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a b s t r a c t 

While the technique of Deep Neural Networks (DNNs) has been instrumental in achieving state-of-the- 

art results for various Natural Language Processing (NLP) tasks, recent works have shown that the deci- 

sions made by DNNs cannot always be trusted. Recently Explainable Artificial Intelligence (XAI) methods 

have been proposed as a method for increasing DNN’s reliability and trustworthiness. These XAI meth- 

ods are however open to attack and can be manipulated in both white-box (gradient-based) and black- 

box (perturbation-based) scenarios. Exploring novel techniques to attack and robustify these XAI meth- 

ods is crucial to fully understand these vulnerabilities. In this work, we propose Tamp-X —a novel attack 

which tamp ers the activations of robust NLP classifiers forcing the state-of-the-art white-box and black- 

box X AI methods to generate misrepresented explanations. To the best of our knowledge, in current NLP 

literature, we are the first to attack both the white-box and the black-box XAI methods simultaneously. 

We quantify the reliability of explanations based on three different metrics—the descriptive accuracy, the 

cosine similarity, and the L p norms of the explanation vectors. Through extensive experimentation, we 

show that the explanations generated for the tampered classifiers are not reliable, and significantly dis- 

agree with those generated for the untampered classifiers despite that the output decisions of tampered 

and untampered classifiers are almost always the same. Additionally, we study the adversarial robustness 

of the tampered NLP classifiers, and find out that the tampered classifiers which are harder to explain 

for the XAI methods, are also harder to attack by the adversarial attackers. 

© 2022 The Author(s). Published by Elsevier Ltd. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 

1

f

t

n

s  

S

i

q

i

g

R

F

b

t

s

t

s

s

t

m

e

f

w

h

0

. Introduction 

Deep Neural Networks (DNNs) are increasingly being deployed 

or various tasks such as healthcare Qayyum et al. (2020) , au- 

onomous driving Grigorescu et al. (2020) ; Khalid et al. (2020) , fi- 

ancial applications Ozbayoglu et al. (2020) , medical image analy- 

is Petrick et al. (2021) , and crime prediction Kounadi et al. (2020) .

uch a wide use of DNNs is particularly attributed to their 

mpressive performance in solving the real-world problems re- 

uiring intelligent decision-making for numerous applications 

n Computer Vision (CV), Speech Processing and Natural Lan- 

uage Processing (NLP). However, DNNs operate in a black- 
✩ This document is the result of the research project funded by the Qatar National 

esearch Fund (a member of Qatar Foundation) 
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ox fashion which raises concerns regarding the trustwor- 

hiness of these models Ribeiro et al. (2016) . Recent re- 

earch has demonstrated that DNNs are vulnerable to at- 

acks at both the training Ali et al. (2020) and the inference 

tages Khalid et al. (2020) and can exhibit stereotypical bias. This 

ignificantly degrades the reliability of DNNs, particularly in set- 

ings such as autonomous driving and home IoT devices, where 

istakes can harm human beings or be injurious or even fatal. 

Recently, in order to enhance the trustworthiness of these mod- 

ls, several “Explainable Artificial Intelligence” (XAI) effort s have 

ocused on explaining the behavior of a Deep Learning (DL) model 

hen provided a particular input or a class of inputs Lundberg and 

ee (2017) ; Ribeiro et al. (2016) ; Smilkov et al. (2017) ; 

undararajan et al. (2017) . These methods estimate the contribu- 

ion of input features over the output of a model by either ana- 

yzing the gradients of the model (the so-called white-box meth- 

ds ) or by observing the effects of the perturbations to an in- 

ut (and operating as black-box methods ) Das and Rad (2020) . We 
under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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ave seen a growing interest of researchers leveraging these ex- 

lainability methods to detect/mitigate unintended DNN behaviors 

uch as bias Jain et al. (2020) , DNN backdoors Doan et al. (2020) ,

nd adversarial attacks Fidel et al. (2020) . Recent research has 

hown that DNNs fail to perform well on adversarially perturbed 

nputs Ali et al. (2019) ; Goodfellow et al. (2015) . Although a 

lethora of works exist that exploit XAI methods to counter 

nreliable DNN behaviors, we note that studying the reliability 

nd fragility of these XAI methods themselves has gained at- 

ention only recently Rosenfeld (2021) ; Warnecke et al. (2020) ; 

alcin et al. (2021) ; Zhou et al. (2021) . 

In order to fool the XAI methods, many adversarial attacks 

ave been proposed, most of which utilize minimal adversarial 

erturbations to manipulate the gradients and the decision of a 

odel Yeh et al. (2019) ; Zhang et al. (2020) . Although such attacks

re effective in the vision domain, the discrete space of Natural 

anguage Processing (NLP) prohibits their convenient use for at- 

acking XAI methods in the NLP domain Ali et al. (2021) . This is

ne of the reasons for significantly limited adversarial research in 

LP as compared to that in the field of computer vision. 

To the best of our knowledge, the Scaffold- 

ng attack Slack et al. (2020) and the FACADE at- 

ack Wang et al. (2020) are the only two attacks in literature 

hat fool XAI methods for NLP classification tasks. However, 

he Scaffolding att ack exploit s three different DNNs and only 

orks against the perturbation-based (black-box) XAI meth- 

ds Slack et al. (2020) . On the other hand, the FACADE attack 

nly works for the gradient-based (white-box) XAI methods 

hich generate explanations for a given input by computing 

ocal gradients of the NLP classifier for the input. Additionally, 

he FACADE attack is only partially effective as it cannot fool 

nteGrad (IG), a gradient-based XAI method, as reported in the 

riginal paper Wang et al. (2020) . 

In this work, we explore a critical question: Can both the 

erturbation- and the gradient-based XAI methods be single- 

andedly fooled by a tampered NLP classifier at the same 

ime? To answer this question, we propose Tamp-X —a novel 

ttack against four popular state-of-the-art explainability 

echniques—LIME Ribeiro et al. (2016) , SHAP Lundberg and 

ee (2017) , InteGrad (IG) Sundararajan et al. (2017) , and Smooth- 

rad (SG) Smilkov et al. (2017) . As an attacker, our goal is to train

n NLP classifier such that the explanations generated by XAI 

ethods for inputs to the classifier are incorrect. 

In order to achieve our goal, we first train a noise-tolerant clas- 

ifier robust to strong perturbations by randomly masking z words 

f an input sequence while training. Our motivation for this step 

tems from the observation that perturbation-based XAI methods 

ompute the feature importance by introducing strong perturba- 

ions to the original input. After the model is trained, we tamper 

he activations of the classification layer before applying the soft- 

ax activation in order to manipulate the gradients/contributions 

f input features while keeping the output decision intact. A sim- 

lified illustration of our attack can be seen in Fig. 1 . 

We evaluate explanations generated by the four previously- 

ighlighted XAI methods on three different explanation evaluation 

etrics—namely, descriptive accuracy Warnecke et al. (2020) , co- 

ine similarity, and L p norms—and empirically show that Tamp- 

 can fool both perturbation- and gradient-based XAI meth- 

ds. Our experiments motivate the need for new XAI meth- 

ds, which are robust and not easily manipulable. Additionally, 

e evaluate our tampered classifiers against the state-of-the-art 

LP-adversarial attacks using the state-of-the-art TextAttack li- 

rary Morris et al. (2020) and observe that our tampered classifiers 

re difficult to attack as compared to the vanilla classifiers. We at- 

ribute this to the obfuscated gradients caused by the tampered 

ctivations of our classifiers which gives a false sense of security 
2 
gainst the adversarial attacks Athalye et al. (2018) . However, un- 

ike the vision domain, where such an obfuscation can be broken 

sing the iterative adversarial attacks Khalid et al. (2020) , which is 

ade possible by a continuous input space, we find no attack in 

urrent NLP literature which addresses this issue because the in- 

ut space of NLP is discrete. Finally, we provide important insights 

or the future researchers to develop mitigation techniques for our 

roposed attack. 

Our major contributions are summarized below, 

• To the best of our knowledge, Tamp-X is the first attack in the 

current NLP literature which can fool both the black- and the 

white-box XAI methods single-handedly. We show that Tamp-X 

can manipulate the generated explanations by craftly tampering 

the activation functions of robust NLP classifiers without sacri- 

ficing the accuracy over the clean inputs. 
• We study our tampered and untampered NLP classifiers under 

the state-of-the-art adversarial attacks and find that the tam- 

pered NLP classifiers are significantly harder to attack as com- 

pared to the untampered classifiers. 
• We observe a trade-off between the explainability of an NLP 

classifier, and its adversarial robustness. More specifically, in 

our experiments, tampering NLP classifier to attack the XAI 

methods makes it harder for an adversarial attacker to launch 

misclassification attacks. We explain this based on similar for- 

mulations of XAI methods and adversarial attacks—both work 

by first estimating the contributions of input words over the 

classifier’s output. 

. Background and related work 

.1. Explainable artificial intelligence (XAI) 

Although a number of XAI methods have been proposed in lit- 

rature, these techniques can generally be classified into two main 

ategories—white-box and black-box XAI methods. The white-box 

ethods assume complete knowledge—including the architecture, 

he number of layers and the learned weights—of the classifier un- 

er inspection. Such methods generally leverage the classifier’s gra- 

ients to explain its decision on a particular input. In contrast to 

he white-box methods, the black-box XAI methods do not assume 

uch knowledge about the underlying classifier which is to be in- 

pected. Such methods usually generate explanations by carefully 

erturbing the input and measuring the change at the output. In 

he following, we provide a brief overview along with the notable 

orks in each of these categories. 

.1.1. Black-Box XAI methods 

Black-box XAI methods generally calculate the features attribu- 

ion by perturbing the classifier input, and monitoring the change 

t the output. 

LIME and SHAP are two of the most popular black-box XAI 

ethods. Both of these methods differ in how they select and 

pply different perturbations to the input while estimating the 

ontributions of input features. More specifically, LIME compute 

erturbations to the input within an L 2 bounded sphere as a 

roximity measure, while SHAP uses game theory to calculate 

he Shapely values while ensuring that the perturbation satis- 

es different properties—symmetry, dummy, efficiency, and linear- 

ty Lundberg and Lee (2017) ; Ribeiro et al. (2016) . 

.1.2. White-box XAI methods 

White-box explanation methods rely on the gradients 

f the classifier to calculate the feature attribution for a 

iven input. However, due to the local gradient obfusca- 

ion Athalye et al. (2018) , naively calculating these gradients 
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Fig. 1. A simplified illustration of our attack on LIME. ( A ) LIME estimates the importance of input feature “political” by removing it from the input and measuring the change 

at the output. In this case, due to a significant decrease in the logit value, I, the classifier decision changes. ( B ) When tampered activation is used in combination with the 

robust model, XAI method is fooled to think that the feature is contributing negatively, indicating a successful attack. 
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an give false results. Further, small variations in the input can 

ignificantly change the gradients of a classifier. To solve these 

roblems, Integrated Gradients Sundararajan et al. (2017) starts 

rom the zero—for example, the embedding vector is set to zero 

or the text classifiers—and interpolates towards the original input 

hile monitoring the local gradients at different interpolation 

teps. SmoothGrad Smilkov et al. (2017) adds n samples from the 

andom Gaussian noise to the input, and average the gradients 

ver these n samples. 

.2. Evaluating the XAI methods 

Despite significant effort s on developing novel XAI 

ethods, research on quantitatively evaluating the accu- 

acy and reliability of these XAI methods is still in its in- 

ancy Lin et al. (2019) ; Rosenfeld (2021) ; Yalcin et al. (2021) .

arnecke et al. Warnecke et al. (2020) propose two metrics—

escriptive accuracy and descriptive sparsity—to evalu- 

te the explanations generated by the XAI methods. Lin 

t al. Lin et al. (2019) use a similar score called the Impact 

core of a given explanation to quantify how well do the 

enerated explanations reflect the classifier’s decision. Yalcin 

t al. Yalcin et al. (2021) propose an approach to automatically 

enerate a dataset comprising the inputs to a given classifier, and 

he corresponding explanations which serve as the explanation 

round truths for XAI methods under study. 

.3. Adversarial attacks on the XAI methods 

Explanation methods can generate incorrect explanations by 

aunching a backdoor on the XAI methods. The goal of the attacker 

s to build a classifier which hides its original behavior from the 

xplanation methods. Slack et al. Slack et al. (2020) shows that 

he black-box explanation methods which use input perturbation 

an generate wrong explanations. They train a scaffolding classifier 

uch that the classifier is still biased but the explanation generated 

y the explanation methods are innocuous. They claim that the 

dversarial input and clean input are distributed differently and 

hrough these signatures they use different models for prediction 

or different types of inputs. 

Gradient based explanation methods are considered more 

aithful as they have access to the model internals. Wang 

t al. Wang et al. (2020) show how the gradients based expla- 

ation methods can be fooled. They specifically show lexical and 

ositional manipulations on three types of gradients explanation 

ethods Gradients, Smooth Gradients, Integrated Gradients. These 

ttacks have limitations as Scaffolding is only effective for pertur- 

ation based XAI methods, and FACADE attack is partially effective 
3 
or the gradient based XAI methods and fails for InteGrad. Our pro- 

osed technique fools all of these XAI methods. 

.4. Adversarial attacks on NLP classifiers 

The goal of the adversary while attacking the classifier is to 

hange the decision of classifier with the minimum perturbations 

n the input instance. The adversarial attacks we use to evaluate 

he robustness are explained below. 

.4.1. Text-Bugger 

Text-Bugger adversarial attack identifies important features in 

he input vector using the Jacobian matrix and then replaces 

he n important words using the four techniques, space inser- 

ion, character deletion, swapping, and word synonym substitu- 

ion Li et al. (2019) . 

.4.2. Text-Fooler 

Text-Fooler replaces the important words with closest words in 

he embeddings space and select the word which maximizes the 

rror. Important words are identified by removing and evaluating 

he effect on the prediction of the instance Jin et al. (2020) . 

.4.3. Probability weighted word saliency attack (PWWS) 

Ren et al. Ren et al. (2019) identifies the important word by 

eplacing word with the synonym and evaluate the change in the 

rediction. The synonym which has the most effect on prediction 

s selected for adversarial text. 

. Tamp-X: Tampering the activations of robust NLP classifiers 

o fool XAI methods 

This section presents the methodology of Tamp-X —our novel at- 

ack which trains a tampered NLP classifier such that the explana- 

ions generated by the XAI methods for the tampered classifier are 

ncorrect/unreliable. Tamp-X works in two stages. In the first stage, 

t trains a robust classifier by randomly masking z words of each 

nput sample in the training batch. In the second stage, it tam- 

ers the output of the classification layer of the robust classifier by 

pplying the predefined tampering activation. Our complete attack 

ethodology is illustrated in Fig. 2 . In the following, we formally 

efine and detail each step of our methodology. 

.1. Training robust classifier using random z-Mask 

Consider an NLP classifier, F(θ, X ) , where θ represents the clas- 

ifier weights and X denotes the input to the classifier. We train F
n the training dataset, D tr = (X tr , Y tr ) , where X tr represents the in-

uts sequences of words, and Y tr denotes one-hot encoded output 
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Fig. 2. Illustration of our Tamp-X methodology for attacking the XAI methods. Tamp-X first trains a robust classifier, F , using random z-masking and then tampers the logit 

values, I(θ, X ) using a tampered activation. The tampered model, F t , is then provided to an XAI method at the inference stage.. 
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Algorithm 1 Tamp-X Methodology. 

Input: 

{ D T = (X T , Y T ) } ← Training Data 

θ ← Randomly initialized parameters 

I ← DNN logits function 

N ← No. of epochs 

Output: 

F t ← Trained tampered DNN 

1: Define L ← Training loss function 

2: Define A t ← Tampering activation function 

3: Define η ← 0.001, i ← 1 

4: repeat 

5: M(z) ∼ B(z, N) 

6: F(θ, X T ) ← sof tmax A (I(θ, X T ◦ M(z))) 

7: l 1 ← L (F(θ, X T ) , Y T ) 

8: θ ← θ − η × ∂ l 1 
∂θ

9: i ← i + 1 

10: until i ≤ N 

11: F t (θ, X T ) ← sof tmax A t (I(θ, X T )) 

a

t

F
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lasses. Our detailed methodology for training a robust F is for- 

alized below: 

1. At each iteration during training, we randomly sample a train- 

ing batch, D B = (X B , Y B ) of size S from the training dataset,

D tr . Let X i ∈ X B denote the i th sample in the batch, X B , where

1 ≤ i ≤ S. Each X i ∈ X B comprises N words denoted, 

X 

i = { x i 1 , x i 2 , . . . , x i N } (1) 

2. For each X i , we randomly mask z ≤ N words before providing 

the sample as an input for the training. To achieve this, we first 

generate a random mask, M(z) , of the same size as X i , where

each element of M(z) is randomly sampled from a distribution, 

B(z, N) defined by the following density function, 

B(z, N) = 

{ z 
N 

x = 0 

N−z 
N 

x = 1 

0 otherwise 

(2) 

The random masking operation is then defined by, 

X 

i 
M 

= X 

i ◦ M(z) (3) 

where M(z) ∼ B(z, N) , ◦ denotes the element-wise product, and 

X i 
M 

denotes the masked input. 

3. The weight updates for the subsequently deployed F are then 

computed for X i 
M 

as input. More specifically, we first compute 

the logits vector—the outputs of the logits layer which is the 

last layer of F before the final activation layer, and is also re- 

ferred to as the pre-softmax layer—defined as I(θ, X i 
M 

) , and ap- 

ply the pre-defined activation, A —which may be a convention- 

ally used sigmoid activation or ReLU activation—followed by the 

softmax function before computing the gradients for updating 

θ . Mathematically, 

F(θ, X 

i 
M 

) = softmax A (I(θ, X 

i 
M 

)) (4) 

θ = θ − η × ∂F(θ, X 

i 
M 

) 

∂θ
(5) 

where η is the learning rate of the classifier. 

Steps 1 through 3 are repeated for a pre-defined number of 

pochs where each epoch spans a number of iterations. Step-by- 

tep detail of Tamp-X methodology is given in Algorithm 1 . 

.2. Tampering the activation functions 

Once the classifier, F(θ, X ) , is trained, we adversarially tamper 

he logits vector, I(θ, X ) , using some adversarially chosen tampered 
4 
ctivation function (also referred to as the tampering function in 

he future), A t , as defined below, 

 t (θ, X ) = softmax A t (I(θ, X )) (6) 

In equation (6) , choosing A t such that it does not signifi- 

antly degrade the accuracy of the classifier, F t , is a major chal- 

enge. For experiments in this paper, we explore three different 

unctions—Inverse Sigmoid (IS), Hard Sigmoid (HS), and Sinusoidal 

igmoid (SS)—to serve as A t , as detailed below. In Section 3.3 , we

rovide our motivations for using these functions. Particularly, we 

ote that our activation functions should satisfy a specific property 

haracterized by equation (14) later in this paper. 

.2.1. Hard sigmoid (HS) tampering 

Let σ be the conventionally used sigmoid function defined as 

ollows, 

(x ) = 

1 

1 + e −x 
(7) 

he hard sigmoid activation, denoted σh , is then defined as, 

h (x ) = σ (hx ) = 

1 

1 + e −hx 
(8) 

here we use h = 10 0 0 in our experiments. Fig. 3 (a) plots the hard

igmoid activation function defined in equation (8) . 
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Fig. 3. Three tampered activations, A t , that we use in this paper for attacking. Note that our activation functions satisfy the condition given in equation (14) . 
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.2.2. Inverse sigmoid (IS) tampering 

The inverse sigmoid activation, denoted σi , is defined as, 

i (x ) = 

{
0 . 5 − σ (−x ) x < 0 

0 . 5 + σ (−x ) x ≥ 0 

(9) 

ig. 3 (b) plots the inverse sigmoid activation function defined in 

quation (9) . 

.2.3. Sinusoidal sigmoid (SS) tampering 

The sinusoidal sigmoid activation, denoted σs , is defined as, 

s (x ) = 

{
sin (5 x ) 

2 
− 0 . 5 x < 0 

sin (5 x ) 
2 

+ 0 . 5 x ≥ 0 

(10) 

ig. 3 (c) plots the sinusoidal sigmoid activation function defined in 

quation (10) . 

.3. Choosing the tampering function, A t 

As highlighted in Section 3.2 , a major challenge in choosing the 

ampering function, A t , in equation (6) is to maintain the accuracy 

f the tampered classifier, F t . In this section, we address this chal- 

enge by identifying a particular class of functions characterized by 

quation (14) that may serve as A t . 

1. While computing the classification probabilities, the activation 

layers conventionally used in the deep classifiers assign the 

highest probability to the class which has the highest logit 

value. If we let C denote a complete and valid set of classes, 

argmax 
c∈ C 

F(θ, X, c) = argmax 
c∈ C 

I(θ, X, c) (11) 

where I(θ, X, c) is the logits output corresponding to the class 

c, θ are the weights of the classifier and X is the input. 

2. In order to keep the classifier’s decision on X unchanged, the 

tampering function should be such that applying the function 

may not change the class which has the highest logit value. 

argmax 
c∈ C 

I(θ, X, c) = argmax 
c∈ C 

A t (I(θ, X ) , c) (12) 

3. Our empirical analysis suggests that, given a sufficiently trained 

classifier, F , the largest logit value, max I(θ, X ) , for an input, X , 

is highly expected to be greater than some threshold, τ , while 

the rest of the logits vector, I ∗(θ, X ) , is smaller than τ with high

probability, where τ is determinable through empirical analysis. 

Formally, given X , 

∃ τ | P ( max I(θ, X ) > τ ) ≈ 1 , 

P (I ∗(θ, X ) < τ ) ≈ 1 

(13) 

where P represents the probability, and I ∗(θ, X ) is I(θ, X ) 

after removing max I(θ, X ) . Fig. 4 shows the distribution of 

max I (θ, X ) and I ∗(θ, X ) , of different classifiers trained on Kag-

gle fake-news dataset (2 classes) and AG News dataset (4 
5 
classes) with random z-masking for different values of z. From 

Fig. 4 , it is evident that our hypothesis is valid for both the 

binary- and multi-classification tasks. 

4. Given that F satisfies equation (13) , the condition in 

equation (12) is achievable through a particular class of func- 

tions satisfying the following condition, 

∃ τ | ∀ x 1 > 0 , x 2 > 0 , A t (τ + x 1 ) > A t (τ − x 2 ) (14)

From equation (13) , we expect max I(θ, X ) > τ . Using 

equation (14) , 

A t ( max I(θ, X )) > max A t (I ∗(θ, X )) 

⇒ A t ( max I(θ, X )) = max A t (I(θ, X ))) (15) 

which is consistent with equation (12) —the final class label 

does not change when A t is applied. 

Note that all the activation functions provided in 

ection 3.2 satisfy the condition in equation (14) . 

. Experimental setup 

The experimental setup that we use for generating explanations 

sing different XAI methods is given in Fig 5 . Given a classifier, F ,

ach of the XAI methods that we use output an explanation vector, 

 F (X ) , of the same length as the input sequence, X . Each number

n E F (X ) represents the contribution of the corresponding word in 

. This contribution may either be positive or negative indicating 

f a particular word is suggesting or opposing the output decision. 

.1. Threat model 

Our scenario includes an adversary who first trains a classi- 

er on some NLP dataset. For simplicity, in our experiments we 

ssume that our adversary can access the training data. However, 

e emphasize that our attack is also valid for the case where an 

dversary may not be able to access the dataset. In such a case, 

he adversary may train the NLP classifier in a shared/aggregated 

earning framework such as federated learning. Once the classi- 

er is trained, we assume that our adversary tampers the classifier 

nd presents it to a third-party who tries to interpret the classi- 

er based on the state-of-the-art XAI methods. Note that in con- 

rast to the threat model assumed while adversarially attacking a 

classifier”, where an adversary is assumed to have no access to 

he classifier internals, our scenario of attacking the “XAI methods”

emands an adversary who has access to the trained classifier. Our 

hreat model is the same as notable previous works in the similar 

omain Slack et al. (2020) ; Wang et al. (2020) . 

.2. Datasets 

To evaluate our tampering attacks, we use two openly available 

LP datasets—Kaggle fake-news dataset, and AG news dataset. Our 
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Fig. 4. Comparing the distribution of max I (θ, X ) and I ∗(θ, X ) of robust classifiers trained on different datasets with different values of z—where z denotes the number of 

words masked during training in equation (2) —for 100 randomly chosen samples. For a sufficiently trained classifier, F , the largest logit value, max I(θ, X ) , for an input, X, is 

expected to be greater than some threshold, τ , where τ is determinable through empirical analysis. . 

Fig. 5. Experimental setups that we use for generating explanations for different XAI methods. 
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hoice of datasets is motivated by their open availability and being 

 common choice in similar recent works Ali et al. (2021, 2022) ; 

asir et al. (2021) ; Zeng et al. (2021) . 

Kaggle fake-news dataset. We use a publicly available Kaggle 

ake-news dataset 2 which contains 20,800 training samples and 

200 test samples. Each sample further comprises two fields—text , 

nd label . The text field contains the news articles, and the label 

eld may either be 0 or 1 denoting if the article is reliable or fake,

espectively. 

AG News topic classification dataset. To evaluate our attacks 

n multi-classification tasks, we use a subset of the AG news 

ataset openly available on the Kaggle website 3 . The dataset con- 

ains four classes, where each class has 30,0 0 0 training samples 

nd 1900 test samples. Each sample has three fields—title, descrip- 

ion , and class . Following previous conventions Zeng et al. (2021) , 

e concatenate the title and the description fields to use as input to 

ur classifier. The one-hot encoded class field is used as the output. 

.3. Network architecture 

We use a Hybrid CNN-RNN architecture recently proposed by 

asir et al. Nasir et al. (2021) for the fake-news classification 

ue to its generalizability, recency and efficiency. Additionally, 

e have observed a growing interest in using the hybrid deep 

earning approaches which combine both the Recurrent Neural 

etworks (RNN) and the Convolutional Neural Networks (CNN) 

or NLP classification Li and Ning (2020) ; Ma et al. (2020) ; 

asir et al. (2021) ; She and Zhang (2018) ; Zhang et al. (2018) . 
2 https://www.kaggle.com/c/fake-news 
3 https://www.kaggle.com/amananandrai/ag-news-classification-dataset 
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.4. XAI Methods 

We choose four different XAI methods from two widely known 

ategories—black- and white-box XAI methods. More specifically, 

he black-box methods used in our experiments are LIME and 

HAP, while the white-box methods include InteGrad and Smooth- 

rad. Our choice of XAI methods is largely based on the popular- 

ty, reliability and relevancy of these methods Wang et al. (2020) ; 

arnecke et al. (2020) . Additionally, the same methods have 

lso been used as a case study for evaluating recently pro- 

osed attacks on XAI methods—Scaffolding attack uses LIME and 

HAP Slack et al. (2020) , while FACADE attack uses InteGrad and 

moothGrad Wang et al. (2020) . While implementing these XAI 

ethods, we reuse the original implementation provided by the 

espective authors. 

.5. Explainability evaluation 

We use three different metrics to evaluate XAI methods—

escriptive accuracy, cosine similarity, and L p norms. Quanti- 

ying the correctness of XAI methods is still an open ques- 

ion Rosenfeld (2021) ; Zhou et al. (2021) . However, we note that 

he descriptive accuracy has gained significant attention as a reli- 

ble XAI evaluation metric Lin et al. (2019) ; Warnecke et al. (2020) ,

hich motivates its use in our experiments. Further, assuming that 

he explanations generated by XAI methods for an untampered 

lassifier are reliable, we introduce two new metrics—cosine sim- 

larity and L p norm—to compare the explanations generated for 

 t (θ, X ) with those generated for F(θ, X ) in our experiments, 

here F t denotes the tampered classifier. 

https://www.kaggle.com/c/fake-news
https://www.kaggle.com/amananandrai/ag-news-classification-dataset
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Fig. 6. Illustrating the difference in our methodologies for evaluating the robust- 

ness of a classifier and the robustness of an XAI method. The black lines represent 

the normal flow of data, while the red lines represent the flow of adversarially per- 

turbed data. The dashed lines show the flow of data as required by the XAI method. 

Robustness of a classifier is the closeness between F(θ, X t ) and F(θ, X ) , while the ro- 

bustness of an XAI method is the closeness between E F (X ) and E F t (X ) . (For interpre- 

tation of the references to colour in this figure legend, the reader is referred to the 

web version of this article.) 
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1. Descriptive accuracy: Descriptive accuracy of an XAI method is 

the accuracy of the classifier on a set of correctly classified in- 

puts, after removing/truncating the top- k most negatively con- 

tributing words as identified by the XAI method from each 

sample in the input set. Note that greater the descriptive ac- 

curacy, the better the explanations and vice versa. 

2. Cosine similarity: The cosine similarity of the explanation vector 

for a tampered classifier, E F t (X ) , with that for an untampered 

classifier, E F (X ) . 

Cosine similarity = 

E F (X ) .E F t (X ) 

| E F (X ) || E F t (X ) | (16) 

Cosine similarity is a well-known similarity index widely used 

by ML researchers to compare two vectors. 

3. L p norms: The L p distance of the explanation vector for a tam- 

pered classifier from that for an untampered classifier is de- 

fined as, 

L p Norm = 

(∑ | E F (X ) − E F t (X ) | p 
) 1 

p 

(17) 

In our experiments, we use p in { 1 , 2 } , respectively known as

L 1 -Norm and L 2 -Norm in literature. 

.6. Robustness evaluation 

We use three adversarial attacks—Text-Bugger Li et al. (2019) , 

ext-fooler Jin et al. (2020) , PWWS Ren et al. (2019) —to perturb an

nput, and estimate the robustness of our classifiers—both tam- 

ered and untampered classifiers—based on the two most popular 

obustness evaluation metrics—the Attack Success Rate (ASR), and 

he Adversarial Accuracy. The attack success rate—defined as the 

atio of adversarially perturbed inputs misclassified by the classi- 

er to the total number of adversarial inputs—is a commonly used 

etric to quantify the robustness of a classifier. The adversarial ac- 

uracy is the ratio of adversarially perturbed inputs correctly clas- 

ified by the classifier to the total number of adversarial inputs. 

he greater the adversarial accuracy, the lower the ASR, the more 

obust the classifier. 

For attacking our classifiers, we only use the untargeted adver- 

arial attack scenario. Our choice of the attacks is based on the 

ecommendations of recent relevant works Zhou et al. (2019) , and 

trength of the attacks Ali et al. (2021) . While evaluating the ro- 

ustness, we reuse the implementation provided by the Text-Attack 

ibrary Morris et al. (2020) —the state-of-the-art library specifically 

esigned to evaluate the adversarial robustness of the classifiers. 

ur experimental setup for robustness evaluation is given in Fig. 6 . 

To avoid confusion in future references, we differentiate be- 

ween the robustness of a classifier and the robustness of an XAI 

ethod, as illustrated in Fig. 6 . The robustness of a classifier is 

 measure of how accurate the classifier is when classifying per- 

urbed/tampered inputs. On the other hand, the robustness of an 

AI method is a measure of how accurate the generated explana- 

ions are when explaining a tampered classifier. 

.7. Tools and framework 

We use well-known open-source libraries—Keras and 

ensorflow—for implementing, training and tampering the clas- 

ifiers, and evaluating XAI methods. We use Keras tokenizer for 

okenization of input words, and randomly initialize all the layer 

eights of the classifiers except for the embedding layer which is 

nitialized with a pre-trained Glove embeddings. 

. Results 

In this section, we thoroughly evaluate four different XAI 

ethods—LIME, SHAP, InteGrad (IG), and SmoothGrad (SG)—against 
7 
ur novel Tamp-X attack on NLP datasets. First, we compare the 

ccuracy of the tampered and untampered classifiers. We then use 

he metrics defined in Section 4.5 for quantifying the quality of ex- 

lanations generated by the XAI methods, and show that for tam- 

ered NLP classifiers, the quality of explanations is significantly de- 

raded. Finally, we evaluate the robustness of the tampered and 

ntampered NLP classifiers, and discuss insights and key future di- 

ections in Section 6 . 

.1. Accuracy of classifiers 

Fig. 7 reports the test accuracy of different classifiers used in 

ur experiments with different tampering functions for the (a) 

aggle fake-news dataset and (b) AG News topic classification 

ataset. All our classifiers achieve an accuracy of above 85% for all 

ases. We note that Tamp-X does not cause any significant decrease 

n the accuracy of the classifiers. We attribute this to the care- 

ul identification of τ as identified in Fig. 4 by the vertical dashed 

lack line, and smart selection of A t guided by equation (14) , due 

o which the class with the maximum logit remains unaffected by 

he tampering function (See equation (12) ). 

.2. Attacking XAI methods 

.2.1. Descriptive accuracy 

Fig. 8 provides a comparison between the descriptive accuracy 

f the explanation vectors of tampered and untampered classifiers, 

ver a hundred randomly chosen test samples from (a)-(c) Kaggle 

ake-news dataset, and (d)-(e) AG News dataset, for the four XAI 

ethods considered in this paper. We note that for both datasets, 

S tampering is the most effective among the three tampering ac- 

ivations that we use to fool the XAI methods followed by the SS 

ampering which is the second best. This is evident by consider- 

bly smaller values of descriptive accuracy for IS tampering com- 

ared to HS and SS tampering in Fig. 8 . IS tampering causes the 

nput words positively contributing to the output class to have a 

egative effect on the class probability without changing the out- 

ut class ( Fig. 1 ). Consequently, those words in an input sequence 

hat are believed by an XAI method to be the most supportive of 

he output class are actually the most opposing ones. 

We note that SHAP and InteGrad generate better explana- 

ions as indicated by their higher values of descriptive accu- 

acy as compared to LIME and SmoothGrad. A similar observa- 

ion has been made by many previous works Lin et al. (2019) ; 
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Fig. 7. Comparison of the accuracy of our classifiers on the two datasets used in our experiments for different tam pering functions as z ( equation (2) ) changes. (Settings: 

Datasets are Kaggle fake-news dataset and AG News topic classification dataset). The accuracy of our classifier does not significantly degrade when tampered. This can be 

attributed to the tampering functions satisfying equation ( 14 ) . 

Fig. 8. Comparing the descriptive accuracy of the E F t (X ) with that of E F (X ) averaged over 100 randomly chosen test samples for the four XAI methods considered in this 

paper. The higher the descriptive accuracy, the better the XAI method. (Settings: Datasets are Kaggle fake-news dataset and AG News dataset. XAI methods are LIME, SHAP, 

InteGrad, and SmootGrad.) Inverse Sigmoid tampering achieves the best fooling results as indicated by the smaller values of descriptive accuracy. Better explanations—quantified by 

higher descriptive accuracy—can be attacked more effectively by IS tampered classifiers. . 
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arnecke et al. (2020) ; Yalcin et al. (2021) . Interestingly, our tam- 

ering attacks, specifically the IS tampering, are more effective 

gainst more accuracte XAI methods that have higher descriptive 

ccuracy. For example, in Fig. 8 (a)-(c), the descriptive accuracy of 

HAP and InteGrad considerably decreases on the tampered classi- 

ers as compared to the untampered classifiers. This is in contrast 

o SmoothGrad, where this decrease in the descriptive accuracy is 

ot as appreciable. A similar case in shown in Fig. 8 (e), where the

escriptive accuracy of LIME and SHAP is smaller for an untam- 

ered classifier as compared to the tampered classifiers. Therefore, 

e conclude that our tampering attack is more effective against bet- 

er XAI methods . 

.2.2. Cosine similarity 

Fig. 9 reports the cosine similarities of the explanation vec- 

ors of tampered classifiers with those of untampered classifiers, 

veraged over a hundred randomly chosen test samples from (a)- 

c) Kaggle fake-news dataset, and (d)-(e) AG News dataset, for the 

our XAI methods considered in this paper. Here again, the IS tam- 

ering is most effective in fooling the XAI methods, for both the 

inary- and multi-classification scenarios, as evident by very small 

alues of cosine similarity, mostly dropping below zero, indicating 

hat the explanation vectors of F t significantly disagree with those 

f F . In Fig. 9 , we note that the explanations generated by Inte-

rad and SmoothGrad have near zero cosine similarity values. For 

he HS tampering case, we attribute this behaviour to the negli- 

ible gradient values of the tampering layer, while in case of the 

S tampering, the randomness of the gradient values computed by 
8

he XAI methods causes these similarity values to be very close to 

ero. 

Best fooling results for IS tampering are due to the robust train- 

ng mechanism and the inverse probabilistic behavior of IS tam- 

ering as illustrated previously in Fig. 1 . A black-box XAI method 

enerates several perturbations of an input by removing input fea- 

ures in several combinations and monitors the classifier’s output 

o compute the feature contribution. Conventionally, removing a 

eature which contributes positively to the classifier’s output de- 

reases max I(θ, X ) , which in turn decreases the output proba- 

ility. On the contrary, for IS tampered classifier, a decreases in 

ax I(θ, X ) increases the output probability. Consequently, the fea- 

ure contributing positively appears to have a negative contribution 

o the classifier’s output which explains the negative cosine simi- 

arities in Fig. 9 . SS tampering is the second best which can be 

ttributed to a highly variable probabilistic surface caused by the 

inusoidal sigmoid activation used by SS tampering, which makes 

t extremely difficult for an XAI method to locally approximate the 

lassifier. 

.2.3. L p Norms 

Fig. 10 and 11 respectively report the L 1 and L 2 norms of the 

xplanation vectors of tampered classifiers with respect to the ex- 

lanation vectors of untampered classifiers, averaged over a hun- 

red randomly chosen test samples from (a)-(c) Kaggle fake-news 

ataset and (d)-(f) AG News dataset for the four XAI methods con- 

idered in this paper. As previously, IS tampering achieves the best 

ooling results as indicated by the largest L and L norms in the 
1 2 
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Fig. 9. Cosine Similarities of the explanation vectors of tampered classifiers, E F t (X ) , with the explanation vectors of untampered classifiers, E F (X ) , averaged over 100 test 

samples for four different XAI methods considered. Inverse Sigmoid tampering achieves the best attack results with cosine similarity values close to, or less than zero. . 

Fig. 10. L 1 Norms of the E F t (X ) with respect to E F (X ) , averaged over 100 randomly chosen test samples for the four XAI methods considered in this paper. (Settings: Dataset 

is Kaggle fake-news dataset. XAI methods are LIME, SHAP, InteGrad, and SmootGrad.) Inverse Sigmoid tampering achieves the best fooling results as indicated by the largest L 1 
norms. . 

Fig. 11. L 2 Norms of the E F t (X ) with respect to E F (X ) , averaged over 100 randomly chosen test samples for the four XAI methods considered in this paper. (Settings: Dataset 

is Kaggle fake-news dataset. XAI methods are LIME, SHAP, InteGrad, and SmoothGrad.) Inverse Sigmoid tampering achieves the best fooling results as indicated by the largest L 2 
norms. . 

9 
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Fig. 12. Cosine similarity between the explanation vectors of XAI methods gener- 

ated for untampered classifiers, average over 100 randomly chosen test sampels. 

(Settings: Dataset is Kaggle fake-news dataset). LIME and SmoothGrad generate sig- 

nificantly different explanations not matching any other XAI method, while SHAP and 

InteGrad generate similar explanations. . 
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gure, followed by SS tampering and HS tampering respectively. 

ote that both the L 1 and L 2 norms of E F t (X ) show a similar

ncrease for different tampering functions and XAI methods con- 

idered in the paper. This indicates that the explanation vectors 

f tampered classifiers and those of untampered classifiers should 

ave significant L p -difference along multiple p values. 

. Discussion 

.1. Comparing XAI methods 

In this section, we compare the four XAI methods considered in 

his paper, based on their mutual cosine similarity scores of expla- 

ations generated for an untampered classifier over the same set 

f inputs. More specifically, we first explain an untampered classi- 

er using the four XAI methods studied in this paper and, for each 

AI method, compute the cosine similarity of its explanation vec- 

or with all the other XAI methods. Intuitively, because all the ex- 

lanation vectors have been generated over the same set of inputs 

or the same untampered classifier, one would expect significant 

imilarity among all the generated explanations. Results of our ex- 

eriments are shown in Fig. 12 . 

We observe high similarity scores between the explanations of 

HAP and InteGrad, which indicates that their explanations sig- 

ificantly agree with each other. Surprisingly, however, we note 

hat explanations of LIME and SmoothGrad are very different from 

ther methods. Since, the inputs and the classifiers are same for 

ach XAI method under evaluation, we expect to see highly similar 

xplanations, which, surprisingly, is not the case. These observa- 

ions validate our previous findings in Section 5.2 where we note 

hat SHAP and InteGrad generally generate better explanations as 

ompared to LIME and SmoothGrad. These findings are partially in 

greement with those of Warnecke et al. Warnecke et al. (2020) . 

owever, unlike what Warnecke et al. Warnecke et al. (2020) re- 

ort, our explanations of SHAP and IG are highly similar. 

.2. Visualizing the generated explanations 

Fig. 13 provides the top-10 most contributing words in a given 

nput as identified by LIME for a randomly chosen input sample 

rom Kaggle fake-news dataset. While reporting these contribu- 

ions in Fig. 12 , we discretize the contribution values by rounding 

hem off to two decimal points, which is a standard way of rep- 

esenting feature contributions in LIME. For the HS tampering, all 

ords in the input sequence have zero contribution, and therefore, 

ach word in the ordered list appears in the same sequence as in 

he input text. This is because for the HS tampering a change in 

he logits vector, I(θ, X ) , is not reflected at the output probabili- 

ies. For the IS tampered classifier, the words originally contribut- 

ng positively—as identified by their contributions to the output of 

—appear to the XAI methods as if opposing the classifier output 
10 
s shown in Fig. 13 as discussed in Section 5.2 . For the SS tamper-

ng, the top-10 identified as the most contributing words appear to 

e random, and have no coherence with the actual contributions 

f these words identified for “No Tampering” scenario. These ob- 

ervations are consistent with our motivations in Fig. 1 . It is worth 

oting that the output decision of a tampered classifier is still the 

ame as that of an untampered classifier irrespective of the tam- 

ering function used. 

.3. Robustness of tampered classifiers 

Fig. 14 reports the Attack Success Rates (ASRs) of three state-of- 

he-art adversarial attacks—Text-bugger, Text-fooler, and PWWS—

n our NLP classifiers—both, tampered and untampered—for Kag- 

le fake-news dataset. We observe that the tampered classifiers are 

ignificantly more robust as compared to the untampered classi- 

ers. 

As noted by Morris et al. Morris et al. (2020) , adversarial at- 

acks on NLP classifiers generally work by first estimating the con- 

ribution of each word/feature in an input sequence, and then op- 

imally perturbing the most positively contributing words/features. 

e note that XAI methods for NLP classifiers generally use a simi- 

ar formulation to compute the feature contribution when generat- 

ng explanations. Consequently, the tampering functions, which can 

ool the XAI methods by misrepresenting output logits and proba- 

ilities, also mislead the contribution estimation algorithms of the 

dversarial attacks, which results in the failure of such attacks. This 

s depicted by the significantly low ASRs of these adversarial at- 

acks against the tampered NLP classifiers in Fig. 14 . 

.4. Explainability-Robustness trade-off for NLP classifiers 

In Section 6.3 , we make an interesting observation that a tam- 

ered NLP classifier is more robust to the adversarial perturba- 

ions as compared to an untampered NLP classifier. Here, we more 

omprehensively study this behavior by plotting the robustness- 

xplainability curve. Fig. 15 reports the descriptive accuracy of ex- 

lanations generated by (a) LIME, (b) SHAP, (c) InteGrad, and (d) 

moothGrad on x-axis, and the Adversarial Accuracy of classifiers 

gainst the Text-Fooler attack on y-axis. For this analysis, we use 

oth the tampered and the untampered classifiers trained on the 

aggle fake-news dataset as the case-study. 

In Fig. 15 , we observe that for a more robust classifier having 

reater adversarial accuracy, the descriptive accuracy of the XAI 

ethods is generally quite low, irrespective of the XAI method 

sed to explain the decision of the classifier. We therefore con- 

lude that there exists a trade-off between the explainability and 

he robustness of NLP classifiers, specifically for the current state- 

f-the-art XAI methods. Simply stated, a tampered model that 

akes it harder for an XAI method to explain its decision on a 

iven input also makes it harder for an adversarial attacker to mis- 

lassify the input as evident by an associated significant increase 

n the adversarial accuracy. 

.5. Limitations and future work 

One of the key limitations of our attack is that it only works 

gainst the NLP classifiers. An interesting future direction can be 

o extend Tamp-X attack to the audio and vision domain. However, 

e believe that naively launching Tamp-X attack on the audio and 

isual classifiers would not yield favorable results for the attacker. 

his is because, unlike the NLP domain where the input space is 

iscrete, the continuous space of audio and visual inputs allows 

or the small iterative perturbations in the input that can be used 

o effectively estimate the contribution of an input feature over 

he output of the classifier. Another limitation of our work is that 
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Fig. 13. Visualizing the top-10 most contributing words as identified by LIME for a randomly chosen input sample from Kaggle fake-news dataset. The contribution of each 

word has been rounded-off to two decimal places, and may be in favor of the output class (positive contribution) or against the output class (negative contribution). For 

example, in case of “No Tampering”, the words “breadwinner”, “extended” and “Dubai” are supporting the output decision. (Settings: Tampering functions are Hard Sigmoid, 

Inverse Sigmoid, and Sinusoidal Sigmoid. XAI method used is LIME. The input text is from Kaggle fake-news dataset.). 

Fig. 14. Comparing ASRs of three state-of-the-art adversarial attacks on untampered, E F (X ) , and tampered, E F t (X ) , classifiers. (Settings: Dataset is Kaggle fake-news dataset. 

XAI methods are LIME, SHAP, InteGrad, and SmootGrad.) Tampered classifiers are significantly more robust as compared to the untampered classifiers as evident by small ASRs. . 

Fig. 15. Illustration of Robustness-Explainability tradeoff for NLP classifiers for different XAI methods. (Settings: Dataset is Kaggle fake-news dataset. Architecture is Hybrid- 

CNN-RNN. XAI methods are LIME, SHAP, IG and SG). For more robust classifiers—indicated by larger values of Adversarial Accuracy—the quality of explanations is quite low—

indicated by small values of the descriptive accuracy—irrespective of the XAI method used to generate the explanations. . 
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ur assumed attacker, who owns a compromised/attacked classi- 

er, has to train the classifier in a robust fashion via z-masking, 

hich slightly increases the computational complexity of the train- 

ng mechanism. 

Although the explanation vectors of untampered NLP classifiers 

re significantly poor in quality (as established in Section 5 ), we 

ote that the descriptive accuracy can effectively quantify whether 

n explanation vector should be trusted or not. For example, 

ig. 8 shows that the poor explanations generated for tampered 

lassifiers exhibit considerably smaller values of descriptive accu- 

acy as compared to the explanations generated for untampered 

lassifiers, and hence, should not be trusted. Descriptive accuracy, 
11 
y definition, requires explanations to highlight those input words 

hat would significantly impact a classifier’s output. In light of the 

bove observations, we identify that the descriptive accuracy can 

e used to detect unreliable explanations in future. Additionally, a 

ore robust and reliable XAI method can be developed that op- 

imally maximizes the descriptive accuracy while generating the 

xplanation vectors. 

Fig. 15 implies that the adversarial accuracy of an undefended 

lassifier—in the absence of any adversarial defense mechanism 

eployed—can serve as a useful and effective metric to indirectly 

stimate the trustworthiness of the explanations generated by the 

AI methods. We note that the tampering activations have been 
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idely studied under the adversarial attacks in the vision do- 

ain Athalye et al. (2018) . However, unlike the vision domain, 

here such tampering—known as the obfuscated gradients—can be 

ountered by the iterative hard-label black-box attacks, these iter- 

tive attacks cannot be naively used to strengthen the adversarial 

ttacks on the NLP classifiers due to the discrete nature of inputs in 

he latter scenario. In order to generate better XAI methods for NLP 

lassifiers, significantly better metrics for the estimation of feature 

ontributions are required. However, we fear that, on the negative 

ide, such estimation metrics would also empower/strengthen the 

dversarial attacks against the NLP classifiers. 

. Conclusions 

In this work we investigate the reliability of the state-of-the-art 

AI methods for NLP classifiers against our novel attack Tamp-X 

hich comprises two steps; in the first step, we randomly mask 

z” input words while training an NLP classifier to make it tolerant 

o the random perturbations in the input. In the second step, we 

amper the activation functions of the classifier such that the prob- 

bility values at the output of the classifier are misrepresented. We 

arefully analyze the distribution of classifier logits for a number of 

nputs, and formally propose a specific class of functions defined 

y certain conditions to retain the accuracy of the tampered clas- 

ifiers. 

We evaluate the state-of-the-art the white-box—InteGrad and 

moothGrad—and the black-box—LIME and SHAP—XAI methods 

gainst the Tamp-X attack using three different metrics—the de- 

criptive accuracy, the cosine similarity, and the L p norms. Through 

xtensive empirical analysis, we show that these XAI methods are 

ighly manipulable, and therefore cannot be fully trusted. Addi- 

ionally, we evaluate the tampered classifiers under three state-of- 

he-art adversarial attacks and observe that the tampered classi- 

ers are significantly harder to fool by the adversarial attackers. 

nterestingly, we observe a slight trade-off between the adversar- 

al robustness of a classifier and the accuracy of the explanations 

enerated for that classifier by different XAI methods. Finally, we 

iscuss insights and metrics that can be useful to robustify the cur- 

ent XAI methods. 
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