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ARTICLE INFO ABSTRACT

Keywords:

With the advent of machine learning (ML) and deep learning (DL) empowered applications for critical
applications like healthcare, the questions about liability, trust, and interpretability of their outputs are raising.
The black-box nature of various DL models is a roadblock to clinical utilization. Therefore, to gain the trust of
clinicians and patients, we need to provide explanations about the decisions of models. With the promise of
enhancing the trust and transparency of black-box models, researchers are in the phase of maturing the field
of eXplainable ML (XML). In this paper, we provided a comprehensive review of explainable and interpretable
ML techniques for various healthcare applications. Along with highlighting security, safety, and robustness
challenges that hinder the trustworthiness of ML, we also discussed the ethical issues arising because of the
use of ML/DL for healthcare. We also describe how explainable and trustworthy ML can resolve all these
ethical problems. Finally, we elaborate on the limitations of existing approaches and highlight various open

Explainable machine learning
Interpretable machine learning
Trustworthiness

Healthcare

research problems that require further development.

1. Introduction

In recent years, various machine learning (ML) techniques have
been widely applied to different healthcare applications. In particu-
lar, deep learning (DL) based methods have provided state-of-the-art
performance for various healthcare tasks including medical image re-
construction [1], management of electronic health records [2], cancer
segmentation [3], disease prediction [4], clinical imaging [5], image
retrieval [6], and computational biology [7]. DL models have a complex
architecture that consist of multiple layers of neurons. These neuronal
layers are connected through non-linear activation functions. These
complex and dense DL models produce more accurate results than
conventional ML techniques. However, these models have black-box
nature and lack an underlying theoretical foundation behind their
decisions [8]. Therefore, despite the significant performance of DL-
based healthcare ML systems, building trust of clinicians and patients
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is quite difficult because entrusting the decisions of black-box systems
that are not explainable can be life-threatening [9]. To get the benefit of
ML/DL empowered healthcare their decisions should be interpretable
and explainable in a human understandable way. Fig. 1 illustrates the
essential traits of ML models required for clinical implementation.
Over the last few years, considerable attention has been devoted
to the interpretability, explainability, and trustworthiness of ML/DL
models. Among others, two eminent groups of researchers working in
this area are: (1) Fairness, Accountability, and Transparency in Ma-
chine Learning (FAT-ML) [10] and (2) the Defense Advanced Research
Projects Agency (DARPA), explainable Al program [11]. FAT-ML com-
prises a group of academic researchers with a prime focus on equipping
machine algorithms used for social and commercial decision-making
with fairness and explainability. This group arranges conferences an-
nually to bring together interested researchers and participants from
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Table 1
Comparison of this paper with existing surveys. Legends: \/: discussed, x= not discussed, ~ = partially discussed, ML = explanation of conventional ML methods applied in
healthcare, DL = explanation of DL methods applied in healthcare.
Reference Year Scope Methods Challenges Future directions
Healthcare Focused application(s) ML DL Explainable/ Trustworthy Ethics
Interpretable
Holzinger et al. [9] 2017 \/ Segmentation of medical images  x ~ \/ X X X =
and omic data
Adadi et al. [12] 2018 =~ Trends of explainable IVARE Y X X v/ ~
approaches
Tjoa et al. [13] 2019 +/ Categorization of XAI Y X X v/ v
methods and partially
discussed application
for healthcare.
Singh et al. [14] 2020 +/ Detection and predict- x v W X x x ~
-ion of disease using
medical imaging.
Char et al. [15] 2020 \/ Identification of ethical \/ ~ o~ X \/ \/ \/
problems for healthcare
application.
Adadi et al. [16] 2020 4/ Partially discussed X ~ \/ X X X \/
XML applications for
healthcare
This paper 2021 4/ All most all healthcare v vV Vv v v Vv
applications
Table 2
List of acronyms.
AM Activation Maximization
CAM Class Activation Maps
CNN Convolutional Neural Network
DARPA Defense Advanced Research Projects Agency
DeconvNet Deconvolutional Network
DeepLIFT Deep Learning Important Features
DL Deep Learning
DNN Deep Neural Network
ML for S DT Decision Tree
Healthcare Ecuie EMANET Evidence Activation Mapping
FA Feature Attributes
@ FAT-ML Fairness, Accountability, and Transparency in ML
FICO Fair Isaac Corporation
ll GAM General Additive Model
GB Guided Back Propagation
Trustworthy GWAS Genome-Wide Association Studies
HSCNN Deep Hierarchical Semantic Convolutional Neural Network
1G Integrated Gradient
LIME Local Interpretable Model-Agnostic Explanations
LRP Layer-wise Relevance Propagation
Responsible Ethical ML Machine Learning
M-LAP Multi-Layers Average Pooling
N . A . L. ) a p2v Patient2Vec
Fig. 1. Illustration of essential traits of ML models for clinical implementation. PDP Partial Dependence Plot
PET Positron Emission Tomography
RF Random Forest
1 . s s SA Sensitivity Analysis
all over the world. DARPA' organized a group of civilians and mili- " )
. . > | SHAP Shapley Additive Explanations
tary researchers in 2017 intending to develop new methodologies for XML Explainable ML

making ML models explainable [11].

Industries with AI/ML products are also contributing to developing
XML methods. Microsoft having Azure ML services, H,0.ai having
driverless intelligent products [17], Kyndi serving government, finan-
cial, and healthcare sectors with its AI platform are a few of the famous
industries working on explainable ML. Fair Isaac Corporation (FICO),
a data analytics company, held a challenge in 2018 on explainable
ML.? The challenge was a collaboration between Google, FICO, and
academics of different universities. The challenge aimed to open future
directions in the area of explainable algorithms.

We must build safety and trust in ML-based applications by ex-
plaining a few questions, i.e., what patterns of features has the ML/DL
model learned? Why is the selected model producing better results than

2 https://community.fico.com/s/explainable-machine-learning-challenge.

other models (for a particular problem at hand)? These explanations
are required to convince the clinicians that a particular ML/DL-based
algorithm is the best and most powerful tool for disease prediction and
diagnosis, which can facilitate their routine practice without causing
harm to patients. The explained results will also help patients to
understand ML/DL predictions and will help in gaining their trust and
satisfaction (being efficiently diagnosed by these algorithms). Thus, for
clinical implementation of the ML/DL models, we need transparency,
interpretability, and risk understanding.®

3 https://www.vanderschaar-lab.com/from-black-boxes-to-white-boxes/.
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In addition, mapping of complexly distributed heterogeneous med-
ical data into arbitrary high dimensional space is a major challenge
for researchers. With the explainable machine decisions, it would be
easier to manage the diverse data for relevant results. Explainable ML
(XML) is a solution to these problems for moving towards more trans-
parent ML decisions. Note that the terms explainable and interpretable
are sometimes used interchangeably in the literature. However, these
two terms are distinct and have domain-specific definitions. Montavon
et al. [18] defined interpretation as a mapping of abstract ideas into
the human-understandable domain. They discriminate the term inter-
pretation from the explanation by defining the explanation as features
of the interpretable domain that contributed to produce the decisions
of ML algorithms.

Contributions of this paper: Due to the immense importance of ex-
plainable, trustworthy ML decisions, and ethical use of ML for health-
care, multiple surveys cover these topics. Below we outline specific
contributions of this paper, which are in contrast to the existing works
(a comparison is presented in Table 1).

1. To the best of our knowledge, no existing review or survey
provides an in-depth analysis of explainable, trustworthiness,
and ethical aspects of using ML/DL models while highlighting
their applications and their importance for the medical domain.

2. We propose a pipeline to attain an explainable ML framework for
healthcare that involves development, testing, and deployment
phases. This pipeline showed the use of different explanation
methods to explain and validate data and models.

3. We highlight various security, safety, and robustness challenges
associated with the ML/DL that obfuscate their trustworthiness
in healthcare applications.

4. We also discuss ethical challenges related to the use of ML/DL
in healthcare applications and elaborate upon the use of explain-
able and trustworthy ML to resolve these ethical problems.

5. Finally, we discuss the limitations of the existing state-of-the-art
approaches and highlight various open research problems that
require further development.

For instance, Adadi et al. [12] provided a review of explainable
artificial intelligence (XAI) techniques and partly described the ap-
plications in transportation, healthcare, legal, finance, and military
domains. Arrieta et al. [19] have provided a brief overview of the
concept of explainability, future opportunities in the field and the
research challenges. Amitojdeep Singh et al. [14] have briefly described
the explainable methods for DL and applications of these methods in
medical image analysis. This review is unique because it comprehen-
sively provides the application of each interpretable and trustworthy
method in support of healthcare applications besides the forenamed
contributions. The comparison of this paper with existing surveys is
presented in Table 1.

Organization of paper: The organization of this paper is as follows:
Section 2 presents challenges encountered in developing clinically ef-
fective explainable and trustworthy ML. Section 3 provides a brief
background of explainable and interpretable ML with the description of
why we need XML models for healthcare, what characteristics health-
care XML models should have, and how to evaluate the quality of
explained results. In Section 4, we describe the notion of safe, ro-
bust, and trustworthy XML for healthcare along with a comprehensive
overview of XML approaches applied in the literature for explaining
decisions of healthcare applications for sustaining trust in ML appli-
cations. In Section 5, we discussed the requirement of ML ethics for
healthcare along with the history of medical ethics, various ethical
challenges related to healthcare, and principles of healthcare ethics.
Insights and pitfalls are discussed in Section 6 and various future
directions are provided in Section 7. Finally, we conclude the paper in
Section 8. A list of acronyms used in the paper is available in Table 2.
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2. Challenges

For the sake of trustworthy and secure models for clinical settings,
researchers are developing the tools and techniques for XML. Despite
their efforts, many issues still exist, causing challenges for effective
XML. A few such challenges are described below.

2.1. Lack of formal definitions

The explanation of the model structure or decision has no formal
definition and is defined according to the problem at hand (as we
discussed in Section 3). The same is the case for XML for healthcare
applications. There is also the need for defining terms like feature
relevance, feature importance, saliency maps, heatmaps, etc., because
there is no consistency in the use of these terms.

2.2. Lack of standardized representation methods

All visualization-based explanations produce saliency maps or
heatmaps that highlight the areas of images more participating in pre-
dictions. However, it is not yet standardized whether the radiologists
or neurologists are interested in these explanations or not. It is also not
evident how the end-user (i.e., a patient or a clinician) will interpret
the explanations. Moreover, it may be difficult for new or untrained
clinicians to understand the language of explained results. Also, there
is a possibility that the medical experts may be unable to understand
the explained risk factors and estimated probabilistic explanations [20].
There must be a platform connecting the medical experts with XML
researchers so that they can communicate for the standardized repre-
sentations of explanations [21]. Another challenge is to quantify how
much explanation is required to make the decision understandable to
non-technical end-users like patients, which is equally important to
gain their trust in these applications.

2.3. Lack of standardized requirements for XML

Researchers have developed some initial guidelines about the re-
quirements of an XML model. However, these guidelines are generic.
Requirements for explaining the decisions of animal image tagging
will be different from medical image tagging. The current field of
medical XML lacks requirement guidelines for designing, measuring,
and testing explanations. These guidelines are required to build more
explicit and systematic ways for generating explanations of how the
black-box models predict or detect a particular disease [22].

2.4. What clinicians want: Accuracy vs. Explainability

The complex non-linear structure of DL models is one of the reasons
causing decisions that are difficult to explain. This challenge is not
limited to healthcare XML. However, due to the multi-dimensional
nature of medical data, DL algorithms are crucial to avoid for obtaining
precise results. It leads to less explained results or algorithm-centric
explanations. One possible solution to this problem is to design in-
herently explainable techniques that can produce accurate results with
complex medical data [23]. The other possible solution is considering
the preference of the end-user.

2.5. What and hows of the explained results

Feature maps of medical image data produce reconstructed images
containing highlighted relevant features for decision-making. However,
answers to questions like what to do with these partially reconstructed
images, how can we guarantee that the combinations of features high-
lighted by the XML are robust to perturbations, and how researchers
can use the internally highlighted parameters to recover input data
that is not yet considered. The reverse image analysis will help analyze
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complex medical data. This analysis can leverage the clinicians to un-
derstand the hidden mechanism of many life-threatening diseases like
COVID-19, breast cancer, Zaire Ebola, and human immunodeficiency
viruses (HIV).

2.6. Validation of explanations

The measures to validate the quality of produced explanations are
not adequate. In particular, one major problem is the unavailability of a
metric for comparing the generated explanations using different meth-
ods. For example, to explain the detection of glioma tumors, various
XML techniques have been implemented (discussed in Section 4.4), but
no one compared which method produced the better explanation of the
tumor detection. Similarly, for healthcare applications, clinicians may
need different measures to validate the explained results. There does
not exist any standard method for measuring the quality of explained
healthcare decisions. Also, there is no measure to check which expla-
nations should be preferred from the different explanations produced
by the same method [24].

2.7. Lack of theoretical understanding

Applied DL for medical applications lacks theoretical fundamen-
tals for working with the randomness of data. Field experts tried to
overcome this gap by applying mathematical techniques for dealing
with random artifacts and noise in medical data. However, due to
the unavailability of sound fundamental laws and models, we cannot
produce explanations of DL up to the required scale. These issues are
also causing challenges for developing self-explained generalized DL for
medical applications [8]. In addition, this black-box nature of the DL
also poses a major challenge in developing trustworthiness [25].

2.8. Lack of causality

DL is designed to produce precise results by learning the hidden
patterns that generate data. The problem arises due to the use of these
techniques for healthcare tasks where decisions should be based on
causal links. However, DL is not efficient in inferring causal relations
between decisions and data. It leads to the generation of inadequate
results, which cause unsatisfactory or incomplete explanations. More-
over, XML should answer the cause-effect scenarios, i.e., the decision
of the model will change from A to B if the doctor replaces treatment
C with D [26]. These causal links are required for taking fair decisions.
Moreover, Castro et al. emphasized the need for a causal relationship
between images and their annotations [27].

2.9. Ethical constraints

To gain the trust of clinicians and patients, explanations of black-
box models must ensure the ethical balance between end-users and
XML. In particular, an explanation should contain the complete in-
formation and not misguide the end-user [28]. XML should explain
the reasons for the error in results to increase fairness and reliability.
Unfortunately, there are no criteria for assessing the exactitude and
comprehensiveness of explanations. Due to the unavailability of these
measures, the application of XML in clinical settings may have adverse
effects. Moreover, understanding how the explanations impact the dig-
nity and well-being of patients is also an ethical requirement, i.e., data
reconstruction from explanations can be used negatively [29].
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2.10. Security challenges

Notwithstanding the state-of-the-art performance of ML and DL-
based methods, many recent studies have highlighted the vulnerabil-
ities of these systems towards adversarial ML attacks [30]. Moreover,
such attacks have been already realized on ML/DL-based medical sys-
tems [31]. Beyond adversarial ML, many security challenges hinder the
deployment of ML/DL in actual clinical settings, a detailed overview
of these challenges can be found in [32]. These challenges raise many
concerns about thy safety of ML/DL empowered systems, therefore, the
robustness of ML/DL models is crucial in developing trustworthiness
and transparency in ML/DL empowered healthcare applications. The
excellent performance of an ML/DL cannot be evidence of its safety,
which is simply the determination of how safe is the ML/DL empowered
system for humans, i.e., patients. On the other hand, it is equally
important that the ML/DL-based techniques should be trusted by both
clinicians and patients.

3. Explainable ML

The problem of explaining intelligent algorithms to humans is
known since the 1970s, however, the work in this research area slowed
down due to advances in ML techniques [33]. XML is a research
field first explored by Van et al. in 2004 [34]. They described, that
their developed system can explain the behavior of the algorithm,
Full spectrum command, which is used by the U.S. Army. Their XAI
system allows the user to click on any Al-controlled soldier in the
playback window and access a pop-up menu of questions that can be
asked of that soldier. However, their developed XAI system cannot
provide detailed and deep explanations like why each task should be
approached in a specified way.

With the increasing employment of AI/ML methods in industry,
medicine, education, and defense systems, the explanation of the ma-
chine decisions is crucial to avoid unwanted circumstances, specifically,
for healthcare applications. For example, applications like medicine
suggestion, disease prognosis or prediction, and mortality prediction
demand explainable decisions for ethical reasons and for making these
applications socially acceptable.

3.0.1. Definitions of explainability in literature

Explainable and interpretable ML has no formal and generally ap-
plicable definition. Some of the definitions introduced and used by
researchers are the following:

+ Explainability: DARPA defines explainability as producing ex-
plainable models while maintaining high prediction results that
help users to understand and trust the decisions of artificial
systems [11]. FAT-ML cleared its goals by stating XML as a
procedure to ensure that machine decisions and the data driving
those decisions should be explainable to humans in non-technical
terms [10]. FICO said that XML is a shift towards converting the
black box of ML to a white box. The organization defined XML
as a challenge to develop techniques that provide a trustworthy
explanation with high accuracy to meet the needs of end-users.
Leilani et al. [24] stated the term as a science of perceiving what
a model did or might have done.

Predictions in the medical field should not be based on blind faith
since the consequences can be tragic. By explanation of prediction, we
mean providing textual or visual features that provide a contextual in-
terpretation of the correlation between the components of the instance
and the prediction results of the model. The idea of XML is illustrated
in Fig. 2. It is clear that if understandable explanations are given, a
doctor is far better prepared to make a decision using these explainable
models. In this example, a small list of conditions with corresponding
weights is an explanation for taking the decision. Humans typically
have foreknowledge of the problem domain, which they will use to
believe or deny a prediction if they understand the explanation of
results by the algorithm.
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\  Model Features of Results | -_ now when to trust the model?  __ __ | 1

Fig. 2. Depiction of how the explainable ML technique is different from the typical ML technique.

3.1. Taxonomy of XML

To explain the decisions and behavior of ML, different explaining
models should be developed and implemented. Here we describe the
categorization of XML approaches based on their complexity, scope,
and employment.

« Intrinsic Model: This method is used to design explainable mod-
els by reducing the complexity of the ML and adopting simple
architectures that are inherently explainable.

Post-hoc Models: It is a technique to analyze complex high-
performance black-box ML after the training process. To derive
the explanation of these models, reverse problem techniques are
usually applied.

Model-specific Explanation: Techniques for model-specific expla-
nations are restricted to specific types of models. For example,
the explanation of learned weights of regression or linear model
is limited to the specific model. Moreover, the explanation of
intrinsic models is model-specific by definition.

» Model-agnostic Explanation: These can be usually applied to any
ML model after the training. Agnostic models cannot access the
internal architecture and weights of the ML technique. For the
post-hoc models, agnostic explanations are sometimes drawn by
using simplification techniques to reduce the complexity.
Surrogate Methods: In this method, different explainable models
are designed to analyze the ML black-box. The explanation of
black-box models is produced by comparing the decisions of
surrogate models and the decision of the black-box model.
Visualization Methods: These explanation methods use visual
graphics like activation maps or heatmaps to explain some pa-
rameters of architecture of the black-box model.

Based on the mechanism of the explanation model, explainable
methods have two broad categories white-box explanation and black-
box explanation. The white-box learning model produces explanations
for individual output. In this technique, the model identifies the por-
tion of features that are significant for the prediction [35]. Another
approach used for white-box explanation is the gradient computation
of the prediction with respect to individual input samples to find out
the prediction relevant features [36]. White-box explanation mostly
provides the model-specific explanation. The black-box methodology
provides local explanations of a model for a prediction [37]. However,
this mechanism lacks the ability to describe all representations learned
by the model.

3.2. Local vs. global explainability

Explanation of the model will be global if the explanation provides
details about which feature is contributing the most to all predictions of

the model. It is an average across all the predictions. Global explainabil-
ity provides information about ‘what extent each feature contributes to
how the model makes its predictions over all of the data.” On the other
hand, local explainability helps in answering the question, “for this
particular example, why did the model make this particular decision?”*

3.3. Need of XML for healthcare

Explanation of results is not only necessary for financial gains and
ethical challenges but is also desirable for clinical practice if end users
(patients or doctors) want to learn, understand, and efficiently manage
ML algorithms. Based on the literature reviewed, the following factors
are the reason for the necessity of XML models in the research area of
healthcare.

3.3.1. To explicate data

Contamination of clinical data and its complex and multivariate
nature can lead to bias in the data that the model can learn. Learning bi-
ased information in the medical domain can pose life-threatening risks.
Explanations derived from the XML allow the visualization of the rela-
tion of features affecting the outcome. Thus, the explanation provides
a fair analysis of model architecture and learned parameters [38].

3.3.2. To pick the best model

Many design choices, not just the selection of the classification or
prediction algorithm but innumerable variations in each stage of pre-
processing of medical data during model development, alter the model.
There can be countless algorithms with high predictive results. It can
be a case that the model with higher performance and accuracy is the
worst one, which limits the understanding of the end user in the real-
time clinical practice as per the so-called ‘Rashomon effect’ [39]. The
explanation of each algorithm reveals entirely different aspects of the
disease learned by the model. These explanations of the results can help
researchers and developers to pick between high-performance models.

3.3.3. To enhance clinical use of ML

With the availability of an enormous amount of medical data and
advanced ML techniques, research and publications on healthcare are
also growing. However, the employment of these algorithms for clinical
practice or the use of patients is still distant. The primary reason for this
gap is the unexplained results of algorithms and sometimes the poor
performance of the algorithm. The explainable techniques allow the
researchers or end-users to get involved in improving the performance
of the algorithm and to trust the prediction results [40].

4 https://towardsdatascience.com/a-look-into-global-cohort-and-local-
model-explainability-973bd449969f.
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Fig. 3. The pipeline for explaining the black-box models.

3.3.4. To facilitate end-users

ML and XML algorithms are designed to aid the medical staff, not for
replacing the medical experts [41]. Medical-related decisions and their
explanations have a direct influence on the results of treatment and the
survival of patients. So, these intelligent systems still require human
supervision to avoid any adverse effects. There can be cases where
ML can guide healthcare staff to improve or correct their decisions
about treatments. This human-machine combination is a powerful tool
to facilitate the patients and develop high-quality treatments [21].
Explanations of these systems are required to gain insights into ML
decisions. These insights can help improve the prescribed medicines,
facilities provided to patients in hospitals [42], and health monitoring
systems [43].

3.4. Enhancing the clinical practice of ML: A framework of effective XML
for healthcare

It is now evident that the explainability of black-box models is re-
quired to attain fair and trustworthy healthcare decisions. Researchers
have started developing techniques to build explainable models. How-
ever, the field of XML for healthcare has many directions to improve.
In this section, we formulate the pipeline for the explainability of data-
driven healthcare applications. We discuss the need for explainability
at each stage from development to clinical deployment of algorithms.

3.4.1. Unfolding the hidden aspects of data

ML techniques learn patterns of data to make decisions. Any bias in
the data, subjectivity, redundancy, or problem in data representation
causes misleading results. To produce trustworthy and fair results, we
should start with the data explanation. Consider the work of Caruana
et al. [44] who built classifiers to classify pneumonia patients as high
or low risk for in-hospital death. Their best model gave the results
that a patient with asthma has a low risk of in-hospital mortality
when admitted for pneumonia. However, the opposite is true. On
further investigating the counterintuitive results, the authors realized
that asthmatic patients admitted for pneumonia were provided more
timely treatment compared to non-asthmatic patients, which led to
increased survival success. Thus it was the timely treatment and not
the fact that the patient had asthma that reduced the risk of in-hospital
mortality. Another example of data bias could arise from patients being
denied access to medical care due to not having health insurance. If ML
learns from such biased data, it will generate biased results. Similar
is the case for data leakage, which can mislead the model learning
and testing [45]. To avoid these problems, researchers need to develop
a data explanation method that interrogates all dependencies of the
target on acquired data.

3.4.2. Explaining the structure of black-box

The problem of explaining black-box models can be further divided
into two subproblems. The first subproblem (model-based explanations)
is to explain the logic of the black-box model in an interpretable
human-understandable way, while the second subproblem (result ex-
planations) is to explain the input-output relevance used by the model
to make decisions [46]. The model-based explanation methods are
well developed and implemented for healthcare applications (further
discussed in Section 4.4). These models very well mimic the behavior
of black-box models in terms of logic learning and provide global
interpretability. Some ML techniques are inherently explainable due to
their simple structure, like decision trees and random forests. However,
many black-box models require other models that mimic their work for
the explanation.

3.4.3. Explaining the results

Explaining the structure and logic of a model can be complicated
for some non-technical medical end-users. In this case, only the expla-
nation of why the model is making this decision can be helpful. This
explanation usually consists of the feature relevance for output. Con-
trary to the local explanation for a single patient, a global explanation
is required for generalization purposes.

3.4.4. Measuring the effectiveness of explanations

The quality of explanation depends on the training and validation of
the model. In general, the training and validation data sets are divided
into 80:20. As a result, 20% of the data is reserved for validation. The
ratio varies according to the size of the data. In the scenario when the
data size is significantly huge, we can also use a 90:10 data split ratio in
which the validation data set comprises 10% of the data. Furthermore,
when we divided the data set into three parts, namely the training
data set, the validation data set, and the test data set. We train the
model with the training data set, evaluate its performance with the
validation data set, and improve its performance with the training and
validation data sets. Finally, the test set is used to evaluate the model
generalization performance. It is important to note that the test set is
kept secret during the model training and model assessment process
stages, i.e., it is not visible to the model. In such cases, we can divide
the data in a 70:20:10 ratio. Where 10% of the data set can be reserved
as test data to evaluate the performance of the model.

Due to the non-monolithic and subjective nature of explainability,
the evaluation of explanations is a complicated task. There are no sound
traces of the best measurement for evaluating the XML, nor we could
say anything about how much the model is explainable. Despite the
increasing research on the said topic, few researchers focused on the
problem of evaluating XML. Some of the main approaches adopted by
the healthcare researchers for the evaluation are described next. Fig. 3
is the depiction of these steps required for explaining the black-box
models. We note that these approaches are not limited to the evaluation
of healthcare XML.



K. Rasheed et al.

Application-based evaluation: Place the explanation into the product or
application and get it tested by the end customer, which is usually
a domain expert. This technique helps in evaluating the explanation
in real-time practical scenarios. For example, consider the ML-based
medical data annotation software that places markers on the diseased
regions of data. In the clinical application, the clinician would test the
annotation software to evaluate the model. The clinician can explain
the same decision and can evaluate the explanation and performance
of data annotating software [47].

Human-based evaluation: This technique is similar to application-based
evaluation. However, the difference is that it does not require a costly
experimental environment and domain expert for testing. One can test
the explanations with laypersons, and it helps to generalize the findings
as the larger number of testers (laypersons) are easily available. This
evaluation approach was applied by Mohseni et al. for evaluating the
explanations on image and text data [48]. The authors distinguish
between two types of human-subject involvement for evaluating the
explanations, i.e., feedback setting and feed-forward setting. Participants
submit feedback on actual explanations in a feedback context, and
experimenters use this input to measure the quality of the explanations.
In the feed-forward setting, however, no explanations are available.
Instead, people generate examples of reasonable explanations that serve
as a benchmark for explanations generated by algorithms.

Function-based evaluation: This approach does not require humans in
the loop (layperson or domain expert). It works appropriately when
human-based or application-based evaluations have already been per-
formed.

3.5 Characteristics of XML for healthcare

The goal is to explain the decisions of the ML methods applied for
the detection and prediction of diseases, and to achieve this goal re-
search community relies on the explanation method. An XML technique
usually explains in a human-understandable way how the feature of
data relates to prediction results, i.e., what features of X-ray images
a model learns to detect the fractures. Robnik et al. [49] listed some
properties of good quality XML method. These properties are mostly
required for explanations of any black-box model, however, we are
describing these in terms of the healthcare domain. The only limitation
is that there is no definite method to calculate these properties. Fig. 4
depicts these properties.

* Domain adaptable outputs: It is how an explainable model rep-
resents its explanation according to the application domain and
end-users. The explanation could be an if-then scenario, decision
trees, or formulated mathematically or in a natural text language.
For medical end-users (i.e., clinicians, radiologists, pathologists,
neurologists, and patients), it is more likely that they do not
have enough knowledge of understanding complex mathematical
explanations. So, for them, rule-based, textual, or visualization-
based explanations are required.

Translucency of XML: It represents how much the explaining
method depends on the internal architecture of the ML model,
i.e., learnable parameters. The more the dependency is, the more
translucent the explanation will be. High translucency allows the
explanation method to gather information from more internal
parameters of a model. Lower translucency has the advantage
of more compact explanation results. To get a generalized model
for clinical use low translucency is desirable. On the other hand,
for a patient-specific application, the explanation should be more
detailed and accurate which requires high translucency.
Adoptability: Tt illustrates the variety of ML methods for which
an explanation technique can be applied. The techniques with
low translucency are applicable to a wide range of ML methods.
Explanation methods of complex deep neural networks (DNN)
have high translucency and thus cannot be applicable to other
models.
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Fig. 4. Illustration of characteristics of XML model for healthcare applications.

The above-mentioned characteristics could be used to select, design,
and compare the architectures of XML methods for healthcare applica-
tions. A good explanation should be accurate, especially in the case
of disease prediction. A low value of accuracy is acceptable if the
performance of the ML model is also low. Fidelity is a property of
explanation that shows the precision of approximating the decision of
the ML method.

3.6 Explaining techniques

With advancement of techniques, ML models such as DNNs, con-
volutional neural networks (CNNs), and recurrent neural networks
(RNNs) are widely employed for healthcare applications such as
epilepsy seizure prediction [50], segmentation of brain tumor [51],
Alzheimer detection [52], genomics [53], and medical prescriptions [54].
These techniques are precise in terms of performance, but their deci-
sions are difficult to explain due to multiple reasons, including the com-
plexity of the model architecture. Based on the level of transparency,
these models are divided into three following categories:

3.6.1 White-box models

These models have a clear inner logic, workings process, and pro-
gramming steps. These models are inherently interpretable with a high
level of transparency. Decision trees (DTs) are the most common ex-
ample of White-Box models, while other examples are linear regression
models, Bayesian Networks, and Fuzzy Cognitive Maps. In this paper,
these models are discussed under the heading of intrinsic explanation
methods in Section 4.4.1.

3.6.2 Black-box models

Black-Box models are typically more accurate than White-Box mod-
els. However, their inner working is not easily interpretable. Deep or
shallow neural networks are the most common examples of Black-Box
models. Saliency maps and feature attribution methods are commonly
used for explaining the decisions of Black-Box models.

Saliency methods produce the explanation by presenting important
feature maps of each data sample. Gradient-based saliency methods
reveal how the output of the model changes with a small change
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in input. These methods are computationally efficient because of a
single pass of input (forward and backward) through the network. The
simplest way is to take the gradient of the input sample with respect
to the output of model and visualize these gradients as heatmaps.
Several techniques have been proposed to improve the visualization
quality of these heatmaps, i.e., SmoothGrad [55], class activation maps
(CAM) [56], and gradient weighted class activation mapping (Grad-
CAM) [57]. The signal method is used to highlight the patterns of data
that activate the neurons of higher layers. It can be done by back-
propagating a signal from the last layer of the network to the input
layer. DeConvNet [35], Guided BackProp [58], and PatternNet [59] are
commonly applied signal-based saliency techniques. The feature attri-
bution method decomposes each value produced from each neuron of
the output layer according to the contributions made by the individual
dimensions of an input sample.

Deep Taylor decomposition [60] and integrated gradients (IG) [61]
are two other popular attribution methods. Deep Taylor decomposi-
tion method estimates the importance of single pixels in image clas-
sification tasks using the heatmaps. This method does not require
hyper-parameters tuning and can be applied directly to existing neural
networks without retraining. This method can help explain the de-
cisions of algorithms in which the availability of enough amount of
medical data is not possible due to surgical limitations. However, we
can implement this method only on the image data. The IG method is
applicable for images and text data. It requires no modification to the
original network and just needs a few calls to the standard gradient
operator.

A local interpretable model-agnostic explanation (LIME) technique
was proposed by Marco et al. [62] to address the issue of explaining
the results of black-box models. LIME produces an explanation list
that shows the contribution of individual features to the prediction.
This local explanation allows the end-user to determine which feature
is important for the precise prediction and how the perturbation in
feature affects the prediction results. Samek et al. compared the expla-
nation quality of two methods: sensitivity analysis (SA) and layer-wise
relevance propagation (LRP). These methods generate values for each
feature of the input sample according to the contribution of features in
predicting the output. They showed that the heatmaps produced by SA
are much noisier compared to the heatmaps generated using LRP [63].
Samek et al. provide a survey with theoretical background for the post
hoc methods for explaining DL models [64]. The authors also provided
insights on implementation best practices, i.e., how we can include
explanation methods into the standard ML models.

3.6.3 Grey-box model

The Grey-Box model is a hybrid of the Black-Box and White-Box
models, which aims to simultaneously provide accuracy and inter-
pretability [65]. The idea behind the development of a Grey-Box model
is to provide an ensemble of Black-Box and White-Box models for
acquiring the benefits of both and building a more efficient global
composite model. In general, we can consider any ensemble of ML mod-
els containing both Black and White-Box models, like neural networks
and linear regression, as a Grey-Box. We do not particularly focus on
the Grey-Box model as our paper’s focus is on the interpretability of
Black-Box models along with some discussion on the interpretability of
White-Box models.

4 Safe, robust, and trustworthy ML for healthcare

The lack of transparency of ML techniques, particularly DL, is
yet another challenge that hinders the practical deployment of these
methods in critical applications like healthcare. It is crucial for a
typical ML/DL empowered healthcare system to be fully trusted by
the clinicians and patients to realize the full potential of such systems.
Moreover, unlike other domains, healthcare has unique challenges,
e.g., legal, regulatory, and ethical challenges that need to be considered
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while integrating ML/DL based algorithms into actual clinical settings
while ensuring that the deployed systems are safe, robust, and free from
algorithmic bias.

We have discussed such challenges in detail in an earlier section, in
this section, we will describe the notion of safe, robust, and trustworthy
ML for healthcare.

4.1 Principles of trustworthy Al for healthcare

To sustain the trustworthiness in Al literature refers to two sets
of popular principles that have been outlined by the Organization for
Economic Co-operation and Development (OECD) [66] and European
Commission’s Al High-Level Expert Group (HLEG) [67]. The OECD
defines the following five complementary principles for implementing
trustworthy AL

. Inclusive growth, sustainable development, and well-being
Human-centered values and fairness

. Transparency and explainability

. Robustness, security and safety

. Accountability
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These principles in the OECD framework argue for a human-centered
approach to building trustworthy Al systems for healthcare that respect
human dignity, values, autonomy, fairness, and explainability. On a
similar note, the AI HLEG defines the following guidelines to develop
trustworthy Al systems.

. Human agency and oversight

. Technical robustness and safety

. Privacy and data governance

. Transparency

. Diversity, non-discrimination, and fairness
. Environmental and societal well-being

. Accountability

NO U WN -

It is worth noting that the guidelines in both aforementioned frame-
works, mainly focus on the Al aspects of robustness, safety, security,
explainability, and fairness and are therefore the key requirements
for building trustworthy AI systems. Moreover, these principles are
human-focused and value-based, which respect ethical values along
with focusing on the legal and regulatory considerations.

4.2 Secure, safe, and robust ML for healthcare

The literature suggests that ML systems are not safe, secure, and
robust. Such vulnerabilities can be exploited by adversaries for mislead-
ing the Al-empowered system to get desired outcomes. In the literature,
different attacks have been proposed ranging from privacy attacks to
targeted adversarial attacks. In this section, we will focus on the im-
plications of security and robustness issues while building trustworthy
Al systems and refer the interested readers to recent detailed work on
the security and robustness of ML/DL models for healthcare applica-
tions [32]. An abstraction of safe, robust, and trustworthy ML outlining
challenges like privacy and adversarial attacks in ML/DL pipeline for
healthcare applications is shown in Fig. 5. From the figure, it is evident
that the whole ML pipeline suffers from different vulnerabilities that
can be exploited by malicious actors to get the intended outcomes. For
example, an adversary can realize an adversarial attack on the underly-
ing MI/DL classifier to increase the misclassification error (untargeted
attack) and can influence the classifier to classify a specific input (con-
taining adversarial noise) to an intended class label (targeted attack).
In addition, an adversary can extract the privacy-related information
from the deployed model by exploiting the query-response pair (such
an attack is known as a model extraction attack). Moreover, from Fig. 5,
we can see that ML/DL models lack explainability, interpretability, and
robustness and are not privacy-aware. Therefore, trustworthy ML can
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Fig. 5. An abstraction of safe, robust, and trustworthy ML for healthcare applications.

only be possible by addressing challenges related to privacy, fairness,
explainability, security, and robustness.

The safe and robust ML is a broad term and we define the robustness
of the ML/DL models along three dimensions, i.e., robustness to secu-
rity threats, robustness to distribution shifts, and data imperfections.
We further note that security threats can be of many kinds, e.g., evasion
attacks, adversarial attacks, privacy breaching attacks, etc.

4.2.1 Robustness to security attacks

Adversarially robust ML: In recent years, adversarial ML attacks have
been shown to be a real threat to the clinical deployment of ML/DL
models. For instance, Mirsky et al. [68] demonstrated the real implica-
tions of adversarial ML by realizing an adversarial attack in an active
hospital network. Specifically, they showed that CT scans generated by
a DL-based image reconstruction model can be manipulated to add or
remove medical evidence (e.g., removing lung cancer from CT scans
of patients having it and injecting lung cancer into normal CT scans).
Furthermore, they also showed that three expert radiologists were
susceptible to their attack, thus highlighting the threat of adversarial
ML in an actual clinical environment. Similarly, in the literature, the
threat of adversarial ML has been successfully highlighted for different
medical applications. In [31], the authors demonstrated the success
of white-box (utilizing full knowledge) and black-box (no knowledge)
adversarial ML attacks on three medical image classification tasks,
i.e., diabetic retinopathy classification, skin cancer detection, and phe-
nomena detection in chest X-ray scans. Similarly, Paschali et al. [69]
evaluated the robustness of three different state-of-the-art models each
for medical image classification and segmentation for the tasks of
skin cancer detection and semantic segmentation of brain MRI. Han
et al. [70] demonstrated the threat of adversarial ML attacks for ECG
classification and highlighted that 1000 different adversarial examples
can be created from the original ECG signal.

In [71], the authors argued that adversarial attacks in medical im-
ages are due to the noise inherent in the technology of their formation,
e.g., CT and MRI scanners. Therefore, robustness to adversarial attacks
can be a road map toward developing safe and trustworthy ML-based
healthcare applications. Adversarial robustness can be defined as the
survivability of ML-based systems against adversarial attacks. In this
line, three types of adversarial defense methods have been proposed
in the literature, i.e., modifying data, modifying model, and adding an
auxiliary model. Taxonomy and detailed description of such methods
can be found in [72].

Privacy preserving ML: Preserving the privacy of patients is one of the
key challenges in data-driven healthcare and is a matter of high concern
in building trust in Al-based systems. Privacy preservation indicates
that the ML model should not reveal any confidential information
about the data owners (i.e., from whom data has been generated and
collected) either during training or at inference time (c.f. Fig. 5). On
the other side, the users (i.e., patients and clinicians) expect that the
Al system is safe and respects their privacy. Privacy attacks on data
integrity can be of two types: learning about confidential information,
and malicious data use [32]. Similarly, privacy information can be
unveiled by querying the deployed ML model (i.e., at inference time).
Therefore, the development of appropriate defense strategies to with-
stand privacy attacks is crucial to ensure safe and trustworthy ML in
healthcare applications.

Different techniques can be use for preserving privacy—e.g., using
cryptographic approaches (like homomorphic encryption [73], and
multi-party computation [74]); differential privacy [75]; and federated
learning [76]. In addition, hybrid approaches can also be developed, for
instance, the use of differential privacy in federated learning settings is
proposed in [77]. Federated learning works by training local models
at each client’s side and then sharing the learned parameters with
the server. Then the server performs global averaging (after receiving
parameter updates from each client) and shares the updated parameters
with all participating clients in the network (this process is repeated
until desired criteria are achieved). In this way, the privacy of the data
is preserved as it is not shared with either the server or any client.
Differential privacy ensures privacy by introducing random noise in the
training data, thus making it hard to infer privacy-related information
from the trained models. In homomorphic encryption, the data is first
encrypted using some cryptographic technique and then all compu-
tations required for model training are performed on the encrypted
data [78]. Multi-party computation enables the privacy of the data by
allowing multiple entities to send secret inputs that are then used for
performing all computations.

4.2.2 Robustness to distributional shifts and data imperfections

Data distribution shifts (which refers to the divergence of training
and testing data) are yet another major challenge that hinders the
practical deployment of ML/DL models in realistic clinical settings [79].
As it is highly expected that the distribution of real-world data en-
countered by the deployed model is different from the one it was
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trained which is usually trained in controlled settings with rather good
data to achieve better performance. This issue results in the reduced
performance of the developed ML system in an actual clinical environ-
ment and on the other hand, it also fails to gain the trust of end-users
(i.e., clinicians and patients), due to increased false positives and false
negatives rate that can lead to life-threatening consequences as well.
In addition, the real-world data contains imperfections (e.g., missing
observations or variables) and is imbalanced (uneven distribution of
samples across different classes). These data imperfections will even-
tually result in biased training of the ML models and will increase the
false positives and negatives. Therefore, to build the trust of end-users
in ML-based systems, the development of generalized approaches that
can mitigate these issues is required. As the life-critical nature of health-
care applications demands that the developed ML systems should be
safe and robust and should remain safe and robust over time. Moreover,
the literature suggests that the difference in data distributions can be
leveraged to craft adversarial examples [80]. Also, it has been shown
that adversarial robustness is closely related to robustness to certain
kinds of distributional shifts. Therefore, the literature recommends that
future adversarial defenses should consider evaluating the robustness of
their methods to distributional shifts as well [81].

4.3 Trade-off between accuracy, explainability, and robustness

One has to pay a cost for developing explainable, robust, trust-
worthy, and accurate ML/DL models, as shown in Fig. 6. In [82],
an analysis of the trade-off between the accuracy and adversarial
robustness of 18 well-known ImageNet classifiers with different metrics
is presented. The authors noted that a clear trade-off existed between
accuracy and robustness. Similar observations were noted in [83],
where the authors quantified this trade-off and argued that adversar-
ial robustness is incompatible with standard accuracy. Tsipras et al.
demonstrated that there exists provably a trade-off between adversarial
robustness and the accuracy of the model even in a concrete simplistic
setting [83]. The authors argue that this behavior is a reflection of
the robust models that tend to learn fundamentally different feature
representations than the standard (non-robust) models. Also, these
differences may also provide unexpected benefits, e.g., learned repre-
sentations from adversarially robust classifiers seem to be more aligned
with human perception and data characteristics. As adversarial pertur-
bations used for robust training of models contains such properties that
are expected to be consistent with human perception [83].

Robust models pay the cost of accuracy and can be more ex-
plainable and interpretable as compared to complex models having
high accuracy but low explainability. In practice, the higher the ac-
curacy of the predictive model, the less explainable/interpretable it
becomes. This highlights that solely getting high accuracy from an
ML/DL model may get us in real trouble. A few studies have focused
on addressing this trade-off [84], however, such methods are not
generalizable and applicable to all domains, in particular, task-specific
ML/DL applications.

4.4 Applications of XML models for trustworthy healthcare

The Translucency, credibility, and explainability of ML models are
requirements for the clinical application of these models. Transparency
of decisions of these models can help clinicians trust and rely on
ML/DL prediction algorithms. Moreover, interpretable and explainable
Al models are required for answering questions about accountability
and transparency of their decisions and outcomes. These questions are
particularly important for domains like healthcare, where failing to pro-
vide accountable and transparent Al predictions will limit the potential
transnational impact of Al and at the same time, will reduce the trust
of end-users in Al-based medical interventions. The European General
Data Protection Regulation (GDPR) emphasizes that explainability and
accountability are necessary for the application of ML/DL models in
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any domain, especially, in the medical domain [9]. The explainability
of black-box models can assure reliable and ethical use in the medical
field. Transparency of ML models can help to eradicate myths by ex-
plaining what features a model learned for making certain predictions
and can help in building the trust of end-users [14]. Relevant literature
argues that explainable ML can be a potential step towards trustworthy
ML by building trust of clinicians in Al-based systems [85]. We describe
next the applications of XML models in the medical domain:

4.4.1 Intrinsic XML models

As noted previously, intrinsic explainable models are those models
that are understandable and interpretable due to their simple archi-
tecture. The following are applications of inherently XML models and
Table 3 provides a summary of different model-intrinsic explanation
methods for healthcare applications.

Support Vector Machine (SVM): The SVM algorithm finds the best
hyperplane that can split data points into different classes. For the
classification of data, a feature map is used to transform the inputs into
a higher dimensional feature space. The trade-off between a smooth
decision boundary and correct classification of the training data is
made through the strictly positive regularization constant. Belle et al.
investigated the explainability of SVM with linear, polynomial, and RBF
kernels [99]. They showed that the explainability of an SVM depends
on the values of chosen parameters i.e., the degree of the polynomial
kernel, the width of the RBF kernel, and the regularization constant.
According to their findings, when several combinations of parameter
values yield the same cross-validation performance, combinations with
a lower polynomial degree or a larger kernel width have a higher
chance of being explainable [99]. Eslami et al. conducted a study
for the detection of autism spectrum disorder (ASD) from functional
magnetic resonance imaging (fMRI) and used a hybrid of DL and SVM
to perform explainable classification. The SVM was used as a classifier
on the features of a DL model and the visualization of the decision
boundary explained the model [100]. However, for large and complex
medical data sets SVM algorithm is not suitable because SVM under-
performs where the number of features for each data point exceeds the
number of training data samples. Usually, the medical data has a low
signal-to-noise ratio and SVM does not perform very well when the data
set has more noise [101].

Decision Tree (DT): These are the self-explanatory surrogate models
that use the if-then rule for the explanation of decisions. However, for
complex high-dimensional medical data in which decision variables are
non-linearly related to each other DTs are not feasible for producing
human-understandable explanations. For instance, Dlaeen et al. [87]
implemented DTs to predict Alzheimer’s disease in seventeen patients.
They used gender, age, genetic causes, brain injury, and vascular
disease as data attributes and measured information gain of attributes
for the selection of DT nodes. However, the quality of the explanation
provided by their proposed DT-based approach has not been evaluated.

Note that DTs are highly vulnerable to minute changes in input,
which considerably affects the performance of these models, e.g., they
show considerable change in output with a small perturbation in the
input. To overcome this performance drop, ensemble DTs are con-
structed by averaging large numbers of DTs. In this regard, Gibbons
et al. [86] used a hybrid approach for leveraging both the benefit of
individual DT and the efficiency of ensemble DTs. They proposed a
computerized adaptive diagnostic system for the diagnosis of major
depressive disorder using random forest and DTs. For performance
evaluation, they used data collected from 656 patients and achieved a
sensitivity of 95% and specificity of 87%. Similarly, Suresh et al. [88]
proposed the use of a radial basis function (RBF) network and DTs for
the detection of lesions in mammograms. In their proposed approach,
the DT model was used to learn suitable attributes of data in a top-
down search manner, specifically, they selected the best attributes by
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data.

constructing and evaluating different structures of DTs. They also com-
pared their algorithm with k-nearest neighbors (K-NN), support vector
machine (SVM), and naive Bayes classifier and concluded that DTs
outperformed all these classifiers. As discussed above, generalization of
algorithms is required for clinical deployment to avoid the phenomenon
of distribution shifts. However, the literature shows that DTs cannot
generalize to variations not seen in the training set [118]. Therefore,
DTs-based systems are not appropriate for healthcare applications.

Rule-lists: Rule-based XML models produce explanations using if-then
rules or other complex rules. These are different from the DTs as
they generate the explanations in the textual format. Other differences
between these models as compared to DTs include rules ordering
(rules are ordered according to their properties) and the generation of
mutually exclusive rules (different rules that are generated by the same
attributes). Khare et al. [89] proposed an association rule technique
using 23 attributes of cardiovascular data for detecting heart diseases.
Their method works by generating such rules that map the attributes to
classes for the identification most appropriate features influencing the
model prediction (i.e., provoking a specific disease). They used confi-
dence, lift, and support as parameters for generating rules. Accuracy
was used for the validation of generated rules.

With the emerging use of natural language processing (NLP) and
ML, automatic answering to healthcare-related questions is a conspicu-
ous technique. Classification of questions is required for the generation
of answers. Agrawal et al. [90] implemented a rule-based algorithm
for the question classification system (QCS). They extracted rules after
the preprocessing of 427 health-based questions to classify them into
9 question types (i.e., classes). The extracted rules were validated in
terms of accuracy and their proposed rule-based method achieved an
accuracy of 80.7% by correctly classifying 345 questions.
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Random Forest (RF): RF is an ensemble of large numbers of DTs,
that are used for regression or classification problems. Each DT in RF
performs the classification and the final prediction of RF is measured
based on the most occurring class. Wang et al. [91] evaluated RF, C4.5
algorithm of DT, SVM-based RF, and SVM-based DT algorithms for the
detection of epileptic seizures using the Bonn university dataset. To
detect the seizures, they classified EEG signals into different groups.
They concluded that the RF algorithm outperformed all other classifiers
with an accuracy of 98.6% for two-class, 96% for three-class, and
82.6% for five-class classification experiments.

In the literature, RF has been also used beyond general classification
and regression. For instance, Simsekler et al. [93] implemented an
RF algorithm to estimate the association between the safety culture
dimensions and grades of patient safety by using the HSOPSC dataset
from 677 U.S. hospitals. As the safety of a patient is necessary to ensure
the quality of medical facilities provided by a healthcare unit, which is
a patient safety culture of a hospital or clinic. The authors considered
12 variables of safety culture and identified the importance of each
variable for the safety of patients using an RF algorithm. The quality
of explanations of safety variables was measured in terms of mean
absolute percentage error (MAPE), mean absolute error (MAE), and
mean square error (MSE). In a recent study, Iwendi et al. [94] used
an RF model with the AdaBoost algorithm to analyze the severity of
COVID-19, death, or recovery rate for a patient. RF has been used for
the prediction of depression in Alzheimer’s patients [92], healthcare
monitoring systems [43], and prediction of medical expenditures [119].

General Additive Model (GAM): ML regression models produce predic-
tions by adding weighted features. GAM works by modeling the output
as the weighted sum of random nonlinear functions of data features
and to approximate these non-linear functions, a combination of spline
functions is used. Chang et al. [120] performed a comparative analysis
of different GAM algorithms quantitatively and qualitatively. They
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Table 3
Summary of model-intrinsic explanation methods for healthcare applications.
Explaining method Year Reference Description Application Modality
2013 Gibbons et al. [86] The self-explanatory MDD detection Psychiatric and non
DT surrogate the model uses psychiatric attributes
2014 Dlaeen et al. [87] if-then logic for decision Alzheimer’s disease Gender, Age, Genetic
detection causes, Brain injury,
Vascular disease
2020 Suresh et al. [88] Breast cancer detection Mammographic images
Rule-Lists 2016 Khare et al. [89] Textual format explanation Cardiovascular disease Various attributes of
using if-then logic for detection patients
2019 Agrawal et al. [90] decision making Question classification in Coarse and fine-grained
health care classes from cloud
questionnaire
2017 Wang et al. [91] Epilepsy detection EEG signals
2019 Byeon et al. [92] Alzheimer’s patients Social demographic factors,
depression Health status, Behaviors,
detection Living style, Economic
activity
RF 2019 Kaur et al. [43] An ensemble of large numbers Healthcare monitoring Breast cancer, Diabetes,
of DTs, used mainly for system Heart disease, Spect-heart,
regression or classification Thyroid, Surgery,
Dermatology, Liver
disorder
2020 Simsekler et al. [93] Evaluation of patient Continuous and Categorical
safety culture variables for patient safety
2020 Iwendi et al. [94] Covid death and recovery Categorical variables in
rate detection dataset such as fatigue,
fever, cough.
2015 Caruana et al. [95] Pneumonia risk prediction Various attributes of
patients
GAM 2019 Sagaon et al. [96] The output is modeled as the Effect of age and diagnosis Various attributes related
weighted sum of random -specific cohort of HIV to psychosocial
nonlinear functions of data patients on psychosocial and behavioral outcomes
features activities and behavioral
activities
2020 Dastoorpoor et al. Effect of air pollution on Various air pollutants data
[97] pregnancy
2020 Yang et al. [98] Study air pollution effect Pulmonary TB and air

on TB cases

pollutants data

concluded that GAMs that only use a few variables to make predictions
can miss patterns in the data and can be unfair to rarely occurring data
samples. Therefore, GAMs cannot be used for such medical applications
that have high feature sparsity. In the literature, GAM is extensively
used in different health-related applications such as environmental
research [97], pneumonia risk prediction [95], research on the distri-
bution of species [121], and the effect of age and a diagnosis-specific
cohort of HIV patients on psychosocial and behavioral activities [96].
Yang et al. [98] studied how tuberculosis (TB) cases changed with
air pollution in the Wulumugi. They obtained the air quality and TB
patients data of slightly more than two years duration. They founded
that PM, 5, PM;,, SO,, NO,, CO, and O; were the dominant pollutants
in the air data. They used a GAM model to study the relation between
the aforementioned pollutants and the number of TB cases. However,
their analysis was based on an assumption that the number of patients
followed the Poisson distribution. Moreover, to encounter the linear
and non-linear features of data, they used the natural cubic spline. With
statistical validation of results, they concluded that with the 1 mg/m?
increase in PM, 5, PM,, SO,, NO,, CO, and O; particles number of TB
patients increased by 0.09%, 0.08%, 0.58%, 0.42%, 6.9%, and 0.57%,
respectively.

4.4.2 Model-agnostic explainability
As the name specifies, model-agnostic explanations are flexible in
terms of applications of models and representation. Table 4 summarizes
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the model-agnostic explanation methods for healthcare applications,
and below we provide a brief description of these methods when
applied to explaining healthcare decisions.

Partial Dependence Plot (PDP): These plots provide visual explanations
by showing the partial effects the input features have on the prediction
of a black-box model. These plots also help in visualizing the type of
relation (linear or non-linear) between the label and data features. Yang
et al. [102] predicted the mortality of COVID-19 patients using age,
time to the hospital, gender, and any chronic disease as attributes. They
plotted partial dependencies to check the effect of each attribute on the
prediction of mortality. They showed that the age of a patient is the
most important factor and the second important factor is how much
time the patient has spent in the hospital.

Class Activation Maps (CAM): These models are used to explain the
decisions of CNNs by highlighting the class-relevant areas of images.
However, CAMs are only applicable for specific CNN architecture,
i.e., CNN must have a dense and global averaging pooling layer after
the last convolutional layer. Vikash Gupta et al. [103] detected acute
proximal femoral fractures in elderly people using radiographic data.
They detected the fractures using VGG16 and used CAM to localize the
fractures. Kumar et al. [107] proposed a novel model named mosquito-
net for the classification of malaria cells and explained the decisions
of the model using CAM and GradCAM (a variant of CAM). Similarly,
Irvin et al. [106] used the GradCAM to provide the visual explanation of
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Table 4
Summary of model-agnostic explanation methods for healthcare applications. Legends: N/M = Not mentioned.
Explainingmethod Year Reference Description Black box Application Modality
model
PDP 2020 Yang et al. [102] Highlight the partial effects the XG-Boost Mortality rate Age, Gender,
input features have on the in COVID-19 Time to hospital
prediction of a black-box model
2020 Vikash Gupta et - VGG16 Fracture X-rays
CAM al. [103] nghllght the class relevant areas detection
of input data.
2020 Sebastian et al. CNN ECG ECG signals
[104] classification
2018 Pereira et al. CNN Grading of brain MRI
[105] tumor
GradCAM 2019 Irvin et al. Generates weighted gradient CAM CNN Detection of Chest X-rays
[106] by computing gradients of output different diseases
2020 Aayush Kumar et as it goes towards last layer. Mosquito-net Malaria Blood samples
al. [107] detection
MLCAM 2018 Izadyyazdanabadi Generates the maps of CNN Brain tumor MRI
et al. [108] discriminating features of data. detection
LRP 2018 Yang et al. [109] Back-propagates the output LSTM Cancer therapy N/M
decision to the input layer to decision
estimate the relevance of each prediction
2019 Chlebus et al. attribute. Semantic Liver tumor MRI
[110] segmentation classification
network
2019 Bohle et al. [111] CNN Alzheimer’s MRI
disease
classification
2020 Taeho Jo et al. 3D-CNN Alzheimer’s PET
[112] disease
classification
LIME 2019 Sousa et al. [113] Decompose the data based on CNN VGG16 Detection of WSI patches
similar features and tweak metastases
2020 Kitamura et al. randomly selecte(;i feat(;lres to CNN detection of immunofluorescent
[114] measure output dependence. diabetic images
nephropathy
DeepLIFT 2020 Yang et al. [102] Uses a reference value and - Genetic variants Single-Nucleotide
measures the reference values of caused by Polymorphisms
all neurons using a forward and diseases
backward pass
SHAP 2020 Tseng et al. [115] Uses coalitional game theory to LR, SVM, RF, Detection of Various disease
calculate Shapley values that XGboost, RF + cardiac surgery- related features
show the distribution of XGboost associated acute
prediction among features kidney injury.
GBP 2019 Theerasarn et al. Backpropagates the positive error 3D-CNN Detection of SPECT
[116] signals by setting negative Parkinson’s
gradients to zero and limits itself disease.
to positive inputs.
AM 2019 Borjali et.al [117] Generate explanations by CNN Detection of hip X-rays

maximize the activation of
neurons tweaking the input.

implant
misplacement.

active pleural effusion areas of chest radiograph which were indicated
by the CNN model. Sebastian et al. [104] used CAM to evaluate the
errors of their CNN model proposed for the multiclass labeling of
ECG signals. Pereira et al. [105] explained the brain tumor grading
decision of their proposed CNN classifier using CAM. Izadyyazdanabadi
et al. [108] integrated multiscale activation maps (MLCAM) with the
CNN model to locate the attributes of glioma tumors. In the literature, it
has been shown that CAM suffers from the gradient saturation problem
due to which it fails to localize relevant regions to overcome this issue,
gradient-free CAM has been proposed [122]. Also, CAM is noisy and can
induce a loss of spatial information in making explanations of model
predictions.

Layer-wise Relevance Propagation (LRP): This technique works by back-
propagating the output decision to the input layer to estimate the
relevance of each attribute. Yang et al. [109] proposed the use of LRP
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to select the features with high relevance to model-making predictions
regarding the decision of therapy of patients. They also evaluated the
quality of explanation from the expert clinicians and found that the
features, which are highlighted by the LRP have relevance and largely
agree with clinical knowledge and guidelines. Chlebus et al. [110]
implemented an LRP algorithm for explaining the decisions of semantic
networks used for segmenting liver tumors. They highlighted MRI
segments that were most relevant for the classification of tumors. Bohle
et al. [111] implemented LRP and guided backpropagation (GB) for
explaining the decisions of CNN that they used for the classification
of Alzheimer’s disease (AD). They evaluated the quality of generated
explanations of both techniques by measuring Atlas-based evaluation
metrics. To measure the quality, they analyzed the heatmaps and the
underlying CNN model. Specifically, they measured the importance
of different brain areas by calculating the sum of AD importance per
area, size-normalized AD importance metric, and gain—ratio of values
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with respect to the average healthy controls. They concluded that LRP
generates more relevant explanations by describing why any individual
patient has the disease. Jo et al. [112] used LRP to highlight the
areas of positron emission tomography (PET) that highly contribute
to the classification of Alzheimer’s disease using 3D-CNN. Note that
heatmap-based explanation methods require a ground truth for the
validation and in cases where the ground truth is not available, ex-
planations are qualitatively evaluated using visual assessment, which
itself is subjective. Also, the heatmap-based explanations are generally
algorithm-dependent.

Local Interpretable Model-Agnostic Explanations (LIME): This technique
generates explanations by apportioning an image data sample into
superpixels (groups of pixels having similar features) that provided
contextual details about the local part of an image. Samples of pertur-
bated images are then generated by tweaking the values of randomly
selected superpixels. The algorithm provides information about how
perturbation in features affects the prediction. The significance of
every superpixel for the prediction is measured as weighted values,
i.e., positive values show a high impact on a correct prediction, and
negative values show less or no impact on prediction. Sousa et al. [113]
used LIME to explain the CNN and VGG16 models that were trained for
the task of metastases detection from the histology whole slide images
(WSI) patches. They evaluated the explanations by cross-checking the
highlighted areas with medical annotations on the same images and
generally found both in agreement.

Zafar et al. [123] pointed out the problem of instability of generated
explanations due to the addition of perturbation and random feature
selection in the medical computer-aided diagnosis (CAD) systems. Fur-
thermore, they proposed the use of hierarchical clustering (HC) and
KNN to group the data and for the selection of relevant feature clusters.
The proposed algorithm was named deterministic LIME (DLIME) and
was used to explain the decisions of three medical image classification
models, i.e., breast cancer, liver disease, and hepatitis detection. The
performance evaluation showed that the proposed DLIME performs
better than the standard LIME. Kitamura et al. [114] proposed to use
LIME for the explanation of CNN-based diabetic nephropathy (DN)
detection model that was trained using immunofluorescent images.
LIME successfully highlighted learned patterns (by CNN model) of
peripheral lesion of DN glomeruli for DN detection.

Deep Learning Important FeaTures (DeepLIFT): DeepLIFT provides the
explanations of black box models by identification of the saliency of
input data. The algorithm measures the saliency according to how
sensitive the prediction of the algorithm is to input features in compar-
ison to their reference value. Reference value problem specific which
is selected based on the problem at hand. Sharma et al. [124] pro-
posed DeepLIFT for Genome-Wide Association Studies (GWAS), which
focused on studying genetic variants caused by common diseases. They
proposed the use of DeepLIFT to explain interactions that a normal
GWAS would not identify and showed that diabetes genetic risk factors
are identifiable using DL techniques.

Shapley Additive exPlanations (SHAP): SHAP explains the prediction of
a data sample by calculating the contribution of each feature to the
prediction of the algorithm. The SHAP uses coalitional game theory
to calculate Shapley values. Shapley values show the distribution of
prediction among features. Tseng et al. [115] studied the effect of
intraoperative variables on the cardiac surgery-associated acute kidney
injury. They used various ML algorithms logistic regression (LR), SVM,
RF, extreme gradient boosting (XGboost), and RF + XGboost to solve
the problem. Using SHAP values, they concluded that intraoperative
urine output, IV fluid infusion, blood product transfusion, and dynamic
changes of hemodynamic features are significant causes of injury.
They also stated that these factors were not revealed using traditional
techniques. Daping Yu et al. [125] detected lung cancer from the
copy number variation (CNV) derived cell-free DNA (cfDNA) using
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an extreme gradient boosting (XGBoost) algorithm. They showed the
contribution of each plasma feature using SHAP. They concluded that
a high concentration of cfDNA in plasma and CNV in chromosomes
affected the pathogenesis of cancer cases.

Sensitivity Analysis (SA): SA is an effective and powerful algorithm to
understand the stability of black box models by examining the effect
of perturbations in input on the prediction of the model. If the model
outcome has changed notably with perturbations, it shows us that the
feature has a high contribution to the prediction. Couteaux et al. [126]
proposed an explanation method based on the DeepDreams concept for
explaining the classification of tumors using data of liver computed to-
mography (CT). Their proposed method used the SA of each feature by
maximizing the neuron activation using gradient ascent. They showed
that the network is sensitive to intensity and sphericity in coherence
with domain information.

Guided Back Propagation (GBP): GBP is also known as guided saliency.
GBP uses the concept of both vanilla backpropagation and DeconvNets
to explain the decisions of DL models. The only difference is that the
positive error signals are backpropagated and negative gradients are
set to zero. Moreover, like vanilla backpropagation algorithm, it limits
itself to positive inputs. Pianpanit et al. [116] proposed a 3D-CNN
architecture for Parkinson’s disease (PD), and to explain the detec-
tion they implemented and compare six different explainable methods,
i.e., saliency map, GBP, Grad-CAM, Guided Grad-CAM, DeepLIFT, and
SHAP, and showed that GBP among all the methods produced the best
explanations. DeepLIFT and SHAP produced the second best explana-
tions by distinguishing between features of healthy and PD patients.
These three methods performed better in PD diagnosis by correctly
analyzing the absorption of '*’I-Ioflupane in the dopamine depletion
region of single-photon emission computed tomography (SPECT) of PD
patients. They evaluated the quality of produced explanations using the
Dice coefficient measure.

Integrated Gradient (IG): 1G is a DL technique that uses the input
feature significance to visualize the model prediction. IG works by
calculating the gradient of model output with its input attributes. IG
does not require any changes to the primordial deep neural network.
IG can be utilized for any kind of model and data type, i.e., image.
This algorithm works on two axioms sensitivity and implementation
variance. Simple drug development classification of toxic and non-toxic
drugs is not enough and to solve the problem of toxic drugs, a chemist
needs the structural element which is causing the problem. Preuer
et al. [127] demonstrated that IG can identify these elements from the
classified drug using CNN.

Activation Maximization (AM): AM aims to maximize the activation
of neurons. In the AM model weights and output remain the same
while by changing the input we maximize the activation of the neuron.
Borjali et al. [117] trained the CNN model for orthopedic application
in observing hip implant misplacement using the X-rays dataset. The
explainability of this CNN model at a lower level is done using AM,
which was used to visualize the outputs of the model.

Deep Hierarchical Semantic Convolutional Neural Network (HSCNN): Shen
et al. [128] proposed an interpretable DL model named hierarchical se-

mantic convolutional neural network (HSCNN) to detect the malignant

pulmonary nodule that appeared on computed tomography (CT) scan.

Their proposed model provided two types of outputs, one was low-level

semantic features which were used by radiologists, and also explained

how the model detected the malignant nodules. The second level of
output was the malignancy prediction score. They also compared the

performance of their proposed model with CNN and concluded that

the HSCNN outperformed the CNN with a high prediction score and

explainable results.
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Patient2Vec (P2V): The extensive use of electronic health records
(EHR) in the clinical system provides a large amount of data for
healthcare. Jinghe et al. [129] presented P2V to explain the unexplored
EHR dataset for predicting disease correlation, health outcome, and
health history of new patients. P2V is a recurrent convolutional neural
network used to explain the longitudinal EHR dataset customized
for each patient. The implementation of P2V improves the predictive
model working efficiency and also increases the explainability of these
models. The proposed model was used to explain the importance of
each diagnostic product, medication, and treatment procedure.

Evidence activation mapping (EMANet): Lia et al. [130] proposed a CNN
model for glaucoma diagnosis. The proposed CNN architecture is not
only able to detect the diseases but also shows transparency by high-
lighting the affected area detected by the system. The system consists
of CNN as the backbone for feature extraction and uses multilayers
average pooling (M-LAP) to overcome the gap problem between the
information interpretability and localization while evidence activation
mapping is used for the verification.

5 Ethical ML for healthcare

The integration of AI/ML into healthcare practice and clinical appli-
cations promises to provide substantial improvements to the healthcare
sector. To name a few, it can improve care quality, cut the overall costs,
reduce or even eliminate diagnostic errors and improve the process
of predicting disease. In response, private companies are incorporating
ML-based technologies into healthcare decision-making, creating tools
that assist clinicians and developing algorithms designed to perform
independently of them. Clinicians and researchers are prophesying that
knowledge of ML for analyzing heterogeneous medical data will be a
primary requirement for future physicians and that ML models might
compete or even replace clinicians in fields that involve analysis of
images, such as radiology and anatomical pathology [131]. However,
incorporating the ML techniques into the healthcare system also raises
serious ethical challenges and complex questions that need to be se-
riously considered to make a robust and well-balanced assessment of
possible benefits and expected harms [132].

To set the scene for those who are not specialists in bioethics, this
section will start by (a) providing a concise overview of bioethics as
a scholarly discipline and its methodological approaches, with a focus
on the so-called “principlism” and the widely known four principles,
namely beneficence, non-maleficence, autonomy, and justice [133]. It
is noteworthy that explicability is a newly proposed principle within
the particular AI context, which has the same meaning outlined above
in this paper [134]. In the remaining part of this section, we will
(b) review the key works that examined the interplay of AI/ML and
bioethics and (c) analyze the main bioethical issues and challenges
posed by the implementation of AI/ML applications in the healthcare
sector.

5.1 Historical overview

That practicing medicine or providing healthcare should be tied
to, and governed by, certain sets of moral principles and values is
one of the widely agreed-upon facts throughout human history. The
Hippocratic oath is one of the earliest and widely known codes of ethics
for medical professionals. The oath established various principles of
medical ethics and its purport continues to be the subject of modern
studies, which examine its possible relevance to modern bioethical
discussions [135]. World religions like Judaism, Christianity, and Islam
also brought their insights to ethicize the physician’s work. A good
representative example here is the work of the 9" -century physician
Ishaq b. Ali al-Ruhawi, who lived in the golden age of the Islamic
civilization and wrote one of the most popular works on medical ethics,
entitled Adab al-Tabib (Ethics of the physician) [136,137]. In 1803, the
physician, Thomas Percival, published a report on the necessities and
expectations of medical staff to assure ethical medical practice [138].
This code of medical ethics was adapted for the first time in 1847 [139]
and is now broadly accepted and practiced throughout the world as an
ethical code for the medical domain.

Owing to a wide range of diverse factors, not only related to
the breathtaking biomedical advancements but to various intellectual
and sociopolitical changes, the twentieth century, especially from the
second half onwards, witnessed the history-making shift from the pre-
modern “medical ethics” to the modern “biomedical ethics” or simply
“bioethics”. The American oncologist Van Rensselaer Potter (1911-
2001) was the first to use the term “bioethics” in the title of his
book Bioethics: Bridge to the Future, published in 1971. Potter proposed
introducing a new discipline, which he named Bioethics, to address the
basic problems of human flourishing by creating an interdisciplinary
discourse between the two cultures of humanities and sciences [140].

One of the important milestones in modern bioethics is the so-called
“Belmont Report®; produced in 1979 by the US National Commission
for the Protection of Human Subjects of Biomedical and Behavioral
Research. The report charted the basic ethical principles and guidelines
that should govern the conduct of biomedical and behavioral research
involving human subjects. The report identified three main bioethical
principles, namely respect for persons, beneficence, and justice. Parallel
to these developments, the two renowned American bioethicists, Tom
Beauchamp and James Childress, published the first edition of their
seminal work Principles of Biomedical Ethics. The authors introduced
four principles, namely autonomy, beneficence, nonmaleficence, and
justice [133]. Their principle-based theory, which later came to be
known as principlism, proved to be one of the most seminal con-
tributions to the modern field of bioethics, as demonstrated by the

5 The Belmont Report: Ethical Principles and Guidelines for the Protection
of Human Subjects of Research https://www.hhs.gov/ohrp/regulations-and-
policy/belmont-report/read-the-belmont-report/index.html.
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number of subsequent editions and printings of their book, the eighth
edition was published in 2019, and by the global discussions around
this theory [141]. Besides the famous principlist approach to bioethics,
there are other important approaches in modern bioethics, including
virtue ethics, casuistry, narrative ethics, feminist approach, and care
ethics. Each of these approaches has its own proponents and opponents
who debate on the added value of each approach and its possible
drawbacks [142]. Fig. 7 illustrates the history of the development of
bioethics over time.

Besides these foundational publications for modern bioethics, the
atrocities of the two world wars and the associated ethical violations
in conducting medical research on human subjects also resulted in
issuing of several codes and documents to regulate research experi-
ments and trials on humans. The Nuremberg code, drafted in 1947,
is one of the main examples in this regard. It consisted of ten points
under the title of “Permissible Medical Experiments”, including consent
of patients, patient’s right to end the experiment at any stage, high
expertise of researcher, and avoiding unnecessary mental and physical
suffering [143]. In 1964, the declaration of Helsinki was developed by
the World Medical Association (WMA). This declaration consisted of
ethical principles and regulations for the physicians. Respect for each
patient, right to self-determination, a thorough evaluation of possible
risks and benefits, and beneficence of society and mankind are a few of
the principles stated in this declaration [144]. As they were produced at
earlier dates, none of the aforementioned foundational works, codes or
documents paid special attention to the ethical challenges triggered by
the implantation of AI/ML technologies into healthcare. However, these
works and the bioethical approaches they introduced and theorized
remain essential for developing a robust analysis of related challenges
and questions. Additionally, some of the recently published bioethical
works examined a number of ethical questions, which are specific to
the interplay of AI/ML and bioethics. These key works will be reviewed
below.

5.2 Key works

The field of healthcare is increasingly representing one of the main
applied areas of AI/ML technologies. This fact is reflected in the grow-
ing number of publications in this research area. Due to space avail-
ability, we will not be able to provide a comprehensive review of
all the relevant publications. Instead, we will focus on a number of
the key works in this emerging field, especially those published as
book-length studies or thematic issues in reputable journals. Individual
journal articles or book chapters will be referred to only when they
relate to the examined books and/or thematic issues.

Some of the relatively early works in this area focused more on
issues related to the conventional computerization and digitalization of
healthcare. However, they occasionally touched upon bioethical issues
within the particular context of Al and ML. In Ethics, computing, and
medicine: Informatics and the transformation of health care, published in
2007 [145], a group of interdisciplinary authors examined the ethical
issues related to health informatics. A distinct chapter was dedicated
to “Ethical and Legal Issues in Decision Support” [146]. The Digital
Doctor, a New York Times science bestseller and published in 2015, by
Robert Wachter (University of California San Francisco), also serves as
a good example in this regard [147]. Similar issues were also examined
in the edited volume Smart Health: Open Problems and Future Challenges,
published in 2015 [148].

One of the main contributors to the discourse on Al-driven health-
care is the American cardiologist and professor of genomics, Eric Topol,
a well-known high-tech enthusiast. Between 2012 and 2019, Topol
wrote what can be called a trio on the revolutionization of medicine by
using available digital, smart and Al-based technologies. In his The Cre-
ative Destruction of Medicine: How the Digital Revolution Will Create Better
Health Care, published in 2012 [149], and The Patient Will See You Now:
The Future of Medicine Is in Your Hands, published in 2015 [150], the
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focus was more on the benefits of using available digital technologies,
especially those offered by smartphones. In 2019, Topol crowned this
trio by publishing Deep Medicine: How Artificial Intelligence Can Make
Healthcare Human Again, where Al technologies were introduced as
the main driver of the promised revolutionization of medicine [151].
He also outlined his ideas in this area in an article published in
2019 in Nature Medicine [152]. Besides simplifying the scientific and
technical information that would otherwise be unintelligible to the
non-specialist reader, Topol touched upon, and sometimes seriously
examined, some of the ethical questions and challenges triggered by
the promised revolutionization of medicine, including those related to
the privacy of people, confidentiality of information and security of
data. Topol, a paid adviser to Al health companies, is also sometimes
criticized for adopting a market-driven discourse that is similar to the
one propagated by tech-giants like Google and Facebook [153].

In 2020, The American Journal of Bioethics published a thematic
issue entitled “Planning for the known unknown: Machine learning for
human healthcare systems” [154]. The contributions to this thematic
issue, made by a number of interdisciplinary experts, provided useful
frameworks that can help future researchers critically examine the
ethical concerns of the Al Health Care Applications (HCA). Important
ethical questions related to the concepts of explainability, auditability,
and accountability were also addressed in this issue. The edited volume
Artificial Intelligence in Healthcare, published in 2020, provided an ex-
tensive overview of the current state of the art in this field and outlined
what is achievable in near future. Besides discrete references to ethics
throughout the work, the last chapter was dedicated to “Ethical and
legal challenges of artificial intelligence-driven healthcare” [155]. The
important reference work, The Oxford Handbook of Ethics of Al, pub-
lished in 2020 as well, included a distinct chapter on “The ethics of Al
in biomedical research, patient care and public health” [156].

One of the latest relevant publications in this area is Machine
Learning and Al for Healthcare: Big Data for Improved Health Outcomes,
whose second edition was published in 2021. Besides introducing the
basic terminology, concepts, and applications of AI technologies in
healthcare, the book also discussed various ethical issues and a distinct
chapter was dedicated to “Machine Learning and AI Ethics” [157].

5.3 Main ethical questions and challenges

The integration of AI/ML technologies into healthcare promises to
bring great benefits including efficiency and access to all stakeholders
such as patients, physicians, and healthcare service providers [154].
But at the same time, these applications raise various ethical challenges
and complex questions that need to be seriously examined. Below, we
give an analytical and systematic overview of these issues.

5.3.1 Data related ethical concerns

As outlined above, the main thrust of AI/ML applications in health-
care is to maximize the benefits (principle of beneficence) and minimize
the harms (principle of non-maleficence) for as many stakeholders as
possible, especially the patients. To achieve this noble aim, AI technolo-
gies are highly dependent on vast amounts of data from which these
technologies will “learn” how to make predictions and decisions. The
“automation” of these Al-based tools for algorithmic decision-making
provides no guarantee that we will have more ethically-committed
outcomes. This is because the input of big data is actually a record of
human actions, which are not free from biases and injustices. Thus, the
behavior of machine learning systems is simply mirroring and echoing
human behavior, including its moral failures even if we claim that we
do not do them intentionally [154].

Against this background, the quality of training data has a high
impact on the performance of ML algorithms. ML models learn the
latent variable of data to deduce the predictions. So it is required to
consider the problems with the data first while developing efficient
models. Here we discuss the ethical problems related to the medical
datasets:
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Imbalanced datasets Imbalanced class data is a common data-related
problem that occurs in the supervised training of ML/DL models.
This problem arises due to the non-uniform distribution of samples
among classes. Training the model on such imbalanced data results in
outcomes that are biased to certain categories. Biases in outcomes of
models used for healthcare services may have profound consequences.
One of the famous examples in this regard is the Google Health study,
published in Nature, which argued that an Al system can outperform
radiologists at predicting cancer. The lack of adequately described
methodologies and computer code behind the study, weakens its sci-
entific worth. The work was then accused of breaking transparency
and reproducibility criteria. [158,159]. Haibe-Kains et al. identified
the challenges to making this work transparent and reproducible and
provided solutions with implications for the broader field [160].

Data bias Other than the biased outcomes due to class imbalance, the
biases in data also lead to biased outcomes. In order to realize the
impactful significance of ML/DL methods, it is highly required that the
ML/DL models should produce fair outcomes that are bias-free. Here
we will discuss the various facts and circumstances that are affecting
fair healthcare data collection and causing data bias. For example,
researchers have shown that the model predicts that black people have
strong immunity and are healthier as compared to equally sick white
people [161]. The algorithm is biased because it utilizes health costs
as a measure of medical needs. Because less money is spent on Black
patients with the same level of need, the algorithm incorrectly predicts
that Black patients are healthier than equally sick White patients.

The dependence of models’ learning on skin tone, face structure, or
nationality is problematic for healthcare applications. Another problem
is that ML-based healthcare products are manufactured by Western
companies and these products are developed and tested on Caucasian
data. This problem can be resolved by ensuring diversity in the collec-
tion of data around the globe. The healthcare datasets are mostly biased
towards males because clinical trials held for collecting the data have
large data samples of male patients. This bias causes ML models to show
more precision for males in contrast to females. It is important to take
into account that the healthcare datasets must represent both genders
equally [162]. It is a common practice that more healthcare facilities
are available for wealthy people which makes it less likely that low-
income people are able to access advanced technological treatments.
This bias in the availability of facilities is also reflected in the data
and can cause the biased decision of ML algorithms [163]. Similar
is the case for geographical biases, where fewer healthcare facilities
are provided in rural areas and under-developing countries [164].
Explanation of the data, as we proposed in the pipeline of explainable
ML presented in Fig. 3, in the first place is required to check for these
biases.

5.3.2 Privacy

Protecting the privacy of patients and the confidentiality of their
data is one of the fundamentals of ethical healthcare. This principle
is also translated into legal codification. For example, the health insur-
ance and portability and accountability (HIPAA) act assures the privacy
of the medical data of patients. HIPAA’s policy standards are designed
to improve the healthcare systems and mandate it for all healthcare
organizations to protect medical information [165].

In the healthcare context, privacy is defined as keeping the in-
formation of patients protected from unauthorized access. However,
ML algorithms require access to as much data as possible to improve
the precision and accuracy of the outcome. The amount and type of
the needed data are increasing over time to the extent of seriously
blurring the boundaries between what is “medical”, which should be
shared with one’s physician, and what is “personal” and thus one has
the right to keep it private. How Al-based healthcare or the so-called
“deep medicine” would deal with a disease like depression is an apt
example in this regard. To achieve the potential of “deep medicine”,
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the scope of the to-be collected data should be wide enough to include
speech, the intonation of voice, reaction times from keyboard use, GPS
data, social media usage, distinctive facial attributes in one’s selfies,
etc. [151,153]. To make the situation more complex, conducting a
proper analysis of all these data would necessitate giving access not
only to one’s physician but to many other experts in various areas.
Against this backdrop, special attention should be given to the privacy
requirements, e.g., determining which data is needed, for what purpose,
and with access to whom. Various factors can put people’s privacy at
risk, and we highlight here two of them:

Unprotected data sharing: With the advanced technologies, the records,
and reports of patients are converted into electronic health records
(EHR). These records are available online via the cloud servers. Tech-
niques based on Internet-of-Things (IoT) are widely used in healthcare
systems for real-time monitoring of critical patients. However, this abil-
ity leads to data breaching through tracking and monitoring of patients’
routines which dishonors the patients’ privacy. An unprotected data
sharing technique may lead to breaching healthcare data and hackers
can access confidential information like email accounts, messages, and
reports of patients. A systematic review focused on the ethical issues
related to the use of IoT is presented in [166].

Misuse of medical data: Online prognosis and diagnosis systems are
trending these days. Many websites provide cloud-hosted ML/DL-
based healthcare facilities that allow users to get the recommendation
through an online healthcare system based on their EHRs. These
websites also provide free data storing facilities and are not always con-
cerned about the privacy of the users’ data. Consequently, they might
unethically trade the record or data of patients to other companies.
Considering the sensitive nature of medical data and the requirement
for protecting the privacy of patients, there is a need to design a system
that protects against such data breaches. It must be considered while
developing a system that patient data cannot be inferred by examining
the outputs of the ML/DL model [167]. Thus, it is crucial to manage and
protect the personal information of the patients. Concerned medical
staff and researchers should be aware of risks linked with the breach
of patient data and their legal responsibilities in processing the data.
Because of the particular significance of addressing the data-related
concerns, different countries have developed policies and laws [168].

5.3.3 Informed consent

As outlined above, respect for persons and autonomy are among the
widely agreed upon principles in modern bioethics. Obtaining informed
consent from the patient before exposing him/her to any medical inter-
vention is one of the practical applications of these principles [142].
As it is clear from its very term, the consent of the patient should
be “informed” in nature. In other words, the patient’s consent should
be premised on sufficient information about the medical procedure,
especially efficacy, safety, possible benefits, and expected harms.

The black-box nature of ML models, as outlined in this paper, is
a serious obstacle to getting the necessary informed consent from the
patients. Due to this black-box nature, neither the patient nor even the
clinician will be able to understand the rationale behind the conclusions
or recommendations made by the AI technologies. To address this
concern, the European GDPR has introduced rules for the decisions
and methods based on data-driven approaches to provide an ethical
framework [169]. According to the GDPR rules, it is the right of an
individual to understand why the model is taking a specific decision
and the underlying mechanism of decisions concerning the individual.
This step limits the implementation of ML models for clinical applica-
tions because of the use of patient data. That is why improving the
explainability and interpretability of the black-box models represents
an ethical requirement in order to facilitate proper informed consent.

Until this ideal situation is in place, where both accuracy and ex-
plainability of ML-based healthcare systems can be achieved, a number
of ethical considerations should be in order. At the minimum level,
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the patient should be properly informed about the black-box nature of
the ML applications and all related pros and cons of these applications
should be made clear. Additionally, ML-based medical interventions
cannot be judged indiscriminately; without considering the morally sig-
nificant differences and nuances. For instance, consenting to the use of
ML-based interventions as the only available tool to treat an incurable
and life-threatening disease will not be the same as consenting to an
intervention meant for enhancing specific physical traits rather than
treating a serious health condition.

Other concerns related to the doctrine of informed consent have
to do with the surveillance of public health, which also raises ethical
issues like invasion of privacy, data protection, autonomy, freedom,
equity, and liability [168]. To avoid these ethical issues, it is neces-
sary to do preventive ethical assessments of developing Al technology
for medical use. Lack of ethical regulations, as well as inadequate
or no training for such surveillance operations, poses ethical chal-
lenges [170]. Due to the availability of implantable devices, it is now
possible to monitor patients without their consent. Despite all these
ethical issues, Lee et al. [171] provided ethical justification about the
surveillance of public health without any explicit consent is ethically
justifiable if principles of contemporary clinical and public health ethics
are taken into the account. However, it is also not guaranteed that the
data collected for a specific objective will always be used for the same
purpose. As it has been shown, the data can be used for any other
purpose by doing slight changes. Additionally, merging datasets of two
different experiments can be used for the modeling of a third type
of experiment [172]. Therefore, the explicit and targeted consent of
patients is required for the data collection through IoT and for ML/DL
empowered personalized medical systems [173].

5.3.4 Care ethics

As mentioned above, modern bioethics has other approaches besides
principlism. Some of these non-principlist approaches can provide fresh
insights into some of the ethical questions triggered by AI/ML-based
healthcare systems. The care ethics approach, which focuses on the
domain of intimate human relationships rather than the abstract ap-
plication of rules [142], serves as a good example in this regard. The
points discussed below are meant to just give representative examples
of how the care ethics approach can be of benefit and relevance to the
ethical discussions on AI/ML-driven healthcare.

The issues that can be discussed within this approach go beyond
the question of solely measuring the efficacy and safety of certain
applications or calculating their possible health-related benefits and
harms. For instance, there is a concern about how these developments
would negatively affect the job security of the medical staff, who may
be replaced by Al devices that can relentlessly work and possibly more
efficiently than humans and without complaints. In response, different
voices stress that the Al tools are meant to support, facilitate, and
enhance the human work of healthcare providers but not to replace
them. On the other hand, some optimist voices argue that integrating
Al systems into healthcare will make the healthcare profession more
humane, by improving the physician-patient relationship [151,155].

Additionally, some researchers expressed specific concerns about
the negative impact of certain applications on the desired intimate
inter-human relations, especially in the healthcare sector. One of the
famous examples is the so-called “carebots”; employed to offload care-
giving to a machine. Even if this automation of caregiving will not re-
sult in causing medical harm to the patient or job cuts in the healthcare
staff, replacing human care will still have social costs, e.g., exchanging
feelings and emotions among humans will cease to be part of caregiv-
ing [174]. It is to be noted that this concern was a point of heated
discussions among early pioneers in the ethics of computer science.
For instance, the computer scientist, Joseph Weizenbaum, wrote in the
1970s that it is immoral to use computer systems for substituting a
human function, which involves interpersonal respect, understanding,
and love, even if they proved to be technically successful [175]. Fig. 8
illustrates the overview of the explainable, trustworthy, and ethical ML
methods used for healthcare in literature.
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6 Potential pitfalls

The recent advancements in technology have made it possible to
acquire, save, and share high-resolution medical images. Such data
is being massively generated by many healthcare facilities on a daily
basis, which has a significant potential to enable data-driven health-
care. In this regard, researchers are developing learning-based methods
using such large-scale datasets, particularly, DL-based methods have
provided state-of-the-art performance in many medical image analy-
sis tasks [176]. However, despite their significant performance, these
models are black-box and lack theoretical understanding behind their
decisions. Their black-box nature makes them susceptible to many vul-
nerabilities such as adversarial attacks, biased decisions, and not being
able to generalize out of distribution samples, etc. Thus raising concerns
about the robustness and trustworthiness of ML methods is crucial,
because of their practice in life-critical applications like healthcare. To
circumvent this issue, the explainability of black-box models and con-
sidering ethical constraints, is proposed in the literature. However, the
developed explanation methods have unique challenges and limitations
associated with them, which are described below.

6.1 Vulnerability to input changes

In clinical settings, it is highly desirable that the explanation of
a particular method should be similar for the same disease across
different patients, which are geographically dispersed and have unique
characteristics (i.e., generalized explanations for a particular type of
disease for different patients). However, it has been shown in the
literature that the explanation methods are vulnerable to input changes.
For instance, Ghorbani et al. [177] demonstrated that a minor change
in the input sample caused significant fluctuations in the output repre-
sentations generated by XML. In addition, the inherent bias in the input
(medical) data (e.g., class imbalance) can be reflected in the outputs of
the models, i.e., the model might prefer a specific class as compared
to other classes, and this bias might influence the explanations of the
model [178].

6.2 Sub-optimal explanations

In the literature, visualization-based methods are widely applied to
explain the decisions of ML/DL methods. However, it is not evident
that these explanations are the optimal requirement of medical experts.
Weerts et al. [179] examined how the explanations produced from
SHAP influence human performance for alert processing tasks. They
conducted a human-based study to evaluate whether decision-making
tasks can be improved by presenting explanations. They showed that
SHAP explanations of class probability did not improve the decision-
making. Similarly, Mohseni et al. [48] conducted a human-grounded
study and evaluated the performance of the LIME algorithm by compar-
ing the explanation produced by LIME with the weighted explanations
generated by ten human experts. Their results showed that LIME high-
lights some attributions which were irrelevant to the explanations
produced by humans. Therefore, without using the sound quality mea-
suring technique, the use of these explanation methods should be
avoided for making healthcare decisions.

6.3 Dependence on data and model

The literature suggests that the explanations generated by some
gradient-based methods are dependent on the model architecture and
data generation procedure [180]. As these explanations depend on the
choice of reference point, a slight change in the reference point of the
gradient will significantly change the explanation, thus causing confu-
sion that will eventually lead to misleading results or interpretation.
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Fig. 8. Overview of the explainable, trustworthy, and ethical ML models for healthcare.

6.4 Accountability attribution

It is without a doubt that the deployment of ML for clinical practice
will aid the clinicians. However, it is not clear yet who will be respon-
sible in case an algorithm shows wrong outputs. Whether the clinicians
will be responsible (because they are the ones making final decisions)
or will the institutes force clinicians to rely on the decisions of ML?
Researchers developing the algorithms can also be responsible for bad
decisions [181]. This situation becomes even more complex when we
consider all stakeholders in the loop. This blame game will eventually
foster “epistemic vices” such as “dogmatism” or “gullibility” [182].

6.5 Rigorously evaluating the method

It has been emphasized in the literature that rigorous evaluation
of the ML method should be performed to ensure that no unintended
label leakage can occur between the datasets used in the model train-
ing [183]. Label leakage can possibly arise in subtle ways, e.g., an
algorithm may learn the inherent noise instead of learning the diag-
nostic parameters. Another important aspect is to identify and validate
the scope of model performance in both cases, i.e., where it succeeds
in accurately diagnosing and where it fails. Moreover, it has been
argued in the literature that traditional statistical performance metrics
like the area under the curve may not be sufficient for evaluating the
models making clinical decisions [183]. Therefore, clinically relevant
metrics should be developed to evaluate such models. In addition to
using quantitative metrics, qualitative measures can be used to identify
whether the model is reliable and relevant for the intended task.
Randomized controlled validation should be performed to evaluate the
model efficacy in a real-time environment. The silent mode testing can
be effective for identifying the errors in the real-time settings [184].
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7 Future research directions

The motivation and the need for explainable, trustworthy, secure,
and robust ML/DL methods applied in healthcare is clear. In this
section, we discuss some future research opportunities in this field.

7.1 Explaining medical data

ML techniques build their decisions on the latent variables which
are learned from the data. Medical data is one of the most diffi-
cult data to handle due to its complex, multi-variate, and sometimes
non-stationary and scarce nature. The dependence of latent variables
on each other can cause misleading patterns and due to this issue,
the ML-based decision-making will be misleading. The literature sug-
gests that the data should be thoroughly scrutinized before the model
development to ensure that it is appropriate for the problem being
modeled [183]. Moreover, it is imperative to understand how and for
what purpose this medical data was collected. In addition, bias in
the data is also a major challenge to handle and that can eventually
lead to algorithmic bias [185]. These biases are hard to undo and
their elimination has unintended consequences on the results [186].
The presence of these subtle biases in medical data decreases model
reliability, especially when they are not corrected during model devel-
opment [187,188]. Therefore, to develop explainable, reliable, robust,
and trustworthy algorithms, it is highly required to explain the depen-
dence and relevance of data variables and patterns first (before feeding
the data to ML algorithms).

7.2 Representation techniques for explanation

It is well established that the explanation of the ML/DL tech-
niques is required to gain the trust of clinicians in ML/DL-empowered
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healthcare solutions. However, it is necessary to understand how these
explanations are presented to them, i.e., explanations should be com-
prehensible to clinicians. The representation of the explanations needs
the adoption of knowledge from other fields. For example, human-
computer interaction (HCI) is a well-developed technique to empower
users. XML researchers should incorporate the knowledge and tech-
niques from the HCI to better represent the explanations. Therefore, de-
veloping efficient representation techniques for explanations of ML/DL
methods remains an open research problem.

7.3 Generalized explanations

As discussed in Section 6, the explanations produced by the data-
dependent explanation models are vulnerable to the change in inputs
and may vary from patient to patient and even for the same patient
for the same disease. This issue should be resolved by developing
robust, efficient, and generalized explainable models. As we discussed
in Section 3, the explanations of the DL models are model-specific in
nature, therefore, it is also required to develop inherently explainable
and generalized explainable methods for the DL algorithms in the
future.

7.4 Adversarially robust ML

To attain explainable, trustworthy, safe, and robust ML/DL meth-
ods, it is very important to address the challenges like adversarial ML
attacks. Over the past few years, it has been shown that ML/DL methods
can be easily fooled and desired outcomes can be obtained [30,31]. The
critical nature of healthcare applications provides significant motiva-
tion for the malicious actors to defame the ML/DL-based system and to
get the desired outcomes. In the literature, a wide variety of adversarial
ML attacks have been already proposed and the research on developing
respective defense methods is very limited [72]. This highlights that
there is an utmost need for developing adversarially robust ML/DL
techniques. Moreover, the clinical impact of ML/DL advancements is
only completely possible by overcoming challenges like adversarial ML
attacks.

7.5 Interdisciplinary development workforce

The advancements in ML/DL techniques have a great potential to
revolutionize healthcare. However, to get the real benefit of these
advancements, challenges like ethical issues are needed to be effectively
addressed. In this regard, a few studies suggested involving all types
of stakeholders in the ML/DL method development process that may
include clinicians, policymakers, data scientists, ML researchers, and
hospital staff, to name a few [183,189]. Such an interdisciplinary de-
velopment workforce will enable collaboration between the knowledge
experts (i.e., clinicians and ML researchers) and healthcare service
providers which will eventually improve productivity and outcomes.

8 Conclusions

In this paper, we have built upon existing literature on the explain-
able, trustworthy, and ethical machine learning (ML) for healthcare
and have provided a comprehensive review of these emerging topics.
In addition, we have highlighted the interconnection among them
along with their relevance and applicability for healthcare applications.
We highlighted various challenges that are hindering the successful
deployment of ML and deep learning (DL) techniques in healthcare
applications and formulated the pipeline for the development of clini-
cally implementable and explainable ML methods. We also elaborated
upon different security, safety, robustness, and ethical challenges which
are the key barrier to the development of trustworthy ML/DL-based
healthcare applications. Furthermore, we have discussed in detail, how
explainable ML can be used to address such challenges. Finally, we have
identified the limitations of existing methods and highlighted various
open research issues that require further development.
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