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Abstract—In recent years, advancements in machine learning (ML) techniques, in particular, deep learning (DL) methods have gained

a lot of momentum in solving inverse imaging problems, often surpassing the performance provided by hand-crafted approaches.

Traditionally, analytical methods have been used to solve inverse imaging problems such as image restoration, inpainting, and

superresolution. Unlike analytical methods for which the problem is explicitly defined and the domain knowledge is carefully engineered

into the solution, DL models do not benefit from such prior knowledge and instead make use of large datasets to predict an unknown

solution to the inverse problem. Recently, a new paradigm of training deep models using a single image, named untrained neural

network prior (UNNP) has been proposed to solve a variety of inverse tasks, e.g., restoration and inpainting. Since then, many

researchers have proposed various applications and variants of UNNP. In this paper, we present a comprehensive review of such

studies and various UNNP applications for different tasks and highlight various open research problems which require further research.

Index Terms—Inverse imaging problems, untrained neural networks priors, deep learning
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1 INTRODUCTION

INVERSE imaging problems (IIPs) have been recently attract-
ing increasing attention from researchers due to their

applications in numerous domains including computer
vision, medical imaging, remote sensing, and autonomous
driving to name a few. IIPs aim to reconstruct an unknown
image from the possibly noisy observations. These observa-
tions are obtained from the unknown real data by a forward
process that is typically ill-posed and with multiple possible
solutions for the same IIP. Reconstructing a unique solution
that fits these observations ismay be very difficult or impos-
sible without reliable prior information about the data [1].
Thus designing effective priors has been the subject of sub-
stantial research in the image processing community as a
variety of image reconstruction tasks fit under the umbrella
of IIPs including denoising, super-resolution, inpainting,
image deblurring, MRI reconstruction, and many more [2].
These priors are essentially regularization techniques.

Conventional algorithms to solve IIPs are based on simple
mathematical models that are hand-crafted from the domain

knowledge.Thesedomainknowledge-based recoveryalgorithms
carry out the inference basedonknowledgeof theunderlying for-
ward model associated with the observed measurements. These
algorithms usually do not rely on data to learn their mapping.
However, these simplemodels often suffer from a poor discrimi-
native capability and as a consequence, a large majority of
unnatural images also satisfy the constraints specified by the for-
ward model (since the solution to the ill-posed problem is not
unique) [3].

Recently, deep learning (DL) has provided major break-
throughs in solving IIPs as compared to hand-crafted priors-
based approaches that were so far unable to effectively
tackle these problems [4]. For instance, recently, generative
models have shown their ability to reconstruct a high-reso-
lution image from a fraction of samples in the compressed
sensing problem. Such a high compression ratio was not
previously possible with hand-crafted priors like sparsity.
However, these DL-based approaches owe much of their
success to the availability of large labeled imaging datasets
that are difficult to obtain in many application areas, such
as medical imaging. Data labels can be annotations for a
classification task and reference images for inverse prob-
lems, e.g., paired bad and good quality images for training
end-to-end DL models for image enhancement. Therefore,
the widespread deployment of such models is constrained
for many practical applications due to the lack of expert
annotators, time, ethical constraints, and the financial
resources required to create sufficiently large reliable
labeled data. Also, it is important to note that not all DL
methods will require labeled images, e.g., [5]. However,
such an approach (in [5]) would still require a large
amount of clean images to train the generative models
before pre-trained generative models can be used to solve
IIPs. In contrast to the approach adopted in [5], untrained
neural network priors (UNNPs) can recover a faithful esti-
mate of the clean sample (without having any prior

� Adnan Qayyum and Inaam Ilahi are with the Information Technology
University (ITU) of Punjab, Lahore 54000, Pakistan. E-mail: {adnan.
qayyum, inaam.ilahi}@itu.edu.pk.

� Fahad Shamshad is with the Information Technology University (ITU) of
Punjab, Lahore 54000, Pakistan, and also with the MBZ University of
Artificial Intelligence, Abu Dhabi, UAE. E-mail: fahad.shamshad3@gmail.
com.

� Farid Boussaid and Mohammed Bennamoun are with the University of
Western Australia, Perth, WA 6009, Australia. E-mail: {farid.boussaid,
mohammed.bennamoun}@uwa.edu.au.

� Junaid Qadir is with the Qatar University, Doha 2713, Qatar.
E-mail: jqadir@qu.edu.qa.

Manuscript received 12 March 2021; revised 28 July 2022; accepted 15 August
2022. Date of publication 5 September 2022; date of current version 3 April
2023.
(Corresponding author: Junaid Qadir.)
Recommended for acceptance by Y. Chi.
Digital Object Identifier no. 10.1109/TPAMI.2022.3204527

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 45, NO. 5, MAY 2023 6511

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0002-6732-7601
https://orcid.org/0000-0002-6732-7601
https://orcid.org/0000-0002-6732-7601
https://orcid.org/0000-0002-6732-7601
https://orcid.org/0000-0002-6732-7601
https://orcid.org/0000-0003-2442-0475
https://orcid.org/0000-0003-2442-0475
https://orcid.org/0000-0003-2442-0475
https://orcid.org/0000-0003-2442-0475
https://orcid.org/0000-0003-2442-0475
https://orcid.org/0000-0002-6603-3257
https://orcid.org/0000-0002-6603-3257
https://orcid.org/0000-0002-6603-3257
https://orcid.org/0000-0002-6603-3257
https://orcid.org/0000-0002-6603-3257
https://orcid.org/0000-0001-9466-2475
https://orcid.org/0000-0001-9466-2475
https://orcid.org/0000-0001-9466-2475
https://orcid.org/0000-0001-9466-2475
https://orcid.org/0000-0001-9466-2475
mailto:adnan.qayyum@itu.edu.pk
mailto:adnan.qayyum@itu.edu.pk
mailto:inaam.ilahi@itu.edu.pk
mailto:fahad.shamshad3@gmail.com
mailto:fahad.shamshad3@gmail.com
mailto:farid.boussaid@uwa.edu.au
mailto:mohammed.bennamoun@uwa.edu.au
mailto:jqadir@qu.edu.qa


knowledge of the ground truth itself) while using a single
corrupted measurement.

To bridge the gap between conventional hand-crafted priors
(which suffer from a poor discriminative capability) and DL-
based approaches (which usually require large scale labeled
datasets, i.e., paired datasets for end-to-end training of deep
models), UNNPs have recently emerged as a promising line of
research. These priors have been shown to outperform the con-
ventional hand-crafted priors and offer comparable performance
to theirDL-based counterpartswhile integrating the knowledge
of the forward model without requiring massive labeled data-
sets [6]. More specifically, these priors assume that rich image
statistics are captured by the structure of the randomly initial-
ized convolutional neural networks (CNNs),with the randomly
initialized network weights serving as a parametrization of the
restored image. Since their inception, UNNPs have beenwidely
used in numerous IIPs. Despite their remarkable success, the lit-
erature related to UNNPs remains cluttered posing significant
challenges to the researchers in this field. To fill in this gap, this
paper provides a comprehensive survey on the applications of
UNNPs to IIPs. We note here that Ulyanov et al. [6] introduced
a different term for UNNPs and named it as deep image prior
(DIP) and since then this alternative term has been largely used
in the literature. However, the terminologies used for referring
to UNNPs are expanding beyond just DIP. We provide a sum-
mary of different alternative terms used to describe untrained
neural networks-based image priors in Table 1.

Specifically, the following are the major contributions of
this survey paper.

1) To the best of our knowledge, this is the first survey
paper that comprehensively covers applications of
UNNPs to IIPs. We present a comprehensive review of
different developments made upon UNNP thus cover-
ing themost recent and advanced progress in the field.

2) We provide detailed coverage of different applica-
tions of UNNPs for different IIPs. We specifically
categorized them into two groups, i.e., general and
medical IIPs. Our focus on medical applications is
due to ethical constraints, privacy concerns, and the
scarcity of labeled datasets. This limits the effective-
ness of data-driven methods and makes UNNP ide-
ally suited for medical applications.

3) We highlight different open research problems
related to UNNPs and provide insights into possible
future directions for new researchers in this field.

The rest of paper is organized as follows. Section 2
presents a detailed background of UNNPs and its different
variants. Section 3 provides a broad introduction to UNNPs.
Section 4 presents different applications of UNNPs for vari-
ous IIPs and the applications of UNNPs inmedical imagning
tasks are presented in Section 5. Insights and pitfalls are dis-
cussed in Section 6. Section 7 presents various open research
problems which require further development. Finally, we
conclude the paper in Section 8.

2 INVERSE IMAGING PROBLEMS (IIPS):
BACKGROUND AND METHODS

2.1 IIPs: An Introduction

The reconstruction of an unknown image or multidimensional
signal/tensor from observed measurements is regarded as an

inverse problem. To bemore precise,we consider inverse prob-
lems in which an unknown n-pixel image (in vectorized form)
xxxxxxx0 2 Rn is observed viam noisy measurements yyyyyyy 2 Rm. More
specifically, we canwrite

yyyyyyy ¼ Aðxxxxxxx0Þ þ hhhhhhh; (1)

where A is the forward measurement operator, i.e., the physi-
cal model underlying the measurement process, and hhhhhhh is noise
perturbation modelled by Nðm; s2Þ. Determining the output yyyyyyy
for a given input xxxxxxx0 for the known forward operator A repre-
sents the forward model. Similarly, finding the input xxxxxxx0 for a
given output yyyyyyy and the operator A represents the solution to
the inverse problem. Furthermore, as themeasurement process
is often costly, the underdetermined regime (where m � n)
has gainedmuch attention during the last two decades. Solving
these underdetermined systems is challenging as they are often
ill-posed and do not possess a unique solution. Some prior
knowledge about the true image xxxxxxx0 is usually required to
solve these problems efficiently. More specifically, in the
presence of additive white Gaussian noise and some
prior information about the true image, the maximum a
posteriori (MAP) leads to the following formulation for
solving inverse problems

argmin
xxxxxxx

1

2
kyyyyyyy�AðxxxxxxxÞk22 þ �RðxxxxxxxÞ; (2)

where RðxxxxxxxÞ is the regularization term (also known as image
prior), k:k22 is the ‘2 norm, and � is the regularization weight
(hyperparameter). In Eq. (2), the first term is the data fidelity

TABLE 1
Summary of Different Alternative Terms Used to Describe

Untrained Neural Networks-Based Priors Over the Past Few
Years, They All Rely on the Same Underlying Principle

Year Term (s) Reference (s)

2018 - Deep Image Prior
- Deep Decoder
- Deep Prior

[6], [7], [8], [9],
[10], [11]

[12]
[13], [14]

2019 - Deep Image Prior
- Untrained Neural Network Priors
- Untrained Network Priors
- Deep Prior
- Deep Network Prior

[15], [16]
[17], [18]
[19], [20]
[21], [22]
[23]

2020 - Deep Image Prior
- Untrained Network Priors
- Untrained Neural Networks
- Deep Decoder
- Deep Prior
- Untrained Deep Neural Network
- Untrained Neural Network Priors

[24], [25]
[26]
[27]
[28]
[29], [30], [31], [32]
[33], [34]
[35]

2021 - Deep Image Prior
- Untrained Neural Networks
- Untrained Networks
- Untrained Deep Decoder Network
- Deep Prior
- Untrained Neural Network Priors
- Untrained Network Priors
- Untrained Deep Neural Networks
- Deep Randomized Neural Net-

works Priors

[36], [37]
[38], [39], [40], [41],

[42], [43]
[44]
[45]
[46]
[47], [48], [49], [50]
[51]
[52], [53], [54]
[55]
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term and the second term denotes the latent image prior. It
has been observed that the success of recent imaging inverse
methods mainly stems from the development of effective
image priors that stabilize the degradation inversion and
direct the outcome towards a more plausible image [4].
Also, the forward model specifies the type of a typical
inverse problem at hand, i.e., when the forward operator is
linear then the inverse problem will be linear. Otherwise, it
will be non-linear. The role of the forward operator in a typ-
ical image processing pipeline is shown in Fig. 1. A sum-
mary of different forward operators used in different
inverse problems is presented in Table 2. IIPs can be of dif-
ferent types, e.g., inpainting, denoising, super-resolution,
and compressed sensing as depicted in Fig. 2. It is worth
noting the difference between the ‘true’ and discretized
measurement process often used while solving IIPs.
Neglecting this difference may lead to the ‘inverse crime’
[56]. This term was first coined in [57] and has been used in
the IIPs literature to describe the use of approximate for-
ward operators in inverse tasks, i.e., when approximately
similar forward operators are used in the forward and
inverse operations in an inverse modeling task. For exam-
ple, in the case of magnetic resonance imaging (MRI) recon-
struction, the continuous Fourier transform is used in the
forward model while the discrete Fourier transform is used
in the inverse task. This difference, which is often neglected,
can result in reconstruction errors that may affect the inter-
pretation of results. However, the authors argued the
non-uniqueness of the solution to the inverse problem is
somehow revealed by the notion of this inverse crime, and
avoiding this crime can induce the unique solution.

2.2 Methods for Solving IIPs

2.2.1 Hand-Crafted Priors

One natural approach to model natural images is to view
them as sparse to a particular hand-crafted basis, e.g., wave-
lets-like basis. This type of method does not require training
data and it assumes that the image being modeled is in the
linear span of a few elements in a space, which may not pro-
vide the best representation. Such image reconstruction
methods exploit some prior knowledge about the true
image xxxxxxx such as sparsity [58], smoothness [59], total varia-
tion [60], non-local self similarity [61], Markov-tree models
on wavelet coefficients [62], geometric properties [63], etc.
The reconstruction amounts to finding a solution x̂̂x̂x̂x̂x̂x̂x that is a
good fit to the observations yyyyyyy given the prior knowledge.
These conventional priors often fail to capture the rich struc-
ture that many natural signals exhibit due to their limited

discriminative capability. As a consequence, a large major-
ity of unnatural signals also satisfy the constraints specified
by these hand-crafted priors.

2.2.2 Sparse Coding or Dictionary Learning

In sparse coding or dictionary learning, we use the training
data to learn a few images that can be used to recover a particu-
lar desired image. Themajority of sparse coding anddictionary
learning methods are based on l0-norm or l1-norm based
optimization [66]. Like the hand-crafted basis method, this

Fig. 1. Pipeline to solve IIPs. In the forward model, the transformation
Að:Þ (i.e., sensing model) is applied to an input image x0 to acquire
measurements. The inverse problem aims to obtain an estimate of x0
from the observation via a reconstruction algorithm that leverages the
prior knowledge about the true (target) image x0 and Að:Þ. Normal noise
h is added to the measurements which are fed to the reconstruction
algorithm.

TABLE 2
A Summary of Different Inverse Problems and Associated For-

ward Operators (Adapted From [4])

Inverse
Problem Task

Forward Operator Description

Denoising AAAAAAA ¼ IIIIIII IIIIIII is the identity operator.
Super-
resolution

AAAAAAA ¼ SSSSSSSKKKKKKK SSSSSSS is a sub-sampling
operator (identity matrix
with missing rows).KKKKKKK is a
blurring operator which

corresponds to a
convolution with a blur

kernel.
Inpainting AAAAAAA ¼ SSSSSSS SSSSSSS is a diagonal matrix

where the diagonal
elements are set to 1 for

sampled pixels.
Phase
Retrieval

AðxxxxxxxÞ ¼ jAAAAAAAxxxxxxxj2 j:j denotes the absolute
value, the square is taken
element-wise, and AAAAAAA is an
application-dependent
measurement matrix

which is often a variant of a
discrete Fourier transform

(FT) matrix.
Fourier
Ptychography

AðxxxxxxxÞ ¼ jFFFFFFF�1PPPPPPP‘FFFFFFFxxxxxxxj2 FFFFFFF denotes the 2D FT and
PPPPPPP‘ denotes ‘ the pupil
mask that acts as a

bandpass filter in the
Fourier domain.

Deconvolution AðxxxxxxxÞ ¼ kkkkkkk � xxxxxxx kkkkkkk is a known blur kernel
and * denotes the

convolution operator. For a
known kkkkkkk, the problem is

called non-blind
deconvolution.

Compressed
Sensing

AAAAAAA ¼ SSSSSSSFFFFFFF or a
random Gaussian

matrix

SSSSSSS is a sub-sampling
operator (identity matrix
with missing rows). FFFFFFF is a

discrete FT matrix.
HDR Imaging AðxxxxxxxÞ ¼ c:xxxxxxxg g > 1 and c is a positive

scaling constant.
MRI Imaging AAAAAAA ¼ SSSSSSSFFFFFFFDDDDDDD SSSSSSS is a sub-sampling

operator (identity matrix
with missing rows), FFFFFFF is

the discrete FT matrix, and
DDDDDDD is a diagonal matrix
representing a spatial
domain multiplication
with the coil sensitivity

map.
Computed
Tomography

AAAAAAA ¼ RRRRRRR RRRRRRR is the discrete Radon
transform.
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approach is also linear. Sparse coding algorithms can be catego-
rized into four classes, i.e., constrained optimization, proximity
algorithm-based optimization, greedy strategy approximation,
and homotopy algorithm-based sparse representation, the
empirical evaluation of various methods within each category
of aforementioned sparse coding algorithms has been per-
formed in [66].

2.2.3 Deep Learning for Solving Inverse Problems

Recently, supervised DL-based approaches have achieved
state-of-the-art performance in various IIPs, but at the cost
of massive labelled training datasets. These DL-based
approaches typically learn an inverse mapping from signal
measurements by minimizing the reconstruction loss on
a set of training examples. More specifically, these
approaches learn a mapping from yyyyyyy to xxxxxxxwithout any knowl-
edge of the forward operator A during the training process.
Particularly, these approaches aim to minimize the objective
function kxxxxxxx� F uðyyyyyyyÞk, where F uð:Þ denotes a deep neural
network having parameters (weights) denoted as u. The
general principle is that given enough training (labelled)
data, one should be able to learn everything one needs to
know about A to successfully estimate yyyyyyy. This straightfor-
ward approach has shown impressive results on numerous
IIPs including super-resolution, blind image deblurring,
magnetic resonance imaging, and numerous other IIPs. DL-
based approaches can effectively circumvent the limited
discriminative capability of the hand-crafted priors by
leveraging the power of large datasets. However, DL-based
training, popularly known as discriminative learning,
makes the network task-specific. As a consequence, we
need to retrain the network for various IIPs and different
parameter settings of the forward model. This means that
even a slight change in the forward acquisition model such
as noise level (e.g., for denoising task) or sampling rate (e.g.,
in compressed sensing) requires costly retraining of these
DL models. It is worth noting that apart from the supervised

learning based DL approaches, there are unsupervised DL
methods that can work with unlabelled data.

2.2.4 Untrained Neural Networks Priors (UNNPs)

Instead of training DL models on large-scale datasets,
untrained DL models are used to model natural images.
More specifically, the DL model is given a random noise
(i.e., zzzzzzz, as shown in Fig. 3) as input and is tasked to model a
particular natural image using the random input (i.e., zzzzzzz)
and its parameters. The network is initialized with random
parameters, which are subsequently optimized iteratively
to recover the desired image. This approach is very similar
to the wavelets basis-based method in which a few wavelets
are combined to get a particular image. In both of these
methods, there is no learning, i.e., in UNNP we have one
random input and random parameters that the neural net-
work maps into a particular image.

3 UNTRAINED NEURAL NETWORK PRIORS: AN

INTRODUCTION

The recent work by [6] is an original contribution in the
intersection of inverse problems and DL. The authors pro-
posed a new strategy for handling the regularization task in
inverse problems. More specifically, the deep model’s archi-
tecture is used as the regularizer to the inverse problem.
The authors showed that the architecture of the DNN is
biased to natural images and is capable of capturing low-
level image statistics without being explicitly trained using
large-scale datasets. Instead, UNNPs can operate on a single
(degraded) image. Furthermore, the authors demonstrated
that UNNPs have a high impedance to noise and low
impedance to the true image. Since the inception of UNNPs
(i.e., DIP) by Ulyanov et al. [6], a number of UNNP frame-
works have been proposed in the literature. The most prom-
inent variants are deep decoder [12] and double DIP [7]. DIP
and double DIP rely on an over-parameterization (i.e., the
number of neural network parameters is greater than the
number of pixels in the input image) approach while
the Deep Decoder adopts an under-parameterization (i.e.,
using fewer parameters than the number of pixels in the
input image) approach. More recently, new versions of
UNNPs have been proposed in the literature. For instance,
the Deep Matching Prior [67] uses an UNNP to learn priors
for semantically similar pairs of input images. Under-

Fig. 2. Examples of inverse imaging problems (IIPs). Individual images

adapted from: Left: [18]; Right (top to bottom): first1; second [24]; third
[64]; fourth [65].

Fig. 3. Denoising input image xxxxxxx0 over different iterations of UNNP, zzzzzzz is the
fixed random noise which is given as an input to UNNP (Figure adapted
from [6]).

1. https://docs.opencv.org/3.4/d2/df0/tutorial_py_hdr.html
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parameterized UNNP-inspired untrained graph neural net-
works were introduced in [39]. The illustration of different
UNNP architectures proposed in the literature can be found
in Fig. 4. In addition, to these frameworks, numerous efforts
have also been made to circumvent the limitations of
UNNPs and to improve their performance, e.g., eliminating
the need for early stopping in UNNPs (to avoid overfitting),
improving performance by introducing regularization in
UNNPs, and finding optimal neural network architectures
for a specific problem. In the subsequent sections, we will
provide an overview of such efforts.

In the original UNNP paper, the authors solved various
linear inverse problems including denoising, inpainting,
super-resolution, and flash-no-flash reconstruction using an
untrained (having randomly initialized parameters) CNN-
based generative model. To get the restored version of the
degraded image, the parameters were optimized to maxi-
mize their likelihood given a task-specific observation
model and the specific degraded image. The mathematical
expression for solving inverse problems is given by energy
minimization of the type

x̂xxxxxx ¼ argmin
xxxxxxx

Eðxxxxxxx;xxxxxxx0Þ þRðxxxxxxxÞ; (3)

where E is a task-specific function, xxxxxxx0 and xxxxxxx denote the input
and the generated images, respectively.RðxxxxxxxÞ denotes the reg-
ularizer term. UNNP removes the explicit regularization term
RðxxxxxxxÞ by assuming that the unknown image xxxxxxx should be an
image generated from the generator network such that

ûuuuuuu ¼ argmin
u

EðfuuuuuuuðzzzzzzzÞ;xxxxxxx0Þ; x̂xxxxxx ¼ fuuuuuuuðzzzzzzzÞ; (4)

where, EðfuuuuuuuðzzzzzzzÞ;xxxxxxx0Þ is a task specific term (e.g., denoising,
deblurring, etc.), xxxxxxx0 and xxxxxxx represent the degraded image
and the restored image, respectively. fuuuuuuuðzzzzzzzÞ is the generator
function that maps the random code vector zzzzzzz to an input
image xxxxxxx, i.e., xxxxxxx ¼ fuuuuuuuðzzzzzzzÞ. A suitable optimizer such as gradi-
ent descent is used for obtaining the minimizer uuuuuuu from ran-
domly initialized neural network parameters and the
output of the image reconstruction (i.e., restoration) process
for a given uuuuuuu� is given by x̂xxxxxx ¼ fûuuuuuuðzzzzzzzÞ. The iterative process
used by UNNPs to recover the input image xxxxxxx0 is depicted in
Fig. 3. UNNPs start the reconstruction process from itera-
tion 0 using random weights uuuuuuu0. They then iteratively
update the weights to minimize the task-specific objective
(i.e., Eq. (4)). In each iteration, the parameters are mapped
to an image xxxxxxx ¼ fðzzzzzzzÞ, where zzzzzzz is a fixed code vector. DNNs
perform the mapping using its parameters. The task-depen-
dent loss Eðxxxxxxx;xxxxxxx0Þ is computed using the image xxxxxxx. The gradi-
ent of the loss with respect to the parameters is then
computed and used to update them. Moreover, the quality
of images being reconstructed using a UNNP at different
iterations (i.e., 0, 50, 250, and 100) for different inverse imag-
ing tasks is shown in Fig. 5.

3.1 Early Stopping in UNNP

In the original UNNP work, the authors demonstrated that
fitting the weights (parameters) of an over-parameterized
deep convolutional network to a single image, together
with strong regularization by the early stopping of the opti-
mization, performs competitively on a variety of image res-
toration problems. More specifically, the authors relied on
early stopping to avoid the inherited overfitting issue of
UNNPs. A number of works have been recently proposed
to circumvent the issue of early stopping. These works
include the deep decoder [12] and a Bayesian alternative of
UNNP [16]. Unlike UNNP, the deep decoder is an under-
parameterized non-convolutional network that not only
represents images well but at the same time cannot fit noise
no matter how long it is being optimized (i.e., it circumvents

Fig. 4. Different UNNP architectures proposed in the literature. Relevant
papers: (a) [6] ; (b) [12] ; (c) [7], [25], [49] ; (d) [37], [68], [69] ; (e) [28],
[70] ; (f) [67] ; (g) [39].

Fig. 5. As the optimization process of UNNP progresses, the recovery of
the image is progressively improved while the degradation (e.g., holes,
noise) reduces gradually. �Figures reproduced using the publicly avail-
able source code.2

2. https://github.com/DmitryUlyanov/deep-image-prior
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the need for early stopping). Bayesian UNNP presents a
novel Bayesian view of the UNNP, which parameterizes a
natural image as the output of a CNNwith random parame-
ters and random input. More specifically, the authors pro-
vide an approach to avoid overfitting by adding suitable
priors over the network parameters and then using poste-
rior distributions to quantify the uncertainty. Dittmer et al.
[71] demonstrated that the projectional approach to UNNP
alleviates the need for early stopping and provides a valid
and plausible reconstruction, which is achieved by fûuuuuuuðzzzzzzzÞ
after the minimization for reconstruction. Similarly, the use
of hybrid deep priors for alleviating the problem of overfit-
ting in UNNP is explored in [72]. The authors proposed two
algorithms to incorporate an implicit prior (such as a
denoising algorithm) or explicit prior (such as total varia-
tion (TV)) with UNNP to avoid overfitting. In a recent study
[73], authors analyzed UNNP optimization using effective
degrees of freedom and then proposed an effective early
stopping strategy. Also, they proposed to incorporate sto-
chastic temporal ensemble (STE) to further enhance the effi-
cacy of UNNP for image denoising.

3.2 Adding Further Regularization to UNNP

While UNNP has shown to be quite an effective unsuper-
vised approach, its performance still falls short when com-
pared to state-of-the-art alternatives. A few recent works
aim to enhance the performance of the UNNP framework
by adding an explicit prior. This enriches the overall regu-
larization effect and provides better-reconstructed images.
In [74], the authors proposed the use of TV regularization to
improve the basic UNNP approach. The results of image
reconstruction for the task of image denoising and deblur-
ring demonstrate that TV regularization provides high-
quality results, compared to the basic UNNP approach.
More specifically, they aim to solve the following optimiza-
tion problem

ûuuuuuu ¼ argmin
uuuuuuu

EðfuuuuuuuðzzzzzzzÞ;xxxxxxx0Þ þ �rTV ðfuuuuuuuðzzzzzzzÞÞ;

s.t. xxxxxxx� ¼ fuuuuuuu�ðzzzzzzzÞ; (5)

where, rTV is the total variation regularizer, which is con-
trolled by the multiplying factor �.

In [75], the authors boost the performance of the UNNP
by augmenting it with the power of the trained denoisers.
They evaluated their proposed approach on image denois-
ing, super-resolution, and deblurring, showing the clear
benefit that regularization by denoisers provides over classi-
cal the UNNP. The objective function of their proposed
approach is given below.

xxxxxxx�; uuuuuuu� ¼ argmin
xxxxxxx;uuuuuuu

EðfuðzzzzzzzÞ;xxxxxxx0Þ þ �

2
xxxxxxxT ðxxxxxxx� fðxxxxxxxÞÞ;

s.t. xxxxxxx ¼ fuuuuuuuðzzzzzzzÞ; (6)

Similarly, in [76], the authors showed that strong prior
enforced by the UNNP can be augmented with the informa-
tion that recurs (i.e., repetitive information) in different
patches of a natural image to boost the reconstruction per-
formance. They minimized the following loss function

uuuuuuu� ¼ argmin
uuuuuuu

XN

n¼1

kPnðyyyyyyyÞ � fuuuuuuuðzzzzzzzÞÞÞ;

s.t. xxxxxxx ¼ fuuuuuuuðzzzzzzzÞ; (7)

where operator Pnð�������Þ extracts the nth patch from the input
image and x̂xxxxxxn is the denoised nth patch. The final estimate
of the image is reconstructed by combining all the denoised
patches, x̂xxxxxx ¼ ~Pðx̂xxxxxx1; x̂xxxxxx2; . . . ; x̂xxxxxxnÞ, where ~Pð�Þ is the function
that reconstructs the image back from its patches.

Similarly, the use of Tikhonov functionals rather than
deep networks was proposed in [29]. The authors provided
empirical evidence and showed that their method is equiva-
lent to regularization techniques.

3.3 Neural Architecture Search for UNNP

The efficacy of UNNP depends upon the architecture of the
neural networks being used. Ho et al. [68] proposed a neural
architecture search (NAS) technique to boost the perfor-
mance of the unsupervised learning capabilities of the
UNNP framework. They evaluated their proposed tech-
nique on different tasks namely image denoising, inpaint-
ing, and super-resolution. They demonstrated that the
configuration and the meta-parameters of the generator net-
work are automatically optimized by using evolutionary
search. These optimized network architectures have been
shown to enhance the performance of classic UNNP meth-
ods. Instead of using hand-crafted neural networks for
UNNP, Chen et al. [69] proposed the use of deep reinforce-
ment learning (DRL) to search for the best possible neural
network architecture for a specific problem. Their work is
inspired by the NAS algorithms [77], [78], [79], which
involve the search of optimal neural networks that give the
top performance on large datasets. Their approach differs
from NAS-FPN (proposed in [77]) as their target is the
recovery of feature maps with higher spatial resolution in
the decoder, whereas the aim in [77] is to learn pyramidal
feature representations for object detection. Their network
design is based upon the standard U-Net architecture. They
used DRL to search for an optimal upsampling cell and a
pattern of cross-level feature connections by treating the
obtained PSNR as the reward of the DRL algorithm. They
performed extensive experimentation and demonstrated
that the performance of their proposed technique is better
than the state-of-the-art learning-free techniques and com-
parable to the state-of-the-art learning-based methods.

An alternative architecture similar to the UNNP network
named guided deep decoder (GDD) for unsupervised
image fusion was proposed in [28]. The authors demon-
strated that GDD provides state-of-the-art performance in
solving a variety of image fusion tasks. Similarly, Cheng
et al. proposed to explore the network architecture search
by proposing a Bayesian perspective of UNNPs [16]. On the
other hand, Uezato et al. [28] argued that the UNNP net-
work architecture [6] does not fully exploit the semantic fea-
tures of the guidance image and therefore, it remains
unclear how the network architecture is conditioned on the
features of the guidance image. These uncertainties limit
UNNP’s ability to achieve state-of-the-art performance in
various image fusion problems. To interpret the UNNP
framework, manifold modeling in embedded space using a
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novel denoising autoencoder combined with multi-way
delay embedding transform was proposed in [80]. Chakra-
barty et al. [81] proposed a method to analyze trajectories
generated by a UNNP and demonstrated two key observa-
tions, i.e., the convolution layers in the encoder-decoder net-
work decouple the frequency components of an image
while learning at varying rates, and the model starts by fit-
ting the lower frequencies. As a result, enforcing the model
to stop early is similar to a low pass filter. In a recent study
[48], authors investigated UNNP from the perspective of
neural architecture, task-specific model (e.g., compressed
sensing, inpainting, and denoising), and the input data
type. They also proposed two methods for the selection of
optimal hyperparameters for UNNP. Furthermore, they
demonstrated that the choice of optimal hyperparameters
significantly varies with the problem at hand, leading to
degraded performance when used for the wrong task.

3.4 Improving UNNP’s Activation Function

In the literature, a number of techniques have been pro-
posed to improve the overall performance of the UNNP net-
work. For instance, Segawa et al. [82] presented a new
activation function named RSwish and evaluated its perfor-
mance versus LeakyReLU in UNNP for the task of super-res-
olution. A comparative analysis of different activations
functions, i.e., rectified linear unit (ReLU), leaky rectified
linear unit (LeakyReLU), and the randomized leaky recti-
fied linear unit (RReLU) is presented in [83]. The authors
considered the tasks of super-resolution, denoising, and
inpainting and found that RReLU performs best for the task
of denoising and inpainting, whereas ReLU performs better
for the task of super-resolution. Metzler et al. [84] evaluated
the performance of the UNNP framework for the denoising
task using their proposed Stein’s Unbiased Risk Estimator
(SURE) loss instead of using ‘2 loss.

3.5 Theoretical Development

Since UNNP inception, substantial effort has been devoted
to building an understanding of why convolutional genera-
tors are biased towards natural images and why the
untrained network is capable of denoising noisy images
without being explicitly trained. In this regard, Heckel et al.
[85] have investigated how a specific network architecture
enforces an over-parameterized UNNP to fit a single
degraded input. In particular, they empirically proved that
a convolutional generative network (with fixed convolu-
tional filters) fits natural images faster than pure noise
when optimized via gradient descent. In [86], the same
authors provided theoretical evidence and empirical proof
for a self-regularizing intriguing property of UNNP in
recovering a clean image from minimal measurements of
the corrupted image without any regularization. Further-
more, they identified that an over-parameterized UNNP is
governed by the spectral properties of their Jacobian map-
ping that contains singular vectors, which can be approxi-
mated by orthonormal trigonometric basis functions.

3.6 Coupling Multiple UNNPs

The concept of coupling multiple UNNPs is based on the
fact that various computer vision tasks aim to decompose

an image into its components. More specifically, the authors
in [7] proposed an unsupervised Deep framework that
decompose a single image into its layers, such that the dis-
tribution of “image elements” within each layer is simple.
More specifically, they demonstrated that coupling multiple
UNNPs provides a powerful tool to decompose images into
their basic components, for a wide variety of applications
including image-dehazing, Fg/Bg segmentation, water-
mark-removal, transparency separation in images and
video. These capabilities are achieved in an unsupervised
way, with no training examples other than the input
image/video itself. Different applications of coupling multi-
ple UNNP networks are described as follows.

3.6.1 Image Decomposition

In [7], the authors proposed a double-UNNP (a general-pur-
pose unsupervised DL framework to decompose a complex
input image into simpler layers) and showed that coupling
multiple UNNP networks can be used to decompose images
into basic layers by exploiting the fact that the internal sta-
tistics of a mixture of layers is more complex than the statis-
tics of its components. They evaluated the capability of their
proposed method for different image decomposition tasks,
including image-dehazing, foreground-background seg-
mentation, watermark-removal, and transparency separa-
tion in images and videos. The distribution of small patches
within each layer is simpler than the joint distribution of the
mixed image along with having weak similarity among the
patches of the two layers. The self-similarity of patches
within each layer of the image has been exploited by the
fact that a single UNNP network shares its filter weights
across the entire image due to being fully convolutional.
Furthermore, they defined the following criteria for the
decomposition to be reasonable as there could be an infinite
number of possible decompositions of an image: (i) the
recombination of the recovered layers must lead to the origi-
nal image; (ii) each layer must show strong self-similarity of
patches; (iii) each layer must be mutually independent (as
possible). These criteria are enforced through a reconstruc-
tion loss employing separate UNNPs for each layer, and an
exclusion loss between the outputs of the different UNNPs
for minimizing their correlation.

In [87], authors employed three UNNPs to model three
different image components, i.e., background, fence, and
fence mask, in the fence removal problem. The initial mask
was estimated using a recurrent network, which was then
further refined using an UNNP network that uses a Lapla-
cian smoothness loss function. The proposed approach can
generate a visually plausible background image while
removing the fence. However, no comparison was per-
formed with state-of-the-art defencing methods. The pro-
posed UNNP-based approach was only compared with
existing image inpainting methods, which showed superior
performance in fence removal problems. However, this
comparison was not fair as inpainting and defencing are
distinct problems. Moreover, the proposed approach
requires data-driven training of the mask generation net-
work. It also significantly increases the execution time of the
proposed method as the training and inference time of the
mask generation network is additive to the optimization
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time of the three UNNP networks. Tian et al. [88] proposed
to use multiple UNNPs for the decomposition of the text
layer and noisy background. The enhanced images were
then used for CAPTCHA recognition using a representation
learning and supervised learning strategy. The UNNPs-
based approach provided improved performance in recov-
ering the basic layers of CAPTCHA images as compared to
existing baselines. However, UNNPs still exhibited limita-
tions when decomposing images in which the background
and character layer possess strong similarities.

3.6.2 Blind Image Deblurring

Blind deconvolution remains challenging in many real-
world applications. The use of fixed and hand-crafted pri-
ors in traditional maximum a posteriori (MAP) based
methods lead to insufficient characterization of clean
images and blur kernels. On the other hand, DL-based
motion deblurring networks learn from massive datasets
but are limited to handling only simpler types of kernels.
Recently, in [21], the authors extended the idea of multi-
ple UNNP for blind image deblurring by employing two
UNNPs, one to produce the clean image and one for the
blur kernel. They used an asymmetric autoencoder with
skip connections and an FCN to respectively capture the
deep priors of latent clean image and blur kernel, with
the SoftMax nonlinearity applied to the output of the
FCN to meet the nonnegative and equality constraints of
the blur kernel. Moreover, a joint optimization algorithm
is proposed to solve the unconstrained neural blind
deconvolution model. The optimization process is a kind
of zero-shot self-supervised learning, where the genera-
tive networks are trained using only a blurry test image
without ground-truth clean image.

3.6.3 Reflection Separation

Kim et al. [89] argued that the standard UNNP frame-
work may not always produce good results for the task of
reflection separation and removal from natural images.
This is because it is only able to capture the low-level
image statistics. As a remedy, they proposed the Percep-
tual UNNP, which can contain high-level semantic infor-
mation by embedding feature maps extracted from a pre-
trained image classification network. Two perceptual
UNNPs with cross-feedback were jointly optimized for
reflection separation tasks. Furthermore, they argued that
the original multiple-UNNP framework ([7]) will only
work if the two different images are not correlated which
is not the case in natural images. Chandramouli et al. [90]
also proposed a UNNP-based method for reflection sepa-
ration for face images. Unlike [6], they used the output of
the previous iteration as the input to the UNNP, and this
cross-feedback enhanced the ability of exclusion for both
perpetual UNNPs. Through experiments, they showed
that the use of the cross-feedback loss not only increases
the convergence speed but also increases the robustness
of the model. Similarly, Lei et al. [91] argued that the dou-
ble-UNNP technique fails when used for reflection sepa-
ration from a given image. The rationale behind this
assumption is that the input image is composed of two
images with spatial-invariant coefficients. This would not

be true in the case of natural images. To overcome this
issue, they proposed a perceptual normalized cross-corre-
lation (PNCC) loss to minimize the correlation between
the estimated reflection and the transmission at different
feature levels.

3.6.4 N-Layer Decomposition

Lu et al. [92] argued that the Double-UNNP approach (pro-
posed in [7]) has limited control over their output layers
and entirely relies on the CNN properties to produce a
meaningful decomposition. Furthermore, they proposed a
method that gives control over the decomposition which is
required for re-timing people in videos. However, their
method works for only two-layer decomposition and
requires N-times the learnable features for an N-layer
decomposition. On the other hand, their proposed approach
can produce an arbitrary number of features with the same
number of parameters. As their technique is not able to
effectively handle dynamic backgrounds. They proposed to
add an extra layer for dynamic backgrounds in addition to
the layers for the foreground objects.

4 UNTRAINED NEURAL NETWORK PRIORS:
APPLICATIONS

A summary of different applications of UNNP to different
IIPs is presented in Table 3 and are described below.

4.1 3D Shape Reconstruction

3D shape reconstruction is a challenging problem because
the search space of 3D shapes is very large, as it aims at
reconstructing 3D representations from multiple 2D scenes.
Gadelha et al. [22] argued that this search over natural
shapes can be replaced by a search over the parameters of
the neural network. They proposed to use UNNP for neural
parameters search for 3D shape reconstruction. Further-
more, they proposed differentiable projection operators for
the reconstruction of shapes from noisy and incomplete pro-
jections. These operators when combined with UNNP, gen-
erate deep shape priors allowing efficient inference through
gradient descent without requiring task-specific training.
They evaluated their proposed method on a variety of
reconstruction problems such as tomographic reconstruc-
tion, visual hull reconstruction, and 3D shape reconstruc-
tion. They employed 3D convolutions instead of 2D in
UNNP’s architecture for 3D shape reconstruction. They
showed that their proposed differentiable technique is quite
faster than the Bayesian inference method using Markov
Chain Monte Carlo (MCMC) techniques [120]. Similarly, the
UNNP has been used for 3D mesoscopic imaging using a
non-fixed phone camera, where the UNNP was used for the
unsupervised restoration of height maps [121]. The authors
in [122] demonstrated that UNNPs can be used to solve
non-convex optimization problems arising from terahertz
(THz) imaging. They incorporated a 3D model-based
autoencoder into the UNNP framework, which was used
for parameter estimation of the THz model for real and syn-
thetic data under low signal-to-noise ratio (SNR) and shot
noise conditions.
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TABLE 3
Summary of Various Applications of Untrained Neural Network Priors (UNNPs) for IIPs

Application Ref Methodology Dataset (s) & Metric (s) Performance
Comparison

Limitation (s)

3D Shape
Reconstruction

[22] Integrated differential
operators with UNNP

- ModelNet40
- Intersection over

Union (IoU)

UNNP outperformed
several handcrafted and
procedural priors for
image and volumetric
reconstruction.

Volumetric
representations for
shapes incur high
memory and storage
requirements and
significantly increase
overall execution
time.

Image
Enhancement

[93] Combined UNNP with
TV regularization

- San Francisco, Red
Rock, & MNIST

- Normalized MSE &
SSIM

UNNP outperformed
traditional hand-crafted
methods.

Due to the
underparameterized
nature of UNNP,
sparsity priors were
more beneficial at
higher sampling rates.

[94] Proposed an UNNP
variant by combining
under-parameterized
UNNP with TV and
weighted TV
regularization.

- Self-Prepared Dataset
- PSNR & SSIM

Modified UNNP
outperformed standard
UNNP for denoising
real, synthetic, natural,
& medical images.

The proposed
approach requires the
selection of good
hyperparameters.
Also, it becomes
vulnerable to
overfitting at higher
iterations.

Illumination
Normalization

[10] Used illumination
regression filter with
accelerated proximal
gradient algorithm
along with UNNP
framework.

- Extended-YaleB, CAS-
PEAL, & Multi-PIE

- PSNR, RMSE & SSIM

UNNP outperformed
conventional hand-craft
priors and provided
comparable
performance with
learning-based
methods.

Only considered
lighting variations
and not variations in
pose and facial
expressions.

Image Denoising [95] Integrated MobileNet-
based blind image
quality assessment
network with UNNP to
prevent overfitting.

- PolyU and Nam
- PSNR

Outperformed hand-
crafted approaches with
a good noise
suppression capability.
Also, achieved 36%
reduction in iterations
compared to standard
UNNP.

Requires separate
training of blind
image quality
assessment network,
which require labelled
data and can be time-
consuming.

[96] Proposed Variational
UNNP

- Kodak Image Dataset,
and McMaster
Dataset

- CPSNR, SSIM & FSIM

Superior quantitative
performance of
variational UNNP as
compared to standard
UNNP and learning-
based DL methods.

High execution time
as compared to
standard UNNP as it
uses a training step for
each incoming color
filter array image.

Image Deblurring [97] Used L0 regularization
with UNNP

- Self-Defined Dataset
- PSNR & VIF

Outperformed hand-
crafted methods
quantitatively and
qualitatively on
simulated and real data.

Proposed UNNP
framework only
works with Poisson
noise and cannot work
for non-uniform noise.

[98] Incorporated back-
propagation loss into
UNNP to improve the
deblurring
performance.

- Set14 Dataset
- PSNR

Provided superior
quantitative results
than standard UNNP
with fast convergence.

Performance of
conventional back
projection method is
superior when blur
kernel size is small.

Image
Decomposition

[7] Used multiple coupled
UNNP networks

- Self-Defined Dataset
- PSNR

Outperformed hand-
crafted priors and
provided comparable
performance to
learning-based
methods.

Highly dependent on
the choice of
hyperparameters,
especially for the task
of segmentation.
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TABLE 3
(Continued )

Application Ref Methodology Dataset (s) & Metric (s) Performance
Comparison

Limitation (s)

HSI Image Super-
resolution

[99] Used UNNP as the
prior of the latent HR
HSI

- CAVE andWashing-
ton DC datasets

- RMSE, PSNR, SAM &
SSIM

Provided superior
performance as
compared to hand-
crafted approaches on
two benchmark
hyperspectral imaging
datasets.

High computational
cost due to the
volumetric nature of
data. Also, as no early
stopping was used,
therefore,
performance drops at
higher iterations.

[100] Integrated UNNP with
super resolution
convolutional neural
network (SRCNN)

- Self-chosen hyper-
spectral images

- Overall Accuracy &
Kappa index

UNNP-based super
resolution mapping
outperformed three
state-of-the-art
methods.

SRM and SR on a
larger scale could
have a sophisticated
impact on transfer
learning performance
and applicability.

[101] Trained UNNP with
both external dataset
and internal
information of the
spatial-spectral
restricted input coded
image.

- CAVE, the Harvard,
and ICVL datasets

- PSNR, SSIM & SAM

Better generalization
ability, quantitative,
and qualitative results
on synthetic and real
data compared to hand-
crafted and learning-
based approaches.

External learning
module requires large
dataset for training.

[102] Integrated image
registration into HSI
super-resolution for
joint unsupervised
learning

- CAVE, and Harvard
datasets

- RMSE, PSNR, SAM &
SSIM

Effectively exploits the
spatial-spectral
structures and
outperforms
conventional
approaches in terms of
four quantitative
metrics.

Despite improved
performance, it incurs
extra computational
cost due to addition of
spatial transformer
network.

Depth Map Super
Resolution

[103] Integrated a visual
appearance based loss
function with UNNP
for 3D image
reconstruction.

- SimGeo, ICLNUIM,
Middlebury, SUN
RGBD, and ToF-
Mark

- DSSIM & LPIPS

UNNP with proposed
loss function
outperformed two
learning-free and four
learning-based state-of-
the-art image super
resolution (SR)
methods.

Early stopping was
not employed, hence
UNNP optimization
becomes prone to
overfitting at higher
iterations.

[9] Relaxed the constraints
of the original UNNP,
enforcing it to capture
compact prior
knowledge for a given
task.

- Set5 dataset
- PSNR

Provided slightly less
performance as
compared to a state-of-
the-art DL-based
method in noiseless SR
and outperformed
standard UNNP in
noisy SR.

UNNP struggles to
reconstruct fine
details such as
eyelashes.

Image Inpainting [104] Integrated human
guidance with UNNP
via a feedback
mechanism.

- Mogao Grottoes
- LMSE & DSSIM

Provided superior
performance as
compared to four
learning-based methods
and hand-crafted
method.

Irrelevant inputs from
human can adverserly
affect the
performance. Also,
human involvement
increases, which
incurs more time.

[105] Integrated UNNP with
a depth reconstruction
loss and a view-
constrained photo-
consistency loss

- Tanks and Temples
(TnT), KITTI ste-
reo, & NYU depth
V2

- Precision, Recall & F-
score

UNNP-based method
outperformed
quantitatively and
qualitatively different
baseline approaches,
including hand-crafted
and learning-based
methods.

Limitations in
recovering small
image details. Also,
3D point cloud fusion
incurs increased
computational
complexity and longer
execution time, thus
limiting real-time
applicability.
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TABLE 3
(Continued )

Application Ref Methodology Dataset (s) & Metric (s) Performance
Comparison

Limitation (s)

Video Inpainting [106] Used flow prior and a
consistency loss with
UNNP

- Vidoes from DAVIS
dataset

- FID, PSNR & SSIM

Proposed UNNP-
variant outperformed
standard UNNP and a
baseline learning-free
method.

Cannot fill large holes
and cannot handle
motion artifacts. Also,
each video is
processed for several
hours.

Video
Stabilization

[107] Shift in frames was
modelled as the dense
optical flow field of
consecutive frames

- Videos from different
sources

- Accumulated optical
flow, cropping
ratio, global distor-
tion, frequency
domain stability &
the smoothness of
frame motion.

UNNP-based approach
provided an improved
quantitative
performance as
compared to baseline
methods. However, in
some examples, there
was a negligible
difference in qualitative
performance with
slightly improved
quantitative
performance.

UNNP does not
converged for video
segments. Also,
processing of
temporal information,
incurs much larger
time as compared to
processing 2D images.

Temporal
Consistency

[108] Used UNNP for
achieving blind video
temporal consistency

- DAVIS dataset
- Temporal consistency

& data fidelity

Provided a comparable
quantitative
performance as
compared to one
learning-based and
learning-free method.

UNNP struggles with
recovering flickering
artifacts in videos and
require higher
iterations as that of
normal videos. Also,
video processing,
significantly alleviates
execution time and
memory utilization.

Video Restoration [109] Jointly solved speckle
noise reduction and
image inpainting using
an UNNP-based
approach.

- Self defined dataset
made from noisy
old and new mov-
ies

- PSNR

Proposed approach
outperformed the hand-
crafted, learning-based
method, and as well as
standard UNNP.

UNNP struggles in
recovering minute
spatio-temporal
inconsistencies in
videos. Also, video
processing using
UNNP, significantly
alleviates execution
time and memory
utilization

Super-Pixel
Segmentation

[110] Designed specialized
objective function for
UNNP that was used
for super-pixel
segmentation.

- BSDS500 dataset
- Achievable segmenta-

tion accuracy
(ASA) & boundary
recall (BR)

UNNP with proposed
objective function
outperformed three
hand-crafted
approaches for the task
of super-pixel
segmentation.

Generation of
superpixels are highly
dependent on initial
parameters. Also,
UNNP’s
reconstruction loss
may induce
independent pixels to
same superpixel.

Pansharpening [32] Used UNNP and dual-
attention residual
network (DARN) for
HSI pansharpening.
UNNP was employed
for super-resolution
task and DARNwas
trained in a data-driven
strategy.

- CAVE, Pavia Center,
Botswana, and Los
Angeles datasets

- SAM, RMSE, ERGAS
& PSNR

Proposed UNNP-based
approach provided
superior performance
as compared with
existing hand-crafted
and learning-based
methods.

Training time of
DARNmodel
increases with the
increasing residual
blocks.

Phase Retrieval [17] Used UNNP for
compressive phase
retrieval and optimized
it using gradient
descent and projected
gradient descent.

- MNIST & CelebA
- nMSE

UNNP-based approach
outperformed baseline
hand-crafted
ompressive phase
retrieval methods.

Initialization of
parameters is problem
specific and impacts
performance.
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TABLE 3
(Continued )

Application Ref Methodology Dataset (s) & Metric (s) Performance
Comparison

Limitation (s)

[111] Used UNNP for
unwrapping the phase
in 2D quantitative
phase imaging.

- Self-defined Dataset
- Regressed SNR

(RSNR)

Outperformed
learning-based DL
models in specific
analyses and
underperformed in
some cases.

Evaluation performed
on simulated data.

[26] Used UNNP for Fourier
ptychography

- Self-defined Dataset
- PSNR & SSIM

Significantly
outperforms sparsity-
based approach and
trained generative
models in terms of
quantitative metrics
and visual quality at
low sampling rate.

Performance
evaluation and results
are only reported for
simulated datasets.

[112] Used autoencoder in
UNNP framewrok for
the phase retrieval in
Fourier ptychography.

- INRIA Holidays data-
set

- PSNR & SSIM

Proposed UNNP
variant outperformed
baseline DL-based
methods and as well as
standard UNNP.

UNNP cannot handle
low overlap cases for
which a supervised
GANwas used. Also,
it fails in efficiently
handling images with
bad illumination.

Image
Deconvolution

[113] Inspired by learning
free deconvolution
methods, modified
classical UNNP’s
objective to
deconvolution energy
function.

- Self-defined Dataset
- MSE, PSNR & KL

divergence

Results only compared
on six standard
benchmark images and
no comparison was
performed with
existing baselines.

Proposed UNNP
variant was not able to
effectively handle
Gaussian degraded
deconvolution.

[31] Used an autoencoder in
UNNP framework for
denoising and a FCN
network to model blur
kernel with TV
regularization.

-Public data
- PSNR & SSIM

Proposed hybrid
UNNP approach
outperformed nine
baseline methods and
standard UNNP.

As proposed hybrid
method involves
optimization of two
generator networks, it
incurs larger
execution time.

Adversarial
Defense

[114] Used UNNP to clean
adversarial noise from
adversarial
perturbations to
withstand adversarial
attacks on ML/DL
classifiers.

- CIFAR-10
- Classification Accu-

racy

UNNP provided
improved performance
in cleaning adversarial
noise generated by
three well-known
methods, i.e., FGSM,
BIM, & LLCI as
compared to a
randomization-based
baseline.

All methods aiming at
using UNNP for
denoising of
adversarial noise
suffer from one major
limitation, i.e., UNNP
is only able to recover
the clean image in
early iterations, and
after that it gets
overfitted to
adversarial noise.
Therefore, an optimal
early stopping criteria
is required to stop
optimization. Also,
when UNNP
optimization is
stopped in early
iterations, the quality
of the reconstructed
clean image will be
poor (as optimization
is usually required to
be stopped in the first
few hundred
iterations, e.g., 300-
500).

[115] Used UNNP for
generation of
adversarially robust
features and proposed
adaptive early stopping
strategy.

- CIFAR-10 & ImageNet
(subset)

- Classification Accu-
racy

UNNP outperformed
five state-of-the-art
methods in denoising
adversarial
perturbations
generated using
FGSM, PGD JSMA,
Momentum, & STA
(with varying noise
level).

[116] Used UNNP for
cleaning adversarial
perturbations

- Self-defined Dataset
- Classification Accu-

racy

Only FGSM-based
adversarial
perturbations were
considered for
denoising.

[117] Used UNNP for
cleaning adversarial
perturbations

- CelebA Dataset
- Accuracy, precision &

Recall

Successfully denoised
adversarial
perturbations
generated using
FGSM and C&W.
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4.2 Compressed Sensing

Compressed sensing aims to reconstruct an unknown signal/
image of dimension n from a small set of itsm linear and noisy
measurements, wherem � n. UNNPs have been successfully
applied to compressed sensing tasks. For instance, Van et al.
[123] proposed to use UNNPs for the compressed sensing-
based reconstruction of images from three databases, i.e., chest
X-ray images, MNIST, and START. In their proposed method,
they used the DCGAN architecture in the UNNP framework
and integrated learned regularization to allow processing of
non-linear measurements, which decreases reconstruction
error as well. The proposed UNNP framework outperformed
different baselinemethods (i.e., TVAL3 andLasso-DCT) except
BM3D-AMP for higher m. However, despite using the unsu-
pervisedUNNP framework, they still relied on a small amount
of training data for learned regularization. Similarly, Ren et al.
[124] combined a UNNP (with a DCGAN’s generator architec-
ture) and compressed sensing for the recovery of 1D signals
generated from soils’ data, whose function is to measure the
quality of soil. In [125], the authors proposed to train a deep
unsupervised model by partitioning the images into several
sub-bands. A UNNP-based alternative algorithm was used to
perform reconstruction by imposing constraints on the param-
eters of the DNN. Furthermore, to boost the performance of
UNNPs, they injected image-based priors, which were
extracted from the training data. The proposed method was
evaluated on different datasets including facial images, medi-
cal and multi-band astronomical images. In a recent study
[126], the robustness aspects of three different MRI reconstruc-
tion methods namely, end-to-end trained DL models, UNNPs
(DIP and Deep Decoder), and traditional compressed sensing
methods were investigated against three vulnerabilities, i.e.,
adversarial perturbations, distribution shifts, and recovering
details. The authors found that all three MRI reconstruction
methods are vulnerable to adversarial perturbations and per-
formance against distribution shift was linearly correlatedwith
the in-distribution performance.

Meng et al. [50] proposed a plug-and-play framework
that leverages UNNP for spectral snapshot compressed
sensing along with other traditional priors. During the
optimization process, conventional and UNNP-based pri-
ors complement each other. Furthermore, the authors
proposed an alternative optimization strategy to jointly
solve the reconstruction and optimization of network
parameters optimization. Similarly, Sun et al. [36] pre-
sented a plug-and-play prior and augmented Lagrangian
formulation of the problem (at hand) within the UNNP
framework. In [127], a learning free generative modelling
framework (named APGen) combining UNNP and a
sparse regularizer, was proposed. The authors demon-
strated the effectiveness of APGen for the compressed
sensing of neural action potentials. The results show that
APGen outperforms existing data-driven and model-
based in terms of time efficiency, reconstruction perfor-
mance, and robustness to action potential misalignment
overlap. Similarly, in [45], the authors showed that
under-parameterized UNNPs integrated with simple reg-
ularizers (such as energy minimization or l2 regulariza-
tion) can be used for the reconstruction of Gabor
holograms. In their proposed UNNP framework, the
input random noise was kept constant. In a similar study
[54], an under-parameterized UNNP was used for the
reconstruction of dual-wavelength in-line holographic
images. A complete task-specific physical model (repre-
senting dual-wavelength in-line holography) was incor-
porated in the UNNP framework to help the network
effectively eliminate the effect of amplified noise. Mona-
khova et al. investigated both under-parameterized and
over-parameterized UNNPs for compressed sensing
based lensless 2D imaging [44]. They showed that over-
parameterized UNNPs provide superior performance
compared to under-parameterized networks. As the
average reconstruction time was 1.5 hours, early stop-
ping was used to limit computational time.

TABLE 3
(Continued )

Application Ref Methodology Dataset (s) & Metric (s) Performance
Comparison

Limitation (s)

Crafting
Adversarial
Perturbations

[118] Used UNNP for
crafting adversarial
perturbations

-ImageNet
- Misclassification Rate

UNNP can be used to
reconstruct such
adversarial
perturbations that are
robust to affine
deformations.

Generates different
perturbations for each
run. However, it does
not affect performance
significantly and takes
longer time.

[13] Explored the
vulnerability of super-
resolution UNNP to
adversarial attacks.

- ImageNet & MSCOCO
- Acc, BLEU, ROUGE &

CIDEr

UNNP-based
reconstructed images
were successfully able
to evade three DL
models.

UNNP cannot
effectively exploit
minute image details
in low-resolution
image.

Counterfactual
Explanations

[119] Integrated an auxillary
loss estimator trained
with predictor that
guides UNNP in
performing image
reconstruction.

- ISIC 2018 lesion data-
set

- No metric used

Performs better in
synthesizing
meaningful
counterfactuals as
compared to standard
UNNP.

The quantitative
evaluation was not
performed. Also,
performance degrades
at higher iterations of
UNNP due to
overfitting issue.
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4.3 Image Restoration

4.3.1 Image Enhancement

The enhancement of images taken in poor lighting conditions
is a well-known problem. This enhancement can be per-
formed by extending (post-acquisition) the dynamic range of
the captured images. Jagatap et al. [93] proposed the use of
UNNP for high dynamic range (HDR) image reconstruction
without training data. To enhance the performance of UNNP,
they used TV regularization for the reconstruction of low-
light images and they usedDeepDecoder architecture, which
is a variant of UNNP. Their results demonstrate a significant
improvement over previous traditional dynamic range
enhancement techniques. Similarly, to improve the perfor-
mance of UNNP, Cascarano et al. [94] proposed the use of a
total variation and weighted total regularizer in the UNNP
framework to promote the gradient-sparsity of the solution.
The minimization problem is then solved using the alternat-
ing direction method of multipliers (ADMM) optimization
framework. Furthermore, the authors demonstrated that the
proposed technique (named ADMM-DIPPTV) outperforms
two state-of-the-art techniques (i.e., DIP [6] and DIP-TV [74])
on several image restoration tasks in terms of PSNR and SSIM
values. Furthermore, they claimed that the use of this ADMM
splitter guarantees the algorithm’s stability. This was demon-
strated, without a loss of focus on small details, that their pro-
posed technique increases sharpness over the edges of the
objects in an image.

Mastan et al. [128] proposed a learning-free framework
to investigate the relationship between UNNP (architecture)
construction and image restoration. Their proposed frame-
work is based on multi-level extensions of encoder-decoder
networks (MED) and allows various network structures,
e.g., by modifying the skip connections and the network
depth, composing encoder-decoder sub-networks, and cas-
cading the network input into intermediate layers. Further-
more, they illustrated how the image restoration tasks are
affected by the construction of neural network architecture
in UNNP. Instead of using the randomly initialized deep
network as a hand-crafted prior for image restoration, they
used their proposed learning-free approach based on hand-
crafted structures for image restoration. They argued that
the non-usage of training samples to learn the image prior
in UNNP [6] causes it to miss local level features in the out-
put image. Nonetheless, it has been shown to generate bet-
ter images than bicubic sampling.

4.3.2 Illumination Normalization for Face Images

Illumination normalization is a major factor that impacts
face recognition. To solve this problem, Han et al. [10] pro-
posed an illumination normalization method to generate
photorealistic face textures while preserving the face iden-
tity. In their proposed technique, they combine an illumina-
tion regression filter with an accelerated proximal gradient
algorithm. Both of these components remove several illumi-
nation components from the image, while the latter also
reduces noise. However, the output of these components
has a peeled-off appearance. To restore these components
they employed a UNNP that was able to generate realistic
textures. They conducted experiments on public datasets
and demonstrated the robustness of their proposed method

to illumination. However, the proposed approach was not
able to handle pose and expression variations.

When an image is affected by multiple distortions, the
classical UNNP may not provide the expected performance
in image restoration. To address this limitation, a novel
strategy named dual prior learning (DPL) was proposed in
a recent study [129]. DPL employs two networks, a UNNP
to model image specific prior (using random noise) as well
as another network to capture distortion prior, which is
used to learn information about the different distortions.
Reported results show that DPL significantly outperforms
the conventional UNNP in the restoration of images having
multiple distortions.

4.4 Image Denoising

In the original UNNP paper [6], the authors showed that the
parametrization approach of UNNP demonstrates high
impedance to image noise. Thus, UNNP can be naturally
used for image restoration, whose goal is to recover clean
image x from noisy observation x0. The degradation model
can either be known or unknown, i.e., blind image denois-
ing. Zou et al. [95] used UNNP for the denoising of endo-
scopic images. They integrated a trained MobileNet model
for blind image quality assessment (which was used for
stopping UNNP iterations). Also, they employed transfer
learning strategy, which was able to reduce UNNP itera-
tions by 36%. Park et al. [96] proposed a variational UNNP
for jointly solving the problem of demosaicing and denois-
ing. They used the same U-net architecture as in the original
UNNP [6] but proposed a new loss function that incorpo-
rates both constant (zc) and varying noise (zv) derived from
a Gaussian distribution. zc remains constant until pth itera-
tions before zv is added to zc. Introducing variational noise
in UNNP optimization provides better convergence, com-
pared to the original UNNP in terms of denoising perfor-
mance. However, their proposed framework has higher
execution cost than the standard UNNP approach. The use
of UNNPs for the restoration of corrupted remote sensing
images, especially where multi-temporal snapshots are not
available was proposed in [130]. The key purpose of using
UNNP was to fill gaps in corrupted remote sensing images
(similar to a typical image inpainting problem). In [131],
UNNP was used for the denoising of a synthesized multi-
plane image (MPI). The authors found that a UNNP
integrated with multilayer perceptrons results in a better
regularized MPI while providing superior performance
compared to standard optimization without UNNP. In
[132], authors integrated physics-inspired sensor modeling
with UNNP for the denoising and super-resolution of ther-
mal images. Moreover, given that their approach is modu-
lar, they suggested that any UNNP framework can be used
in the proposed approach, e.g., Deep Decoder.

4.5 Image Deblurring

Although noise filters can effectively remove noise from a
blurred image, they can also damage the blurred informa-
tion by introducing a more serious blur. Feng et al. [97] pro-
posed the use of UNNP to restore the noisy and blurred
images using a single degraded image. They incorporated a
RED regularizer for optimizing UNNP for the task of
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Poissonian image deblurring, as the classical UNNP
approach is not effective in handling Poisson noise [97].
Their learned denoiser (a neural network) can then be used
as a regularizer to constrain the latent clear image. They
combine this prior with the L0 regularization before estab-
lishing a restoration model for the Poisson image. They per-
formed an experimental evaluation on several real and
simulated images and showed that their proposed method
achieves competitive results. Furthermore, their experi-
ments show that their proposed method is not only able to
suppress the staircase effects in the image but is also able to
preserve the details. Zukerman et al. [98] proposed BP-DIP
by combining UNNP with a back projection (BP) fidelity
term used in place of the standard MSE loss (usually used
in UNNP). TV regularization was also incorporated in the
proposed framework to circumvent the noise sensitivity of
BP. They experimentally demonstrated that their proposed
method is not only able to achieve higher performance (in
terms of PSNR value) compared to previous works but also
a better inference run-time. Their results show that BP-DIP
yields higher PSNR and reaches its peak PSNR in relatively
fewer iterations than standard MSE based UNNP. However,
they argued that early stopping is still required to avoid the
overfitting problem of UNNP.

4.6 Image Super-Resolution

In an image super-resolution problem, given a low resolu-
tion (LR) RGB input image x0 2 R3�H�W and an upsam-
pling factor t, the objective is to generate a high resolution
(HR) RGB image x 2 R3�tH�tW such that when x is down-
sampled by a factor of t, the output is the same image as x0.
Hence, super-resolution is an ill-posed problem because
there can be an infinite number of HR images that can corre-
spond to the same LR when downsampled.

4.6.1 Hyperspectral Image Super Resolution

Fusing a low spatial resolution (LR) hyperspectral image
(HSI) with a high spatial resolution (HR) multi-spectral
image (MSI) is an effective way to achieve HSI super-resolu-
tion. The results generated using existing techniques are
based on the assumption that both input images are clean.
This is too idealistic for real cases. To address the problem
of noisy HSI and MSI input, Nie et al. [99] proposed a
UNNP-based HSI super-resolution method in which UNNP
is employed as the prior of the latent HR HSI which con-
verts it into an end-to-end DL problem and solved it using
back-propagation to capture better statistics of the latent
HR HSI. Furthermore, they demonstrated the effectiveness
of their proposed technique by evaluating it on two bench-
mark datasets: the CAVE dataset and the Washington DC
dataset. Ma et al. [100] proposed a combination of UNNP
with a super-resolution convolutional neural network
(SRCNN) to estimate fine resolution fraction images for
each land cover type. The proposed UNNP-based approach
was shown to be quite robust on small objects. It also results
in reduced soft classification uncertainty. Similarly, a
UNNP-based approach for coded HSI reconstruction was
proposed by Zhang et al. [101]. UNNP learns the deep prior
from the external dataset, as well as the internal information
of the spatial-spectral restricted input coded image. They

showed that their proposed method can sufficiently repre-
sent HSIs by effectively exploiting the spatial-spectral corre-
lation. Using both quantitative metrics and perceptive
consistency, their results proved that their proposed meth-
odology outperforms the state-of-the-art.

Nie et al. [102] argued that the success of the existing HSI
super-resolution methods based on fusion depends on the
premise that the images used for fusion (i.e., the HSI low-spa-
tial-resolution input and the multispectral image with low-
spectral resolution) are exactly registered.While such a prem-
ise is too idealistic for the real world, few efforts have taken
this issue into account. As a solution to this, Nie et al. [102]
proposed the integration of image registration intoHSI super-
resolution for joint unsupervised learning. To learn the
parameters of the affine transformation between the two
input images, they used a UNNP-based spatial transformer
network (STN) that avoids overfitting by constraining the
STN. UNNP was used for the estimation of latent HSI image
Z from two observed input images. Through experimental
evaluation, they showed that their methodology can success-
fully deal with unregistered input images.

4.6.2 Depth Map Super Resolution

RGBD images typically offer high-resolution color and
lower-resolution depth. Voynov et al. [103] argued that the
low-resolution of the depth maps can be improved by using
the color information from RGBD images, which can be
effectively used for the 3D reconstruction of images. To
leverage this, they proposed a novel visual appearance-
based loss function and integrated it with different depth
processing methods including UNNP. They showed that
UNNP yields dramatically improved 3D shapes when opti-
mized using their proposed visual difference-based loss
function, as it does not suffer from false geometry artifacts,
unlike the classical UNNP (that does not incorporate the
aforementioned loss). Furthermore, they showed that
UNNP can be used to simultaneously solve super-resolu-
tion and inpainting problems.

4.6.3 UNNP Variant for SR

Sagel et al.[9] argued that the optimization in the original
UNNP limits the output image being reconstructed to be rep-
resented by a convolutional neural network. This might
neglect prior knowledge and may make certain regularizers
ineffective in specific cases. As a solution, they suggested an
alternative approach that relaxes this constraint and takes full
advantage of all prior knowledge. They demonstrated the
effectiveness of their approach to the task of image super-res-
olution and showed that their algorithm provides a substan-
tial improvement over the original UNNP algorithm.

4.7 Image Inpainting

Manual image inpainting requires much domain knowl-
edge for supervised learning-based automatic image
inpainting methods, which require extensive training and
large-scale annotated training data. To circumvent this
issue, Weber et al. [104] proposed a UNNP-based technique
named “Interactive UNNP”, which is a combination of
manual and automated processes, i.e., it keeps a human in
the loop during the inpainting process. The human acts as a
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guide for the automated inpainting process by iteratively
embedding the domain knowledge into it. They evaluated
their proposed method with five other state-of-the-art tech-
niques and empirically showed that their proposed method
can generate better results compared to other state-of-the-
art methods with even very little guidance. However, their
proposed approach requires a human observer to inject sub-
jective feedback during the (iterative) optimization of the
UNNP framework, which increases the optimization time
and limits the real-time practicability of the proposed
method. To reconstruct a depthmap from a noisy and incom-
plete depth map, Ghosh et al.[105] used UNNP for estima-
tion of depth maps and incorporated it with a depth
reconstruction loss and a view-constrained photo-consis-
tency loss (which is measured using a geometrically cali-
brated camera taking images from surrounding viewpoints).
They applied their technique to inpainting for both binocular
and multi-view stereo pipelines and demonstrated that
dense 3D models of higher quality are produced by maps
refined by their proposed UNNP-based technique. Tradi-
tionally, hand-crafted approaches have been used for depth
map estimation, which suffers from a number of imperfec-
tions, i.e., large uniform regions and textured areas and
occlusions [133]. Similarly, in [46], UNNP was used for 3D
image completion and reconstruction. Also, the authors
interpreted the effectiveness of UNNPusing a neural tangent
kernel (NTK) perspective and found that UNNP was effec-
tively able to complete missing image details (analyzed in
NTK feature space). A sparse 3D CNN architecture was used
in the proposedUNNP framework.

4.8 Phase Retrieval

Phase retrieval aims to reconstruct the phase of the signal/
image using only its magnitude measurements. It is a non-
linear and highly ill-posed inverse problem. To construct
the target image in coherent diffraction imaging, the inten-
sity of the diffraction pattern scattered from a target is first
measured and then a phase retrieval algorithm is used to
find its phase. Algorithmic phase retrieval provides an alter-
native way to recover the phase of signals without measur-
ing the signal using a sophisticated method. For instance,
Jagatap et al. [17] proposed to use UNNP for compressive
phase retrieval, which is a non-linear inverse problem,
whose goal is to reconstruct a d-dimensional signal from n
magnitude-only measurements such that n � d. UNNP for
the given task was optimized using two approaches, i.e.,
using gradient descent and projected gradient descent. Sim-
ilarly, in [111], the authors proposed to use UNNP for
unwrapping the phase in 2D quantitative phase imaging.
The proposed method was evaluated on organoid images
that are acquired using digital holographic microscopy. In
[26], the authors used UNNP for Fourier ptychography,
which is a special case of phase retrieval. Similarly, Boomi-
nathan et al. [112] proposed to use autoencoder architecture
in UNNP framework for phase retrieval in Fourier ptychog-
raphy. In [27], authors incorporated physical model for
image formation into UNNP network. The modified UNNP
was able to reconstruct single-beam phase imaging while
only getting the single diffraction pattern of a phase object
as an input. Standard mean square error (MSE) loss was

used to update the neural network parameters, while the
loss was measured between the output and input image.

4.9 Image Deconvolution

Wang et al. [113] combined the idea of learning-free decon-
volution methods with neural networks and proposed a
variant of UNNP named deep image kernel prior (DIKP), in
which they modified the objective function of classical
UNNP to deconvolution energy function. They showed that
DIKP improves the performance of image deconvolution
and outperforms traditional learning-free regularization-
based priors for image deconvolution. Ren et al. [31] pro-
posed a hybrid method for blind image deconvolution.
They used UNNP (an autoencoder architecture with skip
connections) to generate a clean image and a fully-con-
nected network (FCN) for modeling blur kernel. Further-
more, they incorporated a TV regularizer and proposed two
algorithms to solve the inverse problem, i.e., alternating
optimization and joint optimization. In [30], UNNP was
used for learning deep prior from seismic data interpola-
tion, in the proposed UNNP framework Multi-Res U-Net
architecture was used for learning the deep prior.

4.10 Seismic Data Reconstruction

This problem is concerned with the reconstruction of miss-
ing traces in seismic data, which is used for the extraction of
geophysical information in structural analysis. This prob-
lem is very similar to compressed sensing as seismic data
reconstruction is performed using sub-sampled data. In
[134], a UNNP-based algorithm named DSPRecon was pro-
posed for the reconstruction of seismic data. A U-Net with
skip connections was used in the proposed UNNP frame-
work that learns the deep prior for seismic image recon-
struction. The authors demonstrated that the proposed
method performs comparatively better than the spectrum
analysis (SSA) and Cadzow-based reconstruction methods.
Similarly, Park et al. proposed an approach that integrates
projection onto convex sets (POCS) based regularization
with UNNP for the reconstruction of seismic data [135].
Integration of POCS regularization within UNNP optimiza-
tion eliminates the limitation of the classical UNNP
approach in filling large gaps in the data.

4.11 Adversarial ML

4.11.1 Defending Adversarial ML Attacks

In the literature, it has been shown that reconstructing an
adversarial image using a UNNP network cleans the adver-
sarial perturbations from the final reconstructed image [114].
Kattamis et al. investigated the properties of the early outputs
of the UNNP and demonstrated that these early iterations
demonstrate invariance to adversarial perturbations by classi-
fying progressive UNNP outputs and using a novel saliency
map approach. Furthermore, they argued that using UNNP
as a defense against adversarial attacks has great potential
against threewell known adversarial ML attacks, i.e., fast gra-
dient-sign method (FGSM) [?], basic iterative method (BI),
and least-likely class iterative method (LLCI) [136]. A similar
type of behavior in early iterations of UNNPwas observed in
[115], where the UNNP was shown to produce adversarially
robust features in earlier iterations compared to the features
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learned by later iterations (which were found sensitive to
adversarial perturbations). Furthermore, to leverage the
UNNP network as a defense against adversarial attacks, the
authors proposed an adaptive stopping strategy using a sec-
ond-order exponential smoothing strategy for stopping
UNNP-based reconstruction. Sutanto et al. [116] performed a
similar type of analysis and proposed to use the UNNP net-
work to remove FGSM-based adversarial perturbations. Simi-
larly, the use of UNNP to clean adversarial perturbations was
also investigated in [117]. The authors considered two adver-
sarial ML attacks FGSM andCarlini andWagner (C&W) [137]
in both black and white-box settings. In [138], authors used
UNNP to develop an attack and model agnostic defense for
defending against adversarial attacks. They considered both
black andwhite box adversarial attacks for evaluation.

4.11.2 Crafting Adversarial Perturbations

The problem of finding imperceptible adversarial samples
by introducing some noise into the input samples is known
as crafting adversarial perturbations. In contrast with the
aforementioned studies, Gittings et al. [118] proposed a
method to generate robust adversarial image examples
using a UNNP framework. They empirically showed that
using UNNP to reconstruct an image under adversarial con-
straints induces perturbations that are more robust to affine
deformations. Yin et al. [13] investigated the adversarial
vulnerability of UNNP for the super-resolution task against
three attacks, i.e., style transfer attack, classification attack,
and caption attack.

4.11.3 Generation of Counterfactual Explanations

Counterfactual explanations is one of the most emerging
methods to interpret neural network’s predictions. These
explanations are used to describe input changes affecting
the model’s prediction to a predefined output. Narayanasw-
amy et al. [119] proposed a regularization strategy based on
an auxiliary loss estimator, which efficiently guides the
UNNP to recover natural pre-images. They performed
experiments with a real-world International Skin Imaging
Collaboration (ISIC) skin lesion detection problem and
showed the effectiveness of their proposed technique in
synthesizing meaningful counterfactuals. They argued that
the standard UNNP inversion often proposes visually
imperceptible perturbations to irrelevant parts of the image,
while their proposed approach systematically introduces
perturbations in the lesion-specific regions. This is strongly
in line with the widely adopted signatures for lesion type
detection. However, quantitative evaluation of the gener-
ated images was not performed.

4.12 UNNP for Video

4.12.1 Video Inpainting

Inpainting is an ill-posed problem due to the non-existence
of a unique solution. Extending this problem to video brings
more challenges as the inpainted content needs to be consis-
tent across the frames of the video. Zhang et al. [106] lever-
aged UNNP for inpainting that was able to generate
missing appearance and motion information while enforc-
ing visually plausible textures. Furthermore, they showed

that their proposed framework is able to ensure mutual con-
sistency of both appearance and optical flow of the video. L2

reconstruction loss is used for image reconstruction based
on the known portions of the image. The network is aug-
mented to predict the color and flow values at each pixel for
6 consecutive frames of the video. The flow generation loss
is then defined based on the known regions to encourage
the UNNP network to learn a “flow prior”. A consistency
loss is then defined on the basis of these two losses (i.e., L2

and flow generation loss) to ensure the temporal consis-
tency between the generated frame and the generated flow.
Furthermore, a perceptual loss is defined over the extracted
features to improve the visual sharpness of images gener-
ated by UNNPs.

4.12.2 Video Stabilization

Video destabilization occurs due to various problems such
as lens distortion, dynamic objects, motion blur, and low
illumination. A UNNP-based video stabilization system is
proposed in [107]. The authors formulated the problem as a
large-scale non-convex optimization problem and sug-
gested an optimization routine to solve it, moving it to the
realm of neural networks. Furthermore, they argued that it
is better to model the shift in frames as a dense optical flow
field of consecutive frames instead of using complex motion
models. More specifically, they incorporated optical flow-
based objective function in the UNNP framework to achieve
visually more plausible and quantitatively better results
than the previous state of the art.

4.12.3 Temporal Consistency

Lei et al. [108] argued that the application of image process-
ing methods independently to each frame of a video might
lead to inconsistencies in the resulting video. To overcome
this issue, they proposed the use of UNNP to achieve blind
video temporal consistency. They trained the model using a
pair of original and processed videos and used an iterative
reweighting training strategy to address the multi-modal
inconsistency problem. Furthermore, they demonstrated
the effectiveness of their approach for different tasks such
as colorization, dehazing, image enhancement, style trans-
fer, image-to-image translation, intrinsic decomposition,
and spatial white balancing.

4.12.4 Video Restoration

Liu et al. [109] proposed a UNNP-based hybrid method to
recover old movies. Their proposed framework has two
main components, i.e., speckle noise detection using spatio-
temporal filtering techniques and UNNP-based image
inpainting. UNNP was used to reduce speckle noise and to
fill missing image portions in videos of old movies.

5 APPLICATIONS OF UNNP IN MEDICAL IMAGING

In realistic medical settings, the availability of large-scale
representative training data is often very challenging due to
annotations cost, time, and ethical constraints. UNNP pro-
vides a means to circumvent this issue by providing the
ability of fitting medical images directly using the structure
of CNNs. In this section, we provide a detailed discussion
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on the applications of UNNP to different medical imaging
tasks, i.e., medical image reconstruction and enhancement.
Note that although these two tasks (i.e., medical image
reconstruction and enhancement) come under the umbrella
of inverse image reconstruction problem, we deliberately
described the papers on reconstruction and enhancement
separately for ease of understanding. A summary of the var-
ious applications of UNNP for different medical imaging
tasks is also presented in Table 4.

5.1 Medical Image Reconstruction

In recent years, various DL learning-based approaches (e.g.,
generative models) have been proposed for the reconstruc-
tion of different medical modalities, e.g., magnetic reso-
nance imaging (MRI) and positron emission tomography
(PET). However, these methods mainly rely on extensive
training using large-scale annotated datasets, e.g., training
end-to-end GAN for the task of medical image enhance-
ment using paired images (pair of corrupted and clean
images). On the other hand, UNNP-based methods have
achieved competitive results without the requirement of
such large training datasets. Here, we elaborate upon the
application of UNNPs for medical image reconstruction
tasks.

5.1.1 MRI Reconstruction

In [139], UNNP along with nonuniform fast Fourier trans-
form has been used for the reconstruction of time-depen-
dent dynamic MRI from sparsely acquired measurements.
Specifically, 1D manifold learning and a mapping network
were used to improve the reconstruction performance. Simi-
larly, in [140], the authors focused on the problem of accel-
erated MRI reconstruction and proposed a UNNP variant
that leverages both over and under-parameterized UNNPs.
The proposed method outperformed classical sparsity-
based methods and provided a comparable performance as
that of training-based methods. Zhao et al. [141] proposed a
UNNP-based framework for MRI reconstruction from
undersampled k-space data. Their proposed method uses a
high-resolution MRI image as an input reference to learn a
structural prior during the training process of UNNP.

5.1.2 Tomographic Image Reconstruction

5.1.2.1 PET Image Reconstruction. Gong et al. [11] proposed to
leverage UNNP for PET image reconstruction that does not
require any paired training data, except for the patient-spe-
cific measured data. In the proposed approach, UNNP was
optimized using patient-specific measured data and prior
information. More specifically, they formulated the problem
of PET image reconstruction as a constrained optimization
problem and solved it using the alternating direction
method of multipliers. Furthermore, the authors demon-
strated that their proposed UNNP-based method provides
a comparatively improved lesion contrast as compared to
Gaussian filter. Later, the authors extended this approach
for low dose dynamic patlak PET image reconstruction
[142]. UNNP was then optimized using measured sinogram
data and patient-specific anatomical prior image. Similarly,
Yokota et al. [15] incorporated non-negative matrix factori-
zation with UNNP for the reconstruction of dynamic PET

images using sinograms. They quantitatively evaluated
their proposed method on both simulated data and clinical
data. U-Net architecture was used in the UNNP framework
that was trained to extract the spatial factor decomposed
from the data matrix. Multiple U-Nets in the UNNP frame-
work were also used for dynamic PET image reconstruction
using sinograms data with the employed U-Nets ranging
from 1-5.

5.1.2.2 Diffraction Tomography Reconstruction. Zhou et al.
[143] proposed a UNNP based method for the reconstruction
of high resolution 3D refractive index of thick biological sam-
ples usingdiffraction tomography. In the proposed framework,
a phase retrieval algorithm is used to process the multi-angle
data while UNNP (with 3D U-Net) was used for reparameteri-
zation for 3D image reconstruction. Furthermore, the authors
demonstrated that their proposed UNNP based method effi-
ciently solves themissing cone problem.

5.1.2.3 CT Image Reconstruction.Gong et al. [144] proposed
to use the UNNP framework for the reconstruction of low-
dose dual-energy CT images from noisy observations.
UNNP was used for the joint reconstruction of low and high
energy images. Furthermore, to enhance the performance of
UNNP based reconstruction, they introduced isotropic TV
regularization in UNNP optimization. Similarly, Baguer
et al. [24] proposed to incorporate classical TV regularizer
the UNNP optimization framework for the reconstruction of
low-dose and sparse angle CT images.

5.1.2.4 Magnetic Particle Imaging (MPI). Dittmer et al. pro-
posed to use UNNP for 3D MPI reconstruction and per-
formed a quantitative comparison of different regularization
techniques such as [145]. In their proposed 3DUNNPmodel,
unlike the original UNNP, they do not use skip connections
but they also used 3D convolutions with ReLU as an activa-
tion function in the U-Netmodel.

5.1.2.5 Microscopic Image Reconstruction. To overcome the
trade-off between spatial sampling and imaging speed
encountered in photoacoustic microscopy, Vu et al. proposed
to use UNNP for photoacoustic microscopic image recon-
struction from sparsely sampled images [152]. Unlike classical
UNNP optimization in which fixed noise is used, the authors
considered perturbing noise. The proposed framework was
evaluated using vascular and non-vascular data and a signifi-
cant performance improvementwas achieved.

5.2 Medical Image Enhancement

5.2.1 Haze Removal in Fundus Imaging

In [7], the authors demonstrated that coupled UNNP net-
works are capable of decomposing an input image into its
individual elements, e.g., decomposing an image into fore-
ground and background for a segmentation task. Qayyum
et al. [25] leveraged this idea of image decomposition using
coupled UNNP networks. They proposed an unsupervised
framework for retinal fundus image enhancement using
coupled UNNP networks by integrating dark channel prior
loss into the overall loss of coupled UNNP networks. Their
method does not require any training data neither paired
(i.e., paired clean and corrupted reference image) nor
unpaired (i.e., clean and corrupted image) and recovers an
enhanced retinal image using a single degraded input.
Building upon their previous work [25], the authors
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TABLE 4
Summary of Medical Imaging Applications of Untrained Neural Network Priors (UNNPs)

Application Ref Method Dataset (s) & Metric (s) Performance
Comparison

Limitation (s)

Compressed
Sensing

[123] An UNNP framework
compressed sensing

application
incorporating a learned
regularizer to facilitate

non-linear
measurements.

- MNIST, Chest X-Ray,
& STARE

- Mean Square Error
(MSE)

UNNP with learned
regularization

outperformed two
baseline unlearned
methods in terms of
MSE, except BM3D-
AMP for higher
measurements.

Although learned
regularization improved
UNNP performance in

terms of MSE as
compared to standard
UNNP, however, it

requires a small labelled
training set, which could
be difficult to obtain in

medical settings.

MRI
Reconstruction

[139] UNNP was used with
nonuniform fast Fourier
transform. Specifically,
1D manifold was used
to learn the temporal
dependencies and a

mapping network was
used to improve
reconstruction
performance.

- Retrospective Dataset
& Real

- Fetal Cardiac Data
- Regressed SNR

Proposed UNNP-based
framework provided a
performance gain of

approximately 20%, 4%,
and 3% when compared

with three baseline
methods (non-

learning).

In addition to UNNP
optimization time, the
slow forward model
further increases the

overall execution time.
Moreover, the manifold
selection and mapping
network design has a
direct impact on the

performance for a given
dataset.

[140] UNNP variant is used
for accelerated MRI

reconstruction, which is
a combination of both
under-parameterized

and over-
parameterized

untrained neural
networks.

- FastMRI
- PSNR, SSIM, VIF, &

Multi-Scan SSIM

Outperformed classical
untrained methods and

provided similar
reconstruction

performance as that of
training-based

methods.

Highly dependent on the
chosen number of

channels for each layer in
the UNNP architecture
and does not perform
well if the number of
channels is either too
small or too large.

[141] Used high-resolution
MR image as input

reference for learning
structural prior during
optimization of UNNP.
The reference image
was used for guiding

UNNP.

- Vivo MR
- Relative error, PSNR

& SSIM

Outperformed classical
zero filtering-based

method and provided a
performance gain of �
2% as compared to
standard UNNP.

It involves iterative
computation of

undersampling at each
iteration, which increases
its overall execution time
as compared to classical

UNNP.

PET Image
Reconstruction

[11] Optimized UNNP for
PET image

reconstruction using
the alternating direction
method of multipliers

method.

- 3D BrainWeb
- CRC vs. STD

Outperformed a hand-
crafted baseline method
while generating better

lesion contrast.

Higher computational
overhead due to the use
of 3D U-Net. Also, it
cannot handle images

acquired using different
scans.

[142] Extension of [11] for
low dose dynamic
patlak PET image
reconstruction.

- Self-prepared No quantitative
evaluation is
performed.

High memory
requirement and large

execution time due to the
use 3D U-Net.

[15] Multiple UNNPs were
used for the extraction
of spatial factor from
decomposed data
matrix (via non-
negative matrix
factorization) for
dynamic PET
reconstruction.

- Self-prepared & Simu-
lated Data

- Signal to Noise Ratio
(SNR)

Outperformed three
existing classical

baseline methods and
provided lower
performance as

compared to EM in the
noise-free case.

Reconstruction
performance degrades at
higher iterations, as no
early stopping was
employed and the

number of iterations was
selected empirically.

Diffraction
Tomography
Reconstruction

[143] UNNP with 3D U-Net
was used for the

reconstruction of high
resolution 3D refractive
index of thick biological

samples using
diffraction tomography.

- 3D isotropic EM
images of hippo-

campal cells
- RMSE & SSIM

Proposed UNNP
framework

outperformed standard
UNNP in terms of
reconstruction
performance.

UNNP optimization
diverges rapidly in some
cases, thus indicating

early stopping is
required. Also, larger

execution time due to the
use of gigavoxel data.
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TABLE 4
(Continued )

Application Ref Method Dataset (s) & Metric (s) Performance
Comparison

Limitation (s)

CT Image
Reconstruction

[144] Used isotropic TV
regularized UNNP for

CT image
reconstruction that

works by joint
reconstruction of low

and high energy
images.

- Self-prepared DECT
- Contrast-to-Noise

Ratio (CNR)

Additional
regularization

enhanced performance
as compared to

standard UNNP and
outperformed one
classical denoising

method.

High execution time due
to the use volumetric

data, additional
regularization, and

underlying 3D neural
network in UNNP

framework.

[24] Used UNNP along with
classical TV regularizer

for CT image
reconstruction.

- LoDoPaB-CT & Ellip-
ses

- PSNR & SSIM

Outperformed two
classical learning free
methods, i.e., TV and

filtered back-projection.

High number of iterations
were used (i.e., 8000, 5000,
etc.), which incurs large

execution time.
Magnetic Particle
Imaging

[145] U-net is used in UNNP
without skip

connections and 3D
convolutions with

ReLU as an activation
function.

- 3D open MPI
- PSNR & SSIM

Proposed 3D UNNP
outperformed learning
free and data-driven

training-based
methods.

High execution time due
to the use of volumetric
data and 3D neural

networks in the UNNP
framework.

Microscopic
Image
Reconstruction

[146] Used UNNP to address
the trade-off between
spatial sampling and
imaging speed in
photoacoustic
microscopy.

- Self-prepared
- PSNR & SSIM

Outperformed hand-
crafted methods and
was competitive with

data-driven DL
methods.

UNNP was not able to
recover structures that
were missed during
undersampling.

Haze Removal [25] Multiple UNNPs were
used to decompose

retinal images for haze
removal. To improve
the performance, dark
channel prior loss was
incorporated with

UNNP.

- Five public datasets
used

- PSNR, SSIM

UNNP-based approach
outperformed existing
classical learning-free
methods as well as
training-based

methods.

Integrating DCP loss
increases the

computational overhead,
as it is calculated

iteratively during each
iteration of UNNP

optimization.

Tomographic
Image Denoising

[147] Used UNNP for
dynamic PET image
dnoising using gray

and white matter data.

- 3D BrainWeb
- PSNR, SSIM &

Regional TACs

Provides better
statistical noise
reduction and

efficiently preserves the
cortex as compared to
hand-crafted baselines.

The reconstruction
performance decreases in
higher iterations, as no
early stopping was
employed and the

number of iterations was
selected empirically.

[148] Used 3D U-Net in
UNNP and trained it
using the Limited
Memory BFGS

optimizer for denoising
PET images.

- Self-prepared dataset
- CNR

Outperformed
Gaussian and non-local
mean filtering-based
hand-crafted methods.

Does not provide good
performance in handling
large noise levels and

large execution time due
to the use of 3D data.

MRI Image
Correction

[149] Formulated MRI
reconstruction as a
Bayesian inference

problem and used two
UNNPs models to

obtain an
inhomogeneity-free

image.

- 3D BrainWeb &
OASIS3

- Norm. Cross Correla-
tion, Coefficient of

Variation

UNNP provided
comparable
quantitative

performance to a well
known baseline method
(i.e., N4) while visual
results were even

better.

UNNP optimization
process becomes

unstable sometimes
resulting in the

generation of many
artifacts in output

images.

OCT Image
Denoising

[150] Used non-local UNNP
for denoising OCT
retinal images by
incorporating an

autocorrelation loss

- SDOCT image data-
sets

- CNR, Equivalent No.
Looks

Outperformed standard
UNNP and as well as
other learning and

learning free baselines.

Modified loss function
increases computation

complexity of the
iterative process and

increase overall
execution time.

[151] Used under-
parametereized UNNP
for denoising of OCT
retinal B-scans with
different losses.

- Self-prepared dataset
- CNR & SSIM

UNNP performance
was slightly lower than
the data-driven deep

learning model.

Poor performancewith
increasing noise level and
optimizationwas prone to
overfitting (as no early
stopping applied).
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investigated the use of dark and bright channel priors for
atmospheric light estimation for retinal fundus image
enhancement. Such an approach eliminates the need for
separate UNNPs for atmospheric light estimation. The
authors also investigated pretrained UNNP and found that
pretraining gives the additional benefit of learning fine
details in early iterations over the cost of slight drop in over-
all performance.

5.2.2 Tomographic Image Denoising

Hashimoto et al. [147] proposed a UNNP based dynamic
PET image denoising technique, which can handle
unknown cases. They evaluated their proposed method in
terms of peak signal-to-noise ratio (PSNR), structural simi-
larity (SSIM) index, and the regional TACs of the gray and
white matter using both synthetically generated data and
real data acquired from a living monkey brain with 18F-flu-
oro-2-deoxy-D-glucose (18F-FDG). Their results quantita-
tively show that the proposed UNNP method achieves a
better reduction in statistical noise and better preserves the
cortex compared to the existing hand-crafted baseline algo-
rithms. Similarly, Cui et al. [148] proposed to use UNNP for
denoising PET images by feeding the UNNP network with
CT images as an input. Furthermore, they adopted the 3D
U-Net architecture as proposed in [153] instead of U-Net
with 2D convolutions (as used in classical UNNP frame-
work) and trained the network using a Limited Memory
BFGS optimizer. In [154], authors used 4D convolutional
architecture in UNNP for denoising dynamic PET images.

5.2.3 MRI Image Correction

Han et al. [149] formulated the problem of MRI reconstruc-
tion as a Bayesian inference problem to obtain an inhomoge-
neity-free image. Their proposed framework has two UNNP
networks that were used to learn the inhomogeneity field
and priors of the image, while their likelihood was derived
from the observed image itself. To demonstrate the effec-
tiveness of the proposed method, the authors performed an
experimental evaluation on both simulated and real data
and compared the performance with a well-known inhomo-
geneity correction method named N4 [155].

5.2.4 OCT Image Denoising

In [150], a non-local UNNP was proposed to denoise OCT
retinal images by incorporating an autocorrelation loss (that
exploits sorted non-local statistics) into the overall recon-
struction loss of UNNP. The proposed method was evalu-
ated using both subjective (visual quality) and objective
metrics i.e., a contrast to noise ratio (CNR) and an equiva-
lent number of looks (ENL). Similarly, Hagan et al. investi-
gated different network architectures and loss functions
with UNNP to denoise OCT retinal B-scans [151]. They per-
formed a comparative analysis in terms of different stan-
dard metrics (i.e., contrast-to-noise ratio (CNR) and SSIM).

6 INSIGHTS AND PITFALLS

Using UNNPs for IIPs. The under-parameterized untrained
neural networks (e.g., the deep decoder [12]) can only fit
signals with low complexity, while over-parameterized

untrained neural networks (e.g., UNNP [6]) can certainly
model anything. However, the literature suggests that they
perform better for low complexity signals. Untrained neural
networks exploit the smoothness and locality information
of natural images to recover them without using any train-
ing data such information generally does not exist in any
arbitrary image, therefore, they are capable of effectively
modeling natural images. When modeling natural images
using untrained neural networks, the operations in CNN
like upsampling and convolutions enforces the smoothness
and locality information.

UNNPs can be used to aid in the learning of priors. For
instance, Hussein et al. [156] used a trained GAN to provide
a quick start to an untrained neural network. Similarly, in
[157], the authors treated the UNNP as an image specific
prior to learn high dimensional latent representations from
trained neural networks. Moreover, it has been shown in
[12] that the prior learned by UNNPs is asymptotically
equivalent to hand-crafted priors (e.g., Gaussian processes
(GP)). However, GP is computationally more expensive
than stochastic gradient descent (SGD) optimization when
we aim at modeling high-resolution images. Although,
UNNPs effectively regularize the input being reconstructed
(by optimizing its parameters), it has been shown that their
performance can be improved by adding further regulariza-
tion (, e.g., using total variation [74]).

Limitations of UNNPs. It is difficult to articulate what
prior knowledge is being captured by the untrained neural
networks for a particular input image. As described above,
over-parameterized untrained neural networks perform
better for low complexity signals. However, we cannot artic-
ulate what aspects of low complexity are desired by these
networks. This demands a theoretical understanding of the
learning behavior of untrained neural networks. Moreover,
the prior estimated by untrained neural networks using
SGD and stochastic gradient Langevin dynamics (SGLD)
matches the prior estimated by GP for smaller size models.
However, it is still unknown whether this holds for larger
networks [12]. Yokota et al. [15] found that a randomly ini-
tialized neural network (i.e., U-Net) often generates edge-
enhanced images before the convergence of the parameters
update process. The authors articulated that these edge
enhancements are not feasible for medical image recon-
struction. To circumvent this issue, they proposed to com-
bine outputs of multiple parallel models to reconstruct
dynamic PET images. However, this increases the computa-
tional complexity of the overall framework and demands
further developments. The authors proposed an optimal
stopping strategy before the convergence of the parameters.

The literature suggests that the optimal stopping point
for untrained neural networks depends on the structure of
neural networks being used [68]. However, it is difficult to
identify the optimal stopping point for any neural network
architecture. Therefore, this remains an open-ended prob-
lem. Also, UNNPs are considerably slower than discrimina-
tive DL methods (and sometimes even slower than
generative DL methods). For instance, the literature sug-
gests that the optimization of UNNPs usually requires sev-
eral minutes even on a single GPU [6]. Similar observations
have been noted in different other papers, e.g., [7], [11], [74],
[75], [117]. This hinders the real-time applicability of
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UNNPs in such applications, e.g., real-time applications and
applications constrained by limited computational resour-
ces. A few recent studies have attempted to address this
issue by using pretraining, e.g., [49], [158].

Despite UNNPs’ ability to achieve comparable perfor-
mance to DL methods, they have certain limitations when
used in some applications. In image super-resolution,
UNNPs cannot recover fine image details from low-resolu-
tion images. In contrast, DL-based approaches can still
leverage large datasets to recover such details. UNNPs are
also less effective than end-to-end DL methods for inpaint-
ing large holes in images. In denoising applications, the per-
formance of UNNPs degrades in the presence of large
noise. However, early stopping can prevent overfitting
while providing satisfactory results even in the presence of
large noise. In image deblurring and deconvolution,
UNNPs struggle to handle non-uniform deblurring and
high noise levels. Similarly, it is difficult to balance image
quality and perturbation removal when using UNNPs for
adversarial noise-cleaning. UNNPs have prohibitively high
execution times and memory requirements when process-
ing video and 3D volumetric data. On the other hand,
UNNPs often outperform DL-based methods in certain
applications, e.g., blind video temporal consistency [108]
and finding semantic correspondences between images [67].

7 OPEN RESEARCH PROBLEMS

7.1 Exploring Network Architectures

The characteristics of UNNPs are very similar to hand-crafted
priors-based modeling. In hand-crafted-based modeling, we
handcraft individual basis elementswhile in untrained neural
networks we handcraft neural network architectures. For
example, one can design a specific neural network architec-
ture (of their own choice) for the modeling of a particular
image. Thus, any application of an untrained neural network
for typical inverse problems relies on the preference of a spe-
cific neural network structure, i.e., a different CNN architec-
ture will provide different results. In the literature, a number
of studies have proposed methods to construct the most rele-
vant neural network architecture for a given specific task.
However, exploring the most relevant and application-spe-
cific (i.e., optimal) neural architecture(s) for UNNP tomodel a
particular inverse problem at hand is still an open research
problem.

7.2 Execution Time

UNNPs provide near state-of-the-art performance without
the requirement of massive training datasets. However,
their iterative nature makes them unsuitable for use in real-
time applications. This means that a particular application
of UNNPs requires considerable time and computational
resources due to their inherent iterative optimization pro-
cess. Therefore, this has particular implications for their use
in critical applications such as healthcare and surveillance
applications where immediate outcomes may be required.
In this regard, it is very important to explore new optimiza-
tion approaches to reduce the execution time of the
UNNPs-based unsupervised approaches.

7.3 Early Stopping

Despite their ability to effectively model natural images,
UNNPs suffer from the issue of overfitting. In the original
UNNP paper [6], the authors relied on early stopping to
avoid overfitting. To overcome this overfitting issue, differ-
ent methods have been proposed in the literature, e.g., the
deep decoder [12], Bayesian perspective of UNNP [16], and
the projectional method [71]. These studies provided alter-
native approaches to alleviate the need for early stopping in
UNNPs. However, these methods are not generalized. The
development of efficient and customized approaches to alle-
viate the issue of overfitting, therefore, requires further
investigation. We refer the interested readers to a compre-
hensive tutorial on developing Bayesian methods for DL
models [120].

7.4 Theoretical Understanding

Despite the impressive success of UNNPs in numerous IIPs,
there is still a lack of theoretical understanding of why
UNNPs are able to effectively model natural images, why
the CNN architecture enforces a strong prior on natural
images, and why UNNP cannot model any arbitrary image.
Notwithstanding a few studies have provided some theoret-
ical guarantees about the capabilities of UNNPs, e.g.,
Heckel et al. [12] provided the theoretical reasoning behind
their proposed variant of UNNP (i.e., deep decoder). Simi-
larly, Yokota et al. proposed manifold modeling in an
embedding space to interpret UNNP [80]. However, more
questions still need to be investigated about the working
process of UNNPs. Therefore, the development of a proper
theoretical framework to understand when they work, how
to properly regularize them and interpret them, and how to
measure their complexity remains an open research prob-
lem. For example, it would be interesting to investigate
what type of information a typical untrained neural net-
work prefers most and what it does not, while capturing the
underlying image prior. This will eventually help to
develop customized neural network architectures for partic-
ular tasks at hand.

7.5 Investigating UNNPs for High-Level Vision
Tasks

Since their inception [6], UNNPs have been mainly used for
solving low-level vision problems such as denoising, super-
resolution, deblurring, etc. Their applications to high-level
vision problems such as detection have received little atten-
tion. For instance, a recent study has shown that UNNPs
can effectively be used to detect human faces [52]. Their
work makes it a promising future direction to explore. Spe-
cifically, via extensive experiments, the authors showed
that units sensitive to human faces emerge in the high and
mid-level layers of randomly initialized neural networks,
thereby enabling them to accomplish face detection tasks.
This is one of the foremost works that highlight the effec-
tiveness of UNNPs for high-level vision tasks thereby pro-
viding an avenue for many areas of exploration.

8 CONCLUSION

Inverse problems arise in many distinct applications such as
restoration, denoising, inpainting, deconvolution, andmedical
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imaging. The use of untrained network priors to solve inverse
problems is attractive since it can provide competitive results
without requiring any training data. This is particularly
appealing in settings where the data is scarce and difficult to
obtain for logistical reasons or privacy concerns (as in health-
care). In this paper, we have presented the first comprehensive
reviewon the use of untrained neural network priors (UNNPs)
based methods for inverse imaging applications. Moreover,
we have developed a taxonomy of different applications of
UNNPs and presented their review across two dimensions,
i.e., general and medical applications. Our literature review
has found that UNNPs based approaches are particularly
attractive for medical applications due to the scarcity of anno-
tated data. Finally, this paper outlines various open research
issues related toUNNPs that require further investigation.
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