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Abstract

Logic programs with ordered disjunction (LPODs) (Brewka
2002) generalize normal logic programs by combining alter-
native and ranked options in the heads of rules. It has been
showed that LPODs are useful in a number of areas includ-
ing game theory, policy languages, planning and argumenta-
tions. In this paper, we extend propositional LPODs to the
first-order case, where a classical second-order formula is de-
fined to capture the stable model semantics of the underlying
first-order LPODs. We then develop a progression semantics
that is equivalent to the stable model semantics but naturally
represents the reasoning procedure of LPODs. We show that
on finite structures, every LPOD can be translated to a first-
order sentence, which provides a basis for computing stable
models of LPODs. We further study the complexity and ex-
pressiveness of LPODs and prove that almost positive LPODs
precisely capture first-order normal logic programs, which in-
dicates that ordered disjunction itself and constraints are suf-
ficient to represent negation as failure.

Introduction
Logic programs with ordered disjunction (LPODs) general-
ize normal logic programs by combining features of qualita-
tive choice logic so that alternative and ranked options may
be explicitly expressed in the heads of rules (Brewka 2002;
Brewka, Benferhat, and Berre 2002). A LPOD contains a
finite set of rules of the form

α1 × · · · × αk ← β1, · · · , βl, not γ1, · · · , not γm, (1)

where αi, βj , γh (1 ≤ i ≤ k, 1 ≤ j ≤ l, 1 ≤ h ≤ m)
are propositional atoms. Intuitively, rule (1) says that when
the body is satisfied, then whenever it is possible, derive α1,
otherwise if possible, derive α2, and so on. The semantics
of an LPOD is defined in terms of the stable models of so-
called split programs of the underlying LPOD.

Let us consider a simple program Π1 from (Brewka
2002):

A×B ← notC,

B × C ← notD.
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Π1 has the following four split programs:

A ← notC A ← notC

B ← notD C ← notD, notB

B ← notC, notA B ← notC, notA

B ← notD C ← notD, notB.

Then the class of stable models of Π consists of all
stable models of these four split programs, which is
{{A,B}, {B}, {C}}. Then by integrating proper preference
relation among these stable models, the preferred stable
models can be obtained for an LPOD.

There have been several extensions of LPODs in recent
years: Karger et al (2008) extended LPODs by allowing
both ordered and unordered disjunction in the heads of rules;
Confalonieri et al (2010) recently defined a possibilistic se-
mantics for LPODs in order to handle uncertainty; and Ca-
balar (2011) also proposed a direct translation from LPODs
to normal logic programs via the logic of Here-and-There.
It has been argued that LPODs provide a natural way to
deal with preference in reasoning that are useful in var-
ious applications such as game theory, policy languages,
planning and argumentations (Brewka 2002; Cabalar 2011;
Confalonieri et al. 2010).

On the other hand, in recent years, Answer Set Program-
ming (ASP) has been generalized to arbitrary first-order sen-
tences (Ferraris, Lee, and Lifschitz 2011). One challenging
research along this direction is to establish proper logical
and computational foundations for promoting useful func-
tionalities in existing ASP paradigm to the first-order level.
A number of topics in this aspect have been investigated
and relevant properties revealed, e.g., (Asuncion et al. 2012;
Asuncion, Zhang, and Zhou 2013; Lee and Meng 2011;
Babb and Lee 2012). One major advantage of first-order
ASP is that it provides a succinct declarative language, in
which the underlying problem constraints (rules) may be
completely separated from concrete problem instances, and
hence more flexible for problem representation and model-
ing (Lin and Zhou 2011).

In this paper, we study the semantics and expressiveness
of LPODs on the first-order level. We make the following
main contributions towards this topic:

1. Following the style of general stable model semantics
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(Ferraris, Lee, and Lifschitz 2011), we define the sta-
ble model semantics for first-order LPODs via a classi-
cal second-order sentence, and show that this semantics
is a correct lifting of Brewka’s original LPODs seman-
tics to the first-order level. We then develop a progression
semantics that is equivalent to the second-order based se-
mantics but naturally represents the reasoning procedure
of LPODs.

2. We propose a translation from LPODs to first-order sen-
tences on finite structures. We argue that this translation
actually may be used as a computational basis for devel-
oping an LPOD solver.

3. We address the complexity and expressiveness issues of
LPODs. We show that LPODs data complexity is NP-
complete, that remains true even for positive LPODs. We
also prove that almost positive LPODs precisely capture
the full class of first-order normal logic programs, which
indicates that ordered disjunction itself and constraints are
sufficient to represent negation as failure.

4. We further consider preferred LPODs, and provide a logic
characterization of such preference semantics, which
again, generalizes the corresponding preferred proposi-
tional LPODs.
The rest of this paper is organized as follows. In section 2

we focus on the syntax and semantics of first-order LPODs.
In section 3 we then present a progression semantics for
first-order LPODs, which we believe is more intuitive to re-
flect the underlying derivation process embedded in LPODs.
Considering to compute stable models of an LPOD, in sec-
tion 4 we propose a translation from LPODs to first-order
sentences on finite structures, so that the problem of com-
puting stable models of an LPOD can be viewed as a SAT
solving problem. We study the complexity and expressive-
ness issues in section 5. In section 6 we define the preferred
stable models for LPODs and provide a logic formulation
for that. Finally, we conclude the paper with some remarks
in section 7.

First-order LPODs: Syntax and Semantics
We consider a second-order logic but without function sym-
bols (i.e., functions of arities not greater than 0). A signature
τ is a set of symbols of the form {c1, . . . , cm, P1, . . . , Pn}
such that ci (for 1 ≤ i ≤ m) are constant symbols and Pj
(for 1 ≤ j ≤ n) are predicate symbols. A structure M of
signature τ (or a τ -structure) is a tuple of the form

(M, cM1 , . . . , cMm , PM1 , . . . , PMn ), (2)

whereM is the domain ofM, which we will mostly refer to
asDom(M); cMi and PMj are the respective interpretations
of the constant and predicate symbols.

Let M be a τ -structure and M′ a τ ′-structure such that
τ ′ ⊆ τ and where (1) Dom(M′) = Dom(M); (2) cM

′
=

cM for each constant symbol c of τ ′; and (3) PM
′

= PM

for each predicate symbol P of τ ′. We refer M′ as the re-
striction of M to the signature of τ ′, which we denote by
M�τ ′ , i.e.,M′ =M�τ ′ . Symmetrically,M would be called
an expansion ofM′ to the signature τ .

The Syntax
An ordered disjunction rule is a construct of the form:
α1 × . . .× αk ← β1, . . . , βl, not γ1, . . . , not γm, (3)

where:
• Each αi (for 1 ≤ i ≤ k) is a standard atom P (x) for some

predicate P and tuple of terms (variables or constants) x.
If k = 0, then (3) is called a constraint.
• Each βi (1 ≤ i ≤ l) and γi (1 ≤ i ≤ m) are either a

standard or an equality atom.
• ByHead(r), we denote the ordered expression α1×. . .×
αk, that corresponds to the head of r. We also denote
Head(r)i = αi.

• As usual, by Body(r), we denote the set of literals
{β1, . . . , βl, not γ1, . . . , not γm}.

• Similarly, by Pos(r) and Neg(r), we denote the sets of
atoms {β1, . . . , βl} and {γ1, . . . , γm}, respectively.
A first-order logic program with ordered disjunction, or

simply called (first-order) LPOD, Π, is a finite set of or-
dered disjunction rules of the form (3). If for all rules r ∈
Π we have that k ≤ 1 in Head(r) = α1 × . . . × αk, then
Π becomes a normal logic program. It is obvious that this
first-order LPOD syntax naturally extends Brewka’s origi-
nal propositional logic programs with ordered disjunction
(Brewka 2002) to the first-order case.

For a given LPOD Π, a predicate is called intensional if
it occurs at least once in the head of some rule in Π. All
other predicates are called extensional. For convenience, we
denote by τ(Π), Pext(Π) and Pint(Π), the signature of Π,
the set of extensional predicates and the set of intensional
predicates, respectively. Furthermore, we also use τext(Π)
and τint(Π) to denote the sub-signatures of τ(Π) which only
contain extensional and intensional predicates respectively,
together with all constant symbols of τ(Π). When there is
no confusion in the context, we often omit the parameter Π
in these notions.

The Stable Model Semantics
For a rule of the form (3), we denote by B̂ody(r), the for-
mula β1 ∧ · · · ∧ βl ∧¬γ1 ∧ · · · ∧¬γm, and Head(r)FO, the
following formula

α1 ∨ (¬α1 ∧ α2) ∨ (¬α1 ∧ ¬α2 ∧ α3) ∨ . . .∨
(¬α1 ∧ ¬α2 ∧ . . . ∧ ¬αk−1 ∧ αk).

Note that Cabalar (2011) has showed the strong equivalence
of α1×· · ·×αk and Head(r)FO for the propositional case,
that can be easily extended to our first-order case. Then for
an LPOD Π, by Π̂, we denote the conjunction∧

r∈Π

(B̂ody(r)→ Head(r)FO). (4)

Definition 1 Let Π be an LPOD with tuple of distinct (in-
tensional) predicates P = P1P2 . . . Pn and M a τ(Π)-
structure. Then we say that M is a stable model of Π iff
it is a model of the following second-order sentence:

SMP(Π) = Π̂ ∧ ¬∃U(U < P ∧ Π̂(U)∗), (5)
where:
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• U = U1U2 . . . Un is a fresh tuple of distinct predicates
matching P;
• U < P denotes the formula∧

1≤i≤n

∀x(Ui(x)→ Pi(x)) ∧ ¬
∧

1≤i≤n

∀x(Pi(x)→ Ui(x));

• Π̂(U)∗ denotes the formula∧
r∈Π,

r of form the (3)

∀xr(β∗1 ∧ . . . ∧ β∗l ∧ ¬γ1 ∧ . . . ∧ ¬γm →
(α1 × . . .× αk)∗ ),

where (α1 × . . .× αk)∗ denotes the formula:
α∗1 ∨ (¬α1 ∧ α∗2) ∨ (¬α1 ∧ ¬α2 ∧ α∗3) ∨ . . .∨

(¬α1 ∧ ¬α2 ∧ . . . ∧ ¬αk−1 ∧ α∗k), (6)
and such that Pi(x)∗ = Ui(x) for any atomic formula
Pi(x) with 1 ≤ i ≤ n, and Q(y)∗ = Q(y) otherwise.
It is not difficult to see that Definition 1 is a counterpart

of the second-order definition for the general stable model
semantics (Ferraris, Lee, and Lifschitz 2011), with the ad-
ditional operation (6). In the following, we will show that
Definition 1 is also a generalization of the semantics for
the original propositional LPODs, and hence, our first-order
LPOD stable model semantics is a proper uplifting from the
propositional level.

Let τ be a signature of Π with the sets Pext and Pint of
extensional and intensional predicates respectively, and let
M be a τ -structure. Then we define IM as follows:

IM := {P (a) | P ∈ (Pext ∪ Pint) and a ∈ PM},
i.e., the set of propositional atoms corresponding to the ex-
tents of the predicates of τ underM. In addition, by ExtM,
define the set of rules (which are facts) as follows:

ExtM := {Q(a) ← | Q ∈ Pext and a ∈ QM},
i.e., the set of “facts” corresponding to the extensional
database underM.

In addition to the two previous notions, we now introduce
the notion of a grounded program. Let Π be an LPOD and
M a τ(Π)-structure with domain denoted by Dom(M).
Then by Π |Dom(M), let us denote the propositional pro-
gram obtained from Π by (1) simultaneously replacing the
variables by domain elements from Dom(M) in all possi-
ble ways, and the constant symbols by their corresponding
interpretation in Dom(M) underM; and (2) removing all
rules that contain false instantiations of equality predicates
and deleting those true instantiations of equalities from the
remaining rules.

Before we present the following result, we also need a
formal definition of split programs for a given propositional
LPOD. Let Π be a propositional LPOD consisting of rules
of the form of (3), but all those α’s, β’s and γ’s are propo-
sitional atoms. Then a split program of Π is a normal logic
program Π′ obtained from Π by replacing each rule of (3) in
Π, for some i ≤ k, by
αi ← β1, . . . , βl, not γ1, . . . , not γm, notα1, · · · , notαi−1.

(7)

Theorem 1 Let Π be an LPOD and M a τ(Π)-structure.
ThenM is a stable model of Π iff IM is a stable model of
some split program of Π|Dom(M) ∪ ExtM.

Progression Semantics: An Alternative
According to Definition 1, the semantics of first-order
LPODs is defined via a second-order sentence, which hardly
reveals the rule based reasoning feature of the underlying
LPOD. In this section, we provide an alternative seman-
tics for FO LPODs - the progression semantics, which is
an extension of Zhang and Zhou’s progression semantics for
first-order normal logic program (Zhang and Zhou 2010). As
we will see, the important feature of such semantics is that
it naturally represents the reasoning procedure through the
progression stages.
Definition 2 Let Π be a FO LPOD andM a τ(Π)-structure

(Dom(M), cM1 , . . . , cMr , QM1 , . . . , QMs , PM1 , . . . , PMn )

such that ci (for 1 ≤ i ≤ r), Qi (for 1 ≤ i ≤ s), and Pi
(for 1 ≤ i ≤ n) are its constant symbols, extensional and
intensional predicate symbols, respectively. We define the
τ(Π)-structureMt+1(Π) inductively as follows:

M0(Π) = (Dom(M), c
M0(Π)
1 , . . . , cM

0(Π)
r ,

Q
M0(Π)
1 , . . . , QM

0(Π)
s , P

M0(Π)
1 , . . . , PM

0(Π)
n ), (8)

where cM
0(Π)

i = cM1 (for 1 ≤ i ≤ r), QM
0(Π)

i = QMi (for

1 ≤ i ≤ s), and PM
0(Π)

i = ∅ (for 1 ≤ i ≤ n);

Mt+1(Π) = Mt(Π) ∪ {αiη | ∃r ∈ Π with Head(r) =

α1 × . . .× αi × . . .× αk
and η an assignment such that:

1. Pos(r)η ⊆Mt(Π) and Neg(r)η ∩M = ∅;
2. i ( for 1 ≤ i ≤ k ) is the largest i such that

{α1η, . . . , αi−1η} ∩M = ∅ }.
(9)

Then letM∞(Π) =
⋃

0≤t≤∞Mt(Π).

Since Mt(Π) ⊆ Mt+1(Π), we know that the sequence
M0,M1, · · · is monotonic andMt(Π) always converges to
its fixpoint. Also note that when Head(r) = α1 (i.e., r is a
normal rule), then we will have in Item 2 in (9) that i= 1 will
automatically be the largest i such that {α1η, . . . , αi−1η} ∩
M= ∅. From this fact, the following proposition shows that
the progression characterization captures the stable models
when Π is a normal logic program.
Proposition 1 Let Π be a normal logic program andM a
τ(Π)-structure. ThenM is a stable model of Π iffM∞(Π)
=M.
Proof: If Π is a normal program, then we will have by
default in Item 2 in (9) of Definition 2 that i = 1 will be
the largest i such that {α1η, . . . , αi−1η} ∩ M = ∅, since
{α1, . . . , αi−1} = ∅ in this case. Therefore, we can omit
Item 2 in (9) so thatMt+1(Π) will be as originally defined
in (Zhang and Zhou 2010) for normal programs. �

Theorem 2 shows that the progression semantics co-
incides with the second-order stable model semantics of
LPODs as defined in Definition 1. We first present the fol-
lowing lemma which is needed in the proof of Theorem 2.
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Lemma 1 IfM∞(Π) =M thenM |= Π̂.

Theorem 2 Let Π be an LPOD and M a τ(Π)-structure.
ThenM is a stable model of Π iffM∞(Π) =M.

Proof: (⇒) First we show that M∞ ⊆ M by showing
Mt ⊆ M holds for all t ≥ 0 by induction. Clearly,
M0(Π) ⊆ M holds by the definition of M0(Π) since all
the intensional relations are set to empty. Now assume that
Mt′(Π) ⊆ M holds for all 0 ≤ t′ ≤ t and let P (a) ∈
Mt+1(Π) such that P (a) 6∈ Mt(Π). Then by the definition
of Mt+1(Π), we have that there exists a rule r ∈ Π with
Head(r) = α1× . . .×αi× . . .×αk and assignment η such
that:

1. P (a) = αiη;

2. Pos(r)η ⊆Mt(Π) and Neg(r) ∩M = ∅;
3. i (for 1 ≤ i ≤ k) is the largest i such that
{α1η, . . . , αi−1η} ∩M = ∅.

Then since Pos(r)η ⊆Mt(Π) and Neg(r) ∩M = ∅, and
whereMt(Π) ⊆M, it follows thatM |= B̂ody(r)η. Thus,
sinceM |= Π̂ (becauseM |= SMP[Π]), then it follows that
M|=Head(r)FOη ≡ (¬α1∧. . .∧¬αi−1∧αi)η, which im-
plies that αiη = P (a) ∈ M. Therefore, we had shown that
M∞(Π) ⊆M. Now let us assume on the contrary that it is
also the case thatM∞(Π) ⊂ M and we show we derive a
contradiction. Then define a τ(Π)∪ {U1, . . . , Un}-structure
U as follows:

• cU = cM for every constant c of τ(Π);

• QU = QM for every extensional predicate of τ(Π);

• PUi = PMi for every intensional predicate Pi of τ(Π),
such that 1 ≤ i ≤ n.

• UUi = P
M∞(Π)
i for every predicate Ui in {U1, . . . , Un},

with 1 ≤ i ≤ n.

Now we will show that U |= U < P and U |= Π̂(U)∗. The
first part U |= U < P follows from the fact that M∞(Π)
⊂ M and by the way the τ(Π) ∪ {Un, . . . , Un}-structure
U is constructed from M and M∞(Π) above. Now we
show the second part. So assume for some rule r in Π of
the form (3) and some assignment η that U |= ̂Body(r)∗η.
Then since U |= U < P and by the definition of U , it fol-
lows that Pos(r)η ⊆M∞(Π), which implies that Pos(r)η
⊆ Mt(Π) ⊆ M∞(Π) ⊂ M for some t ≥ 0. Then since
Pos(r)η ⊂ M, then M |= B̂ody(r)η as well. Then since
M |= Π̂, we have that M |= Head(r)FOη, which fur-
ther implies that M |= ¬α1 ∧ . . . ∧ ¬αi−1 ∧ αi for some
1 ≤ i ≤ k. Then by Item 2 of (9), this implies that αiη ∈
Mt+1(Π) ⊆M∞(Π) since i will be the largest i such that
{α1η, . . . , αi−1η} ∩ M = ∅, which further implies that U
|= Head(r)∗η by the way U was constructed fromM∞(Π)
and since Mt+1(Π) ⊆ M∞(Π). Therefore, because we
have shown that U |= Π̂(U)∗, then we now have a con-
tradiction since we initially assumed that M |= SMP(Π),
and where this implies thatM |= ¬∃U(U < P ∧ Π̂(U)∗)
(which is contradicted by the existence of the structure U).

(⇐) Now let us assume M∞(Π) = M but, on the
contrary that M 6|= SMP[Π]. Since by Lemma 1 we have
that M |= Π̂, then this implies that M 6|= ¬∃U(U <

P∧Π̂(U)∗). Thus, assume that U is a τ(Π)∪{Un, . . . , Un}-
structure such that that U |= U < P∧ Π̂(U)∗. Then we will
show by induction on t that PM

t(Π)
i ⊆ UUi , for 1 ≤ i ≤ n.

Therefore, since U |= U < P (i.e., U is “strictly smaller”
than P), then this contradicts the assumption thatM∞(Π)
= M (because M∞(Π) would be “strictly less” than M
in this case). The base case forM0(Π) clearly holds since
P
M0(Π)
i = ∅, for 1 ≤ i ≤ n. So let us assume that PM

t(Π)
i

⊆ UUi , for 1 ≤ i ≤ n, and consider Mt+1(Π). Indeed,
let P (a) ∈ Mt+1(Π) \ Mt(Π). Then by the definition of
Mt+1(Π) as we find in (9) of Definition (2), there exists a
rule r ∈ Π with Head(r) = α1 × . . .× αi × . . .× αk such
that:

1. Pos(r)η ⊆Mt(Π) and Neg(r)η ∩M = ∅;
2. i (for 1 ≤ i ≤ k) is the largest i such that
{α1η, . . . , αi−1η} ∩M = ∅,

and where Pi(a) = αiη. Then it is not difficult to see that U
|= ̂Body(r)∗η as well since PM

t(Π)
i ⊆ UUi , for 1 ≤ i ≤ n.

Then since U |= Π̂(U)∗, we have that U |= Head(r)∗, and
where in particular, U |= (¬α1∧ . . .∧¬αi−1∧α∗i )η, so that
α∗i η = P (a) ∈ U . This completes the proof of Theorem 2. �

Example 1 Let Π be the following LPOD with the two
rules:

r1 : P (x)×Q(x)×R(x) ← S(x), (10)
r2 : T (x)× U(x) ← Q(x), (11)

such that S is the only extensional predicate. Now letM be
a τ(Π)-structure such that:

M = ({a, b}, SM = {a, b}, PM = {a}, QM = {b},
RM = ∅, TM = ∅, UM = {b}).

Now based on (8) of Definition 2, we have that

M0(Π) = ({a, b}, SM = {a, b}, PM = ∅,
QM = ∅, RM = ∅, TM = ∅, UM = ∅),

i.e., all the intensional relations are initially set to empty.
Now let us compute M1(Π). From (9) of Definition 2, we
have that P (a) ∈ M1(Π) since αi=1η = P (a) (with η :
x −→ a) is the largest i such that {α1η, . . . , αi−1η} = ∅ ∩
M = ∅. Similarly, we also have that Q(b) ∈ M1(Π) since
in this case, with η : x −→ b, we have that αi=2η = Q(b) is
the largest i such that {α1η, . . . , αi−1η} = {P (b)} ∩M =
∅ (i.e., since P (b) /∈M), so that we now have

M1(Π) = ({a, b}, SM = {a, b}, PM = {a}, QM = {b},
RM = ∅, TM = ∅, UM = ∅).

Similarly, we will haveM2(Π) as follows:

({a, b}, SM = {a, b}, PM = {a}, QM = {b},
RM = ∅, TM = ∅, UM = {b}),
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and further, we can obtainM2(Π) =Mt(Π) for all t ≥ 3,
that isM∞(Π) =M2(Π). Therefore, sinceM∞(Π) =M,
we have by Theorem 2 thatM is a stable model of Π. �

From LPODs to First-order Formulas
While Definition 2 provides an alternative semantics for
FO LPODs, which represents the program reasoning feature
through progression process, it, however, still does not re-
veal much information about how a stable model of a given
LPOD may be computed. In this section, we show how a
variant of the ordered completion (Asuncion et al. 2012) for
normal logic programs can capture the stable models of first-
order LPODs, which, like demonstrated in (Asuncion et al.
2012), may be viewed as a computational basis for an FO
LPOD solver development.

For this purpose, for a given pair of predicates (P,Q)
(where P andQ can be the same), by≤PQ, we denote a new
predicate such that its arity is the sum of the arities of P and
Q. We refer to such predicates as the comparison predicates.
The intuitive meaning of atom ≤PQ (x,y) is that: Q(y) is
true only if P (x) is true.
Definition 3 Let Π be an LPOD with tuple of distinct (in-
tensional) predicates P. Then by MCOMPP(Π), we denote
the following first-order sentence:∧

r∈Π

∀xr( ̂Body(r)→ Head(r)FO ) (12)

∧
∧

P ∈P

∀x(P (x)→
∨

r∈Π,
Head(r)i =P (y),

1≤ i≤ k

∃xr(x = y ∧ ̂Body(r)∧

̂Pos(r) < P (x) ∧
∧

1≤ j≤ i−1

¬Head(r)j) ),

(13)

where:
• For a rule r ∈Π, xr in (12) and (13) is the tuple of distinct

variables of r;
• We assume that x in (13) is a tuple of fresh distinct vari-

ables not mentioning those from xr;
• For two tuples x = x1x2 . . . xs and y = y1y2 . . . ys, x =
y in (13) denotes the formula (x1 = y1) ∧ (x2 = y2) ∧
. . . ∧ (xs = ys);

• P ̂os(r) < P (x) in (13) denotes the formula∧
Q(z)∈Pos(r),

Q∈P

(≤QP (z,x) ∧ ¬ ≤PQ (x, z) ),

where the “≤QP” and “≤PQ” here are comparison pred-
icates.

Then finally, we define

OCP(Π) = MCOMPP(Π) ∧ TRANSP(Π),

where TRANSP(Π) denotes the following formula:∧
P,Q,R∈P

∀xyz(≤PQ (x,y)∧

≤QR (y, z) → ≤PR (x, z) ), (14)
and each of x, y, and z are tuples of distinct variables.

Now we present the main result of this section as follows.

Theorem 3 Let Π be an LPOD with tuple of distinct inten-
sional predicates P andM a finite τ(Π)-structure. ThenM
is a stable model of Π iff it can be expanded to a model of
OCP(Π).

Proof: (⇒) Then M |= Π̂, so that M is also a model of
(12). Therefore, it is now sufficient to show thatM can be
expanded to a model of (13) and (14). Indeed, by Theorem
2, we have thatM∞(Π) =M as well sinceM is a stable
model of Π (by assumption). Then based on the progres-
sion stages M1(Π),M2(Π), . . ., Mk(Π),Mk+1(Π), . . .,
we now construct an expansion M′ of M to the signature
τ(Π) ∪ {≤PQ| P,Q ∈ P}. Thus, for t ≥ 0, set ∆t(Π) as
the τ(Π)-structure defined inductively as follows: ∆0(Π) =
M0(Π) and where for t ≥ 1, ∆t(Π) =Mt(Π)\Mt−1(Π).
Then intuitively speaking, for t ≥ 1, ∆t(Π) represents the
difference of the intensional relations between the stages t
and t− 1. Then we can prove the following Claim 1.

Claim 1. If P (a) ∈ ∆t(Π) then for all t′ 6= t, we have
that P (a) /∈∆t′(Π).

Now the expansionM′ ofM is constructed by setting:

≤M
′

PQ = {ab | P (a) ∈ ∆t1(Π), Q(b) ∈ ∆t2(Π), and t1 < t2},

for each pair of predicates P and Q (can be the same) of
P. Now we show that M′ satisfies both (13) and (14). In-
deed, let ab ∈ ≤M′

PQ and bc ∈ ≤M′

QR for some predicates
P , Q, and R of P. Then by the definitions of the interpre-
tations ≤M′

PQ and ≤M′

QR, we have that: P (a) ∈ ∆t1(Π) and
Q(b) ∈ ∆t2(Π) with t1 < t2; and Q(b) ∈ ∆t′1(Π) and
R(c) ∈ ∆t′2(Π) with t′1 < t′2. Then since by Claim 1, Q(b)
can only be in one particular t such that it is in ∆t(Π), then
we have that t2 = t′1, so that by transitivity, we have t1 < t′2.
Then by the definition of the interpretation ≤M′

PR, we have
that ac ∈ ≤M′

PR, so thatM′ satisfies (14). Now to showM′
satisfies (13), let P (a) ∈ M′ such that P ∈ P. Then P (a)
∈M∞(Π) sinceM is a stable model of Π andM∞(Π) =
M by Theorem 2. Then for some t, we have that P (a) ∈
Mt(Π). Let us assume without loss of generality that P (a)

/∈ Mt′(Π) for all 0 ≤ t′ < t, i.e., t is the first stage that
derives P (a). Then by the definition ofMt(Π), there exists
some rule r ∈ Π with Head(r) = α1 × . . .× αi × . . .× αk
and assignment η such that:

1. Pos(r)η ⊆Mt−1(Π) ⊆M (and whereMt−1(Π) ⊆M
sinceMt−1(Π) ⊆M∞(Π) =M) and Neg(r)η ∩M =
∅;

2. i (for 1 ≤ i ≤ k) is the largest i such that
{α1η, . . . , αi−1η} ∩M = ∅.

Then sinceM′ is simply the expansion ofM to include the
interpretation of the comparison symbols in {≤PQ| P,Q ∈
P}, we have that

M′ |= (a = y ∧ B̂ody(r) ∧
∧

1≤ j≤ i−1

¬αj)η.
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Therefore, it is only left to show that M′ |=
(P ̂os(r) < P (a))η so that

M′ |= (a = y ∧ B̂ody(r) ∧ P ̂os(r) < P (a) ∧
∧

1≤ j≤ i−1

¬αj)η

(15)

as well. Indeed, since Mt(Π) is the first stage that derives
P (a), then by the definition of ∆t(Π), we have that P (a)
∈ ∆t(Π). Now let Q(b) ∈ Pos(r)η such that Q ∈ P.
Then since Q(b) ∈ Mt−1(Π), there exists the least stage
t′ ≤ t − 1 such that Q(b) ∈ Mt′(Π). Then this implies
that Q(b) ∈ ∆t′(Π), and since t′ ≤ t − 1 < t, we further
have by the definition of the interpretation ≤M′

QP that ba ∈
≤M′

QP . Now we show that ab /∈ ≤M′

PQ. Otherwise, assume
that ab ∈ ≤M′

PQ. Then by the definition of ≤M′

PQ, there ex-
ists t1 and t2, where t1 < t2, such that P (a) ∈ ∆t1(Π) and
Q(b) ∈ ∆t2(Π). Then by Claim 1, we have that t2 = t′

since Q(b) is both in ∆t2(Π) and ∆t′(Π). Then because we
already have that t′ < t and where t1 < t2 = t′ < t, then
we have that t1 < t. Thus, since P (a) is both in ∆t1(Π) and
∆t(Π) where t1 6= t (since t1 < t), this is a contradiction by
Claim 1. Therefore, it follows thatM′ |= P ̂os(r) < P (a) so
that (15) holds as well.

(⇐) Assume that M′ is the expansion of M such that
M′ |= OCP(Π). Then there exists a strict-partial order P
= (Dom(P), <P), where

Dom(P) = {P (a) | a ∈ PM and P ∈ P},
such that P is induced by the interpretations of the com-
parison predicates ≤PQ (for P,Q ∈ P). Then by the
Order-extension Theorem (Kaye and Macpherson 1994),
there exists a strict-total order T = (Dom(T ), <T ), where
Dom(T ) = Dom(P), such that for all distinct elements
P (a) andQ(b) inDom(T ), either P (a)<T Q(b) orQ(b)
<T P (a) holds. Now, sinceM is finite, then Dom(T ) will
be finite as well, so that a bottom element, denoted bot(T ),
exists. Then for a P (a) ∈ Dom(T ), define T P (a) induc-
tively by:

1. T bot(T ) = {bot(T )};
2. T succ(P (a)) = T P (a) ∪ {succ(P (a))},
where succ(P (a)) denotes the successor of P (a) under the
ordering <T . Then T top(T ), where top(T ) is the greatest
element under <T , is simply the collection of all the el-
ements of Dom(T ), since T is a strict-total ordering of
Dom(T ). We will now show by induction on P (a) that
T P (a) ⊆ M∞(Π) for all P (a) ∈ Dom(T ). For the base
case, assume bot(T ) = P (a). Then sinceM′ satisfies (13),
there exists a rule r ∈Π withHead(r) = α1× . . .×αk such
that for some 1 ≤ i ≤ k and some assignment η, we have
that

M′ |= (a = y ∧ ̂Body(r) ∧ P ̂os(r) < P (a) ∧
∧

1≤ j≤ i−1

¬αj)η,

and where αi = P (y). Moreover, since P (a) is the bottom
element under the ordering <T , then Pos(r) does not men-
tion atoms of intensional predicates (since the strict-total

order T is induced by the interpretation of the compari-
son atoms). Therefore, since P (a) = αiη ∈ M (because
Dom(T ) = {P (a) | a ∈ PM and P ∈ P}), then it is not
difficult to verify by Item 2 in (9) that P (a) ∈ M1(Π) ⊆
M∞(Π). Now assume T Q(b) ⊆M∞(Π) and we will show
that T succ(Q(b)) ⊆M∞(Π) as well. Thus, for convenience,
assume that succ(Q(b)) = P (a). Now, since M′ satisfies
(13), then there exists some rule r ∈ Π with Head(r) =
α1 × . . .× αk and assignment η such that

M′ |= (a = y ∧ ̂Body(r) ∧ P ̂os(r) < P (a) ∧
∧

1≤ j≤ i−1

¬αj)η,

where αi = P (y) (the “ordered support” for P (a)). Then
since M′ |= (P ̂os(r) < P (a))η and T is the total-order
extension of the strict-partial order induced by the inter-
pretation of the comparison atoms, we have that Pos(r)η
⊆ T Q(b) since Q(b) <T P (a). Moreover, since M′ |=
B̂ody(r)η, thenNeg(r)η ∩M= ∅ as well. Therefore, since
T Q(b) ⊆ Mt(Π) for some t (since T Q(b) ⊆ M∞(Π) by
the inductive hypothesis), then we have that both Pos(r)η
⊆Mt(Π) and Neg(r)η ∩M = ∅ holds. In addition, since
we also have from (13) thatM|= (¬α1×. . .×¬αi−1)η and
where αiη = P (a) ∈M, then it follows from (9) that P (a)
∈ Mt+1(Π). Hence, since we have shown that T top(T ) ⊆
M∞(Π), then since M0(Π) ⊆ M∞(Π), it follows that
(T top(T ) ∪M0(Π)) =M⊆M∞(Π). Therefore, to show
thatM =M∞(Π), it is left for us to show thatM∞(Π) ⊆
M. We now show this fact by induction on t. For the base
case, we clearly have thatM0(Π) ⊆M since forM0(Π),
all the interpretation of the comparison predicates are set to
empty. Now let us assume that for 0 ≤ t′ ≤ t, we have that
Mt′(Π) ⊆M holds and we will now show thatMt+1(Π)
⊆M holds as well. Indeed, let P (a) ∈Mt+1(Π) \Mt(Π).
Then by the definition ofMt+1(Π) \Mt(Π), there exists a
rules r ∈ Π with Head(r) = α1 × . . .× αi × . . .× αk and
assignment η such that

1. P (a) = αiη;

2. Pos(r)η ⊆Mt(Π) and Neg(r)η ∩M = ∅;
3. i (for 1 ≤ i ≤ k) is the largest i such that
{α1η, . . . , αi−1η} ∩M = ∅.

Then since Mt(Π) ⊆ M and M |= Π̂ (since M satisfies
(12)), then it follows that P (a) ∈ M. Therefore, since we
had shown thatM∞(Π) =M, then we have by Theorem 2
thatM is a stable model of Π. �

Theorem 3 has an important practical value towards an
LPOD solver development. Basically, for a given LPOD, to
compute its stable models, we can firstly translate this pro-
gram into its corresponding ordered completion OCP(Π),
then by taking extensional databases as input to ground
OCP(Π) to a propositional formula, and finally compute
its classical models by calling an SAT solver ( e.g., SMT).
Some advantages of this approach over other ASP solvers
for normal logic programs have been demonstrated in
(Asuncion et al. 2012).
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Proposition 2 Let Π be an LPOD. Then OCP(Π) can be
computed in time O(|Π| ·N ·H · |P|+ |P|3), where N and
H are the maximum length of the rules and the maximum
length of the ordered disjunctive heads in the rules of Π,
respectively.

Complexity and Expressiveness

Now we investigate the complexity and expressiveness is-
sues of LPODs. For the propositional case, we can prove
that the stable model existence problem for LPODs is NP-
complete1. In the following, we focus on the first-order case.
Let Π1 and Π2 be two programs and τ(Π1) ⊆ τ(Π2). We
say that Π1 and Π2 are equivalent under τ(Π1) if Π1 and
Π2 have exactly the same stable models by restricting each
Π2’s stable modelM toM�τ(Π1).

We say that a program is positive if negation only occurs
on atoms of extensional predicates. A normal logic program
is local variable free if all the variables in the bodies of rules
are also mentioned in their corresponding heads.

Proposition 3 Under finite structures, every local variable
free normal logic program Π can be translated to a posi-
tive LPOD with auxiliary predicates such that these two pro-
grams are equivalent under τ(Π).

Proof: Let ΠNORM be a local variable free FO normal pro-
gram with intensional predicate symbolsPint(ΠNORM). Then
for each predicate P ∈ Pint(ΠNORM), let us introduce a new
predicate P of the same arity as P . Roughly speaking, P
will encode the negative extents of P . Now we are ready to
define the positive LPOD ΠLPOD.

Denote by (ΠNORM)pos the following set of rules:

{α ← β1, . . . , βl, γ1, . . . , γm | α ← β1, . . . , βl,

not γ1, . . . , not γm ∈ ΠNORM,

for 1 ≤ i ≤ m, if γi = P (t) and P ∈ Pint(ΠNORM)

then γi = P (t), otherwise γi = γi }. (16)

Then clearly, (ΠNORM)pos is a positive LPOD of signature
τ(Π) ∪ {P | P ∈ Pint(ΠNORM)}.

Let S be a set of atoms occurring in Π, we denote by
Aext(S) andAint(S) the sets of extensional and intensional
atoms in S, respectively. Now let us define another program

1In our full version, we provide a polynomial translation from
normal logic programs to LPODs. This result can be also obtained
using a different translation proposed in (Nieuwenborgh and Ver-
meir 2003).

Π′ as follows:

{Bdr1(x)× . . .×Bdrk (x) ← P (x) | P ∈ Pint(Π
NORM),

P has defining rules r1, . . . , rk ∈ ΠNORM}
(17)

∪ {β ← Bdr(x), ⊥ ← notβ′, Bdr(x), γ ← Bdr(x),

⊥ ← γ′, Bdr(x) | r ∈ ΠNORM, β ∈ Aint(Pos(r)),

β′ ∈ Aext(Pos(r)), γ ∈ Aint(Neg(r)), γ′ ∈ Aext(Neg(r))}
(18)

∪ {<QP (z,x) ← Bdr(x) | r ∈ ΠNORM, Head(r) = P (x),

Q(z) ∈ Aint(Pos(r)) }
(19)

∪ {<PR (x, z) ← <PQ (x,y), <QR (y, z) |
P,Q,R ∈ Pint(Π

NORM)}
(20)

∪ {⊥ ← <PQ (x,y), <QP (y,x) | P,Q ∈ Pint(Π
NORM)}.

(21)

Lastly, further define one more program Π′′ as follows:

{ ⊥ ← P (x), P (x), (22)

P (x)× P (x) ← | P ∈ Pint(ΠNORM)}. (23)

Then we can now set ΠLPOD as the union (ΠNORM)pos ∪ Π′ ∪
Π′′. Clearly, ΠLPOD is a positive LPOD.

Intuitively, we have that (16)-(21) encode the ordered
completion of ΠNORM within the LPOD ΠLPOD itself. In
particular, we note (18), which encodes the “supporting”
atoms for the “body atoms” Bdr(x) (which corresponds
to the body of the rule r), but in such a way that we avoid
defining the extensional predicates in a head of a rule.
On the other hand, (22) enforces that (P (x) → ¬P (x))
∧ (P (x) → ¬P (x)) while (23) enforces that (¬P (x) →
P (x)) ∧ (¬P (x)→ P (x)), i.e., the “necessary” counterpart
of (22) with respect to the extents of P being the symmetric
negation of those in P . �

Theorem 4 Let Π be an LPOD and M a finite τext(Π)-
structure, i.e., an extensional or input database structure.
Then the problem of determining ifM can be expanded to a
stable model of Π is NP-complete. This result remains true
even for positive LPODs.

Proof: (Membership) Given our reduction of Π to the FO
formula OCP[Π] via Theorem 3 (i.e., the reduction of Π to
its ordered completion), we have that determining ifM can
be expanded to a model of OCP[Π] is the model expansion
problem, which is in NP (model expansion is in fact NP-
complete).

(Hardness) Consider the 3-color program Π3color as fol-
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lows:

C1(x) ← notC2(x), notC3(x), (24)
C2(x) ← notC1(x), notC3(x), (25)
C3(x) ← notC1(x), notC2(x), (26)

← E(x, y), C1(x), C1(y), (27)
← E(x, y), C2(x), C2(y), (28)
← E(x, y), C3(x), C3(y). (29)

(30)

Given a graph structure G = (Dom(G), V G , EG) such
that V G = Dom(G) (i.e., the vertices of G), G has a
corresponding 3-coloring iff Π3color has a stable model. It is
well known that the problem of 3-coloring is NP-complete.
On the other hand, we have by Proposition 3 that Π3color

can be reduced to a positive LPOD since Π3color is a local
variable free normal program. �

A LPOD is called almost positive if each negated inten-
sional atoms in the program only occurs in the bodies of
some constraints. The following theorem states that almost
positive LPODs precisely capture the full class of normal
logic programs. That is, ordered disjunction and constraints
are sufficient enough to represent negation as failure.

Theorem 5 Every normal logic program Π can be trans-
lated to an almost positive LPODs with auxiliary predicates
such that these two programs are equivalent under τ(Π).

Proof: Let ΠNORM be an arbitrary normal logic program. We
define a reduction from ΠNORM to an almost positive LPOD
ΠLPOD by defining ΠLPOD as the following set of rules:

{α ← β1, . . . , βl, γ1, . . . , γm | α ← β1, . . . , βl,

not γ1, . . . , not γm ∈ ΠNORM,

for 1 ≤ i ≤ m, if γi = P (t) and P ∈ Pint(ΠNORM)

then γi = P (t), otherwise γi = γi } (31)

∪{⊥ ← P (x), P (x), (32)

⊥ ← notP (x), notP (x), (33)

⊥ ← P ′(x), P (x), (34)

P ′(x)× P (x) ← | P ∈ Pint(ΠNORM)}, (35)

where for each P ∈ Pint(Π), we introduce two new pred-
icate symbols P and P ′. Then ΠLPOD is clearly an almost
positive LPOD since negation only occurs in the constraints
in (33).

Intuitively, the key here is the combination of
(34) and (35), which enforces (¬P ′(x) → P (x)) ∧
(¬P (x) → P ′(x)). This has the effect of “fixing” P (x)∗

since the “minimization” of P
∗

implies the “expansion” of
(P ′)∗ (and vice versa). This simulates the condition that
P (x) (which encodes “notP (x)”) will be fixed in the mini-
mization of P (x)∗ since we also have (¬P ′(x)∗ → P (x)∗)
∧ (¬P (x)∗ → P ′(x)∗). On the other hand, (32) and (33)
again enforces (P (x) → ¬P (x)) ∧ (P (x) → ¬P (x)) and
(¬P (x)→ P (x)) ∧ (¬P (x)→ P (x)), respectively. �

Preferred Stable Model Semantics
As indicated by Brewka (2002; 2006), the stable models
based on split programs are usually not sufficient to capture
the preference semantics for a given LPOD, while a certain
preference relation based on the degree of satisfaction has to
be imposed on the stable models. Now we show how such
preferred stable model semantics can be defined for our FO
LPODs.
Definition 4 Let r be a rule in some LPOD Π,M a τ(Π)-
structure, and η an assignment from the distinct tuple of
variables x of r to Dom(M). The satisfaction degree of
r under the structure M and assignment η, denoted by
Deg(M,η)(r), is defined as follows:

Deg(M,η)(r) :=


1 ifM 6|= B̂ody(r)η, otherwise

i ifM |= (B̂ody(r) ∧ ¬α1 ∧ ¬α2∧
. . . ∧ ¬αi−1 ∧ αi)η.

Similarly to the propositional case, if (M, η) does not sat-
isfy the rule r’s body, then the default satisfaction degree is
1. Otherwise, the satisfaction degree is the “minimal” (i.e.,
most preferred) of the atoms in α1 × . . . × αk that (M,a)
satisfies. Again as in the propositional case, this encodes that
we are paying for a penalty for the “least preferred” atoms
in α1× . . .×αk being satisfied in the sense that, the smaller
the satisfaction degree, then the better it is.
Definition 5 Let Π be an LPOD and M1 and M2 be two
stable models of Π such that M1 �τext(Π) = M2 �τext(Π).
Then we say thatM1 is Pareto-preferred toM2, denoted by
M1 >M2, if the following two conditions hold:

1. For each rule r ∈ Π and assignment η, we have that
Deg(M1,η)(r) ≤ Deg(M2,η)(r);

2. There is a rule r′ ∈ Π and an assignment η′ such that
Deg(M1,η′)(r

′) < Deg(M2,η′)(r
′).

Example 2 Assume Π to be the following LPOD with the
single rule r:

r : P (x)×Q(x)×R(x) ← S(x) (36)
such that S is the only extensional predicate. Now let M1

andM2 be two τ(Π)-structures such that:

M1 = ({a, b}, SM1 = {a, b}, PM1 = {a},
QM1 = {b}, RM1 = ∅);

M2 = ({a, b}, SM2 = {a, b}, PM2 = ∅,
QM2 = {b}, RM2 = {a}).

Then we have thatM1�τext(Π) =M2�τext(Π) and where the
grounding of Π under the domain {a, b} will be the proposi-
tional program

P (a)×Q(a)×R(a) ← S(a) (37)
P (b)×Q(b)×R(b) ← S(b). (38)

Then based on the grounded Π, it can be seen that bothM1

andM2 are stable models of Π. In addition, since for all the
assignments η1 : x −→ a and η2 : x −→ b of the variable
x to {a, b}, we have that Deg(M1,η1)(r) < Deg(M2,η1)(r)
andDeg(M1,η2)(r) =Deg(M2,η2)(r), thenM1 >M2, i.e.,
M1 is Pareto-preferred toM2. �
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Based on the notion of a Pareto-preferred stable models,
we can now define the notion of a preferred stable model of
an LPOD.

Definition 6 Let Π be an LPOD and M its stable model.
M is called a preferred stable model of Π if there does not
exists another structureM′ for whichM′ >M.

Logic Formalization of Preferred Stable Models
Now we provide a logical characterization of the preferred
stable models. For this purpose, let us assume the tuple of
distinct intensional predicates in our signature to be P =
P1 . . . Pn. We use P′ to denote the tuple of distinct pred-
icates P ′1 . . . P

′
s such that each P ′i (1 ≤ i ≤ s) is a new

predicate symbol.
Consider a rule r of an LPOD with the form (3) and whose

atoms are predicates from P. We useDeg(r)P
′ ≤ Deg(r)P

to denote the following formula:∧
1≤ i≤ k

∀xr( (B̂ody(r) ∧
∧

1≤ j≤ i

¬αj)[P/P′] →

(B̂ody(r) ∧
∧

1≤ j≤ i

¬αj) ), (39)

where (B̂ody(r) ∧
∧

1≤ j≤ i ¬αj)[P/P′] denotes the for-

mula obtained from (B̂ody(r)∧
∧

1≤ j≤ i ¬αj) by replacing
the occurrences of predicates from P by those correspond-
ing ones in P′.

Roughly speaking, Deg(r)P
′ ≤ Deg(r)P is a formula

that encodes all instances of r under the interpretation of the
predicates from P′ is at an equal or lower satisfaction degree
than those ones from P. Indeed, (39) encodes that the degree
of r under P′ is less than or equal than those under P. As
we will see later on, the purpose of the predicates P′ that
matches P is it will be used as second-order variables.

We now extend this notion to a whole LPOD Π so that
by Deg(Π)P

′ ≤ Deg(Π)P, we denote the conjunctions∧
r∈Π(Deg(r)P

′ ≤ Deg(r)P), and that we further denote
by Deg(Π)P

′
< Deg(Π)P as the conjunction

(Deg(Π)P
′
≤ Deg(Π)P) ∧ ¬(Deg(Π)P ≤ Deg(Π)P

′
).

(40)

Intuitively, Deg(Π)P
′
< Deg(Π)P is a formula which en-

codes that the interpretation P′ satisfies Π in a more optimal
manner (i.e., in the sense of Definition 5) than that of Π un-
der P.

The following theorem now provides a classical logic
characterization of preferred stable models of LPODs via a
second-order sentence.

Theorem 6 Let Π be an LPOD with tuple of intensional
predicates P = P1 . . . Pn and P′ = P ′1 . . . P

′
n the fresh tuple

of predicates matching P, and M a τ(Π)-structure. Then
M is a preferred stable model of Π if and only if it satisfies
the following second-order sentence:

SMP(Π) ∧ ¬∃P′( SMP(Π)[P/P′]∧

Deg(Π)P
′
< Deg(Π)P ), (41)

where SMP(Π)[P/P′] denotes the formula obtained from
SMP(Π) by simultaneously replacing all predicates from P
by those corresponding ones from P′.

It can be showed that (41) also correctly represents
Brewka’s preferred stable model semantics when we restrict
it to the case of propositional LPODs.

Corollary 1 On finite structures, M is a preferred stable
model of Π if and only if it satisfies the following second-
order sentence:

OCP(Π) ∧ ¬∃P′T′( OCP(Π)[PT/P′T′]∧

Deg(Π)P
′T′

< Deg(Π)QT ),

where OCP(Π) is the ordered completion of Π (a first-order
sentence) as defined in Definition 3, and we assume that T
denotes the tuple of distinct comparison predicates and such
that T′ are the new predicate symbols that matches T.

Theorem 7 Let Π be an LPOD and M a τ(Π)-structure.
Then determining if M is a preferred stable model of Π is
co-NP-complete.
Proof: (Sketch) Due to a space limit, here we only present
a sketch proof for the hardness. A full proof is given in our
full paper. For a given normal logic program ΠNORM and an
extensional structureMext of it, we reduce the problem of
determining ifMext cannot be expanded to a stable model
of ΠNORM to the problem of determining if a stable model
M∗ of an LPOD Π∗ is a preferred stable model. Let ΠNORM

be an arbitrary normal logic program. We specify a program
ΠNORM
{P (a)} as follows:

ΠNORM
{P (a)} := {α ← P (a), β1, . . . , βl, not γ1, . . . , not γm |

α ← β1, . . . , βl, not γ1, . . . , not γm ∈ ΠNORM },

where we assume that P (a) is an atom with P a new pred-
icate symbol and a a new constant symbol. Then ΠNORM

{P (a)}
is simply the program obtained from ΠNORM by adding the
atom P (a) (i.e., propositional atom) into each of the posi-
tive bodies of the rules of ΠNORM. Now by ΠLPOD, define the
following set of rules such that:

ΠLPOD := { P (a) ← notQ(a), (42)
Q(a) ← notP (a), (43)

R1(a)×R2(a) ← Q(a), (44)
← R1(a) }, (45)

where we assume here that Q, R1, and R2 are new predi-
cate symbols as well. Intuitively, rules (42) and (43) are the
defining (and the only defining) rules for P (a) and Q(a),
respectively, such that at least one, and not both, must be
in any stable model of ΠLPOD. In addition, the rule (44) is
an LPOD rule with R1(a) taking preference over R2(a). Fi-
nally, the constraint (45) simply enforces to choose R2(a)
(which is less preferred over R1(a)) over R1(a) so that the
satisfaction degree of (44) will only be as low as 1 only if
Q(a) is false (since Q(a) false makes the body of (44) to
be false as well). Thus, if we want to get the most preferred
stable model of ΠLPOD, then it must imply Q(a) to be false.
Finally, we can prove the following claim, which leads to the
completion of this proof.
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Claim: There exists a stable model M∗ of program
ΠNORM
{P (a)} ∪ ΠLPOD, such that M∗ is a preferred sta-

ble model of ΠNORM
{P (a)} ∪ ΠLPOD iffMext cannot be ex-

panded to a stable model of ΠNORM.

�

Proposition 4 Let Π be an LPOD and M a correspond-
ing extensional structure. The problem of determining ifM
can be expanded to a preferred stable model of Π is NP-
complete.

Conclusions
Preference plays an important role in commonsense reason-
ing, while developing an effective yet expressive mecha-
nism of handling preference in Answer Set Programming
is technically challenging, e.g., (Brewka, Truszczynski, and
Woltran 2010; Delgrande, Schaub, and Tompits 2004). In
this paper we have developed a formulation of fist-order
LPODs which may be viewed as a natural generalization of
Brewka’s propositional LPODs. The relevant semantics and
expressiveness results also provide important insights for us
to understand this type of first-order LPODs.

The proposed both the second-order based stable model
semantics and the progression semantics capture two impor-
tant aspects of LPODs: their relationship to classical logic as
well as the underlying reasoning feature involving ordered
disjunction on the first-order level.

The translation from LPODs to first-order sentences ex-
tends the previous work of Asuncion et al’ ordered com-
pletion and we argue that this translation will be useful
in developing an effective solver for first-order LPODs, as
demonstrated in (Asuncion et al. 2012) for normal logic pro-
grams. The complexity and expressiveness results confirm
that LPODs remain in NP and the hardness holds even for
positive LPODs, while almost positive LPODs capture the
full class of normal logic programs. Our logic characteri-
zation of preferred stable model semantics reveals that we
can eventually use a classical second-order sentence to pre-
cisely represent the preference relation among stable models
so that such first-order preference semantics may be formal-
ized in a unified way as LPOD first-order stable model se-
mantics.

For future work, we are considering to develop a first-
order LPOD solver based on the translation proposed in sec-
tion 4. Another interesting work is to extend our seman-
tics for first-order LPODs by allowing both ordered and un-
ordered disjunction in the heads of rules, as discussed in (Ca-
balar 2011), and explore their logical properties and possible
applications in practical domains.
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