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A B S T R A C T   

Gynecological malignancies are a female type of cancers that affects the reproductive system. Cancer metastasis 
or recurrence mediated by cellular invasiveness occurs at advanced stages of cancer progression. Cancer Stem 
Cells (CSCs) enrichment in tumors leads to chemoresistance, which results in cancer mortality. Exposure to 
environmental pollutants such as polycyclic aromatic hydrocarbons is associated with an increased the risk of 
CSC enrichment in gynecological cancers. One of the important pathways that mediates the metabolism and 
bioactivation of these environmental chemicals is the transcription factor, aryl hydrocarbon receptor (AhR). The 
present review explores the molecular mechanisms regulating the crosstalk and interaction of the AhR with 
cancer-related signaling pathways, such as apoptosis, epithelial-mesenchymal transition, immune checkpoints, 
and G-protein-coupled receptors in several gynecological malignancies such as ovarian, uterine, endometrial, 
and cervical cancers. The review also discusses the potential of targeting the AhR pathway as a novel chemo-
therapy for gynecological cancers.   

1. Introduction 

Gynecological malignancies affect the female reproductive organs, 
the ovary, cervix, endometrium, vagina, and vulva [1], and are a major 
cause of high mortality and morbidity in women worldwide [2]. As per 
the American Cancer Society, endometrial, cervical, and ovarian cancer 
rank third, fifth and seventh in terms of cancer occurrence in women in 
2021. Several physiological, genetic, environmental, and lifestyle fac-
tors are associated with these cancers’ occurrence and frequency. Viral 
infections and microbiome composition are also reported to be related to 

the risk of gynecological cancers [3]. In addition, epigenetic changes 
involving non-coding RNA (ncRNAs) contribute significantly to the 
cellular transformation process and subsequent stages of progression in 
gynecological cancers [4]. Advanced gynecological cancers have a poor 
prognosis, wherein the identification of adequate treatment strategies 
still constitutes a significant challenge. Despite the advancement in the 
available treatment regimens, including concurrent 
radio-chemotherapy, gynecological cancers present a relatively higher 
rate of locoregional recurrence [5]. One of the crucial reasons for this is 
the acquisition of chemoresistance upon cycles of drug administration. 
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Concurrent chemoradiotherapy is currently the standard treatment 
for locally advanced cervical cancer, according to the recommendations 
of the National Comprehensive Cancer Network. However, patients are 
experiencing local or metastatic relapse after therapy [6]. On the other 
hand, ovarian cancer is the most lethal form of gynecological malig-
nancies, characterized by vague symptoms and a higher recurrence rate 
[7]. It comes with the burden of being asymptomatic in almost 65 % of 
cases and challenging timely diagnosis [8]. The five-year overall sur-
vival rate of ovarian cancer in its early stages is around 47 % which is 
even lower in advanced stages [9]. Even though the first-line therapy 
response rate is satisfactory, most patients presented with relapse within 
subsequent years [10]. Endometrial cancer, the most common type of 
uterine cancer, is hormone-dependent cancer attributed to endogenou-
s/exogenous exposure to estrogen hormone. Postmenopausal women 
were found to have a higher risk of developing the disease [11,12]. 
Endometrial cancer has a high metastasis level and a lower survival rate 
[13]. Vaginal cancers are rare (3 % of gynecological cancers) but highly 
aggressive, mainly epidermal in origin, and usually metastasized from 
another primary site [14]. Most vaginal cancers occur in post-
menopausal or older women [15], whereas vulvar cancer, that accounts 
for 4 % of all gynecological malignancies, is associated with delay in 
both presentation and diagnosis, with approximately 40 % of women 
presenting with advanced stages [16]. 

Until now, therapy management in gynecological cancers has not 
advanced much past cytoreductive surgery followed by platinum-based 
chemotherapy. Patients’ lower survival rates, higher recurrence, and 
increased relapse rates make these cancers a global burden on female 
lives [17]. All these malignancies, when progressed to advanced stages, 
have shown chemoresistance. Reports recommend that cancer invasion, 
metastasis, and recurrence ultimately lead to poor treatment outcomes. 
More specifically, cancer-related death is mainly interceded by 
chemo-resistant cancer stem cells (CSCs) [18]. 

2. Cancer stem cells in gynecological cancer 

Resistance to chemotherapy in cancer is highly correlated to the 
failure of these chemotherapeutic drugs to irradicate a small fraction of 
cancer cells termed cancer stem cells (CSCs) [8]. Primarily discovered in 
leukemia [19], the persistence of CSCs was later confirmed in solid 
malignancies like breast, colon, pancreatic, and gynecological malig-
nancies [20]. Several theories are proposed on the emergence of CSCs, 
either normal stem cells mutated to be oncogenic or cancer cells 
attaining stemness even within individual tumors of the same origin 
[21]. Mounting evidence has suggested a positive correlation between 
higher number of CSCs and increased aggressiveness and poor outcome. 
CSCs are characterized by specific cell surface markers cluster of dif-
ferentiation, including CD24, CD44, CD9, CD133, and epithelial cell 
adhesion molecule (EpCAM). They also possess high enzymatic activ-
ities of aldehyde dehydrogenase (ALDH), a CSC-specific molecular 
marker [22,23]. Notably, CSCs can form tumor spheroids when grown in 
ultra-low attachment plates [18]. Another major property of CSCs is the 
upregulation of the drug efflux mechanism, which can be attributed to 
the high expression of a specific group of transporter proteins, namely 
ATP binding cassette (ABC) drug transporters, ABCG2. This ability of 
drug effluxion against the concentration gradient leads to the occur-
rence of a specific side population of cells when assessed by flow 
cytometry assay [24,25]. CSCs can also be identified and characterized 
by the expression of specific transcription factors such as octamer 
binding transcription factor 4 (OCT4), SRY-box transcription factor 2 
(SOX2), homeobox protein (Nanog), and Krüppel-like factor 4 (KLF4) 
[26] (Fig. 1). 

Reportedly, CSCs use several pathways for their self-renewal and 
maintenance, namely Wnt/β-catenin [27], Sonic hedgehog (Shh) 
[28–30], Notch [31], and B cell-specific Moloney murine leukemia virus 
integration site 1 (BMI1) [32]. In addition, epithelial-mesenchymal 
transition (EMT) is regulated by the high activity of the Wnt/β-catenin 
in the nucleus, causing the arrest of the tumor cell division and retaining 
the self-renewal capacity of the CSCs [33–35]. In addition, several 

Fig. 1. CSCs development and characteristics. 
Emergence of CSCs has been majorly hypothe-
sized to be either through the oncogenic trans-
formation of the normal stem cells or through 
the acquisition of stemness by the tumor cells 
during cancer progression. CSCs are highly 
linked to chemoresistance, tumorigenicity, 
metastasis, and angiogenesis. Examples of 
mechanisms that mediate the effect of CSCs 
include self-renewal capacity, drug efflux, 
apoptosis inhibition, DNA damage, and EMT. 
(Created with Biorender.com).   
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signaling pathways are found to be dysregulated in CSCs, such as Janus 
kinase (JAK)/signal transducer and activator of transcription (STAT), 
phosphatase and tensin homolog (PTEN), phosphoinositide 3-kinases 
(PI3K), AKT, mammalian target of rapamycin (mTOR), and nuclear 
factor-κB (NF-κB) [36,37] that support the unregulated self-renewal and 
differentiation properties of CSCs [38,39]. 

Knowing that gynecological malignancies are majorly CSC-derived, 
how they are regulated at the molecular level is still unclear and war-
rants further investigation. In this section, we discuss the role and 
involvement of CSCs in several types of gynecological cancers. 

2.1. CSCs in ovarian cancer 

Nowadays, it has become increasingly accepted that ovarian cancer 
is driven by CSCs [7,40]. It is believed that the high relapse rate in 
ovarian cancer (70 %) is due to the survival of the CSC subpopulation 
that evades drug effects. Moreover, dormant ovarian CSCs are capable of 
repopulating again, leading to even more aggressive, drug-resistant 
diseases [41]. However, the exact mechanisms by which ovarian can-
cer cells transform into CSCs remain uninvestigated. Although little is 
known about ovarian CSC location and CSC progenitors, recent studies 
have aided in understanding CSC evolution and establishment within 
tumors [42]. It is reported that ovarian CSCs not only initiate peritoneal 
spread and relapse but also induce chemoresistance. In a study with cells 
derived from human ovarian tumors, it was found that the over-
expression of Patched and glioma-associated oncogene homolog 1 
(Gli1), CSC markers and main components of the Shh pathway, was 
correlated with poor survival rates and increased invasiveness and 
aggressiveness of cancer [43]. The proportion of CD44+/CD24- cells 
corresponded to the clinical aggressiveness of each ovarian cancer cell 
line histologic subtype. For instance, the proportion of CD44+/CD24- 

cells in the endometroid ovarian cancer cell line (TOV112D) is 0.5 % 
compared to 99 % in the more aggressive clear cell ovarian cancer cell 
line ES2 [44]. A correlation between the relative abundance of ovarian 
cancer cells with stem cell-like properties (CD44+/CD24-) and a higher 
recurrence rate was observed in patients with ovarian cancer [44] 
Studies suggest that ovarian carcinogenesis is associated with EMT in 
response to different signals from the tumor microenvironment (TME) 
[45]. Overexpression of CD44 was observed in metastatic and relapsed 
tumors and chemoresistant cancer cells. Moreover, CD133, another 
surface molecule frequently associated with CSC, is correlated to clinical 
advancement in ovarian cancer. In addition, human epithelial ovarian 
cancer (EOC) CD44+/CD117+ cells possess CSC properties and chemo-
resistance [46]. Studies have also reported that a loss of p53 function can 
result in chemotherapeutic drug resistance in various tumors, including 
ovarian [47] and endometrial [48,49] cancers. Direct evidence sup-
porting the role of P53 inactivating mutations in driving CSCs has 
recently been reported [50]. For example, Pinho et al. showed that 
deletion of P53 in pancreatic acinar cells enhanced the expression of CSC 
markers and promoted sphere formation [51]. Similarly, breast CSCs 
that lack p53 expression showed higher mammosphere formation ability 
than p53-positive cells [52]. Yet, similar evidence in gynecological CSCs 
is still lacking. 

2.2. CSCs in cervical cancer 

The genetic heterogeneity in cervical carcinoma is associated with a 
high incidence of chemoresistance, metastasis, and pelvic recurrence 
[53]. Although human papillomavirus (HPV) infection is considered the 
primary causative agent [54], CSCs also play a prominent role in the 
disease development, metastasis, recurrence, and prognosis. In this line, 
numerous studies suggested a link between HPV infection and the 
development of CSCs in gynecological cancers [55,56]. For instance, 
Vishnoi et al. demonstrated that HPV gene E6 enhances hedgehog 
transcription factor Gli-induced self-renewal in cervical cancer and in-
creases the CSC numbers [57]. Cervical cancer is observed to have 

impaired chemotherapy-induced apoptosis, which is believed to be 
primarily mediated by CSC subpopulation [58]. Consistently, cervical 
CSCs identified based on high expression of ALDH, a stemness-specific 
property, were found to be resistant to cisplatin, the most commonly 
used chemotherapeutic drug in cervical cancer [59]. ALDH expression is 
associated with higher cell proliferation rates, sphere formation, 
migration, and tumorigenesis in cervical cancer cells [60]. Moreover, 
studies also report that high ALDH expression correlates with poor 
survival [61]. Several stemness-associated genes, such as ABC trans-
porters, OCT4, Nanog, SOX2, cytokeratin 17 (CK-17), and Musashi-1 
(MSI1), have been observed in cervical CSCs [62–64]. Remarkably, 
the expression of CSCs-related genes, such as MSI1 and CD49f, is re-
ported to be associated with poor prognosis in cervical cancer patients 
[64]. Increased expression of Shh protein has been demonstrated in 
cervical cancer and its precursor lesions in cervical intraepithelial 
neoplasia [65]. In addition, Notch is one of the significant pathways 
mostly deregulated in cancer and is correlated to the metastatic poten-
tial of tumors [66]. 

2.3. CSCs in endometrial cancer 

Endometrial CSCs were first identified and established from the 
EMTOKA cell line in vitro [67]. Later, using immunocompromised mice, 
Hubbard et al. confirmed the presence of CSCs in endometrial cancer 
and suggested that this population may be responsible for producing 
endometrial tumor cells [68]. Several endometrial CSC-specific markers 
have been studied and identified till now alongside other tumors [69]. 
CD117 is a cell-surface receptor tyrosine kinase that, when stimulated by 
stem cell factor (SCF), imparts stemness properties to cells [70,71]. 
Reports suggest that CD117+ endometrial cancer cells showed an 
enhanced proliferative and colony-forming ability in a SCF-dependent 
manner which was abrogated by an anti-SCF antibody in vitro [72]. 
CD55, a cell surface complement inhibitor, was reported to be highly 
expressed in endometrial cancer cells and CSCs. CD55+ cells were 
characterized by higher self-renewal and chemoresistance properties 
compared to CD55- cells [73]. Analysis of 113 endometrial cancer 
samples by Rutella et al. identified CD133+ cells with higher prolifera-
tive and colony-forming ability compared to CD133- cells, which upon 
transplantation into immunocompromised mice, differentiated to the 
original tumor phenotype [74]. Various other studies also reported the 
enhanced tumorigenic ability of CD133+ cells [75–78]. Side population 
(SP) refers to a subpopulation of cells with the ability to exclude fluo-
rescent dye Hoechst 33342 from the cytoplasm [79]. It is seen as a dim 
tail in the flow cytometric plot [80]. This is due to the enhanced 
expression of ABC transporters that assist with the efflux of molecules, 
including chemotherapeutic drugs, thereby imparting drug resistance 
[81,82]. Remarkably, Liu et al. revealed that SP isolated from different 
endometrial cancer cell lines possessed more vital clone formation 
ability and higher resistance to paclitaxel and radiotherapy than non-SP 
[82]. In addition, it has been reported that cells with higher ALDH1 
levels are more tumorigenic, invasive, and resistant to cisplatin than 
low-expression ALDH1 cells, which correlates with a poor prognosis in 
endometrial cancer patients [83]. 

3. Gynecological cancers and environmental pollutants 

Exposure to air pollutants has been associated with an increased risk 
to women’s health. A recent study has assessed the association between 
air pollution and gynecological cancer risk. Their findings suggest a 
positive correlation between the risk of gynecological cancers and 
higher concentrations of air pollutants [84]. Exposure to air pollutants 
such as polycyclic aromatic hydrocarbons (PAHs) plays a role in acti-
vating environmental carcinogens [85] and promoting the proliferation 
of cancer cells [86]. Mounting evidence suggests a link between CSC 
development and PAH exposure [87]. One of the major pathways that 
mediate the metabolism and bioactivation of these environmental 
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chemicals is the aryl hydrocarbon receptor (AhR) pathway, whose role 
in cancer development and profileration of CSCs is recently demon-
strated [18,88]. 

AhR is a cytoplasmic ligand-activated transcriptional factor that 
belongs to the family basic Helix-Loop-Helix–Period/ARNT/Single- 
minded (bHLH-PAS), which is involved in the regulation of genes 
involved in hydrocarbon metabolism [89,90]. Several ligands have been 
identified for AhR, most of them being aromatic hydrocarbons such as 
dioxins and biphenyls [91]. The International Agency for Research on 
Cancer (IARC) has classified 2,3,7,8-tetrachlorodibenzo-p-dioxin 
(TCDD) as carcinogenic to humans, whereas polychlorinated biphenyls 
(PCBs) are probably carcinogenic to humans [92]. AhR is found in the 
cytoplasm as an inactive protein complexed with two molecular chap-
erons Heat Shock Protein 90 (HSP90), a co-chaperone p23, and hepatitis 
B Virus X-associated protein 2 (XAP2) (Fig. 2). Complexing with these 
proteins ensures appropriate folding and helps proper ligand recognition 
[93]. Ligand binding facilitates the nuclear translocation of AhR to the 
nucleus, where it gets dissociated from its complex and forms a heter-
odimer with the AhR nuclear translocator (ARNT). The formed hetero-
dimer then binds to a specific nucleotide sequence (TNGCGTG) known 
as xenobiotic responsive element (XRE) [94] to initiate the transcrip-
tional regulation of genes that code for proteins involved in the xeno-
biotic metabolism, such as the cytochrome P450 proteins (CYPs), 
specifically CYP1A1, CYP1A2, and CYP1B1 [95]. After transcriptional 
regulation, AhR gets transported to the cytoplasm, where it gets 
degraded by the 26S proteasome [96]. 

AhR is reported to have a role in regulating and expanding several 
cancers, including breast, oral, pharyngeal, colorectal, colon, and 

choriocarcinoma [18,97,98]. Controversially, AhR activation has been 
reported to suppress the growth of breast and liver cancers [99,100]. 
AhR regulates tumorigenesis by maintaining CSC characteristics, thus 
directing chemoresistance and cancer cell proliferation [98,101]. 
Though the role and involvement of AhR in mediating the CSCs has been 
extensively reviewed by our group and others, how AhR affects the CSCs 
of gynecological cancers is still not yet reviewed. This article explores 
the role and involvement of AhR in the transcriptional regulation of 
CSCs in gynecological cancers. 

4. Regulation of CSCs by AhR in gynecological cancers 

Several studies have shown that AhR protein and transcripts are 
expressed in various female reproductive organs, including ovaries 
[102], endometrium [103], and myometrium [104]. It has been 
demonstrated that both inhibition and activation of AhR gene expres-
sion induce adverse outcomes in the female reproductive system and 
impair its function, indicating that AhR plays a significant role in the 
gynecologic organs [104]. While AhR is thought to be an essential 
regulator of several physiological functions in the female reproductive 
system, including ovulation, fertilization [105], pregnancy [106], and 
fertility [104,107], evidence showed that AhR also plays a crucial role in 
tumorigenesis. However, the AhR’s role in cancer is complex since both 
pro- and antitumorigenic effects have been reported [108]. It is 
well-documnted that AhR activation or overexpression promotes 
tumorigenesis in various gynecological cancers [98,109–113]. For 
example, Deuster et al. showed that low expression of AhR in ovarian 
cancer patients is associated with a better prognosis [114]  Fig. 3. 

Fig. 2. Model of transcriptional regulation of AhR/CYP1 pathway and its effects in gynecological cancers. Activation of cytosolic AhR upon exposure to environ-
mental toxicants (AhR ligands) leads to the translocation of the receptor to the nucleus, where it gets dissociated from its complex to heterodimerize with ARNT. AhR- 
ARNT dimer then binds to specific xenobiotic responsive elements (XRE) to initiate the transcriptional regulation of genes such as CYP1A1. Induction of CYP1A1 
bioactivates these procarcinogens to highly diol epoxide reactive molecules which attach DNA causing DNA adduct and modulation of numerous cellular pathways. 
This in turn enhances tumorigenesis, tumor proliferation, apoptosis evasion, tumor invasion, metastasis, stemness and chemoresistance in these cancer cells. (Created 
with Biorender.com). 
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Similarly, AhR expression was upregulated in endometrial cancer 
cells compared to normal endometrium tissues [115]. However, some 
studies reported that AhR ligands might suppress endometrial or ovarian 
cancer proliferation and migration [115–117]. This anti-tumorigenic 
effect might be mediated through AhR-estrogen crosstalk. It has been 
reported that AhR blocks estrogen receptor signaling [118]. While the 
anti-estrogenic effect of AhR has been extensively studied in breast 
cancer, little is known about this crosstalk in gynecological cancers. 
Therefore, more studies are needed to fully dissect the mechanisms and 
impact of AhR signaling on gynecological cancers and their different 
histological subtypes. Due to its importance in mediating tumorigenesis, 
the role of AhR in regulating CSCs is increasingly being investigated. To 
date, available evidence shows that AhR activation might promote 
stemness in multiple types of cancers, including breast cancer [18], oral 
squamous cell carcinoma [119], choriocarcinoma [98], and ovarian 
cancer [110]. Nevertheless, the exact molecular mechanisms and tran-
scriptional regulation of CSCs mediated by AhR are not fully understood 
and have not been reviewed before. Therefore, in the coming sections, 
we will summarize the mechanisms by which AhR regulates CSCs in 
gynecological cancers. 

4.1. Ovarian cancer 

AhR is expressed in several ovarian cells, including the follicles in all 
species, and thus AhR ligands are known as potent ovo-toxicants [120]. 
AhR expression has been observed in several histotypes of ovarian 
cancers with varying stages and tumor grading [116]. In addition, 
overexpression of CYP1B1 protein has been demonstrated in primary 
and metastatic ovarian cancer, while no expression was observed in 
normal ovaries [121]. Despite the long-established role of AhR in 
ovarian physiological function, its impact on ovarian tumorigenesis is 
not fully understood, especially in the highly aggressive subpopulations 
of ovarian CSCs. Conflicting results have been reported about the effect 
of AhR in ovarian cancer, encompassing both promotion and inhibition 
of tumor cell growth and proliferation. The potential role of AhR in 
suppressing the development of ovarian cancer was described by Li 
et al., in which treatment of the ovarian adenocarcinoma cell line 
(OVCAR-3) cell line with TCDD resulted in suppression of tumor cell 
proliferation [117]. Nevertheless, these findings could not be repro-
duced in other ovarian cancer cell lines [110,117]. 

On the other hand, several studies reported increased proliferation 
and stemness in ovarian cancer cells upon exposure to AhR activators 

Fig. 3. Mechanisms of transcriptional regulation of CSC-related pathways by AhR/CYP1 pathway. Exposure to environmental chemicals such as PAHs of various 
sources such as factory waste, volcano eruption, pharmaceutical/medicinal/drug derivatives, pesticides, etc. results in activation of the AhR/CYP1 pathway in 
gynecological cancers. The activation of the AhR/CYP1A1 pathway in turn results in the activation of several genes such as NOTCH1, NOTCH2, β-Catenin, Hes1, 
ALDH1, CD49F, CD133, ABCG2, SOX2, IDO1, and OCT4 involved in imparting chemo- and radio-resistance to cancer cells. In addition, increased tumor proliferation 
by activating pathways such as PI3K/AKT and MAPK, and apoptosis inhibition by upregulating anti-apoptotic proteins such as BCL-2, BCL-XL, MCL-1, and down-
regulating BAX, BAK is also observed. Moreover, immune evasion of cancer cells via cross-talking with G-protein coupled receptors, Kynurenine pathway, IDOI, and 
hormone receptors such as follicle stimulating hormonal receptor (FSHR) is also detected in many gynecological cancers. Induction of EMT by AhR upon activation 
by its ligands enabling cancer cells to attain mesenchymal characteristics and metastasize to other body parts is a crucial incidence observed in gynecological cancers. 
(Created with Biorender.com). 
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[109–111]. Clinically, it has been reported that high cytoplasmic AhR 
expression is significantly associated with shorter overall survival 
(85.07 months vs. 183.46 months) [114]. In the same study, an associ-
ation of AhR with histology, tumor grading, and tumor size upon 
immunohistochemistry analysis has also been reported [114]. In the 
following section, we will dissect various potential mechanisms 
involved in AhR-mediated transcriptional regulation in ovarian cancer, 
especially epithelial ovarian cancer (EOC) and the CSC subpopulation. A 
summary of the studies that describe the mechanisms of AhR/CYP1 in 
gyencological cancers and CSCsis presented in Table 1. 

In serous (EOC), AhR and androgen receptor (AR) are found to cor-
egulate the expression of ABCG2. This study analyzed the AR-AhR in-
teractions using a co-immunoprecipitation assay in three serous EOC cell 

lines and found that both AhR and AR were physically interacting. 
Moreover, they reported that TCDD induced AhR translocation to the 
nucleus and interaction with the alternative AREs within the proximal 
ABCG2 promoter region, thereby imparting resistance to paclitaxel and 
therapy failure in serous EOC [122]. Another study showed that CYP1B1 
enhanced the resistance of EOC to paclitaxel in vivo and in vitro. They 
found that CYP1B1 was overexpressed in more than 92% of EOC samples 
(49 out of the 53) and that was associated with drug resistance. In 
metastatic EOC tissues, there was a similar pattern of CYP1B1 expression 
(13 out of 14 samples, 92.8 %). However, this effect of increased resis-
tance to paclitaxel was abrogated by α-naphthoflavone (α-NF), a specific 
inhibitor of AhR, both in vitro and in vivo [123]. On the other hand, it 
has been reported that CYP1A1 gene polymorphism could mediate the 
incidence and development of EOC. The study analyzed CYP1A1*3 
polymorphisms in 117 patients with EOC and 202 control subjects which 
showed that the frequency of individuals carrying the Ile/Val allele was 
significantly higher in EOC than in the control group with a 5.7-fold 
higher risk for ovarian epithelial neoplasm [124]. 

PAX8 is a member of the paired box family of transcription factors, 
which is frequently expressed in primary EOC and is believed to be 
involved in tumorigenesis. It is seen that PAX8 binding sites mainly exist 
next to the motifs of the AhR/ARNT. Chip-seq data analysis explored 
non-promoter PAX8 binding sites of the PAX8 gene, indicating a co- 
regulation between AhR/ARNT motif in IGROV-1 cell line, a well- 
established model for drug-resistant ovarian carcinoma [125]. Min Su 
et al. showed an essential correlation between AhR and EMT and the 
degree of malignancy using gene ontology-based integrative analysis. In 
this study, AhR was found to enhance tumor initiation in serous ovarian 
tumors. They also identified multiple differentially expressed genes in 
several aspects, comparing databases of serous borderline ovarian tu-
mors and serous ovarian carcinomas [126]. 

Although most studies on the chemical carcinogenesis of gyneco-
logical cancers have addressed the role of exposure to exogenous AhR 
ligands, minimal information is known about the impact of endogenous 
AhR activators. Some examples of these endogenous molecules are 2- 
(1’H-indole-3’-carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE), 
tryptophan metabolites such as tryptamine (TA) and indole acetic acid 
(IAA), heme metabolites such as bilirubin, dietary compounds such as 
Indole-3-carbinol derivatives, and others [127]. Contrary to exposure to 
environmental pollutants, endogenous AhR ligands showed a differen-
tial effect, probably due to their physiological role. Wang et al. have 
shown that ITE decreased human ovarian cancer OVCAR-3 and SKOV-3 
cell proliferation and migration in vitro and ovarian cancer growth in 
mice through an AhR-dependent mechanism [116]. In EOC, a recent 
study has shown that administration of kynurenine, an endogenous AhR 
ligand, to ovarian cancer cells induced the immune checkpoints on CD8+

T cells in the tumor microenvironment [128]. Another link supporting 
the role of endogenous AhR ligands on ovarian cancer was recently re-
ported by Xi et al., who showed elevated levels of bilirubin, an endog-
enous AhR ligand, to be a positive prognostic marker in ovarian cancer 
[129]. 

4.1.1. Expression of cancer stemness markers 
Experimental evidence for ovarian CSCs was first reported in 2005 

[130]. Since then, accumulating evidence has revealed that ovarian 
CSCs are a crucial mediator in ovarian cancer growth, metastasis, 
relapse, and chemoresistance [131]. The effect of AhR activation on 
ovarian cancer and its relation to stemness markers and associated 
pathways have recently been evaluated by our group. Treatment of 
A2780 ovarian cancer cell line with TCDD significantly increased 
expression of the stemness marker ALDH1 and anti-apoptotic proteins 
(BCL-2, BCL-XL, and MCL-1) known to be upregulated in CSCs [110]. 
Consistently, it has been shown that daily administration of 3-methyl-
cholanthrene (3-MC), a potent AhR activator, to immature rats en-
hances AhR binding to promoter regions of cancer stemness-associated 
genes such as Notch2, Hes1, Jag1, and Akt [109]. This effect was 

Table 1 
Summary of studies that describe the regulatory mechanisms of AhR/CYP in 
gynecological cancer and CSCs.  

Species AhR/CYP pathway Effect on Cancer and 
CSCs 

Ref. 

Cancer patients Low expression of AhR Better prognosis [114] 
Higher expression of 
CYP1B1 protein 

↑ primary and 
metastatic cancer 
↔ no expression in 
normal ovaries 

[121] 

Human A2780 
cells 

Overexpression of AhR poor prognosis through 
interaction with Era 

[112] 

High cytoplasmic AhR 
expression 

shorter survival from to 
85 months compared to 
183.5 in control 

Human 
metastatic EOC 

Overexpression of 
CYP1B1 
Treatment with AhR 
inhibitor (α-NF) 

↑ Resistance to 
paclitaxel 
↑Sensitivity to 
paclitaxel 

[123] 

IGROV-1 cells AhR/ARNT coregulates 
PAX8 

↑ Tumorigenesis [125] 

EOC patient 
samples 

CYP1A1 gene 
Polymorphism 

↑ Tumor incidence risk 
and  
development 

[124] 

Serous ovarian 
carcinoma 

Synergistic AhR binding 
pathway with EMT 

Tumor initiation [126] 

Human EOC 
OVCAR-3 cells 

Treatment with TCDD, 
AhR activator 

↑ AR-AhR complex 
coupled with ABCG2 
lead to resistance to 
paclitaxel 

[122]  

↑ Proliferation [225]    

Human EOC 
OVCAR-3 (WT 
ER), SKOV-3 
(mutated ER) 

Treatment with 
exogenous AhR ligand 
(TCDD) or endogenous 
AhR ligand (ITE) 

↓ Proliferation of 
OVCAR-3 
↔ no effect on SKOV-3 
proliferation 

[116, 
117] 

Human EC 
Ishikawa 

Treatment with AhR 
agonist (CB126) 

↑ Proliferation at low 
doses and ↓ 
proliferation at higher 
doses 

[260] 

Treatment with AhR 
agonists (TCDD, BaP) 

↓ E2-induced cell 
growth in cells 
transfected with E2 
responsive constructs 

[272] 

Human EC 
RL95–2 cells & 
tissues 

Treatment with AhR 
agonist (BaP) 

↓ Cell adhesion [271] 

Rats Treatment with AhR 
agonist (TCDD) for two 
years 

↑ incidence of uterine 
cancer 

[252] 

Treatment with AhR 
activator (3-MC) 
Treatment with AhR 
inhibitor (a-NF) 

↑ stemness Notch2, 
Hes1, Cyclin D, and 
Akt. 
↑ CSC marker Slug 
expression 
↓ stemness markers 

[109] 
[140] 

Mice Treatment with AhR 
agonist (TCDD) 

↓ Estrogen-induced 
uterine growth and 
proliferation 

[273] 

Exposure of ovaries to 
AhR activation PAHs 

↑ oocytes death and 
apoptosis 

[102]  
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blocked by α-NF, an AhR antagonist, suggesting that AhR might be 
involved in mediating the growth and maintenance of ovarian CSCs 
[109]. Besides, although not directly studied in ovarian CSCs, AhR 
activation enhanced the expression of the multidrug resistance trans-
porter ABCG1, a well-established CSC marker. 

ALDH1A1 has been described as a candidate ovarian CSC marker and 
is associated with chemoresistance, first identified by Landen et al. 
[132]. Reports show that ALDH expression was highly associated with a 
poor survival rate in ovarian cancer patients. Knockdown of ALDH1 
sensitized cancer cells to taxanes and platinum drugs. A higher viability 
and recurrence capability were identified in ALDH+ SKOV-3 cells after 
cisplatin treatment, indicating their higher resistance capacity. This 
group further identified and isolated both ALDH+ and CD133+ cells that 
could quickly induce tumors in xenograft models, and these cells were 
presented with worse outcomes in ovarian cancer patients [133]. 
Studies in various breast cancer cell lines demonstrate that AhR 
expression is elevated in ALDH+ cells [18]. Moreover, the knockdown of 
AhR diminishes ALDH1 activity, whereas activation of AhR enhances 
ALDH1 activity and the expression of stem cell- and invasion-related 
genes [18]. Our recent study validated these findings in ovarian can-
cer, where AhR induction by TCDD induced ALDH1A1 expression in an 
ovarian cancer cell line, A2780 [110]. 

4.1.2. Epithelial-mesenchymal transition (EMT) 
It is estimated that 80 % of patients with ovarian cancer will develop 

resistance and subsequently metastasis within five years of treatment 
initiation, despite initial response. Accumulating evidence has shown 
that EMT is crucial in driving chemotherapeutic resistance, stemness, 
and metastasis in various tumors. EMT is a reversible process wherein 
the epithelial cells lose their adhesive properties, leading to the acqui-
sition of mesenchymal properties and migratory capabilities [134]. 
Ovarian CSCs have been observed to show mesenchymal characteristics 
and be involved in tumor initiation and metastasis [135]. At the mo-
lecular level, it has been reported that EMT is an essential mediator in 
driving ovarian cancer metastasis and thereby cancer progression and 
chemoresistance, stemness, and recurrence by modulating transcription 
factors that activate EMT in cancer like zinc finger e-box binding ho-
meobox 1 and 2 (Zeb1, Zeb2), and Snail, Slug, and twist family bHLH 
transcription factor 1 (Twist1) [136–141]. A recent study from our 
laboratory has shown that activation of AhR by TCDD induced EMT in 
ovarian cancer cell lines A2780 [110]. Notably, we observed a reduction 
in the epithelial marker (E-cadherin) along with a concomitant increase 
in the expression of mesenchymal markers (vimentin and snail). 

Interestingly, several previous studies have reported a tight corre-
lation between AhR and EMT in ovarian cancer [110,142]. For instance, 
Su et al. revealed that the expression of the EMT transcription factor 
Slug, also known as snail family transcriptional repressor 2 (SNAI2), in 
serous ovarian cancer was associated with poor survival and increased 
histological malignancy from borderline ovarian tumor to early- and 
late-stage- serous ovarian cancer [126]. It has been reported that Slug 
transcription is activated by AhR; and that AhR silencing leads to the 
abolishment of Slug induction by AhR ligand, 3-MC [143]. Since 
elevated expression of EMT transcription factor, Snail, was accompanied 
by increased expression of AhR-related biomarkers such as SRC 
proto-oncogene, non-receptor tyrosine kinase, ARNT, and TATA-Box 
Binding Protein (TBP) in ovarian cancer tissues, Su et al. suggested a 
synergistic AhR binding with EMT effect on serous ovarian cancer [126]. 
Even though our group and others have reported that AhR activation 
could induce EMT, the molecular mechanisms of their interactions 
leading to chemotherapy resistance warrant further investigation. 

4.1.3. Tumor suppressor genes 
Breast cancer type 1 susceptibility protein (BRCA1) is a tumor sup-

pressor gene that plays a significant role in repairing DNA damage, 
mainly, double-stranded DNA breaks via homologous recombination 
[144–146]. Germline mutations in the BRCA1 gene have been widely 

associated with an increased risk of developing breast and ovarian 
cancers [146]. In addition to its involvement in tumor initiation, BRCA1 
mutations were also linked to aggressive tumor behaviors, including the 
migratory potential of tumor cells and its associated signaling pathway 
EMT [144]. For instance, high-grade serous ovarian cancer with BRCA1 
mutations is found to be highly aggressive and is accompanied by a poor 
prognosis [147]. Other studies reported that the reduced expression of 
BRCA1 rather than its mutation is primarily involved in tumorigenesis 
[148]. AhR-instigated hypermethylation is an important epigenetic 
alteration of the BRCA1 gene, which has been extensively reported in 
breast cancer [148], wherein studies have reported that activation and 
recruitment of the AhR to the BRCA1 promoter hamper 17 β-estradiol 
(E2)-dependent stimulation of BRCA1 transcription and protein levels 
[149]. Even though this has not been identified in ovarian cancer, a 
similar effect could be anticipated due to higher BRCA1 mutations being 
a predisposing factor for high-grade serous ovarian cancer. 

4.1.4. Apoptosis and chemoresistance 
Apoptosis is a natural mechanism involved in programmed cell death 

and acts to maintain tissue homeostasis by eliminating aged or defective 
cells [150]. Besides, apoptosis plays an essential physiological role in 
ovaries, mainly contributing to follicular atresia and corpus luteum 
regression which are necessary for maintaining a healthy reproductive 
system in females [151,152]. The inability to control granulosa cell 
apoptosis and initiate follicular atresia has been associated with an 
increased risk of hormone-related cancers, including ovarian cancer, 
and chemotherapeutic resistance [153]. Alteration in the apoptotic 
pathway is a well-recognized hallmark of cancer wherein the cells are 
characterized by overexpression of anti-apoptotic proteins such as 
BCL-2, BCL-XL, or MCL-1 and downregulation of pro-apoptotic proteins 
such as BAX or BAK [154]. Consequently, targeting apoptosis machinery 
represent one of the most effective nonsurgical treatments for cancer 
[155]. In ovarian cancer, dysregulation of apoptosis machinery was 
correlated with resistance to chemotherapy [156,157]. For instance, 
BCL-XL expression is associated with poor chemotherapy response in 
ovarian cancer patients, and its inhibition via navitoclax increased 
chemosensitivity to platinum-based drugs in various ovarian cancer cell 
lines [158]. However, CSCs are featured with increased innate resistance 
to apoptosis and chemotherapy, compared to more differentiated cells 
[159,160]. Several factors have been linked to apoptosis evasion in 
CSCs, including the upregulation of multidrug resistance transporters (e. 
g., ABCG2, MRP, BCRP) [161,162]. On the other hand, the expression of 
death receptors (e.g., Fas and TRAIL) was found to be lower in CSCs, 
decreasing their sensitivity to Fas-induced apoptosis and as a result their 
response to chemotherapy [158,159]. Moreover, since the majority of 
anti-cancer therapies preferentially target replicating cancer cells, the 
ability of CSCs to maintain a quiescent nondividing state protects them 
from chemotherapy-induced apoptosis as well as immune surveillance 
[163–165]. 

Several studies showed that AhR could influence apoptosis by 
regulating the expression of genes involved in the apoptotic pathway 
[113,166]. Notably, exposure of ovaries to PAHs, known AhR activators, 
leads to the destruction of oocytes, implying the involvement of AhR in 
mediating cell death signaling and potentially explaining the infertility 
issues observed in women who smoke [102,167]. This observation is 
further supported by Robles et al. findings which showed that AhR 
knockout attenuated oocyte apoptosis in fetal ovaries leading to a 
two-fold higher number of primordial follicles than AhR-wile-type fe-
male germ cells [102]. On the other hand, AhR was repeatedly shown to 
exert the opposite effect in cancer cells, where it mediates anti-apoptotic 
responses in various types of cancers, including lymphoma, breast, lung, 
ovarian, and pancreatic cancer [168–171]. Recently, our group 
demonstrated that AhR activation by TCDD in an ovarian cancer cell line 
(A2780) significantly upregulated the anti-apoptotic proteins BCL-2, 
BCL-XL, and MCL-1 which was accompanied by a reduction in ear-
ly/late apoptosis [110]. Remarkably, the same study found that 
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inhibition of apoptotic pathway by AhR activation was associated with 
higher stemness, as evident by induction of ALDH expression, EMT, and 
upregulation of Wnt/β-catenin [110]. 

Moreover, chemoresistance is directly influenced by AhR in both CSC 
and non-stem-cell populations [18,87,98,119]. Stanford et al. revealed 
that inhibition of AhR by CH223191 significantly enhanced response to 
adriamycin and paclitaxel in both ALDHlow and ALDHhigh triple-negative 
breast cancer cells (Hs578T) [18]. Additionally, AhR was induced in 
ovarian cancer cells (A2780) in response to paclitaxel treatment. Its 
activity was more upregulated in paclitaxel-resistance ovarian cancer 
cells than wild-type cells [172]. These findings are consistent with 
previous studies demonstrating AhR involvement in evasion of 
chemotherapeutic-induced apoptosis. 

Among the suggested mechanisms for AhR-mediated chemothera-
peutic resistance is the induction of the multidrug efflux transporter 
ABCG2 [173,174]. Tan et al. demonstrated that AhR is a direct tran-
scriptional regulator of ABCG2 [175]. Later, it was suggested that the 
androgen receptor (AR), which is known to play a role in the growth and 
progression of EOC, is involved in AhR-mediated ABCG2 expression 
[122,176,177]. In this study, Chung et al. reported that treating serous 
EOC cells with paclitaxel or TCDD caused activation of AR-AhR complex 
coupled with the ABCG2 regulatory axis imparting resistance to the EOC 
cells [122]. At first, through manipulating the expression of AR using 
AR-cDNA or AR-shRNA in HeyA8, OVCAR-3, and SKOV3ip1 cells, they 
found that ABCG2 efflux ability was positively regulated by AR 
expression in EOC cells. Next, using a co-immunoprecipitation assay , 
the authors have identified AR-AhR interactions [122]. Since high 
expression of ABCG2 is a well-recognized CSC marker and is strongly 
associated with therapeutic resistance [161,162,178], it is suggested 
that AhR might be involved in mediating resistance in ovarian CSCs 
through induction of ABCG2. Hence, inhibiting AhR may represent a 
potentially effective therapeutic strategy for targeting ovarian CSCs 
when used in combination with other chemotherapies. Nonetheless, 
studies directly evaluating the role of AhR in regulating apoptosis, 
specifically in the CSC subpopulation of gynecological cancers, are 
limited. Thus, more studies are needed to unravel the therapeutic po-
tential of AhR modulation in overcoming therapeutic resistance induced 
by CSCs in gynecological malignancies. 

4.1.5. Immune checkpoint system 
Immune checkpoint (ICP) proteins or regulators are an essential part 

of the immune system playing an important role in preventing tissue 
damage caused by uncontrolled immune responses [179]. ICPs act in 
ligand-receptor pairs to control the interaction between cells of the 
innate and adaptive immune system, primarily T cells, 
antigen-presenting cells, and tumor cells. When an inhibitory check-
point and partner proteins bind, they switch off signals sent to trigger 
immune responses. It has been found that inhibitory ICPs are usually 
upregulated in cancer cells [180]. This can prevent the immune system 
from destroying cancer cells. Although ICPs are primarily involved in 
controlling immune responses, it has been observed that they might also 
be involved in promoting self-renewal, metastasis, and therapeutic 
resistance [181–185]. 

Immune checkpoint inhibitors (ICPIs) are molecules that block the 
immune checkpoint proteins from their binding to the partner proteins, 
thereby preventing the ‘switch off’ process and allowing the T cells to 
kill tumor cells. Over the past decade, ICPIs have shown profound suc-
cess in multiple types of tumors and have become an essential pillar in 
cancer therapy. Nevertheless, many cancer patients showed primary or 
quired resistance and failed to respond to these treatments [186]. 
Remarkably, it has been recently suggested that the CSCs subpopulation 
may protect cancer cells from immune destruction and thus limit their 
response to immunotherapy [186,187]. Several studies have shown that 
CSCs can mediate immune evasion through multiple mechanisms, 
including differential expression of ICPs, the release of immunosup-
pressive pro-inflammatory factors, suboptimal expression of human 

leukocyte antigen (HLA) molecules, and tumor-associated antigens. 
These features render CSCs invisible to immune surveillance, preventing 
cytotoxic immune cells from recognizing and killing CSCs [188–190]. 

The most extensively studied ICPs are programmed death 1 (PD-1) 
and its ligand (PD-L1). The PD-1/PD-L1 is an ICP pathway and adaptive 
immune resistance mechanism of the tumor cells in response to 
endogenous immune anti-tumor activity. Numerous studies on multiple 
types of cancer have shown that PD-L1 is commonly upregulated in CSC 
subpopulations, and its expression is linked to immune evasion and 
unfavorable prognosis [191–193]. Notably, Miyazaki et al. reported that 
AhR mediates PD-L1 expression and dampens the immune response in 
colon cancer cells [194]. Similarly, it was found that AhR activity is 
necessary for PD-L1 expression and maintenance of CSC features in 
patient-derived cancer spheroids [194]. While a similar effect on PD-L1 
has not yet been evaluated in gynecological CSCs, it has been recently 
revealed that PD-1 in T cells is induced via activation of AhR in ovarian 
cancer [128]. In this study, McCloud et al. assessed the effect of indo-
leamine 2,3-dioxygenase (IDO1), an immunoregulatory enzyme, on 
PD-1 expression [128]. Activation of IDO1 generates Kynurenine, an 
endogenous AhR ligand, that was found to promote immune evasion 
through driving the differentiation of CD4+ T cells into immunosup-
pressive T regulatory cells in an AhR-dependent mechanism [195,196]. 
Besides, Kynurenine was found to upregulate the co-inhibitory receptor, 
PD-1, on CD8+ T cells. Remarkably, this effect was abrogated upon 
administration of AhR antagonist, CH223191, indicating that AhR is 
necessary for Kynurenine-mediated PD-1 expression [128]. Additional 
investigations by McCloud et al. identified AhR-XRE binding sites in the 
promoter region of several human checkpoint receptors (e.g., PD-1, 
Lag3, Tim3, Klrg1, Ctla4, Btla, 2B4, CD160, and TIGIT) through 
computational analysis [128]. A chromatin immunoprecipitation study 
further supported kynurenine-mediated AhR binding to XRE motifs on 
PD-1 promoter [128]. In this line, McCloud et al. suggested that 
Kynurenine modulates chromatin accessibility in regulatory regions of T 
cell inhibitory receptors, facilitating AhR binding to XRE motifs on the 
promoter region of the inhibitory receptors, particularly PD-1 gene 
promoter [128]. These findings indicate that combining AhR inhibition 
with IDO1 blockade may enhance anti-tumor immunity and overcome 
immune suppression in ovarian cancer and other tumors. Taken 
together, using AhR antagonist alone or in combination with IDO1 in-
hibitor may aid in reversing the immunomodulatory signature in CSCs 
through downregulation of ICPs that are known to be altered in this 
population. Yet, more studies are needed to validate the potential utility 
of AhR modulators in targeting CSCs of gynecological cancers. 

4.1.6. G-protein-coupled receptors (GPCRs) 
G-protein-coupled receptors (GPCRs) are integral transmembrane 

proteins representing the human genome’s largest family. GPCRs sense a 
large spectrum of extracellular signals, including ions, peptides, amino 
acids, or proteins such as neurotransmitters and growth factors [197, 
198]. The role and involvement of GPCRs in several cancers have been 
reported, wherein they contribute to tumor progression, migration, and 
metastasis [199]. More importantly, recent studies suggested an essen-
tial role for GPCR in regulating CSCs-related signaling and markers such 
as the Wnt pathway and Lgr proteins [200–203]. The critical impact of 
endocrine hormones on the development of gynecological cancers 
makes endocrine GPCR of particular interest in ovarian cancer [204, 
205]. Recent evidence suggests that endocrine GPCR is involved in the 
progression and metastasis of ovarian cancer [205–210]. For instance, 
activation of the G protein estrogen receptor (GPER) in ovarian cancer 
cells promoted cell proliferation, migration, and invasion [206,207, 
210]. Notably, GPER-induced signaling was essential for the mainte-
nance of CSCs in breast cancer [211,212]. Chan et al. reported that GPER 
silencing leads to a reduction in stemness characteristics. In contrast, 
activation of GPER by tamoxifen enhanced stem cell features as detected 
by tumor sphere formation ability in vitro and tumor growth in vivo 
[211]. 
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A functional correlation between AhR and GPER, triggered by AhR 
ligand 3-MC, has been reported to lead to the stimulation of SKBR3 
breast cancer cell lines, as analyzed by co-immunoprecipitation studies 
[213]. These findings suggest a potential involvement of AhR in 
GPER-mediated regulation of CSCs. However, contradictory results 
showing that GPER expression in ovarian cancer is correlated with 
favorable outcomes have also been reported [205,208,214]. Thus, more 
studies are needed to fully understand the role of GPER in ovarian cancer 
and its crosstalk with AhR, especially in the CSCs subpopulation. 
Follicle-stimulating hormone receptor (FSHR) is another endocrine 
GPCR associated with enhanced proliferation, survival, and metastasis 
in ovarian cancer [205,215,216]. Additionally, it has been found that 
activation of FSHR increases the expression of OCT4 and promotes EMT 
in ovarian cancer, indicating that FSHR may act as a mediator in pro-
moting ovarian CSCs [217,218]. Knockout of AhR in mice resulted in 
lower mRNA expression of FSHR than wild-type mice [219]. Although 
these findings suggest a potential role for AhR in regulating FSHR 
transcription, the experiments were assessed in normal ovaries; hence, 
data still need to be validated in an ovarian cancer model. The effect of 
GPCR signaling on ovarian CSCs and its regulation by AhR remains 
unknown. 

4.1.7. Crosstalk with steroid hormones 
Steroid hormones (i.e., estrogen, progesterone, and androgen) 

regulate the growth and development of human tissues, especially 
breasts and reproductive organs. Accordingly, disruption in steroid 
hormones and their downstream signaling have been linked to the 
progression of gynecological cancer [220,221]. Epidemiological studies 
have shown that estrogen is involved in promoting ovarian carcino-
genesis; and that the risk of ovarian cancer increases by increasing the 
duration of estrogen exposure [220,222]. Notably, recent studies sug-
gested that steroid hormones also regulate the proliferation, differenti-
ation, and metastasis of CSCs [220]. For instance, estrogen was found to 
reduce the proliferation and self-renewal of CSCs by inhibiting the 
translation of the embryonic stem cell genes Nanog, Oct-4, and Sox2 in 
breast cancer cells [220,223]. On the other hand, Cheng et al. showed 
that induction of the transcription factor E2F6 by estrogen upregulates 
ovarian CSC markers (CD44 and c-KIT) [224,225]. Similarly, Chung 
et al. reported that overexpression of AR in EOC cells enhances the 
expression of the CSC marker, ABCG2 [122]. The same study showed 
that AR-mediated ABCG2 expression could be induced by AhR agonist 
TCDD [122]. Mechanistically, AR was found to be physically interacting 
with AhR forming a complex that could be activated by TCDD [122, 
226]. 

The crosstalk between ER and AhR and their effect on carcinogenesis 
is more complicated, with both anti-estrogenic and estrogenic activities 
being reported. For instance, Rogers et al. showed that TCDD reduces 
the level of ER in BG-1 ovarian cancer cells when cultured in a standard 
medium but not in an estrogen-stripped medium [226]. Besides, TCDD 
was found to suppress the growth of the ER+ ovarian cancer cell line 
(OVCAR-3) while it did not affect the proliferation of the SKOV-3 cell 
line, which has a defective ERα [117]. Consistently, Wang et al. reported 
a reduction in proliferation of OVCAR-3 cell line but not ER mutated 
ovarian cancer cell line (SKOV-3) upon treatment with ITE, an endog-
enous AhR ligand [116]. Nevertheless, Takahashi et al. showed that 
TCDD increases the proliferation of the ovarian cancer CAOV-3 cell line, 
which was accompanied by an increase in AhR and ERα mRNA ex-
pressions when cultured in a low FBS medium [227]. The impact of AhR 
on estrogen and other steroid hormones signal transduction in ovarian 
cancer and CSCs is complex; hence, more studies are needed to fully 
understand the crosstalk between AhR and steroid hormones on CSCs. 

4.2. Cervical cancer 

Cervical cancer, which originates in the tissues of the cervix, is the 
fifth most commonly occurring cancer in women globally, with a 

significantly lower survival rate at metastatic stages [228,229]. Cervical 
cancer is caused by the human papillomavirus (HPV). The cervical CSCs 
population is frequently resistant to chemotherapy due to the high 
expression of efflux transporters [228]. Other potential cervical 
epithelial stem cell markers include MSI1, ALDH1, SOX2, and CD49f 
[63,64]. AhR and its regulatory genes were found to correlate with the 
biological regulation of cervical cancer and development. Meta-analysis 
studies on a large sample size have shown that polymorphism in MspI 
and Ile462Val of the CYP1A1 is a risk factor for cervical cancer devel-
opment in several ethnicities [230–232]. In addition, a recent study by 
Alshammari et al. has demonstrated a higher CYP1B1 expression in 91 % 
of cervical cancer patients than in normal healthy subjects. The increase 
in CYP1B1 expression was positively correlated with the grades of the 
diseases and metastasis to the lymph node [233]. Furthermore, 
increased activities and expressions of AhR and its regulated genes 
CYP1A1 and CYP1B1 were associated with poor prognosis [112], in 
which analysis of the Linked Omics database demonstrated a positive 
correlation between AhR and 3209 genes, whereas 2651 genes showed a 
negative correlation with AhR. Importantly, by investigating the rela-
tionship between AhR and its related genes and the prognosis of cervical 
cancer patients, the authors concluded that overexpression of AhR was 
associated with poor prognosis [112]. 

One of the hypothesized mechanisms is that AhR interacts with ERα, 
causing conformational changes leading to the activation of several 
transcription factors and multiple protein complexes to mediate the 
development and progression of cervical cancer [234]. IDO1 mediates 
tryptophan metabolism and T cell suppression in human cells, whose 
expression was found to be increased in cervical CSCs [235]. Kynur-
enine, the first breakdown product of the IDO1-mediated tryptophan 
metabolism, is an endogenous ligand for the AhR. Low et al. studied the 
interaction between IDO1 and stemness in cervical cancer and reported 
that IDO1 regulates Notch1 expression by binding AhR/ARNT to the 
Notch1 promoter. Furthermore, they found that Notch1 activation 
contributes to the increased IDO1 expression in cervical CSCs. In addi-
tion, it has been shown that shRNA knockdown of Notch1 decreased the 
expression of IDO1 in cervical CSCs. Importantly, the administration of 
Ro-4929097, a γ-secretase inhibitor and anti-cancer drug, inhibited the 
binding of the intracellular domain of Notch (NICD) to the IDO1 pro-
moter. Moreover, the knockdown of IDO1 also decreased NICD expres-
sion in cervical CSCs, correlated with the reduced binding of ARNT to 
the Notch1 promoter [236]. 

A correlation between higher expression of ALDH1 and poor survival 
rate is observed in cervical squamous cell cancer patients that received 
post-operative adjuvant chemotherapy before radical hysterectomy 
[237]. ALDH1 may also be a useful prognostic biomarker in cervical 
cancer [61]. The role of ALDH1 in cellular migration and its link to 
tumorigenicity and aggressiveness is also reported [238]. The induction 
of AhR by 3-MC was associated with increased ALDH+ cell population in 
tamoxifen-resistant cells but not in chemosensitive human breast cancer 
MCF7 cells [239]. SOX2 expression is higher in cervical cancer cells 
when compared to normal cervical cells; its expression, along with OCT4 
was observed to be highly correlated to poor survival in cervical cancer 
patients [62,240,241]. The CSC marker, ABCG2, is transcriptionally 
activated by the AhR/CYP1 pathways through the binding of AhR to the 
XRE sequence on the ABCG2 promoter region [173–175]. There are 
limited studies on the effect of AhR on cervical CSCs. Thus, further 
studies are highly warranted to understand the impact of AhR/CYP 
activation on cervical CSC development and features. 

4.3. Uterine and endometrial cancer 

Endometrial cancer is mainly divided into two types; estrogen- 
dependent type I, which is the most common and less aggressive, and 
type II estrogen-independent [242,243]. Endometrial CSCs were estab-
lished earlier [68], where the expression of stemness markers, such as 
SOX2, Nanog, and OCT4, has been reported in endometrial CSCs isolated 
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from endometrial cancer with higher expansion potentials and 
colony-forming capabilities [244]. These cells are also found to express 
several CSC markers and self-renewal genes [68]. It was also reported 
that chemoresistance of uterine cancer to platinum- and taxane-based 
chemotherapy is mediated through DNA repair mechanisms, efflux 
pumps, and survival pathways such as PI3K/AKT pathway and 
mitogen-activated protein kinase (MAPK) pathway [245]. In addition, 
several CSC-related signaling pathways were found to be expressed in 
endometrial CSCs, including, Wnt/β-Catenin [246–248], Notch, and 
PI3K/AKT [249–252]. 

In endometrial cancer cells, it has been reported that administration 
of ITE, an endogenous AhR ligand, inhibited cell proliferation and 
migration in vitro in AN3CA and HEC-1B cell lines and in xenograft 
growth in mice, where this effect was associated with a significant in-
crease in CYP1A1 and CYP1B1 mRNA and protein levels [115]. For 
instance, activation of AhR using TCDD enhanced spheroid formation 
ability, whereas AhR inhibition by shRNA significantly reduced stem 
cell-like characteristics in choriocarcinoma, a type of gestational ma-
lignancy that develops in the uterus [98]. Mechanistically, Wu et al. 
showed that the AhR-mediated effect on the uterine CSCs might be at 
least partially mediated through the Wnt/β-catenin pathway and ABCG2 
transporter [98]. In this context, previous studies have reported higher 
levels of AhR mRNA in early events of uterine endometrial cancer cells 
than in normal endometrium. Notably, the differential expressions of 
AhR in early and advanced stages are mediated through an 
estrogen-related mechanism. In that, it has been reported that AhR 
expression was higher in estrogen-independent responsive grade 3 
endometrioid adenocarcinoma than in estrogen-dependent responsive 
grade 1 and 3 endometrioid adenocarcinoma [253]. Another supporting 
evidence is the observations of Yoshizawa and his team, who reported 
that long-term exposure of female rats to TCDD significantly increased 
uterine squamous cell carcinoma [254]. This effect could be attributed 
to an increase in the expression of CYP1A1 since human endometrium 
epithelial cells (RL95–2) exposed to benzo[a]pyrene (BaP), an AhR 
inducer, exhibited higher expression levels of CYP1A1, with no changes 
in CYP1A2 or CYP1B1 levels [255]. In addition to its crosstalk with 
estrogen, it has been observed that AhR interacts with AR, leading to the 
progression of endometrial cancer upon activation with TCDD [256]. 

On the contrary, other studies have reported a protective role for 
AhR activation against endometrial cancer due to its anti-estrogenic 
activity. This hypothesis was supported by the association between 
cigarette smoke, which contains many AhR activators, and the lower risk 
of endometrial cancer [257]. Consistently, several AhR agonists, TCDD 
and BaP, and selective modulators, 3’,4’-dimethoxy-αNF (DiMNF), 
repressed estrogen-dependent gene transcription in endometrial cancer 
cells [258–260]. Labrecque et al. showed that knockdown of AhR with 
siRNA diminished TCDD-induced repression of estrogen signaling, 
indicating that AhR is involved in mediating its anti-estrogenic activity 
[258]. Several mechanisms have been proposed for the observed 
anti-estrogenic activity, including direct inhibition of ER signaling by 
binding to inhibitory XRE and indirectly by decreasing circulatory E2 
through induction of CYP metabolizing enzymes [116,118,261]. While 
AhR agonists induced anti-estrogenic activity was associated with pro-
tective effects in some studies, others report reverse or no association 
with tumorigenesis in endometrial cancer. 

The initiation of chemical carcinogenesis depends on the magnitude 
(dose or concentration) and the duration of exposure to environmental 
pollutants. In this context, an epidemiological study involving 3538 
workers with occupational exposure to TCDD was conducted to examine 
the association of TCDD exposure dose and duration and the risk of 
tumor development. The study revealed that workers with chronic high- 
level exposure to TCDD are more likely to be at higher risk of cancer 
development than those with recent low-dose exposure [262]. These 
results are consistent with the theoretical and experimental knowledge 
that promoters usually require a longer period to accelerate tumor 
progression. For instance, Chen et al. showed that treatment of Ishikawa 

endometrial cancer cells with low doses of CB126, an AhR agonist, 
induced cancer cell proliferation, whereas treating the same cell line 
with higher doses resulted in an opposite effect [263]. In this line, a 
dose-response study using 3-MC, an AhR activator that also stimulates 
ERα activity, revealed that the half-maximum effective concentration 
(EC50) required to activate ER was 100 fold higher than that required for 
AhR in Ishikawa cells [264]. Unlike 3-MC, other AhR agonists (i.e., 
BZ126 or TCDD) evaluated in the same study did not stimulate 
ERα-dependent reporter activity [264]. These findings indicate that both 
types of AhR ligands and their doses are among the factors that control 
the direction and magnitude of AhR effect on estrogen signaling. 

Moreover, the anti-estrogenic effect of AhR is different among spe-
cies. For example, while TCDD produced an anti-estrogenic effect in vivo 
Holtzman rat model [265], it did not cause an anti-estrogenic effect in 
Sprague-Dawley rat endometrial epithelial cells [221]. The crosstalk 
between AhR and estrogen and their effect on carcinogenesis is complex 
and is affected by numerous mediators. Despite being evaluated in 
several studies, currently, there is no consensus on the effect of AhR on 
estrogen signaling since both anti-estrogenic and estrogenic activity has 
been reported. However, it is well accepted that AhR is an essential 
mediator in controlling estrogen signaling and carcinogenesis in endo-
metrial cancer. Therefore, more studies are needed to fully understand 
AhR downstream signaling and the potential therapeutic utility of its 
modulators. 

Human epidermal growth receptor 2 (HER2) mediated PI3K/AKT 
activation increases paclitaxel resistance in endometrial cancer cells 
[266]. For instance, HER2 signaling promotes AhR-mediated Memo-1 
expression and migration in colorectal cancer. The group found that 
established a close link between extracellular HER2 activation and 
AhR/ARNT transcriptional activity in colorectal cancer [267]. In addi-
tion, increased tumorigenicity is associated with upregulated expression 
of EMT-associated genes like TWIST1 and SNAI1 in endometrial CSCs. In 
addition, treatment with salinomycin, an EMT blocker, inhibited the 
tumorigenicity of these cells [268]. Moreover, expression of ALDH high 
cells showed elevated expression of SOX2, Nanog, OCT4, and Myc 
[269]. In this instance, both PI3K/AKT pathway and MAPK pathway are 
found to be regulated by AhR in several cancers, such as breast cancer 
[270]. On the contrary, a report suggests that AhR activation gives rise 
to anti-estrogenic actions and may consequently reduce the develop-
ment of endometrial cancer [221]. Studies from several groups have 
established that AhR could be a potential therapeutic target for endo-
metrial cancer and several other cancers like prostate, ER-positive breast 
cancer, and pancreatic cancer [259,271–273]. Specimens from human 
uterine endometrial cancer (HEC) exhibited an increased level of the 
AhR with a decreased expression of tumor suppressor genes known as 
nuclear factor 1 C (NF1C), whereas overexpression of NF1C suppressed 
AhR activation [253]. This deregulation of AhR by NF1C could be a 
novel potential targeted therapy for endometrial cancer. 

5. Conclusions and future directions 

Gynecological cancers are a huge burden to female lives globally. A 
major and highly challenging factor that prevents an efficient treatment 
regime is chemoresistance owing to the presence of CSCs. The existence 
of CSCs has challenged the efficiency of treatments and clinical out-
comes of many cancers, including both hematological and solid cancers. 
As there are studies that suggest the occurrence of several gynecological 
cancers like ovarian cancer in highly polluted areas, is likely to be due to 
exposure to chemical carcinogens. In this context, AhR has an inevitable 
role in regulation of gynecological malignancies as the regulator of 
proteins involved in the metabolism of these polycyclic aromatic hy-
drocarbons. AhR activation is also reported to upregulate many CSC 
maintenance pathways. The current review presents an update on the 
molecular mechanisms involved in the regulation of AhR and CSC- 
mediated pathways such as Wnt/β-Catenin, Notch, apoptosis, EMT, 
ICP, and GPCRs. AhR/CYP pathway exhibited a differential effect 
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subjected to the type of gynecological cancer involved (Fig. 3). Though 
many studies have been done on investigating the possible role of AhR in 
regulating CSCs, this field is still in its infancy and needs deep mining. 
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G. Emons, F. Goffin, A. González-Martín, S. Greggi, C. Haie-Meder, D. Katsaros, 
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