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Abstract: Modern cities are complex adaptive systems in which there is a lot of dependency and
interaction between the various stakeholders, components, and subsystems. The use of digital
Information and Communications Technology (ICT) has opened up the vision of smart cities in
which the city dwellers can have a better quality of life and the city can be better organized and
managed. The deployment of ICT solutions, however, does not automatically or invariably improve
the quality of living of the citizens. Analyzing cities as complex systems with various interacting
sub-systems can help us understand urban dynamics and the fate of smart cities. We will be able
to analyze various policy interventions and ascertain their effectiveness and anticipate potential
unintended consequences. In this paper, we discuss how smart cities can be viewed through the lens
of systems thinking and complex systems and provide a comprehensive review of related techniques
and methods. Along with highlighting the science of cities in light of historic urban modeling and
urban dynamics, we focus on shedding light on the smart city complex systems. Finally, we will
describe the various challenges of smart cities, discuss the limitations of existing models, and identify
promising future directions of work.

Keywords: smart city; complex system; complexity; systems of sub-systems

1. Introduction

From the mid-19th century till the early 20th century, the second industrial revolution
in Britain, continental Europe, North America, and Japan increased commercial opportuni-
ties in cities, led to rapid urbanization causing increases in pollution, health problems, crime
rate, safety issues, and concurrent burden on cities’ resources. With increased interconnec-
tivity in cities at an unprecedented pace, complexity surged and adverse repercussions
emerged. Some of these undesirable side effects witnessed so far include crowd disasters,
traffic jams, urban sprawl, etc. Climate change and financial crises are examples of some
unintended consequences of unplanned urbanization [1]. The development of smart cities
is a solution to resolve the aforementioned problems. For planning the smart city strategies
and sustainable urban growth, advanced technology is used for providing services to the
citizens and to manage the urban environment [2].

Over the past few decades, the concept of smart cities has passed through three
phases: (i) improving the infrastructure of buildings; (ii) providing health safety and
increasing efficiency; (iii) employment of Information and Communications Technology
(ICT) solutions. ICT solutions were implemented to provide information services to civil,
governmental, and private entities and break the barriers of sharing data among different
entities [3]. At the end of the 1990s, with the advancement in modern technology, the
focus of smart cities has centered on: instrumentation to strengthen the capacity of the
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instruments collecting information; interconnection to sustain the traffic of information;
intelligence in data processing; and analysis of collected and transmitted data [4].

The rapid deployment of ICT led to massively interconnected elements of smart cities.
These elements form a complex system and the emergent behavior of elements of any
complex system cannot be understood in isolation as various subsystems interact with
each other dynamically over a long time using non-linear interacting feedback loops [5,6].
Complexity science is not a single theory but an accumulation of various theories and
conceptual tools from different disciplines [7]. In the 1950s, with the application of general
system theory and cybernetics in social sciences, scholars formally started considering cities
as a system. The basic idea behind this consideration was the concepts of controllers and
feedback loops to steer the system for achieving desired goals. However, this consideration
required more significant interventions than anything that had been presented before in
the field of urban planning [8–10].

Spontaneous adaptation and organization of complex systems lead to emerging behav-
iors. To reap the benefits of this positive side of complex systems, we need to understand
interactions among various dimensions of smart cities that give rise to emerging behaviors
rather than individual components. This paper focuses on presenting a systems perspective
on smart cities. Systems thinking is a versatile framework of tools that can be applied for
diverse things such as predicting the sustainability of the global economic system [11],
studying the educational ecosystem [12], analyzing causes of misinformation [13], or un-
derstanding cancer [14]. Our paper sheds light on the history of urban dynamics, modeling,
and formulations to present system science of urban functioning and smart city as a com-
plex system. In addition, we also examine the challenges, limitations, and future directions
of smart cities as a complex system of sub-systems (SoS).

1.1. Smart City: Definition, Application, and Motivation

The vision of a smart city is to build an urban center that can provide safety, security, a
nature-friendly environment, efficient health services, and economic growth to its citizens
using advanced electronic devices and infrastructure. In smart cities, ICT solutions are
used to collect information from several sources, such as citizens’ devices, sensor networks,
traffic, and other systems to develop applications that improve city services such as public
health, disaster management, governance, public safety, environmental monitoring [1].

The concept of smart cities is not unique and has been described in various ways in
the literature. It has become quite common in scientific literature and international policy
during the past two decades to refer to a “smart city” [15]. Although the phrase is widely
used, it is tough to keep up with a consensus on what it means. There is no one pattern for
framing a smart city, nor is there a single definition of what constitutes a smart city that
applies to all situations. According to International Telecommunications Union (ITU), there
are more than 100 definitions of a smart city [16]. Hollands has explained that to develop a
smart city, we have to implement the ICT solutions for economic and urban growth with
the involvement of citizens and government [17]. Giffinger et al. have described the vision
of a smart city as the implementation of smart mobility, economic growth, and the high
living quality of citizens [18]. Hall has stated that to build a smart city, we have to provide
security through monitoring, ensure a high quality of life, and integrate all infrastructures
to optimize the resources and maintenance activities [19].

One of the primary reasons for the lack of agreement on what constitutes a “smart
city” is that the phrase is being used for two distinct domains, namely, physical and
soft infrastructure. Specifically, Neirotti et al. have demonstrated that ICT may play a
significant role in the operations of systems in the hard domains such as buildings, energy
grids, natural resources, water management, waste management, transportation, and
logistics [20]. Education, culture, social inclusion, and governance are examples of soft
domains where the use of ICT may not be as important as it is in hard domains [21].

Research conducted by the Vienna University of Technology’s Center of Regional
Science has identified six primary dimensions of a smart city, namely, smart economy,
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smart mobility, smart environment, smart people, smart living, and smart governance.
These give a useful framework for selecting dimensions while keeping in mind the resources
and ultimate aims of a specific city. We now explain briefly each of these dimensions:

• Smart Economy: innovative solutions linked to ICT in the labor market supporting a
high level of productivity in cities [3].

• Smart Mobility: high-speed connection networks in a city with supporting ICT infras-
tructure.

• Smart Environment: optimized energy consumption with renewable energy sources.
• Smart People: a society open to learning and undertaking actions that contribute to

the quality of life.
• Smart Living: access to social infrastructure, public services, cultural, technical, and

leisure spaces.
• Smart Governance: optimal public administration and management between different

agencies practicing technologies [22].

The development of a smart city requires proper planning and implementation of
laws, policies, financial strategies, and ethical values under the umbrella of government.
The role of government is not limited only to the implementation of laws. Taking the
measures for checking the efficiency of each department, improvements in the quality of
citizens’ lifestyle, and keeping an eye on the lacking region are also the responsibilities of
smart governance. If a department or a region shows a continuous downfall, they should
reconsider the policies and laws for the specific area of concern. Transformation of the
digital infrastructure according to the requirements is also necessary.

1.2. Contributions and Organization of This Paper

Multiple studies have been conducted on smart cities. However, our paper is unique
in the following aspects:

• Our study is the first of its kind where we have highlighted the link and applications
of urban models and theories for understanding smart cities as complex systems of
sub-systems;

• To understand and define the functioning process of cities as complex systems, we
discuss different types of urban dynamics and various systemic principles of urban
functioning;

• We highlight the main development challenges of smart cities along with system-
based challenges of cognition, testing, validation, heterogeneity, and the multitude of
stakeholders that hinder the system models of a smart city;

• We also focus on the dynamic issues of smart cities and describe how understanding
them as SoS can resolve these problems;

• Finally, we elaborate on the limitations of existing approaches and highlight various
open research problems that require further development. The comparison of this
paper with existing surveys is presented in Table 1.

Organization of paper: The organization of the paper is as follows. Section 2 presents a
background from urban modeling, theories, and functioning of cities to smart cities and
complex systems. Section 3 discusses smart cities as complex systems. Its subsections elab-
orate on the system of smart cities, use of system archetypes in smart city modeling, system
theories, and application of theories and models in smart cities, along with system-based
challenges. Section 4 elaborates on the potential pitfalls of modeling a smart city as a SoS.
Section 5 presents future research directions and further elucidates the analytical discussion
on the way forward. Finally, the paper is concluded in Section 6. The organization of this
paper is illustrated in Figure 1.
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Figure 1. Illustration of paper organization.

Table 1. Comparison of the paper with existing surveys. Legends: X = discussed, × = not discussed,
≈ = partially discussed, SC= smart cities, CS = Computer Science, IT = Information Technology, Dev
= Development, SB = System-Based, Lim = Limitations, FD = Future Directions.

Reference Year Focused Area(s)

Scope Challenges

Lim FD
Urban Models
and Theories for
SC as Systems
of Sub-Systems

Urban Dynamics
and Systemic
Functioning
Principles in SC

Application of
Theories
and Models
in SC

Beyond ICT
Deployment
Vision of
SC

Dev SB

Silva et al.
[23] 2018

Overviews the features
and implementations
of SC

× × X × X × X X

Camero
and Alba
[24]

2019
From and CS and IT lens
presents a systematic
analysis of SC

× × × × × × X ×

Ismagilova
et al. [25] 2019

From an information
systems perspective
synthesizes issues
related to SC

× × × × X × X X

Corcuera
et al. [26] 2019

Review of techniques
and methods of
building SC

× × X × × × × X

Radu [27] 2020
Presents main
disruptive
technologies in SC

× × X × X × ≈ ≈

Habibzadeh
et al. [28] 2020 Studies system design

of SC × × × × ≈ × X ≈

This paper 2022 Systems perspective
of SC X X X X X X X X

2. Background

This section presents the science of cities based on models and theories used to model
the cities. These theories are based on the concept of equilibrium which is also discussed in
detail in this section. This section also covers the major developmental challenges of smart
cities along with the discussion of how ICT-focused solutions are affecting the smart cities.
According to some researchers, foundations of highly developed cities are not just based
on technical solution. In this context, this section also contains the idea of human, social,
entrepreneurial, and infrastructural capital for smart cities. Additionally, background on
smart cities and complexity is presented in this section.

2.1. Urban Models and Theories

The translation of functioning theory of cities into a mathematical model, calibration,
and validation of model to develop algorithms is called urban modeling. Initially, cities
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were considered as stable structures observing development as a monocentric pattern
around the peripheries of center dominant function. Urban models emerged through policy
imperatives in the context of technologies making simulation possible, e.g., for solving
transportation problems in cities.

Location theory, theories from geometry, and social physics dominated the equilibrium
perspective in urban modeling. Optimization models based on location theory rely on
urban economic models. Urban models inspired by social physics emerged through policy
imperatives. On the contrary, spatial morphology used ideas of form and structure from
geometry. The models become more descriptive, less problem-solving, and hence not
policy-oriented.

Alonso, in 1964, was the first to formally construct an urban economic theory, known as
the new urban economics. Isard et al. presented a practical method catalog based on ideas
of spatial interaction inspired by macroeconomic models such as input–output analysis and
social physics [8]. During the 1970s and 1980s, the aggregate static procedure to theorizing
and modeling motivated the switch to disaggregate activities in which planning focused on
bottom-up decentralized urban dynamics that deal with intrinsic processes of change such
as chaos and bifurcation theory, examining rapid and chaotic cycles in urban phenomena.
In the late 19th century, the agent-based approach shifted the focus to very micro-level
agents [29]. Later, these ideas to incorporate emergent patterns inspired models to analyze
systems within the system. Figure 2 shows the main features of cities, planning, and urban
modeling, as highlighted in literature from the 18th to the late 20th century. In what follows,
some of the main urban models are discussed.

2.1.1. Models Based on Location Theory

Location theory, which emerged in the late 19th century, is based on the principle of
‘what is where’. ‘What’ deals with any possible economic activity comprising dwellings,
stores, plants, or public facilities. ‘Where’ pertains to areas such as cities, neighborhoods,
political authorities, or customs unions. The models based on location theory aim to
demonstrate why specific economic activities prefer to settle themselves in distinct places.

2.1.2. Land-Use Transportation Models

This class of model is primarily concerned with the way employment and populations
are located in urban areas. It also focuses on the spatial interactions between locations at a
cross-section in time to simulate the city into equilibrium behaviors.

2.1.3. Spatial Interaction Model

Using analogies from classical Newtonian physics, spatial interaction modeling cap-
tures non-linear logistic growth and involves interactions from movements between differ-
ent spatial locations of people, goods, and information to migration between cities. Recently,
physics has been used to contain ideas of complexity as exhibited in self-organization, scal-
ing, and far-from-equilibrium dynamics.

2.1.4. Cellular Automata

This is a model, spatially disaggregated and made on a two-dimensional lattice of
cells, where land use is represented by each cell and processes of change are determined
in the neighborhood of any local cell. The evolution and emergence of global patterns are
observed through several discrete steps.

2.1.5. Agent-Based Models

In the 1980s, this class of models was originated as the bottom-up approach. It presents
the actions and interactions of adaptive agents as it is based on objects at the elemental level
to reflect their behavior through time and space. Thus, the focus is on emergent spatial
patterns from the very micro level through time.
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(b) Planning: Top-down to Bottom-up

(a) Dynamism: Static to Volatile System

(c) Modeling: Macro-Statics to Micro-Dynamics

Figure 2. Main Features of The Timelines: Dynamism, Planning, and Modeling.

2.1.6. Network Analytics

One of the approaches to explain and examine complex systems is network analytics,
which concentrates on associations between actors. Network science has been extensively
used in urban studies and focused on the interactions between individuals and other
systems. For example, Markus Schlaepfer’s work built a generalizable model of place-
visiting patterns and flows to depict the scale of needs and activities [6].

2.1.7. Models Inspired from Systems Perspective

Luis Bettencourt, a scientist at Los Alamos National Laboratory, and Geoffrey West,
distinguished professor at the Santa Fe Institute, show emergence in cities and from a
systems perspective quantitatively demonstrate how the whole is greater than the sum of
its parts [30,31]. This approach views the city as an organism that grows in size, utilizes
energy, and generates waste. In their work, as a result of the social interactions among
agents, cities exhibit macroscopic superlinear scaling patterns in socioeconomic properties.
Batty has highlighted the primary basis of complexity science on analyzing cities and
demonstrated that cities are made up of flows of people, goods, services, and information
in diverse cultural, physical, and digital networks [8].

According to the disaggregated level, cities are emergent consequences of interplays
among adaptive agents. Individuals and organizations continually interact, contact bar-
riers, arrive at decisions, and adapt accordingly. Agents perceive and respond to the
environment and their fellows, thus being involved in feedback to policy interventions,
which shape their perception of life. This acknowledgment of agents, as dynamic and
adaptive, demands people-centric planning and the deliberation for adaptive capacity in
policies. https://www.ura.gov.sg/Corporate/Resources/Ideas-and-Trends/Complexity-
and-Urban-Dynamics (accessed date: 10 December 2021).

https://www.ura.gov.sg/Corporate/Resources/Ideas-and-Trends/Complexity-and-Urban-Dynamics
https://www.ura.gov.sg/Corporate/Resources/Ideas-and-Trends/Complexity-and-Urban-Dynamics


Systems 2022, 10, 77 7 of 30

2.2. Functioning of Cities

The main urban theories that have dominated urban modeling are based on following
types of equilibria [10]. The timeline of these theories is shown in Figure 3.

Figure 3. Timeline of the Salient Theories in Urban Modeling: From Predictions to Understanding
and Innovation.

2.2.1. Cities in Disequilibrium

Michael Betty stated that it is likely that a system can be in equilibrium, out-of-
equilibrium, in disequilibrium, and far-from-equilibrium all at the same time. Conse-
quently, anything that diverges from the steady state can be called a disequilibrium [8,29].
Moreover, the equilibrium concept can vary dramatically conditioned upon its application.
For example, in the City of London, where buildings are continuously being reconstructed,
and where populations are perpetually varying dramatically in composition and type,
the physical structure has remained moderately stable with respect to the street pattern.
Batty considered a distinctive kind of equilibrium that is being sustained in the action for
order facing chaos, concerning how cities utilize energy and bring innovations. This idea
of a system that is far from equilibrium can be best understood in its physical form [29].
Unpacking the city dynamics reveals that the ideas of cities in equilibrium is a superficial
perception, as equilibrium merely makes sense when we think of cities physically. Nu-
merous countervailing forces that give rise to different temporal and spatial scales bring
heterogeneous function and volatile urban form. Catastrophe and chaos theory help us
understand the discontinuity and far-from-equilibrium urban structures [10]. In this regard,
Batty concluded that city happenings are disconnected from the physical form of a city as
seen in the contemporary world, there is no synchronization between what happens to the
built environment in the city and fluctuations in human behaviors, activity, and patterns of
movement [29].

2.2.2. Cities in Dynamic Equilibrium

Urban development can demonstrate counterintuitive dynamic behavior. This was
emphatically demonstrated by Jay Forrester, the founder of the field of system dynamics.
For instance, Forrester showed that low-cost housing and training programs for the under-
employed can counterintuitively contribute to the degeneration of the urban environment.
On the other hand, establishing job opportunities by replacing slum areas with industry
can lead to desirable long-term trends. Forrester’s model of urban dynamics shows that
urban problems (housing shortages or unemployment) are the result of internal forces
and cannot be resolved by undertaking external symptoms [32]. Any city development
program affects the stability of the system as a whole, despite the potential of the individual
program. Forrester also highlighted that striving to improve all aspects of the city will
result in the inevitable problem of bringing more people than the accommodation capac-
ity of the city [32]. He termed this the attractiveness principle. He proposed that urban
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planning should concentrate on balancing the positive and negative dimensions of urban
life. Adjusting specific elements of a city’s attractiveness while guaranteeing that the total
attractiveness of the city remains the same can assist in achieving a city’s development.

2.2.3. Cities in Adaptation

Cities stimulate social interactions and complex exchanges of people where feedback
processes lead to counter behavior. There is a constant adaptation, not equilibrium, as
Bettencourt and West present through the scientific understanding of dynamics, growth,
and evolution of cities, predictably and quantitatively [30]. Their main findings are based
on scaling laws such as the bigger the city, the more the average citizen owns and utilizes.
On average, when city size systematically increases per capita, socio-economic measures
such as wages, patents produced, gross domestic product, educational institutes increase
by around 15% more than the expected linear growth. By the same token, traffic congestion,
crime, and illnesses all increase, following the same 15% rule [31]. They show that as cities
are robust, success, once accomplished, is sustained for decades, but the reverse can also be
true [31]. Thus, policymakers should improve city performance corresponding to baselines
for their size, determined by scaling laws.

2.3. Humanistic and Sociotechnical Aspects of Smart Cities

In many discussions related to smart cities, important considerations are altogether
ignored such as the essence of social capital, or trust between individuals and communities,
is rarely discussed. Too often, we are presented with a vision of a smart city as a mechanical
system that fails to account for humanistic elements that bring color, noise, sights, and
sounds to what would otherwise be a robotic, soulless structure. More crucially, the
notion of inclusion seems to have been consigned to the margins; do we construct cities to
accommodate individuals who can buy smartphones, tablets, and IoT-connected gadgets,
or do we create cities for everyone? [21]. Previous research has shown that technology can
be a double-edged sword and it can be used to facilitate human development or derail and
impede it [33]. Luckily, with the rise in interest in human-centered artificial intelligence
(AI), there is rising interest in development future human-centered smart cities [34,35]
(some salient features and related aspects are depicted in Figure 4).

2.3.1. Development Challenges of Smart City

With the continuous growth of cities, their challenges require careful consideration.
Although most of the global GDP is yielded in cities, not everything occurring in cities indi-
cates praising externalities. In cities, inequalities, pollution, and crime rate are assertively
present. If these problems are not significantly solved, the consequences will be dire [36].
Some salient challenges of smart cities are noted next.



Systems 2022, 10, 77 9 of 30

Skilled labor

Digital 
infrastructure

Social 
networking

Risk-taking 
business activities

Legislation

Law & order

Industrial 
revolution

Economical 
growth

Sustainable 
growth

Security
Accountability

Equity

Justice Privacy

Humanity

Mutual 
Assistance

Moral values

Ethical teaching

ICT solutions

People centric 
approach

Governance Model

Ethical values

Concept of virtuous 
city

Figure 4. Holistic overview of a smart city highlighting that the concept of smart city is not limited to
implementing ICT solutions. (Authors’ own).

Lack of Governance Model

Smart cities are often termed digital or intelligent cities. Due to variations in defining
a smart city, urban planners have developed many theoretical and technical policies. Unfor-
tunately, despite various initiatives and the availability of advanced technology, not enough
progress has been achieved in building smart cities. The major limitation in realizing the vi-
sion of smart cities is in the lack of focus on the multidimensional operating nature of cities.
Regulation, planning, financing, and operating a city is a complex undertaking due to the
involvement of multiple stakeholders with various dependencies and interdependencies [5].
The development of a model of government is one of the main challenges for applying
smart governance in smart cities. Combining top-down policies with bottom-up endeavors
is challenging for making governance models more flexible. Demographic transformations
and territorial solidarity are also required to enhance the governance models.

Lack of Urbanization Model

The development of productive markets and industries is the main challenge for the
smart economy. Rather than focusing only on one economic sector, designing a multisec-
toral economy will help to make cities resilient to crises. Proper research of conditions that
causes the urban agglomeration and interconnections of their industries can also improve
the resistance to economic downturns.

Scarcity of Resources

The availability of clean drinking water and hygienic food has become a major chal-
lenge for cities because of rapid climate changes. In the coming years, the shortage of
water will increase, which can have adverse effects of agriculture production. Poor water
supply and energy network conditions are the main reasons for the shortage of resources
in cities. With the development of new supply networks, improving the efficiency of the
existing supply structure is also required to minimize the discrimination in the distribution
of basic resources.

Lack of Social Security

Interconnectivity of ICT devices enables multiple parties to access the information and
data of citizens. Multiple stakeholders contributing to the development of smart cities use
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the data, so each person using the digital facilities is at risk of data manipulation. There
exists a gap between the privacy standards due to the various priorities of each association.
Smart cities must take into account privacy concerns while regulating the data.

Poverty and Inequality

Poverty and insecurity are major challenges causing the loss of capability to attract
new businesses and talent. Instability of government, the violation of laws, corruption, and
social polarization are also the main issues causing business downturns. Social and living
conditions improvement is necessary for a promising bright future for the smart city.

Innovation Environment

Another difficulty is the creation of an innovation environment for the city, with a
particular emphasis on Industry 4.0, as well as the attraction of talent and capital. A critical
topic is how to build a smart, sustainable, and sharing community that can attract and
keep creative minds, entrepreneurs, and innovators, while also reducing costs. A related
difficulty is the provision of cheap housing to accommodate talent bases when real estate
prices begin to rise as a result of the increased demand for a higher quality of life in urban
areas [21].

Visionary Political Leadership

Considering problems that include bureaucratic misalignment, privacy issues, a lack
of funds, and a lack of awareness about what is feasible, to succeed, visionary political
leadership at all levels is essential. This leadership must have a comprehensive knowledge
of the potential and the technical competence to assess the benefits and dangers. Most
essentially, we want leaders who are capable of diagnosing the issue, comprehending the
technology, and communicating both the costs and the advantages openly and honestly
to their teams and stakeholders. They must also be prepared to deal with the political
backlash from a segment of the public, if necessary.

2.3.2. Impact and Pitfalls of ICT-Focused Smart City Solutions

Algorithm design is not merely a technical task. The techniques used in ML algorithms
are unable to question, and data is shaped by collection practices and incorporate current
politics. For instance, police data include police activity and service requesting tendencies
instead of crime. Therefore, given the fact that ML algorithms rely on historical data, we
cannot trust predictive algorithms to make municipal decisions that have a huge impact
on society’s political outcomes as “more fundamental than biases within data are the
politics embedded within the algorithms” [37]. Even though it appears that ML algorithms
do not make assumptions about the world, data-driven algorithms often incorporate the
priorities, beliefs, and choices of their creators. The decision to either focus on ignoring
the false positive or false negative completely can make or break the model. For instance,
the software of a self-driving Uber car, while prioritizing avoiding false positives, e.g.,
avoiding responding to hurdles such as plastic bags, killed a woman in Arizona in March
2018 [37]. Furthermore, outcomes of the ML models are based on characteristics fed in the
model in determining past outcomes. The training data comprising historical data samples
classified into categories form the basis of ML algorithms used in a smart city. The problem
lies here as past outcomes do not always be neutral; data depicts the social contexts. The
danger becomes more intense when governments use algorithmic decision making. As
it gives significant power to the unaccountable system developers to dictate municipal
priorities. Algorithmic decisions seem only a technical choice; but when data are influenced
by developers in terms of choices, values, and judgments about what input factors from
data are included, this vastly influences public policy.
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2.3.3. Combination of Human, Social, Entrepreneurial, and Infrastructure Capital

Mansoor and Chandra have argued that the notion of a “smart city” should not be
restricted to the deployment of just the most up-to-date technology to urban areas [21].
They have proposed that the components that make up a smart city are built on a promising
combination of human capital (such as skilled labor force), infrastructural capital (such as
high-tech communication facilities), social capital (such as trust and open network linkages),
and entrepreneurial capital (such as creative and risk-taking business activities) that can
be solidified over time [38]. This implies that the smart city idea is not confined to the
distribution of ICT; rather, it is centered on the needs of the residents.

2.3.4. Humanistic Principles and Virtuous Cities

Solving the rising problems of urbanization with smart cities is by itself not adequate—
humanistic principles should be at the core of all solutions. For theorizing about such
humanistic principles, it serves us well to look at the philosophy of virtue and virtuous
cities. Plato’s ‘The Republic’ claims that the model of an ideal city provides happiness
and the ultimate human perfection [39]. Al-Farabi’s philosophy becomes very relevant
for advancing democratic reforms and harmony in the city [40]. The study of the political
philosophy of Al-Farabi, the medieval Muslim philosopher, especially his teachings on
the need for mutual assistance between people, his focus on the intellectual and moral
perfection of man and society, his social and ethical teachings, are central to the idea of a
virtuous city. https://maypoleofwisdom.com/al-farabi-chasing-the-objectivity/(accessed
date: 20 October 2021) The virtues highlighted by Al-Farabi have two dimensions: ethical
and intellectual. For ethical virtues, he considered justice, generosity, temperance, and
courage; whereas, for the intellectual, he stressed intelligence, wisdom, and wit. The basic
principle of Al-Farabi’s virtuous city is justice. The dominance of justice unites multifarious
and heterogeneous elements of the city as a whole [41]. According to him, virtue is the
best moral quality. The making of the smart city should reflect on the virtues to restore
values among people that would be lost if the smart city only focuses on technological
advancement in the city. Shannon Vallor in ‘Technology and the Virtues’ presents vast
resources to embrace ethics in challenges and development practices of technology. She puts
forward solutions such as “improved technomoral education”, “cultivating technomoral
humility” or cultivating “renewed technomoral courage” [42]. She lists twelve virtues
relevant to the contemporary human condition with sociotechnical opacity: truthfulness,
self-control, humbleness, fairness, courage, empathy, care, courtesy, flexibility, perspective,
generosity, and technomoral wisdom. For each of these virtues, Vallor has strived to
uncover common roots amongst the traditions of Aristotelian, Buddhist, and Confucian
virtue ethics, and elucidate their relevance to emerging technologies [43].

2.4. Complexity Science and Complex Systems

There are a number of schools of thoughts related to complex systems or systems
thinking. Some prominent schools include General Systems Theory, which developed
from the ideas of Ludwig von Bertalanffy [44]. A number of systems-related theories were
introduced in the field of biological sciences in the early twentieth century. After 1939,
systems theory has also been widely adopted by thinkers in the field of ecology, social
sciences, and business management [45] . Another school is that of Chaos Theory, which
gives central importance to dynamics and feedback and the emergence of unpredictable
phenomena from systems due to these effects [46]. The field of Cybernetics, established by
Norbert Wiener, also utilizes the central concept of feedback in machines and organisms to
analyze how systems behave and evolve [47]. The field of Systems Dynamics was invented
by Jay Forrester in the 1950s at MIT, USA, and this field has widely contributed to the
popularization of systems thinking through the publications of Jay Forrester [5,48,49] and
Peter Senge [50]. Systems dynamics is especially popular and effective in the study of
complex problems related to business dynamics [51] and social change [52].

https://maypoleofwisdom.com/al-farabi-chasing-the-objectivity/
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A complex system contains various individual components or agents that manifest the
collective behavior and characteristics of the system. Examples of complex systems include
biological systems, the international trading system, economics, finance, and government
structure of a country. Consider the example of a biological system—a human body. It is not
simply the collection of cells, and each cell is not a simple collection of molecules. Similarly,
the personality, character, and consciousness of every human is a result of complicated
interactions between the neurons and synapses in the brain. It is not usually possible
to predict or exhibit the behavior of complex systems using the properties of individual
components as the behavior emerges without any central control by the infinite iteration of
simple rules followed by constituent parts of the system [6] through various intertwined
nonlinear feedback loops [5]. Individual constituents gather to develop emergent patterns,
a process known as self-organization. The complex systems hold the property that the basic
building elements of the system remain conserved when we scale up from small to large
systems such as economies, cities, organisms, and other evolutionary processes. All the
fundamental principles and building blocks remain approximately the same independent
of the increasing size and complexity of the systems [1]. The major determining factors of a
complex system are scale and size, which give rise to nonlinear evolving behavior. There
are two types of scaling: superlinear scaling states that “the bigger you are, the more there
is per capita” and sublinear scaling states that “the bigger you are, the less you need per
capita” [6].

Complexity science deals with problems and systems with unpredictable emergent
behavior and consisting of nonlinearly interconnected parts. Traditional science focuses on
the simple “cause and effect” relationship to extract the laws for controlling, measuring, and
replicating a system. On the other hand, according to Phelan, complexity science postulates
simple causes for complex effects [53]. He has stated that the core assumption of complexity
science is that complexity in the world is a result of simple rules. Complexity science is not
a single or unique theory, but an accumulation of various theories and conceptual tools
from different disciplines [7].

3. Smart Cities as Complex Systems

In this section, we discuss the systems of smart cities and their functioning using
various underlying principles and laws. We explore archetypes that can help mitigate the
risks leading to unforeseen consequences, and also explore the views which differentiate
smart cities from traditional ones. We discuss the need for causal modeling of smart cities
that can nullify their inefficiencies, and discuss the models and theories used in literature for
modeling the smart cities in detail. We end this section with a discussion on system-based
challenges of smart cities.

3.1. System of Smart Cities

In the 1950s, with the application of general system theory and cybernetics in social
sciences, scholars formally considered cities as a system. The basic idea behind this con-
sideration is the concepts of controllers and feedback loops to steer the system towards
achieving desired goals. However, this consideration required more significant interven-
tions than anything that had been presented before in the field of urban planning [9]. Later
on, the development of system theories in various disciplines supported the idea of treating
cities as systems. For example, the evolution of spatial analysis in quantitative geography
is linked with regional science representing the synthesis of urban and regional economics.
The ideas of gravitational and potential energies from physics were used in transport
modeling [45]. Analogies from sociology and political science were also chosen as the basis
for creating management and control policies of cities [54].

In city systems, distance is a fundamental organizing concept, as seen in the various
generation of urban distributions. Distance is a property of nearness to the most accessible
regions and locations. The more accessible or attractive the location offers the lowest
travel costs and distance to other places. In this scenario, travel cost or distance acts as an
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inferior good as the aim is to reduce the cost that occurred in overcoming it. The spatial
competition also intimates that the number of sites, with the greatest accessibilities, is
negligible compared to the majority of sites. The population density model implies that
if in a circular city the most accessible place is the center, then assuming every place is of
similar size, the accessibility decreases as the number of places by accessibility advances.

Various systemic principles are used to describe the functioning of smart cities as SoS.
These are elucidated below [10].

3.1.1. Pattern vs. Process

A set of elements and their interactions through linkages due to economic and func-
tional activities give rise to a pattern at a point in time. Tradeoffs between diseconomies
and agglomeration economies cause patterns of activity to rise which emerge from the
spatial choice processes of individuals and groups regarding location, activities in land use,
and density profiles.

3.1.2. Evolution vs. Emergence

The interactions of inhabitants of the city result in collective behavior that is different
from the properties of the components of the interacting inhabitants. Thus, this collective
behavior is difficult to predict. For instance, the distance of work to and from home,
travel cost and experience, and other factors cannot be sufficient to explain the patterns of
people commuting in a city. Patterns, which are the product of many bottom-up individual
decisions, evolve through time and give rise to surprising emergent behavior at any cross-
section [10]. Three conditions are required for emergence in a system: high connectivity, a
mechanism that produces new connections, and an adequately low level of control, since
less control signifies more emergence and vice versa [55].

3.1.3. Scaling Laws

Network structures express the sprawl and compaction of city development; moreover,
they provide scaling effects that define cities. As the elements and the whole of the city
change, the size and shape of the entire city system change. Scaling ties together all
processes and forms. For instance, according to the space, if an object scales, it shows
the same proportions of its spatial form either as a smaller or larger object. It is more
likely that the proportions of the object become distorted as changes in size also lead to
an adjustment in proportions. For example, it is highly unlikely that a small town has a
well-developed underground railway system because it requires many stopping distances
which is physically impossible. On the other hand, other means of transport, such as trams,
scale according to the small town [10].

3.1.4. Far-from-Equilibrium

Cities are far-from-equilibrium and sustained through a force of multiple countervail-
ing drives that break down and create many different temporal and spatial scales, thus
all combining in strong heterogeneity and volatility in the urban form [29]. Ideas about
innovation and technological change modify city dynamics. Betty has concluded that city
happenings are increasingly separated from their physical form and changes to the built
environment are ever out-of-sync with transformations in human behaviors, patterns of
movement, and globalization.

3.2. Use of System Archetypes in Smart City Modeling

Over the years, systems thinkers have cataloged a library of systems archetypes. They
are useful to analyze patterns of behavior or misbehavior that arise in a different system
and can help forecast unintended consequences [56]. Thus, a nuanced understanding
of the root causes of system misbehavior, problem symptoms, and the reasons which
are preventing them to move towards fundamental solutions can help in resolving the
problems of smart cities.
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Unintended consequences and underlying structure of smart city present how ML
algorithms that seem only a technical task if deployed without any transparency and ethics
embedded in the solutions can lead to biased and unjust outcomes such as incorrectly
accusing persons as criminals, invading private information, increasing digital divide,
and shifting growth funding from meaningful policy reforms to quick fixes, for instance,
predictive policing that exacerbate the problem in the long run. Below, we have identified
some of the common system archetypes in a smart city, also illustrated in Table 2.

Table 2. Summary of system archetypes described in paper for analyzing solutions of smart
city problems.

Archetype Name Description Example

Fixes That Fail An immediate fix leads to unintended consequences in the long-run [56] Predictive policing that intends to reduce
crime accentuates crime in the long run

Success to
the Successful Situation gets better for winners get better and worse for losers [56] Based on a short-term success rate,

resources are devoted to predictive policing
at the expense of reforms for institutions

Eroding Goals Deterioration of long-term goals at the expense of short-term fixes [56] Monetizing incentives for sharing user
data erodes privacy laws in the system

Shifting the Burden Alleviation of problems with symptomatic solutions [56] Reliance on technology undermines
fundamental solutions incorporating virtues

3.2.1. Fixes That Fail

This archetype hypothesizes that a quick fix leads to unintended consequences in
the long run [56]. It is depicted by two feedback loops that connect action and a result,
with outcomes feeding back again in a circular loop. Reinforcing loop (R1) amplifies
change, and balancing loop (B1) stabilizes change within the system. The causal links
between the elements are presented with the associated polarity. Polarity can either be the
same (represented by +) which depicts that the two elements move in the same direction or
opposite (represented by −) which shows that the two elements move in opposite directions.
As shown in Figure 5, a quick fix of using predictive policing for crime detection decreases
the rate of crime. However, in the long run, an immediate fix leads to accentuating crime in
the society when predictive policing fails to detect the actual crime and penalizes innocent
people only because trends from past data predict such outcomes.

Figure 5. Fixes That Fail: Predictive Policing that Intends to Reduce Crime Accentuates Crime in the
Long Run.
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For instance, St. George’s had unfairly rejected hundreds of applicants from minorities
and women despite exceptional academic credentials. When the algorithm drew on its
training data of previous decisions of admission, it deduced that St. George’s considered
women and minorities to be incapable. Instead of learning to identify the most academically
qualified candidates, the algorithm learned to identify the applicants that looked the most
like those the school had admitted in the past [37]. Similarly, decisions in smart cities solely
based on predictive policing algorithms that rely on historical data may punish the honest
and result in zero accountability for wrong-doers, thus increasing crime in the city.

Politics within Algorithms: In addition, data collection can be biased because data
are collected that fir the social bounds and are shaped by reporting and collection practice,
thus, politics is embedded within algorithms. Furthermore, reform is not only required in
making predictions unbiased, but also in tackling the biased prediction issue of predictive
policing regarding policing methods as accurately based on facts. However, facts, i.e., crime
statistics are termed as “poor measures of true levels of crime”, according to criminologist
Carl Klockars. Thus, those statistics are not the depiction of the actual levels of crime
across society as what police termed as crime are a depiction of the policy priorities and
activities [57].

The current solutions are adapting social theories to justify ML models, as even the
models are not capturing the complex interconnections of society, but rather they “reflect
the priorities of existing institutions and power structures.” With regards to the police
departments and courts, according to Ben Green, an affiliate at the Berkman Klein Center for
Internet and Society at Harvard, who studies the social and political impacts of government
algorithms, “When deployed within this framework, ML will be an ineffectual (at best) or
counterproductive (at worst) tool for social justice” [37]. Instead of using ML to improve
city functioning such as predictive policing by perceiving it as a value-neutral approach,
there is a need to evaluate whether the police practices are addressing social disorder and
are an effective tool for social justice.

Moreover, smart cities may also unintentionally increase an existing divide between
already digitally marginalized and better-connected groups. Smartphone applications that
can provide a platform for citizens to report their problems seem a perfect solution towards
resolving the street problems; however, it is a quick and wrong fix, smartphones are mostly
owned by wealthier residents or those with the knowledge on how to use those smart
applications, hence, actual problems remain unaddressed [58].

3.2.2. Success to the Successful

This archetype states if one group is allocated with more resources than another equally
capable group, the resource-sufficient group succeed and justify the case to gain even more
resources, which creates a widening gap of performance between two groups and unfair
disadvantage to the losers [56]. Reinforcing loops (R2, R3) in Figure 6 illustrate the case
when based on short term success of predictive policing, resources are devoted to policing
departments without foreseeing the long-term consequences of depriving resources for
other departments.

As smart cities facilitate police, welfare offices, employers, and others with data, it
causes surveillance of the urban poor. Reinforcing loops (R2 and R3) present as more
resources devoted to police for predictive policing lead to the success of predictive policing,
and thus crime detection; however, at the expense of devoting resources to other depart-
ments such as welfare working for the provision of electric benefit transfer cards to mothers.
For instance, a single mother loses welfare benefits after an algorithm flagged her with the
camera footage identification at a protest [37].

Quick Fixes at the Expense of Meaningful Reforms. Similarly, R2 and R3 show
growth funding to police after its immediate success depriving institutions of the resources
necessary for meaningful reforms and institutions. Unlike those who leap at the quick-fix
solution promised by predictive policing, Robert Sullivan, criminal justice coordinator,
emphasizes that improving the criminal justice demands a step-by-step process over the
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years [37]. According to Alex Vitale, “Police function as a tool for managing deeply
entrenched inequalities in a way that systematically produces injustices for the poor, socially
marginal, and nonwhite” [59].

Figure 6. Success to the Successful: Based on a Short-term Success Rate, Resources are Devoted for
Predictive Policing at the Expense of Reforms for Institutions.

3.2.3. Eroding Goals

This archetype presents a gap between actual performance and stated goals. It exam-
ines the state of the system when the goal is comprised to close that gap, which eventually
leads to deteriorating the actual problem [56]. The balancing loops B2 and B3 in Figure 7
present how a system in built structure erodes the goal itself. Privacy laws that intend to
protect the privacy of users lower the gap between the stated goal of privacy protection and
the actual goal achieved as monetizing incentives for sharing detailed data create pressure
to adjust the goal of privacy. The incentive structure within the system that promotes the
sharing of user data hinders the implementation process of privacy laws.

Figure 7. Eroding Goals: Monetizing Incentives for Sharing User Data Erodes Structure of Privacy
Laws in the System.

Incentive Structure Invading Public Privacy. More danger arises when implicit infor-
mation is disclosed from data combined with AI such as with the information where the
user has been tracked. The monetizing incentives further motivate to reveal the maximum
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information about users. ML algorithms can predict user preferences about visiting in terms
of places they will visit next and with whom. The risk is not merely that one’s identity can
be revealed from apparently anonymous data; when data are combined with AI, there is a
potential to infer a significant deal of personal information that is not explicitly included in
a dataset [37]. With detailed information about where one has been, ML algorithms can
predict the behavior of that user, a location where one will be and with whom. Moreover,
the photos or other benign data shared on Facebook or Instagram algorithm can predict
the feeling of the person, political or religious affiliation, and even marital status. This
behavioral identification by algorithms presents a grave picture of the invasion of public
privacy and monetizing incentives aggravate the situation.

3.2.4. Shifting the Burden

This archetype hypothesizes that because of reliance on symptomatic solutions prob-
lem symptom persists and invariably happens. Solutions that should be seen as a one-time
fix create side effects that reduce the urge for fundamental solutions, thus aggravating the
problem [56].

Technological Solutions Undermining Human Values. As depicted in Figure 8, to solve
the rising problems of cities such as governance and regulation, technological solutions are
perceived as forward-looking. However, sole reliance on technology not only creates side
effects such as loss of community, loss of traditions, and loss of ethical values, as shown
in reinforcing loop R1 in Figure 8, but it also worsens the existing environmental and
social challenges. Thereby, we cannot shift the burden to science and technology without
incorporating human values and ideals about the virtues.

Peter Senge in Presence elucidated this phenomenon as, over the past two hundred
years, rising dependence of Western culture on reductionistic science and technology are
diminishing wisdom. Technological powers are failing to integrate physical, emotional,
mental, and spiritual aspects of growth and human development [60].

Figure 8. Shifting the Burden: Dependence on Technological Solutions Undermines Fundamental
Solutions Regarding Capacity to be Human Through Virtues, Adapted from [60].

3.3. Systems Theory on Smart City

According to the systems theory, a smart city is an environment comprising particular
systems which are further divided into subsystems. The interconnection or interaction of
subsystems within the smart city indicates energy, information, or control relationships
among subsystems. The main difference between traditional cities and smart cities lies in
the fact that contrary to the traditional city in which systems interact only with the environ-
ment, systems in smart cities are interoperable with other systems and interconnected by
information relations, thus, information management becomes more crucial [61].
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3.3.1. Smart City as Cyber-Physical System

According to one of the subsets of systems theory, a smart city can be viewed as a
cyber-physical system (CPS), the virtual world of the smart city is interconnected with the
physical part composed of a network of sensors in intersection with wireless devices with
Internet and cloud service [62]. The flow of information through CPS consists of traffic
conditions, air quality, parking spaces, vehicles, roads or buildings, or healthcare. On the
other hand, the collection and dissemination of data can also be harmful [63]. For instance,
when smart parking solutions inform drivers about the available parking spaces, this leads
to traffic congestion where few parking spaces are available.

3.3.2. Smart City as Multi-Agent System

As human behavior is difficult to predict, systems within cities are dynamic and
nonlinear. Heuristic models are used to model complex systems. As systems theory
classifies smart cities specifically as CPS, they can be modeled by tools, such as system
dynamics or Multi-Agent Systems (MAS). MAS can model every object (car, building,
signal, etc.) as an agent, which acts based on a decision considered under its location and
perception of the environment [64].

3.4. Causal Modeling of a Smart City

For the past few years, the concept of smart cities has revolved around the implementa-
tion of advanced technology. It is a general thought that we require an abundant amount of
data and sophisticated models to build a smart city. These models require theories of human
behavior to support them. However, in the recent pandemic, it has become evident that
cities are not as smart or resilient as we believed. Against expectations, smart cities have
fallen in various ways, but the underlying causes and facts are not straightforward. For
example, according to Braess’s paradox, the efficiency of the transport network or electric
grid can sometimes be decreased by constructing a new road or by adding a new link [65].
It may appear counterintuitive, but many real-world examples of this phenomenon exist.
Therefore, rather than applying oversimplified and shortsighted solutions, we require
analysis for revealing the hidden causes and their correlation with effects.

The core idea underlying Dynamic Causal Modeling (DCM) is that brain networks
are an input–state–output system in which unobservable neural dynamics govern causal
connections. These “hidden” interactions are characterized by coupling parameters, which
represent effective connectivity and are referred to as a causal model [66]. Generative
models, i.e., agent-based models or dynamic causal modeling, can help in detecting causal
relations in the data. This lessens the risk of policies or decisions going wrong. Chang et al.
applied the agent-based model to compare various intervention techniques, including a
ban on international air travel, patient isolation, home quarantine, social distancing with
varying levels of compliance, and school closures. They found that the intervention of
closing schools is not effective for assertive benefits unless associated with a high level
of social distancing compliance [67]. Nunes et al. applied a system dynamics approach
to identify the factors that assist in the success of a smart city. They also identified the
cause-and-effect relationships among the determinants that facilitate the designing of smart
cities [68].

Control Theory: Smart City applications, in general, raise concerns about promoting
behavioual change to make better use of existing resources, as we struggle to manage
traffic, pollution, and food production with ever-increasing demands on natural resources.
The optimum management of resources is a classical concern of control theory. In order to
allow for better and quicker operational choices, real-time control systems provide data to
dashboards and enterprise resource planning, asset management, and reporting systems.

Models in the field of Smart Cities, on the other hand, cannot be easily generated
from first principles and must instead be empirical, that is, based on data gathered from
measurements of established procedures. Furthermore, the empirical data can only be
gathered from the system as is, not from controlled tests over a variety of operating points.
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An attempt to enhance the processes in question, such as by providing information to
the agents involved, establishes a previously unnoticed feedback loop. This change in
the underlying process may invalidate the empirical model; there were simply no data
available at the time of the model’s development to capture the dynamic influence of such
a feedback [69]. Frequently, offered solutions fail to account for this feedback cycle. This
necessitates a considerably more extensive investigation of prediction and optimization
under feedback than has hitherto been done. The impact of transportation delays, as well
as the fact that all agents are instantly notified of signals, adds to the complexity of the
situation [70]. The necessity to construct models of large-scale systems that can be fed back
is a major roadblock to employing various control techniques in Smart City applications.
In dealing with such consequences, Smart City research have a lot to learn from both
ecological and control theory.

3.5. Application of Theories and Models in Smart City

This section sheds light on the application of models and theories in smart city and
Table 3 summarizes the advantages and disadvantages of these theories and models.

Table 3. Advantages and disadvantages of theories and models used in modeling a smart city.

Method Description Advantages Disadvantages/Limitations

Social Network
Analysis

Investigation of social structure
in terms of nodes, edges,
or links to connect them

• Can generate an understanding of socio-institutional structures, actors
and linkages, and ways to improve information and knowledge transfer

• Can provide information on decision framing and key actors.

• Can provide quantitative information and correlations to understand
network variables

• Quick and relatively easy to conduct and encourages participation across
diverse viewpoints and actors

• Subjective bias and can be difficult to generalize.
• Time-consuming and intensive process
• Does not have a temporal or spatial dimension.
• Networks have artificial boundaries (often necessarily).

• Design of process is critical to obtain as many differing
viewpoints as possible.

Agent
Modeling

Focuses on emergent
spatial patterns from the
very micro level through time.

• Able to model heterogeneous populations in which statistical
properties of distribution are same in various parts of distribution

• Allows for discrete models rather than continuous

• The researcher does not need to have an understanding of the
aggregate or big picture behavior of the phenomenon

• Not able to deal with homogeneous data
• Can be computationally expensive

Decision
Making
Methods

Produces an efficient
methodology for optimizing
complex decision-making
processes throughout all
stages.

• Improve the degree of acceptance of a solution and commitment

• Allow the citizens to participate in taking decisions as the data of citizens
is used in making decisions

• Provide well-informed reforms in city if decisions are based on
extensive data sets

• Can be time-consuming
• Computationally expensive
• Can be biased

Spatio-Temporal
Network Data
Analytics

Network semantics are
generated from
location-aware sensors in
urban transportation networks.

• Find useful characteristics of data from the dynamic interplay
between space and time

• Provide analytics that describe patterns in data based on time.

•
Continuous and discrete changes of spatial
and non-spatial properties of spatiotemporal objects makes
the data complex to handle

• Correlation of spatial data and temporal data must be take into
account for analysis

Multiscale
Modeling

Uses multiple models at
micro, meso, and macro levels to
understand a complex adaptive
system.

• Allow the different scaling for multiple phenomenon interacting
with each other

• It allows the prediction of system behavior based on knowledge of
the process–structure–property relationships.

• Measurement of scaling parameter could be challenging

• Minor error in selection of scaling parameter can discard
the useful information and highlight pointless information

3.5.1. Social Network Analysis

The concept of the Spanish Network of Smart Cities allows the investigation of hierar-
chy connections and centrality among cities and corporations that implement strategies of
a smart city. These strategies assembled on a two-way network of companies and cities
with the measures of correspondence and betweenness, Gini index, and inequality for each
of them. Findings suggest these networks become a nationwide gateway for multinational
companies to expand in national markets of cities [71].

Radulescu et al. have used a holistic sustainability-focused Complex Adaptive System
lens for understanding the complex dynamics of smart cities. Social Network Analysis
(SNA) served as a tool for mapping the knowledge flow between different knowledge-based
organizations to the meso- and micro-economic levels within a considered area, which
was particularly helpful in identifying the major influential elements in a collaborative
model of a smart city. SNA also contributes to defining the key competencies and the
skilled development of human resources in the innovation network that is a base for the
collaborative model of a smart city [72].
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3.5.2. Agent Modeling and Network Analysis

With the help of spatial syntax tools and graph theory, the topological street network
aspects of Cartagena de Indias are examined. Street congestion is analyzed using a simple
agent-based model considering the traffic knowledge of the agent. It is essential to recognize
the decision-making capability of the agents in the system to define the emergence of traffic
congestion as the topological properties of the network are the partial cause of localized
congestion [73].

3.5.3. Street Network Models

Graphs are the most common street network mathematical models that represent both
the topology and geometry of street networks as a depiction of the real world. A set of
nodes that are elements N in the graph is linked to one another by a set of edges that are
connections E. Either node can be connected to a different node or to itself in set E through
edges. Multiple edges as parallel edges can also connect the same nodes [74].

The street network primal graph represents junctions and dead-ends as nodes and
connects street segments as edges, which is the opposite of a dual graph of a street network
that models intersections as edges and street segments as nodes [75,76]. Real-world street
networks have parallel edges, self-loops, restrictions of flow directionality in terms of
one-way streets, and nonplanar elements in the form of overpasses and underpasses [74].

3.5.4. Multi-Agent Autonomous Intersection Management (MA-AIM) System

Vehicles leveraging both Edges of Things (EoT) and Blockchain facilities can be man-
aged safely by Multi-Agent AIM (MA-AIM) system based on Vehicle-to-Infrastructure
(V2I) and Infrastructure-to-Vehicle (I2V) communications. The proposed system includes
an Intersection Manager Agent (IMA) that communicates with vehicles via driver agents
that are installed on them in an EoT environment. IMA uses Blockchain mechanisms to
coordinate the intersection of vehicles. It is an essential component for the management
of road intersections and can govern the safe intersection of vehicles via bidirectional
communication with them [77].

3.5.5. Decision-Making Methods

Decision-making methods are categorized into AI, multi-criteria decision making, in-
tegrated methods, and mathematical programming [78,79]. Multi-criteria decision making
(MCDM) is used for every decision in all phases of smart city projects. Whereas, MP and
AI methods are commonly used for making functional and tactical decisions. The dearth
of decision-making tools in developing cities elevates the negotiation between various
stakeholders [79].

Mathematical programming (MP) methods optimize objectives by estimating the con-
straints for helping stakeholders to make effectual decisions. For this, various optimization
methods, such as goal programming, stochastic programming, linear programming, and
data envelopment analysis, have been used. Advanced techniques have been introduced
in MP methods to reduce the limitations related to nonlinear properties and dynamic
complexity. There is also the integrated methods methodology which aims to integrate the
benefits of the afore-described methods [80].

3.5.6. Spatio-Temporal Network Data Analytics

Spatio-temporal network semantics are generated from location-aware sensors in
urban transportation networks such as temporally detailed roadmaps, traffic signal timings,
GPS tracks, and vehicle measurements collectively call Big Spatio-Temporal Network
(BSTN) Data [81]. BSTN has value addition potential for various smart-city use-cases
including navigation services that recommend eco-friendly routes. However, BSTN data
put forth notable computational challenges concerning the current state-of-the-art analytic
techniques used in these services [82].
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3.5.7. Cognitive Work Analysis by Human Factors and Ergonomics Approach

Stevens et al. have used a novel approach to model smart cities as complex systems.
Drawing from the discipline of Human Factors and Ergonomics (HFE) of Cognitive Work
Analysis, a Sociotechnical Systems (STS) is applied to assist in the designing, modeling,
and evaluating of the complex system of the city within which cities are STS (humans,
technology and their environment). Human operators are fundamental elements, but they
interact with many technical components (e.g., nuclear power plants). The smart city was
modeled according to five hierarchical levels—documenting, defining, and connecting the
objectives, values, priorities, performed activities, and physical objects. HFE, specifically
the STS approach, aims to jointly optimize the socio (society and people) and technological
(non-human) aspects of the surroundings [83].

3.5.8. Multiscale Modeling

Multiscale Modeling (MM) is a kind of modeling that at different scales of resolution
simultaneously uses multiple models at micro, meso, and macro levels to understand
a complex adaptive system at each level. It helps decision makers in reviewing and
monitoring the model from different perspectives at a particular level without interrupting
other levels. In mega cities and smart cities, it paves the path for multiple emerging
intelligent applications aiming to acquire decreased computational complexity and cost,
sustainability, reliability, efficiency, and much more in smart city subsystems, including
smart transportation, smart healthcare, smart community, smart economy, and smart
industry [84].

3.6. Smart City as Systems-of-Sub-Systems

The smart city consists of systems involved in integrated and interrelated relationships
within and outside systems leading to the smart city comprising complex systems-of-
subsystems (SoS), a set of heterogeneous independent systems collaborating to achieve
their purpose [85]. In European cities such as Manchester, Amsterdam, and Stockholm
smart city implementation has incorporated a decentralized bottom-up approach. Smart
cities constituents are deployed in fragmentation, each focusing on its objective; thus, they
are a missing collaboration that leads to unsustainable solutions [58]. Systems perspective
accounts for the varying balancing and reinforcing actions of different stakeholders (in-
dividuals, organizations, local or government authorities, etc.) Furthermore, we have to
be mindful that cities are not only composed of material construction, but also legacies of
cultures and ways of life.

An example of how multiple independent systems can integrate towards SoS can
be understood through flood detection in an urban agglomeration as shown in Figure 9.
Monitoring and emergency system collect information from multiple systems aiming
towards effective monitoring with the support of authorities to reduce flood impacts. The
river water level is assessed through a network of sensors in the river monitoring system,
which indicates the risk of flood. Meteorological systems, in turn, monitor atmospheric
parameters using employed weather satellites in the system. Drones and digital cameras
in a surveillance system estimate the flow rate of the river to improve the accuracy of
the measures captured by sensor nodes of the monitored river area. Then, multimedia
data are combined with river monitoring and meteorological systems for flood detection.
Moreover, an emergency can trigger firefighters, police, traffic management ambulances, or
other city services [1,85]. Hence, by analyzing the extent of flood damage with different
collaborating systems, the system optimizes and addresses the emergency with the best
resource allocation.
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Figure 9. Smart City as a Complex Systems-of-Sub-Systems (SoS): A set of heterogeneous independent
systems collaborating to achieve their purpose. It consists of systems involved in integrated and
interrelated relationships within and outside systems.

A smart city as a complex system allows us to holistically view the different projects.
It gives numerous agencies working under varying domains to interact, share, use informa-
tion across domains, and thus coordinate actions. These systems integrating synergistically
are characterized by their functions such as ‘sensing, information management, analytic
and modeling, and influencing outcomes’. Hence, with a holistic view of the city, the
urban planner can better extract information regarding environmental variables and hu-
man behavior for the best allocation of resources (water, land, transportation, etc.) At the
managerial level, actors can view planned interventions of cross-agencies. For example,
during a crisis situation because of any natural disaster, all actors with coordinated effort
can better decide where to allocate available resources [1]. Moreover, Naphade et al. have
mentioned that planning, operations, and management are the three main processes that
benefit from an integrated approach of systems at any cost [85].

3.7. System Based Challenges

In smart cities, systems are developing, managing, and evolving independently. An-
alyzing smart cities as SoS requires understanding the interactions among constituent
systems which raises major challenges of design, engineering, and operation [86]. Follow-
ing are some of the main challenges of smart cities when viewed through the perspective
of systems.

3.7.1. Cognitive Challenges

Humans have innate cognitive limitations in processing information. The main chal-
lenge of applying complexity science to urban systems is that the emerging behavior of
individuals who are themselves complex systems makes a city a complex system. This
complexity at the multiscale level feeds into the individuals as cognitive constructs [87].
This is common to all social phenomena at a large scale, from states to markets to online
communities. The city is the most fundamental and sensitive to all other social phenomena
as it encompasses most human experiences in the socio-spatial context. Then, the capacity
of the city functioning as a complex system also relies on how the cognitive representations
of the city, elucidated by its inhabitants, affect their behaviors and choices and how, in turn,
images at the macroscale into behavioral and spatial patterns.
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3.7.2. Testing and Validation

Due to the complexity and unintended consequences in SoS, testing and validation
are essential activities. Element- and service-level testing and validation are integrated
activities that are anticipated at SoS and subsystem level to fix the spontaneous behavior.
In the wider context and scope of SoS, it is difficult and costly to experiment for every
modification in the subsystem, local changes to the subsystems may have surged overall
SoS functionality [88].

3.7.3. Heterogeneity

The smart city relies on service delivery consisting of preexisting systems leading to a
city-wide SoS. The engineering of this type of system has to encounter high heterogeneity
of its elements and constituent systems. The elements which are distributed, autonomous,
designed with distinct technologies and data formats, and possessed by distinct institutions,
organizations, and agencies within the city become challenging to model.

3.7.4. A Multitude of Stakeholders

Enabling stakeholders for well-informed decisions is vital for sustainable planning to
keep up with rapid urbanizations [89]. Single systems consist of predefined stakeholders
involved with the system underneath production. SoS environments encompass a wider
range of stakeholders from the particular constituent systems to the broad SoS [86]. Other
than the technical and scalability aspects in the implementation of smart city systems as
SoS, important matters related to visioning, strategy, approach, operations, sustainability,
IT procedures influenced by stakeholders are more significant challenges in the more
comprehensive horizon of smart city SoS.

4. Potential Pitfalls of Systems Model

The drawbacks limiting the application of systems model have been discussed which
include limitations in accessing data and increasing computational costs, and finding a
trade-off between protecting privacy and performing precise analysis.

The paucity of adequate data, stakeholders’ reservations in presenting the causal
relationships, and other important aspects of people, environment, governance, and living
conditions, limit any systems model. Some of the main limitations are described below.

4.1. Computationally Difficulty Modeling

Understanding smart cities as complex SoS with the utilization of various above-
mentioned models also poses numerous limitations in terms of the computation of social
systems. A significant problem with mathematical programming methods is that they
are too complicated for practical use by non-expert stakeholders [79]. In developing a
transport model for the Tokyo metropolitan area at a micro-district scale, researchers put
forth that an agent-based land use–transportation model is computationally difficult and
quite data-demanding [73]. Similarly, data access and computational limitations are the
main causes of the lesser knowability of comparative street networks worldwide at the
urban scale [74].

4.2. Data Unavailability of Smart City Systems

The theoretical understanding and applicability in real urban settings become difficult
with the sole focus on nodes and edges [81] in a system. One significant limitation of
numerous studies on smart mobility aspects is the extensive dependence on simulations
rather than live data from users of smart city services. In the analysis of consideration of
the street as bidirectional, control elements such as traffic lights and the flow capacity of
the roads were disregarded. The most significant simplification is the steady rate of agent
creation per time step into the network, which is inconsistent with the dynamic human
activity that possesses peak hours of vehicular movement. The studies also do not consider
the variability of the dynamics of different vehicles. To incorporate such variables, it would
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be necessary to gather the real vehicular flow data according to the typology, but such data
are not publicly available in the city [90].

4.3. Precise Analysis vs. Privacy Protection within Sub-Systems of Smart City

Spatiotemporal data mining for smart cities has side effects in terms of privacy. Privacy-
preserving STDM concentrates on personal data privacy and corporate privacy. There
are different approaches to protecting data privacy, such as suppression of the unique
identities of individuals, perturbation via adding noise or randomizing the actual data,
data sanitization, i.e., adding fake records. For the sake of data protection, these methods
swap, delete, or modify some aspects. In this regard, researchers encounter a double-
edged dilemma, i.e., performing precise analysis vs. privacy protection [91]. Moreover,
a lack of specific knowledge of organizational behavior and network dynamics leads
to uninterpretable analytical values concerning distinct periods of analysis. Thus, the
predictions of organizational changes are low [74] and the system models cannot perform
precise analysis.

5. Future Research Directions

A smart city can be defined not by its degree of adaptability to the most cutting-edge
technologies currently available on the planet; rather, it is defined by the ability of urban
inhabitants—whether they are leaders or members of their communities, or even both—to
use ingenious solutions to solve lingering problems In this section, we discussed some
open-ended research problems of smart cities.

5.1. Complexity Science for Digital Twins of Smart Cities

The proposition of Local Digital Twins is a term introduced by the European Com-
mission. With AI and ML algorithms, it virtually represents a city and encompasses
real-time and historical data of the city’s processes. Creating exact digital copies of the
world maintain biases if merely focusing on a data-driven perspective [1]. As societies are
not automated machines, we cannot operate them like mechanical machines if we want
to make cities more equitable, inclusive, and sustainable. There is a need to combine com-
plexity science perspectives in digital-twins-like instruments to make the models adaptive
and resilient that capture collective behavior and cater to causal linkages of intended and
unintended side effects to human rights.

For a collective change in behavior in civil society, we need transformative changes
extending from innovative ICTs that can transform future city services (transport, public
safety, disaster management, public health, mobility practices, etc.) ICT ecosystem transfor-
mation and development processes complexity must be precisely known for influencing
such innovations towards longer-term sustainability and inclusion of societal goals [89,92].

5.2. Ethical Implications of Smart City Systems

Ziosi et al. have outlined the analysis of ethical concerns of a smart city in four dimen-
sions. These are: (1) network infrastructure, with the affiliated concerns of surveillance,
control, security, ownership, and data privacy; (2) post-political governance, manifested in
the decision making tussle between public and private and cities as post-political entities;
(3) social inclusion, represented in the factors of citizen inclusion, and discrimination and
inequality; and (4) sustainability, with a distinct focus on the environmental protection as a
strategic element for the future [93].

A central ethical implication involves the surveillance of citizens. Surveillance is
often closely concerned with the optimization of urban services and, more often, with
increased security. However, it can easily be manipulated to control the behavior of citizens
in remarkable detail. For instance, in San Diego, ‘smart streetlight’ cameras were originally
introduced to allow city officials to examine traffic patterns, but were subsequently regularly
employed by police officers to inspect purported crimes. https://www.bloomberg.com/
news/articles/2020-08-06/a-surveillance-standoff-over-smart-streetlights(accessed date:

https://www.bloomberg.com/news/articles/2020-08-06/a-surveillance-standoff-over-smart-streetlights
https://www.bloomberg.com/news/articles/2020-08-06/a-surveillance-standoff-over-smart-streetlights
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3 February 2022) This way, smart cities may advance the risk of becoming a catalyst for
unnecessary surveillance, as well as at the cost of increased security deepening existing
inequities and bias in systems.

Cities and employers at the expense of surveillance focus on improving efficiency.
This presents ethical concerns over individual privacy and autonomy. Caron et al. have
highlighted how the increased connectivity in a smart city may permit significant data to
be gathered regarding individuals without their consent [94]. Citizens do not have any
access to information about the purpose of data collection and the process by which their
data are being used. Failure and abuse of security and privacy can threaten public trust
and democracy as the required conditions for public trust become deteriorated. Security
and privacy enhancement frameworks can help as mitigation strategies [95]. Nonetheless,
their social implications of technical fixes have not been thoroughly researched [96].

The concept of smart cities cannot be perceived as objective data collection methods
that transparently echo city functioning untainted by ideologies. Kitchin indicates that
“data are the products of complex socio-technical assemblages” [97]. This implies that
culture, politics, social interactions, and other numerous happenings in cities shape data.

5.3. Environmental Sustainability and Economic Growth

The link between smart city technologies and environmental sustainability is not
unidirectional, but complex and uncertain [98]. Positive about smart city projects, some
authors have drawn distinctions between economic growth and environmental conser-
vation, stating that smart cities strive to serve both [99,100]. On the other hand, others
contest the compatibility of these objectives [17]. Bibri has claimed that the economic
dimension prevails over the environmental and social as smart city initiatives are more
focused on optimizing the efficiency of solutions, instead of addressing challenges of
sustainability [101].

Smart city technologies also necessitate energy usage, and as it embraces the lat-
est technologies such as blockchain, ethical queries about energy consumption begin to
rise [93]. Moreover, the development of smart technologies requires scarce elements such
as rare earth minerals and metals [102]. The extraction of materials might point to socio-
environmental consequences and conflicts in the areas of interest. Their recycling also
conveys a considerable challenge [103].

5.4. Conservation of Cultural Legacy in Systems of Smart Cities

Furthermore, for smart city development, typically, technology partners with local au-
thorities and serve as hubs of providing data to ICT connected industries, which previously
was inaccessible. Instead of market-led partnership to development of the smart city, which
traditionally follows, cities should not serve as the clients for technology companies; rather,
they should work as partners in ICT development and deployment. Local society should
not be integrated as only a provider of information. However, to facilitate informed choices
in the short term, it is required to obtain user-friendly real-time urban data from digital
interfaces of varied systems—housing, transport, disaster, traffic. For the empowerment of
civil society in the long term, along with input from public officials, populous participation
in city planning is crucial for the conservation of natural and cultural legacy.

Involving various stakeholders ranging from those who are making and adding
technology to those who are using and purchasing technology can make a smart city
successful. Interactions between different stakeholders (technology developers, technology
providers, industries, operators, local administrators, government, and consumers) lead to
the spontaneous creation of new services and products aimed towards innovative results.
ICT development of the urban system that involves informed participants is likely to come
with emergent outcomes related to urban sustainability than others [92]. The failure to
actively integrate citizens in understanding the smart city can have significant consequences
for democracy and may aggravate inequality and prejudice in the city.



Systems 2022, 10, 77 26 of 30

5.5. Sub-Systems of Smart City Systems—Beyond the Deployment of ICT

Embracing new technology is not the solution to improving capabilities in a city—
there is a need to reconceptualize the roles, practices, and priorities of institutions. Mansoor
believes that the notion of a “smart city” should not be restricted to the deployment of
just the most up-to-date technology to urban areas. Policymakers must devise and execute
knowledge-intensive and innovative policies to establish smart cities on a sustainable
basis [21]. These policies must be aimed at improving the socio-economic performance,
competitiveness, ecology, and logistics of cities, amongst other things.

Success will be determined by a variety of elements, including adaptive platforms that
can alter in response to technological advances, a shift in the behavior of managers, ad-
ministrators, and people, as well as new modalities of governance, among others. Physical
infrastructure such as roads and utilities should be designed in a way that is as modular,
replaceable, and upgradable as feasible when developing new cities. When unexpected
events occur, this may help to guarantee that life is not disrupted and that daily activities
continue as usual.

It is necessary that citizens, software engineers, government leaders, and businesses
come to a common understanding of what a smart city should look like and then begin to
collaborate to overcome the daunting challenges that they are currently, and will soon be,
confronted with in the present and the future. Most importantly, cities can be managed
using technology, but they must be created with a vision in mind. To make a city a pleasant
place to live, we need “CCTV” to work—citizens, community, technology, and vision [21].

5.6. Suggestions for Improving Systems-Based Simulations of Smart Cities

Some suggestions to improve the results of system models used in literature for smart
city applications are noted next:

1. Discussed limitations indicate future research that could include commutation pat-
terns with time-dependency, the consequence of boundary nodes, more elaborated
road characteristics, and the model validation with historical data [79];

2. For more precise results of crowd dynamics monitoring, diverse scales at micro and
macro levels can be explored;

3. In the area of smart mobility, further work can also incorporate real-time and discrete
monitoring at multiple scales, including time and space, through micro aerial vehicles’
real-time traffic monitoring [82];

4. Management of scale-dependent institutions is another area of research for better
growth of infrastructure [73];

5. Integrating ML with MM to identify both the underlying high dimensionality and
low dimensionality dynamics is another opportunity for future research [84];

6. Improving the performance, reliability, and accuracy of multiscale systems uncertainty
quantification of multiscale systems in the smart city environment remains open for
future work;

7. The implementation of growing approaches for multiscale models in smart city envi-
ronments is still an open direction for researchers and the industry.

6. Conclusions

In this paper, we have built upon existing literature on the science of the city and
presented the smart city as a system of sub-systems (SoS). Specifically, we shed light on the
history of urban dynamics, modeling, and formulations to present system science of urban
functioning and smart city as a complex system. Moreover, we have provided a compre-
hensive review of emerging models understanding complex systems of cities. In addition,
we have highlighted various developmental and system-related challenges of a smart city.
Finally, we have identified the limitations of existing models and highlighted various open
research issues that require further development. To the best of our knowledge, no review
covers these topics in-depth while highlighting the link and applications of urban models
and theories to understand the smart city as a SoS. We also focus on the dynamic issues of
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smart cities and describe how an understanding of the smart city as SoS can help us better
understand and resolve those emerging problems.

Author Contributions: Conceptualization, J.Q. and A.A.-F.; Methodology and Initial Outline: J.Q.
and A.A.-F.; writing—original draft preparation, U.A. and K.R.; writing—reviewing and editing,
all the authors; supervision—J.Q., A.M. and A.A.-F.; project administration, J.Q. and A.A.-F.; fund-
ing acquisition, J.Q. and A.A.-F. All authors have read and agreed to the published version of
the manuscript.

Funding: This publication was made possible by NPRP grant # [13S-0206-200273] from the Qatar
National Research Fund (a member of Qatar Foundation). The statements made herein are solely the
responsibility of the authors.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Arcaute, E.; Barthelemy, M.; Batty, M.; Caldarelli, G.; Gershenson, C.; Helbing, D.; Moreno, Y.; Ramasco, J.J.; Rozenblat, C.;

Sánchez, A. Future Cities: Why Digital Twins Need to Take Complexity Science on Board. 2021. Available online: https://www.
researchgate.net/publication/354446988_Future_Cities_Why_Digital_Twins_Need_to_Take_Complexity_Science_on_Board (ac-
cessed on 29 April 2022).

2. Pumain, D. Alternative explanations of hierarchical differentiation in urban systems. In Hierarchy in Natural and Social Sciences;
Denise, P., Ed.; Methodos Series; Springer: Dordrecht, The Netherlands, 2006; Volume 3, pp. 169–222.

3. Ramirez Lopez, L.J.; Grijalba Castro, A.I. Sustainability and Resilience in Smart City Planning: A Review. Sustainability 2021,
13, 181. [CrossRef]

4. Casado, M.S. From smart cities to smart citizens. Citizenry against technology in the construction of urban resilience. J. Urban
Stud. Soc. Sci. 2014, 6, 121–128.

5. Forrester, J.W. Urban dynamics. IMR Ind. Manag. Rev. (Pre-1986) 1970, 11, 67. [CrossRef]
6. West, G.B. Scale: The Universal Laws of Growth, Innovation, Sustainability, and the Pace of Life in Organisms, Cities, Economies, and

Companies; Penguin Press: New York, NY, USA, 2017.
7. Benham-Hutchins, M.; Clancy, T.R. Social networks as embedded complex adaptive systems. JONA J. Nurs. Adm. 2010,

40, 352–356. [CrossRef] [PubMed]
8. Batty, M. Cities as Complex Systems: Scaling, Interaction, Networks, Dynamics and Urban Morphologies. In Encyclopedia of

Complexity and Systems Science; Meyers, R.A., Ed.; Springer: New York, NY, USA, 2009; pp. 1041–1071. [CrossRef]
9. Bettencourt, L.M. Cities as complex systems in Modeling Complex Systems for Public Policies; Institute for Applied Economic

Research-IPEA: Brasília, Brasil 2015; pp. 217–236.
10. Batty, M. Building a science of cities. Cities 2012, 29, S9–S16. [CrossRef]
11. Meadows, D.; Randers, J. The Limits to Growth: The 30-Year Update; Routledge: Londen, UK, 2012.
12. Ammara, U.; Qudrat-Ullah, H.; Al-Fuqaha, A.; Qadir, J. Using the Lens of Systems Thinking To Model Education During and

Beyond COVID-19. In Proceedings of the 2021 International Wireless Communications and Mobile Computing (IWCMC), Harbin,
China, 28 June–2 July 2021; pp. 2056–2061.

13. Ammara, U.; Bukhari, H.; Qadir, J. Analyzing Misinformation Through The Lens of Systems Thinking. In Proceedings of the 2020
Truth and Trust Online, Virtual, 16–17 October 2020; pp. 55–63. Available online: https://www.semanticscholar.org/paper/
Analyzing-Misinformation-Through-The-Lens-of-Ammara-Bukhari/f038c5c7b24b9dd937ace0fd5ec6a8c5fec278ff (accessed on 29
April 2022)

14. Saeed, K.; Ryder, E.F.; Manning, A.L. Cancer as a system dysfunction. Systems 2021, 9, 14. [CrossRef]
15. Albino, V.; Berardi, U.; Dangelico, R.M. Smart Cities: Definitions, Dimensions, Performance, and Initiatives. J. Urban Technol.

2015, 22, 3–21. [CrossRef]
16. Höjer, M.; Wangel, J. Smart sustainable cities: Definition and challenges. In ICT Innovations for Sustainability; Springer:

Berlin/Heidelberg, Germany, 2015; pp. 333–349.
17. Hollands, R.G. Will the real smart city please stand up? Intelligent, progressive or entrepreneurial? In The Routledge Companion to

Smart Cities; Routledge: Oxfordshire, UK, 2020; pp. 179–199. [CrossRef]
18. Giffinger, R.; Fertner, C.; Kramar, H.; Meijers, E. City-Ranking of European Medium-Sized Cities; Vienna University Technology:

Vienna, Austria, 2007; pp. 1–12.
19. Hall, R.E.; Bowerman, B.; Braverman, J.; Taylor, J.; Todosow, H.; Von Wimmersperg, U. The Vision of a Smart City; Technical Report;

Brookhaven National Lab.: Upton, NY, USA, 2000.

https://www.researchgate.net/publication/354446988_Future_Cities_Why_Digital_Twins_Need_to_Take_Complexity_Science_on_Board
https://www.researchgate.net/publication/354446988_Future_Cities_Why_Digital_Twins_Need_to_Take_Complexity_Science_on_Board
http://doi.org/10.3390/su13010181
http://dx.doi.org/10.1115/1.3426475
http://dx.doi.org/10.1097/NNA.0b013e3181ee42bc
http://www.ncbi.nlm.nih.gov/pubmed/20798616
https://doi.org/10.1007/978-0-387-30440-3{_}69
http://dx.doi.org/10.1016/j.cities.2011.11.008
https://www.semanticscholar.org/paper/Analyzing-Misinformation-Through-The-Lens-of-Ammara-Bukhari/f038c5c7b24b9dd937ace0fd5ec6a8c5fec278ff
https://www.semanticscholar.org/paper/Analyzing-Misinformation-Through-The-Lens-of-Ammara-Bukhari/f038c5c7b24b9dd937ace0fd5ec6a8c5fec278ff
http://dx.doi.org/10.3390/systems9010014
http://dx.doi.org/10.1080/10630732.2014.942092
http://dx.doi.org/10.1080/13604810802479126


Systems 2022, 10, 77 28 of 30

20. Neirotti, P.; De Marco, A.; Cagliano, A.C.; Mangano, G.; Scorrano, F. Current trends in Smart City initiatives: Some stylised facts.
Cities 2014, 38, 25–36. [CrossRef]

21. Mansoor, A.; Chandra, K. Becoming a Smart City: Best Practices, Failures and Practical Challenges. In Proceedings of the CeDEM
Asia 2018: International Conference for E-Democracy and Open Government, Yokohama, Japan, 12–13 July 2018.

22. Hollands, R.G. Will the real smart city please stand up? City 2008, 12, 303–320. [CrossRef]
23. Silva, B.N.; Khan, M.; Han, K. Towards sustainable smart cities: A review of trends, architectures, components, and open

challenges in smart cities. Sustain. Cities Soc. 2018, 38, 697–713.
24. Camero, A.; Alba, E. Smart City and information technology: A review. Cities 2019, 93, 84–94. [CrossRef]
25. Ismagilova, E.; Hughes, L.; Dwivedi, Y.K.; Raman, K.R. Smart cities: Advances in research—An information systems perspective.

Int. J. Inf. Manag. 2019, 47, 88–100. [CrossRef]
26. Sánchez-Corcuera, R.; Nuñez-Marcos, A.; Sesma-Solance, J.; Bilbao-Jayo, A.; Mulero, R.; Zulaika, U.; Azkune, G.; Almeida, A.

Smart cities survey: Technologies, application domains and challenges for the cities of the future. Int. J. Distrib. Sens. Netw. 2019,
15, 1550147719853984. [CrossRef]

27. Radu, L.D. Disruptive Technologies in Smart Cities: A Survey on Current Trends and Challenges. Smart Cities 2020, 3, 1022–1038.
[CrossRef]

28. Habibzadeh, H.; Kaptan, C.; Soyata, T.; Kantarci, B.; Boukerche, A. Smart city system design: A comprehensive study of the
application and data planes. Acm Comput. Surv. (Csur) 2019, 52, 1–38. [CrossRef]

29. Batty, M. Cities in disequilibrium. In Non-Equilibrium Social Science and Policy; Springer, Cham, Switzerland, 2017; pp. 81–96.
[CrossRef]

30. Bettencourt, L.M.A.; Lobo, J.; Helbing, D.; Kühnert, C.; West, G.B. Growth, innovation, scaling, and the pace of life in cities. Proc.
Natl. Acad. Sci. USA 2007, 104, 7301–7306. [CrossRef]

31. Bettencourt, L.; West, G. A unified theory of urban living. Nature 2010, 467, 912–913. [CrossRef]
32. Forrester, J. Urban Dynamics; M.I.T. Press: Cambridge, MA, USA, 1969.
33. Latif, S.; Qayyum, A.; Usama, M.; Qadir, J.; Zwitter, A.; Shahzad, M. Caveat emptor: The risks of using big data for human

development. IEEE Technol. Soc. Mag. 2019, 38, 82–90. [CrossRef]
34. Ahmad, K.; Maabreh, M.; Ghaly, M.; Khan, K.; Qadir, J.; Al-Fuqaha, A. Developing future human-centered smart cities: Critical

analysis of smart city security, Data management, and Ethical challenges. Comput. Sci. Rev. 2022, 43, 100452.
35. Qadir, J.; Islam, M.Q.; Al-Fuqaha, A. Toward accountable human-centered AI: Rationale and promising directions. J. Inf. Commun.

Ethics Soc. 2022, 20, 329–342. [CrossRef]
36. Monzon, A. Smart cities concept and challenges: Bases for the assessment of smart city projects. In Proceedings of the 2015

International Conference on Smart Cities and Green ICT Systems (SMARTGREENS), Lisbon, Portugal, 20–22 May 2015, pp. 1–11.
37. Green, B. The Smart Enough City: Putting Technology in Its Place to Reclaim Our Urban Future; MIT Press: Cambridge, MA , USA,

2019.
38. Kourtit, K.; Nijkamp, P. Smart cities in the innovation age. Innov. Eur. J. Soc. Sci. Res. 2012, 25, 93–95. [CrossRef]
39. Reeve, C.D. Plato: Republic; Hackett: Indianapolis, IN, USA, 2004.
40. Doskozhanova, A.; Nurysheva, G.; Tuleubekov, A. State policy as virtue in doctrines of plato and Al-Farabi. Man India 2016,

96, 1979–1993.
41. Ali, I.; Qin, M. Distinguishing the virtuous city of Alfarabi from that of Plato in light of his unique historical context. HTS Theol.

Stud. 2019, 75, 1 – 9. [CrossRef]
42. Vallor, S. Technology and the Virtues: A Philosophical Guide to a Future Worth Wanting; Oxford University Press: Oxford, UK, 2016.

[CrossRef]
43. Vallor, S. Technology and the Virtues: A Response to My Critics. Philos. Technol. 2018, 31, 305–316. [CrossRef]
44. Von Bertalanffy, L. The meaning of general system theory. Gen. Syst. Theory: Found. Dev. Appl. 1973, 1, 30–53.
45. Chadwick, G. A Systems View of Planning: Towards a Theory of the Urban and Regional Planning Process; Elsevier: Amsterdam, The

Netherlands, 2013.
46. Gleick, J. Chaos: Making a New Science; Penguin: New York, NY, USA, 2008.
47. Wiener, N. Cybernetics or Control and Communication in the Animal and the Machine; MIT Press: Cambridge, MA, USA, 2019.
48. Forrester, J.W. Industrial dynamics. J. Oper. Res. Soc. 1997, 48, 1037–1041. [CrossRef]
49. Forrester, J.W. World Dynamics; Wright-Allen Press, Cambridge, MA, USA, 1971.
50. Senge, P.M. The Fifth Discipline: The Art and Practice of the Learning Organization; Doubleday/Currency, New York, NY, USA, 2006.
51. Sterman, J. Business Dynamics; McGraw-Hill Inc.: Boston, MA, USA, 2000.
52. Stroh, D.P. Systems Thinking for Social Change; Chelsea Green Publishing: Chelsea, VT, USA, 2015.
53. Phelan, S.E. What is complexity science, really? Emergence, J. Complex. Issues Organ. Manag. 2001, 3, 120–136. [CrossRef]
54. McLoughlin, J.B. Urban & Regional Planning: A Systems Approach; Faber and Faber: London, UK, 1969.
55. Salat, S.; Bourdic, L. Systemic Resilience of Complex Urban Systems. Tema J. Land Use Mobil. Environ. 2012, 5, 55–68. [CrossRef]
56. Braun, W. The System Archetypes. System 2002, 2002, 1–26.
57. Green, B.; Hu, L. The Myth in the Methodology: Towards a Recontextualization of Fairness in Machine Learning. In Proceedings

of the Debates workshop at the 35th International Conference on Machine Learning (ICML), Stockholm, Sweden, 14 July 2018.

http://dx.doi.org/10.1016/j.cities.2013.12.010
http://dx.doi.org/10.1080/13604810802479126
http://dx.doi.org/10.1016/j.cities.2019.04.014
http://dx.doi.org/10.1016/j.ijinfomgt.2019.01.004
http://dx.doi.org/10.1177/1550147719853984
http://dx.doi.org/10.3390/smartcities3030051
http://dx.doi.org/10.1145/3309545
https://doi.org/10.1007/978-3-319-42424-8{_}6.
http://dx.doi.org/10.1073/pnas.0610172104
http://dx.doi.org/10.1038/467912a
http://dx.doi.org/10.1109/MTS.2019.2930273
http://dx.doi.org/10.1108/JICES-06-2021-0059
http://dx.doi.org/10.1080/13511610.2012.660331
http://dx.doi.org/10.4102/hts.v75i4.5370
doi:10.1093/acprof:oso/9780190498511.001.0001
http://dx.doi.org/10.1007/s13347-017-0289-8
http://dx.doi.org/10.1057/palgrave.jors.2600946
http://dx.doi.org/10.1207/S15327000EM0301_08
https://doi.org/10.6092/1970-9870/918


Systems 2022, 10, 77 29 of 30

58. Organization for Economic Co-operation and Development and Ministry of Land, Infrastructure and Transport. Smart Cities and
Inclusive Growth © Oecd 2020. Available online: https://www.oecd.org/cfe/citiesOECD_Policy_Paper_Smart_Cities_and_
Inclusive_Growth.pdf (accessed on 29 April 2022).

59. Vitale, A. The End of Policing; Verso Books: London, UK, 2018.
60. Senge, P.M.; Scharmer, C.O.; Jaworski, J.; Flowers, B.S. Presence: Human Purpose and the Field of the Future; SoL: Cambridge, MA,

USA, 2004; Volume 20081.
61. Lom, M.; Pribyl, O. Smart city model based on systems theory. Int. J. Inf. Manag. 2021, 56, 102092. [CrossRef]
62. Lee, J.; Bagheri, B.; Kao, H.A. A Cyber-Physical Systems architecture for Industry 4.0-based manufacturing systems. Manuf. Lett.

2015, 3, 18–23. [CrossRef]
63. Hashem, I.A.T.; Chang, V.; Anuar, N.B.; Adewole, K.; Yaqoob, I.; Gani, A.; Ahmed, E.; Chiroma, H. The role of big data in smart

city. Int. J. Inf. Manag. 2016, 36, 748–758. [CrossRef]
64. Weiss, G., Ed. Multiagent Systems, 2nd ed.; Intelligent Robotics and Autonomous Agents; The MIT Press: Cambridge, MA, USA,

2013.
65. Pas, E.I.; Principio, S.L. Braess’ paradox: Some new insights. Transp. Res. Part Methodol. 1997, 31, 265–276. [CrossRef]
66. Stephan, K.E.; Harrison, L.M.; Kiebel, S.J.; David, O.; Penny, W.D.; Friston, K.J. Dynamic causal models of neural system dynamics:

Current state and future extensions. J. Biosci. 2007, 32, 129–144. [CrossRef]
67. Chang, S.L.; Harding, N.; Zachreson, C.; Cliff, O.M.; Prokopenko, M. Modelling transmission and control of the COVID-19

pandemic in Australia. Nat. Commun. 2020, 11, 5710. [CrossRef]
68. Nunes, S.A.; Ferreira, F.A.; Govindan, K.; Pereira, L.F. “Cities go smart!”: A system dynamics-based approach to smart city

conceptualization. J. Clean. Prod. 2021, 313, 127683. [CrossRef]
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