 
This is attributed to the reduced error variance and limited dispersion of 
model forecasts using ensemble models. Further, the proposed web- 
based application as a use-case to predict the level of resilience and 
livability of an unknown city (X) can help decision makers and urban 
planners with less knowledge in machine learning and statistical 

techniques to conduct predictions with ease for informed decision 
making. 

The vision for realizing a fully resilient and livable city is ambitious 
indeed - but, it is attainable. The city’s ability to innovate and incor-
porate new ideas about its infrastructure shows that it’s becoming a 
more resilient city. The authors admit that no one city is successful in all 
the aspects, some cities are displaying innovation in a few, leading to 
their categorization as high performing. It is believed that these 
competitive cities creates large markets; acts like a magnet to attract 
investments, knowledge, talent, skills, and management; and generates 
new ideas, well-paying jobs, economic opportunities, and wealth. The 
authors exemplify the importance in creating liveable and resilient 
smart cities with a citizen centric approach. Least liveable and resilient 
cities can learn from the success stories and custom-made initiatives of 
the best performing smart cities that are livable and resilient. The au-
thors further bring in possible perspectives to broaden the understand-
ing on how each of these smart cities have landed under respective 
categorization. The success mantra of each high performing city was 
attributed to their unique urban development model. Zurich has initi-
ated several projects that placed the financial capital of Switzerland 
under a high performing category such as their long-term goal to 
becoming a 2000-W society by 2050. Another project was the Green City 
Zurich project that aims to preserve and increase all green spaces. These 
difficult goals are feasible when their government allocates investment 
funds, focuses on energy efficiency, renewable sources, and increasing 
the public’s awareness on sustainability. While, the English capital, 
London has initiated several new projects such as the London Datastore, 
which is free open data access, that brings information to the public and 
engages with new users. In addition, the city is currently pursuing a 

Fig. 8. Confusion matrix of RF classifier on (a) train set and (b) test set, and GBM classifier on (c) train set and (d) test set for livability level.  
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“Low Carbon Capital” strategy to reduce carbon emissions by 60% by 
2025 against the 1990 levels, to strengthen the environmental resil-
ience. Through the insertion of city traffic sensors, parking sensors, and 
alternative modes of transportation, the city can significantly reduce 
wasted time and achieve these environmental goals. On the other hand, 
the city of Copenhagen has not only a ‘smart plan’ but is already well 
ahead with the investments to implement it. The City of Copenhagen has 
invested 34 million Euros in new streetlights and more than DKK 100 
million (EUR 13 million) in new traffic lights and intelligent traffic 
management (Bjørner, 2021). This means that the City of Copenhagen 
can now promise cyclists and bus passengers that by 2023 they will have 
their travel time reduced by 10 percent while the travel time for mo-
torists will stay the same. Copenhagen has also maintained a strategy 
focused on adapting public spaces, fostering renewable energies and the 
rationalization of cleaner mobility. The authorities intend to neutralize 
100% of the city’s polluting emissions by 2025, while considering that 
its urban population of 1.3 million will increase by 20% (Copenhagen 
Cleantech Cluster, 2012). The city of Amsterdam has installed 
sensor-based smart meters in its buildings to reduce its carbon footprint, 
allowing inhabitants to track their personal energy usage in real time. 
Installing “smart work centres” and “co-working spaces” throughout the 
city has also been shown to reduce daily commuting emissions. By 
operating heating, cooling, and lighting based on occupancy, sensors put 
in public venues can assist in preventing energy wastage. While, the 
Norwegian capital city, Oslo has seeked to expedite the switch to “zero 
emissions” automobiles by allowing them to use bus lanes for free 
parking and lower fees. Liveable smart city activities include electric bus 
trials, zero-emission construction sites, retrofitting existing buildings 
with sensors or Building Management Systems, and the creation of 

circular waste management and green energy systems, to name a few. 
Moreover, cities can use commonly available indexes to benchmark 
themselves on competitiveness, such as the Global Competitiveness (GC) 
index and the Ease of Doing Business (EDB) index. The authors further 
emphasize on promoting circular economy practices to reduce the reli-
ance on scarce resources, thus increasing the economic resilience. For 
example, a wastewater treatment plant could become a resource 
generator providing electricity and manure from digested sludge as well 
as treated effluent for irrigation and industry. Zurich, Geneva, Oslo and 
Trondheim are great benchmarks to such practices. To mainstream 
resilience principles, city governing authorities must develop and 
incorporate in its operations crosscutting and sector-specific resilience 
standards and guidelines for project design, implementation, infra-
structure delivery, and operation and management of assets and 
services. 

Furthermore, the authors recommend taking a closer look into every 
aspect of the growth puzzle to transform smart cities to smarter, resil-
ient, liveable, and sustainable dwelling units. The success of Copenha-
gen, Geneva, Stockholm, Munich, Helsinki, Vienna, London, Oslo, 
Zurich, and Amsterdam, as revealed in the current assessment in co- 
creating livability and resilience into their development model, can be 
attributed to their people centric initiatives to apprehend the standard of 
living. The authors further present some success stories from European 
member states that well addresses several aspects of resilience and 
livability as benchmark cases for upcoming futuristic cities. The well- 
integrated bicycle lanes in the unified metropolitan regions of Amster-
dam and Copenhagen have brought cycling as a social activity than a 
means to commute around the streets (aspects: community well-being, 
infrastructure and built environment) (Pucher and Buehler, 2008). 

Fig. 9. Confusion matrix of RF classifier on (a) train set and (b) test set, and GBM classifier on (c) train set and (d) test set for resilience level.  

A.A. Kutty et al.                                                                                                                                                                                                                                 



Journal of Cleaner Production 378 (2022) 134203

19

The Tour de Force initiative by the Danes and the Dutch Cycling Em-
bassy (DCE) have created a liveable culture among people to adopt a 
healthy style of living through cycling practice, resulting in improved 
quality of public spaces, social benefits in terms of the total urban kil-
ometres travelled within the cities, increased activity rate of youth 
population, improved accessibility, and reduced impact on the overall 
carbon emissions (Darity Jr et al., 2015; Pucher et al., 2021). Similarly, 
the Cultural and Creative Cities (CCC) initiative ensures socio-economic 
vitality and cultural engagement through job creation and innovation in 
cities, an important parameter for resilient and liveable cities (aspects: 
social resilience, economic resilience and, economic vibrancy) 
(UNESCO, & World Bank. 2021). High performing cities like Geneva, 
Stockholm, London, and Zurich are a part of this initiative since 2015 
thus, pointing out the success mantra in their performance. The ‘Cultural 
Heritage in Action’ (CHA) programs (see: https://culturalheritageina 
ction.eu/) adopted by cities of Eindhoven, Helsinki, Amsterdam, and 
Munich have resulted in establishing a balance in smart targeted growth 
and resilience by bringing cultural investments into the lives of citizens 
(aspects: community well-being, social resilience). With highest density 
of electric car users on road, Oslo’s success in strategizing the ambitious 
‘Climate and Energy Initiative’ across the years from 2015 till 2020 as 
reported by the GREENGOV research project has resulted in 
socio-economic and environmental resilience. The Economic Resilience 
Initiative, a part of the joined-up EU response to the challenges posed by 
forced displacement and migration, and implemented in close cooper-
ation with EU member states, the European Commission, donors, and 
other partners is another success story to enhance resilience in cities. 
Such are many among the few examples that least performing smart 

cities can take a look into to slide in improvements to their existing 
smart growth agenda. 

It is certainly sensible to think that decision makers may want to 
assess different compensation indices to different indicators, or to 
compensate differently, for example, among single indicators of a family 
or among the families themselves. It is that, sometimes the indicator sets 
proposed here within, used in evaluating the urban resilience and 
livability, fail to fall in line with the city goals. This can, for instance, 
contribute to poor evaluation of future smart city developments in light 
of resilience and livability, that are evaluated according to indicators 
that have nothing to do with what was idealized by the city managers or 
planners. For the same, it is recommended to add custom indicators in 
conjunction with the plans and projects of a city. Improving inclusive 
growth with a structured institutional framework is what is recom-
mended by the authors. The European smart cities loose the shared 
growth agenda while competing for stronger growth. This is well evident 
in the case of German smart cities like Munich, Dusseldorf, and 
Hamburg. Munich has pushed its boundaries over the years to reach top 
rank in addressing resilience and livability paradigms while, Dusseldorf 
and Hamburg remain under marginal performance with less growth seen 
over the years. The reason attributed for the same can be the fragmented 
jurisdictional structure prevalent in the German state, which is evident 
from the ranking of these cities under the institutional resilience and 
economic vibrancy aspects in this study. The authors highlight that 
shared growth must also focus across the regions within countries, while 
most often it is seen only among the population. The growth has to be 
strong, shared, and resilient, as to which the future research direction 
should focus. To continue, it is important to note that networks with 

Fig. 10. Confusion matrix of RF classifier on (a) train set and (b) test set, and GBM classifier on (c) train set and (d) test set for aggregate performance (AP) level.  
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greater generalization are less interpretable. In real time, a classifier 
model should not only care about the accuracy but also about how 
certain the prediction is. High epistemic uncertainty can arise in models 
where there are few or no observations for training. Epistemic uncer-
tainty is due to limited data and knowledge. Given enough training 
samples, epistemic uncertainty will decrease. Practitioners must seek 
better interpretability to build more robust models that are resistant to 
uncertainties. Thus, the authors recommend using model-agnostics such 
as LIME, Surrogate models, and Shapley values to explain what different 
classifiers are doing so as to improve the model interpretability. 
Furthermore, the proposed multivariate metric-distance based approach 
allows comparing observations and provides a mathematical structure 

to analyse the results through a metric, except when there are collin-
earity problems among single indicators. More specifically, the coeffi-
cient of determination R2 only detects the linear correlations between 
single indicators. From a methodological point, the multivariate adap-
tive regression splines (MARS) as a non-parametric method that extends 
the model by looking for non-linear interactions between the single in-
dicators and the composite indicator is recommended. Further, the au-
thors recommend using an iterative procedure to the proposed metric- 
distance based weighting scheme which revises the indicators under 
each aspect based on the highest average spelled coefficient, so as to 
achieve a model with best quality. 

Fig. 11. Spider diagram denoting the balanced accuracy (ACC), AUC-PR, and the agreement (κ) on the classification outputs for different classifiers.  

A.A. Kutty et al.                                                                                                                                                                                                                                 



Journal of Cleaner Production 378 (2022) 134203

21

CRediT authorship contribution statement 

Adeeb A. Kutty: conceptualization- methodology-formal analysis- 
writing original draft-writing review editing. Tadesse G. Wakjira: 
methodology-software-data curation-formal analysis-writing original 
draft-visualization. Murat Kucukvar: methodology-writing original 
draft-conceptualization-supervision-project administration. Galal M. 
Abdella: investigation-validation-resources-supervision. Nuri C. Onat: 
validation-writing review editing-resources. 

Declaration of competing interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Data availability 

Data will be made available on request. 

Appendix A. Supplementary data 

Supplementary data related to this article can be found at https:// 
doi.org/10.1016/j.jclepro.2022.134203. 

References 

Abdella, G.M., Al-Khalifa, K.N., Kim, S., Jeong, M.K., lsayed, E.A., Hamouda, A.M., 2017. 
Variable selection-based multivariate cumulative sum control chart. Qual. Reliab. 
Eng. Int. 33 (3), 565–578. 

Abdella, G.M., Kim, J., Al-Khalifa, K.N., Hamouda, A.M., 2019. Penalized Conway- 
Maxwell-Poisson regression for modelling dispersed discrete data: the case study of 
motor vehicle crash frequency. Saf. Sci. 120, 157–163. 

Abdella, G.M., Kucukvar, M., Kutty, A.A., Abdelsalam, A.G., Sen, B., Bulak, M.E., 
Onat, N.C., 2021. A novel approach for developing composite eco-efficiency 
indicators: the case for US food consumption. J. Clean. Prod. 299, 126931. 

Abdella, G.M., Kucukvar, M., Onat, N.C., Al-Yafay, H.M., Bulak, M.E., 2020. 
Sustainability assessment and modeling based on supervised machine learning 
techniques: the case for food consumption. J. Clean. Prod. 251, 119661. 

Abdella, G.M., Shaaban, K., 2021. Modeling the impact of weather conditions on 
pedestrian injury counts using LASSO-based Poisson model. Arabian J. Sci. Eng. 46 
(5), 4719–4730. 
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Hudec, O., Reggiani, A., Šiserová, M., 2018. Resilience capacity and vulnerability: a joint 
analysis with reference to Slovak urban districts. Cities 73, 24–35. https://doi.org/ 
10.1016/j.cities.2017.10.004. 

Huovila, A., Bosch, P., Airaksinen, M., 2019. Comparative analysis of standardized 
indicators for Smart sustainable cities: what indicators and standards to use and 
when? Cities 89, 141–153. 

Hwang, S.H., Mangalathu, S., Shin, J., Jeon, J.S., 2021. Machine learning-based 
approaches for seismic demand and collapse of ductile reinforced concrete building 
frames. J. Build. Eng. 34, 101905. 

IEEE, 2022. IEEE Smart Cities. Available online: https://smartcities.ieee.org/. (Accessed 
22 July 2022). 

ITU, 2016. Y.4901/L.1601-Key performance indicators related to the use of information 
and communication technology in smart sustainable cities. Available online: htt 
ps://www.itu.int/rec/T-REC-L.1601-201606-I/en. (Accessed 22 July 2022). 

Jabareen, Y., 2013. Planning the resilient city: concepts and strategies for coping with 
climate change and environmental risk. Cities 31, 220–229. 

Jain, A., Nandakumar, K., Ross, A., 2005. Score normalization in multimodal biometric 
systems. Pattern Recogn. 38 (12), 2270–2285. 

Jovanovic, A., Jeli’c, M., Rosen, T., Klimek, P., Macika, S., Øien, K., 2019. The 
ResilienceTool” of the SmartResilience Project, SmartResilience Project, D3.7. EU-VRi, 
Stuttgart, Germany.  

Kadir, A., Nugroho, L.E., Susanto, A., Santosa, P.I., 2013. Leaf Classification Using Shape, 
Color, and Texture Features. arXiv preprint arXiv:1401.4447.  

Kaal, H., 2011. A conceptual history of livability: Dutch scientists, politicians, policy 
makers and citizens and the quest for a livable city. City 15 (5), 532–547. 

Kucukvar, M., Kutty, A.A., Al-Hamrani, A., Kim, D., Nofal, N., Onat, N.C., et al., 2021. 
How circular design can contribute to social sustainability and legacy of the FIFA 
World Cup Qatar 2022™? The case of innovative shipping container stadium. 
Environ. Impact Assess. Rev. 91, 106665. 

Kucukvar, M., Onat, N.C., Kutty, A.A., Abdella, G.M., Bulak, M.E., Ansari, F., 
Kumbaroglu, G., 2022. Environmental efficiency of electric vehicles in Europe under 
various electricity production mix scenarios. J. Clean. Prod. 335, 130291. 

Kutty, A.A., Abdella, G.M., Kucukvar, M., Onat, N.C., Bulu, M., 2020. A system thinking 
approach for harmonizing smart and sustainable city initiatives with United Nations 
sustainable development goals. Sustain. Dev. 28 (5), 1347–1365. 

Kutty, A.A., Abdella, G.M., Kucukvar, M., 2020a. Ridge Penalization-based weighting 
approach for Eco-Efficiency assessment: the case in the food industry in the United 
States. In: IOP Conference Series: Materials Science and Engineering, 947. IOP 
Publishing, 012003. No. 1.  

Kutty, A.A., Kucukvar, M., Abdella, G.M., Bulak, M.E., Onat, N.C., 2022. Sustainability 
Performance of European Smart Cities: A Novel DEA Approach with Double 
Frontiers. Sustainable Cities and Society, p. 103777. 

Kutty, A.A., Yetiskin, Z., Abraham, M.M., Nooh, M.A., Kucukvar, M., Abdella, G.M., 
2020b. An empirical assessment on the transportation sustainability indicators and 
their impact on economic productivity. In: Proceedings of the 5th North American 
International Conference on Industrial Engineering and Operations Management. 
IEOM, Detroit, Michigan, United States. Michigan, USA.  

Lagravinese, R., 2015. Economic crisis and rising gaps North–South: evidence from the 
Italian regions. Camb. J. Reg. Econ. Soc. 8 (2), 331–342. 

Latha, L., Thangasamy, S., 2011. Efficient approach to normalization of multimodal 
biometric scores. Int. J. Comput. Appl. 32 (10), 57–64. 

Lay, D., 1980. Liberal ideology and the post-industrial city. Ann. Assoc. Am. Geogr. 70 
(2), 238–258. 

Lee, L.H., Braud, T., Hosio, S., Hui, P., 2021. Towards augmented reality driven human- 
city interaction: current research on mobile headsets and future challenges. ACM 
Comput. Surv. 54 (8), 1–38. 

Li, Q., Wu, Z.Y., Rahman, A., 2019. Evolutionary deep learning with extended Kalman 
filter for effective prediction modelling and efficient data assimilation. J. Comput. 
Civ. Eng. 33 (3), 04019014. 

Lin, S.W., Ying, K.C., Chen, S.C., Lee, Z.J., 2008. Particle swarm optimization for 
parameter determination and feature selection of support vector machines. Expert 
Syst. Appl. 35 (4), 1817–1824. 

Majumdar, S., Subhani, M.M., Roullier, B., Anjum, A., Zhu, R., 2021. Congestion 
prediction for smart sustainable cities using IoT and machine learning approaches. 
Sustain. Cities and Soc. 64 https://doi.org/10.1016/j.scs.2020.102500. 

Manyena, B., O’Brien, G., O’Keefe, P., Rose, J., 2011. Disaster resilience: a bounce back 
or bounce forward ability? Local Environ.: Int. J. Justice and Sustain. 16 (5), 
417–424. 

Masoomi, H., van de Lindt, J.W., 2019. Community-resilience-based design of the built 
environment. ASCE-ASME J. Risk and Uncert. Eng. Sys., Part A: Civ. Eng. 5 (1), 
04018044. 

Martin, R., 2012. Regional economic resilience, hysteresis, and recessionary shocks. 
J. Econ. Geogr. 12 (1), 1–32. 

Mdari, Y.E., Daoud, M.A., Namir, A., Hakdaoui, M., 2022. Casablanca smart city project: 
urbanization, urban growth, and sprawl challenges using remote sensing and spatial 
analysis. In: Proceedings of Sixth International Congress on Information and 
Communication Technology. Springer, Singapore, pp. 209–217. 

Mohanty, S.P., Choppali, U., Kougianos, E., 2016. Everything you wanted to know about 
smart cities: the Internet of things is the backbone. IEEE Consum. Electr. Magazine 5 
(3), 60–70. 

Motta, M., de Castro Neto, M., Sarmento, P., 2021. A mixed approach for urban flood 
prediction using Machine Learning and GIS. Int. J. Disaster Risk Reduc. 56, 102154. 

Mouratidis, K., 2021. Urban planning and quality of life: a review of pathways linking 
the built environment to subjective well-being. Cities 115, 103229. 

Neumann, H.M., Jakutyte-Walangitang, D., Vielguth, S., Züger, J., Airaksinen, M., 
Huovila, A., et al., 2015. D1. 2-Overview of the Current State of the Art. VTT 
Impulse: Espoo, Finland. 

Newman, P.W., 1999. Sustainability and cities: extending the metabolism model. Landsc. 
Urban Plann. 44 (4), 219–226. 

Nitschke, J.P., Forbes, P.A., Ali, N., Cutler, J., Apps, M.A., Lockwood, P.L., Lamm, C., 
2021. Resilience during uncertainty? Greater social connectedness during COVID-19 
lockdown is associated with reduced distress and fatigue. Br. J. Health Psychol. 26 
(2), 553–569. 

Nutkiewicz, A., Yang, Z., Jain, R.K., 2017. Data-driven Urban Energy Simulation (DUE- 
S): integrating machine learning into an urban building energy simulation workflow. 
Energy Proc. 142, 2114–2119. 

Oberascher, M., Dastgir, A., Li, J., Hesarkazzazi, S., Hajibabaei, M., Rauch, W., 
Sitzenfrei, R., 2021. Revealing the challenges of smart rainwater harvesting for 
integrated and digital resilience of urban water infrastructure. Water 13 (14), 1902. 

O’Sullivan, F., 2020. Is Vienna really all that livable? Depends on where you look, bloomberg 
CityLab. Available online [Report]: https://www.bloomberg.com/news/articles/20 
20-03-05/the-problem-with-vienna-s-lofty-livability-ranking. 

Pan, L., Zhang, L., Qin, S., Yan, H., Peng, R., Li, F., 2021. Study on an artificial society of 
urban safety livability change. ISPRS Int. J. Geo-Inf. 10 (2), 70. 

Pandey, R.U., Mitra, T., Wadwekar, M., Nigam, J., Trivedi, K., 2021. Green infrastructure 
as a tool for improving livability of area based development projects under smart city 
mission. In: Geospatial Technology and Smart Cities. Springer, Cham, pp. 447–468. 

Paracchini, M.L., Pacini, C., Calvo, S., Vogt, J., 2008. Weighting and aggregation of 
indicators for sustainability impact assessment in the SENSOR context. In: 
Sustainability Impact Assessment of Land Use Changes. Springer, Berlin, Heidelberg, 
pp. 349–372. 

Patel, R., Nosal, L., 2016. Defining the Resilient City. United Nations University Centre 
for Policy Research, New York. Available online [Report]: https://cpr.unu.edu/r 
esearch/projects/defining-the-resilient-city.html.  

Paul, A., Sen, J., 2020. A critical review of livability approaches and their dimensions. 
Geoforum 117, 90–92. 

Phillips, G., Bottomley, C., Schmidt, E., Tobi, P., Lais, S., Yu, G., et al., 2014. Well London 
Phase-1: results among adults of a cluster-randomised trial of a community 
engagement approach to improving health behaviours and mental well-being in 
deprived inner-city neighbourhoods. J. Epidemiol. Community Health 68 (7), 
606–614. 

Pucher, J., Buehler, R., 2008. Cycling for everyone: lessons from Europe. Transport. Res. 
Rec. 2074 (1), 58–65. 

Quackenbush, J., 2002. Microarray data normalization and transformation. Nat. Genet. 
32 (4), 496–501. 

Ramboll, 2020. Creative Liveable Cities with People: How Technology Can Improve Urban 
Life, (Report). Nordic edge white paper. https://ramboll.com/-/media/3737fe033b 
f9402fbb06fe7b37cc3682.pdf. 

Ramirez Lopez, L.J., Grijalba Castro, A.I., 2021. Sustainability and resilience in smart 
city planning: a Review. Sustainability 13 (1), 181. 

Reggiani, A., Nijkamp, P., Lanzi, D., 2015. Transport resilience and vulnerability: the role 
of connectivity. Transport. Res. Pol. Pract. 81, 4–15. 

Ringel, M., 2021. Smart city design differences: insights from decision-makers in 
Germany and the Middle East/North-Africa region. Sustainability 13 (4), 2143. 

Rios, P., 2012. Creating" the Smart City" (Doctoral Dissertation). 
Rodin, J., 2014. The Resilience Dividend: Being Strong in a World where Things Go 

Wrong. Public Affairs, New York, NY.  
Ryff, C.D., 1989. Happiness is everything, or is it? Explorations on the meaning of 

psychological well-being. J. Pers. Soc. Psychol. 57 (6), 1069. 
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