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Abstract 

The main objective of this paper is to develop predictive models using Beta regression for laboratory-

prepared hot mix asphalt (HMA) specimens’ thermal properties, including thermal conductivity (TC), 

thermal diffusivity (TD) and specific heat (SH). Thirty such specimens were prepared while varying the 

mixture’s nominal maximum aggregate sizes (NMAS) and gradation coarseness. The widely used 

Transient Plane Source (TPS) method was employed to determine the thermal properties of the asphalt 

concrete. Only one type of asphalt binder was used for preparing all specimens. The air void volume 

(Va) and the effective binder volume (Vbe) were calculated for each mixture. To this end, the multiple 

linear regressions and the non-linear beta regressions were employed. Laboratory work resulted in 

hundred and fifty (150) data points. Three nominal maximum aggregate sizes, two gradation coarseness 

levels, five replicates and five different locations of measurements to ensure accuracy and repeatability 

in the obtained results. In conclusion, using Va and Vbe as predictors provided reliable predictive models 

for the thermal properties of different asphalt mixtures. The distribution of Va and Vbe was identified, 

and synthetic data was created to evaluate the accuracy of the models. Apart from R2 values, beta 

regression was more reliable to predict thermal properties of asphalt mixtures than multiple linear 

regression. 
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1 Introduction 

Since temperature has a significant impact on how well pavements perform, it follows that different 

pavement temperatures cause varying structural reactions, and hence various distresses. In order to 

understand how the asphalt binder responds under specific conditions, it is essential to be aware of 

the various qualities of asphalt concrete. In addition, asphalt concrete's thermal qualities primarily 

define its characteristics for heat storage and heat transport (Tritt, 2005) and (Geng & Heitzman, 

2016). Thermal conductivity (TC), thermal diffusivity (TD), and specific heat (SH) are three basic 

terms used to describe heat transmission. Thermal conductivity, in its simplistic term, is the quantity 

of heat transmission through a material per unit surface area and per unit temperature difference. 

Specific heat is a constant that relies on the type of material used to transfer heat and it implies the 

heat required to raise the temperature of the unit mass for a known substance in order to cause an 

increase of one unit in temperature. Lastly, thermal diffusivity measures rate of temperature spread 

through a material. High diffusivity means that heat is transferring rapidly as in (Shi, 2014) and 

(Cengel & Heat, 2003). 
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Various techniques are available to assess thermal parameters of different engineering materials. Axial 

flow, hot-wire, guarded heat flow meters, guarded hot plate and transient plane sources are some 

examples (TA Instruments, 2012). The transient plane source (TPS) approach, however, is the most 

popular technique for evaluating thermal characteristics because of its reliable design, and its ability to 

detect thermal conductivity, diffusivity, and specific heat in a timely manner (Warzoha & Fleischer, 

2014). 

Thermal properties of asphalt concrete have been investigated by many researchers with emphasis 

on the influencing variables that affect the thermal behavior of asphalt mixtures. This is 

demonstrated in studies conducted by Mrawira and Luca (2006); Kim et al. (2003); Côté & Konrad 

(2005); Çanakci et al. (2007); Hall & Allinson (2009); (Pan et al., 2017); (Hassn et al., 2016); (Bai 

et al., 2015); (Tang et al., 2014); and (Wang et al., 2016). 

To substantiate the findings of previous studies, this study aims at utilizing analytical modeling 

techniques for the prediction of thermal properties of asphaltic materials. In this study, the TPS 

method was employed to investigate the thermal characteristics of Superpave laboratory-compacted 

hot mix asphalt (HMA) specimens. The study included both experimental and analytical parts 

focused on the effect of HMA volumetrics in governing the thermal properties of asphalt mixtures. 

Since aggregate plays a key role in regulating the engineering properties of asphaltic materials, 

changing the aggregate gradation of the asphalt mixture is the primary issue under examination in 

this work, see Elliott et al. (1991); Garcia et al. (2020); Cai et al. (2022); and (Khasawneh & 

Alsheyab, 2020). As a result, the gradation was controlled by altering the nominal maximum 

aggregate size (NMAS) and aggregate gradation (i.e., fine gradation or coarse gradation). The air 

void volume (Va) and the effective binder volume (Vbe) were used as predictors since these two 

variables are significantly influenced by the gradation and the asphalt binder type (Asphalt Institute 

SuperPave Fundamentals Reference Manual). 

Two approaches of statistical modeling were used: multiple linear regression (MLR) and nonlinear 

beta regression (NLBR). The models can be used to forecast these thermal properties; in some 

cases, they may aid specialists in the asphalt industry in forecasting the thermal performance of 

asphalt mixtures with less resources by limiting the need for comprehensive testing in the lab and 

highlighting the need for additional research in the future that considers other design variables. 

2 Methodology 

Thirty HMA specimens with three different NMAS values of 19.0 mm, 12.5 mm and 9.5 mm and 

two types of aggregate gradation: fine aggregate gradation (FG) and coarse aggregate gradation 

(CG) were arranged. The Superpave fundamentals documented by the Asphalt Institute Reference 

Manual, and used by Alsheyab and Khasawneh (2022), outlines the mix design procedure in 

accordance with Superpave specifications. The asphalt binder utilized in this investigation has a 

60/70 penetration grade (PG) and is produced in Jordan. The crushed limestone used in the 

aggregate component of the prepared mixtures was purchased from Khaled Al-Rijob quarries in the 

Jordanian city of Irbid. Table 1 shows information related to aggregate fractions and volumetric 

measures including voids in the total mixture (VTM), Va and Vbe. All mixtures were regulated at 

VTM of 4%. 

The transient plane source (TPS) method follows the procedure described in Mirzanamadi et al (2018). 

It is widely used method and easy to operate. It is not considered a time consuming method and can get 

the job done in a timely manner. Therefore, TPS was selected to meet the objectives of this study. The 
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experimental setup is shown in Figure 1. The experimental setup of the device comes in two forms; the 

typical form, which is a two-sided experimental sample setup in which the sensor is sandwiched 

between two pieces of the material. The second setup is the single-sided, which is used under different 

circumstances that are beyond the scope of the present study. Both setups are equally effective and 

regularly used. 

Table 1: Mixtures’ properties 

Mixture 

Aggregate Skelton HMA Volumetrics 

Coarse 

Aggregate 

Proportion,% 

Fine Aggregate 

Proportion,% 

Dust 

Proportion,% 
VTM,% Va avg,% Vbe avg,% 

No of 

specimens 

AC-9.5 (F) 31 64 5 4.2 77.552 246.421 5 

AC-9.5 (C) 38 58 4 4 80.040 251.724 5 

AC-12.5 (F) 44 52 4 4 80.693 219.305 5 

AC-12.5 

(C) 
50 47 3 4.1 82.882 217.260 5 

AC-19 (F) 50 44 6 3.9 83.951 218.84 5 

AC-19 (C) 63 34 3 3.8 84.302 214.61 5 

 

 

Fig. 1: The laboratory arrangement of Hot-Disk 2200 used in this study 

3 Results and Discussion  

The correlation coefficient (R) and p-value matrix were investigated for the interpretation of the 

variables eventually used for developing the proposed predictive models. RStudio 2022.02.3+492 

software was utilized to analyze the data. Table 2 shows the descriptive statistics (including 

measures of central value and measures of scatterness in the distribution) for the data collected. 

Table 2: Descriptive statistics of the thermal data 

Variable Minimum 
25th 

Percentile 
Median Mean 

75th 

percentile 
Maximum 

Standard 

Deviation 
Remarks 

Va, cc 77.36 80.66 82.83 82.10 83.95 84.50 2.19 Predictor 

Vbe, cc 193.9 205.4 217.3 218.4 219.3 251.7 18.72 Predictor 

TC,W/(m.K) 0.8419 1.2220 1.4850 1.5140 1.7953 0.0286 0.384 Response 

TD, mm2/s 51.76 85.81 103.30 105.22 123.47 181.30 25.43 Response 

SH, (M.J)/(m3.K) 0.007 0.0111 0.0134 0.0154 0.0176 0.03613 0.0064 Response 
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Table 3 shows correlations and p-values for Va, Vbe, TC, TD, and SH and it can be seen in the table that 

both Va and Vbe had a significant effect on the thermal properties values; negative relationship against 

Va and positive relationship against Vbe. Va had higher correlation for TD and SH, but lower than Vbe 

for TC.  

Table 3: Correlation and P-value matrix 

  Va Vbe TC TD SH 

  

Correlation, R 

p-value 

Va  ≤0.001 ≤0.001 ≤0.001 ≤0.001 

Vbe - 0.462  ≤0.001 ≤0.001 ≤0.001 

TC - 0.807 0.819  ≤0.001 ≤0.001 

TD - 0.836 0.784 0.716  ≤0.001 

SH - 0.852 0.774 0.849 0.788  

The main purpose of the study is to generate predictive models that describe the behavior of asphalt 

concrete thermal enactment to assist in better understanding the behavior of this thermoplastic 

mixture. For comparison purposes, two regression techniques were carried out; multiple linear 

regression (MLR) and nonlinear Beta regression (NLBR). The inputs were the air void volume (Va) 

and the effective binder volume (Vbe), and the outputs were thermal capacity metrics. All these 

regression techniques were performed using RStudio 2022.02.3+492. It is important to note that 

including both variables in any model will always enhance the prediction. Table 4 shows the 

generated MLR models. The TC, TD and SH models had R2 values of 0.700, 710, and 796, 

respectively. It is also important to mention that the multicollinearity was not encountered for the 

generated MLR models. 

Table 4: Multiple Linear Regression Results 

Notation 
Linear Regression 

Independent Variable Model R2 

ML Va + Vbe TC = 4.152 - 0.0665 Va + 0.0122 Vbe 0.730 

  TD = 493.60 - 6.20 Va + 0.516 Vbe 0.732 

  SH = 0.135 - 0.00176 Va + 0.0001 Vbe 0.746 

When dealing with datasets that have a wide range of uncertainty, beta distribution is a useful 

choice. Unlike linear regression, Beta regression analysis assumes flexible shapes depending on the 

nature of the datasets and, therefore, provide reliable estimations. It is evident that Beta 

distributions are efficient in “rate” estimation (Ferrari & Cribari-Neto, 2004)) as it will provide 

better prediction when compared to linear regression (Cetin et al., 2019). Similarly, Table 5 shows 

the generated NLBR models and it is clearly shown that R2 values for the Beta regression are 

comparable with R2 values in MLR models, where R2 values were 0.700, 0.710, 0.796 for TC, TD 

and SH, respectively. 

Table 5: Results of Beta regression modelling 

Notation  Multiple Linear Regression 

Independent Variable Model R2 

NLB Va + Vbe 
TC = 

100

1+e− (− 2.0966 - 0.047 Va + 0.075 Vbe)
 

0.700 

TD = 
1000

1+e− (1.998  - 0.066 Va + 0.0052 Vbe)
 

0.710 

 

  
SH = 

1

1+e− (0.1352  - 0.00175 Va + 0.000102 Vbe)
 

0.796 
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RStudio 2022.02.3+492 was used to identify the best distributions that fit the inputs Va, and Vbe. An 

approximation can be made to find the most suitable distribution for each input based on the data 

fitting line sloped at 45o in the P-P plot generated in RStudio 2022.02.3+492. It was found that 

Weibull distribution was the best fit for Va and Gamma distribution was found to be the best fitting 

machine for Vbe. The P-P plots for each input are shown in Figure 2. Table 6 shows the shape and 

the scale parameters for each distribution associated to each input (predictor). Table 7 shows 

descriptive statistics of the synthetical data for the predictors. It is important to note that when 

comparing the descriptive statistics of the synthetical data in Table 7 to the descriptive statistics of 

actual data, minimal differences were observed indicating that the simulation is quite accurate to the 

actual data. Once the distribution was identified representative data set points of 1000 scenarios 

were plugged into the models and responses (outputs) were monitored. 

 

(a) Va P-P Plot 

 

 

(b) Vbe P-P Plot 

Fig. 2: Predictors P-P Plots: (a) Va and (b) Vbe 
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Table 6: Predictors variables distribution parameters 

Predictor Variable Distribution Parameters 

Shape Scale 

Va Weibull 53 83 

Vbe Gamma 143.1 0.66 

Table 7 shows the descriptive statistics of the three thermal properties estimated by multiplying 

inputs into the developed models (MLR and NLBR). By comparing synthetical data in Table 7 to 

the actual data, it can be observed that NLBR models were the more accurate in estimating thermal 

properties values. The MLR models were good in predicting the values near the mean for all 

thermal properties. However, the standard deviations of the resulted data from NLBR models are 

closer to the actual standard deviation implying that NLBR models provide better estimates than 

MLR models. That is, MLR models tend to overfit the output and therefore the prediction becomes 

less reliable when new data is introduced to the developed models. 

Table 7: Descriptive statistics of the response variables 

4 Conclusion 

The findings of this study about thermal properties of asphalt mixtures using multivariate regression 

techniques are succinctly summarized below: 

1. Va and asphalt mixtures thermal properties had inverse significant relationship. On the other 

hand, Vbe and thermal properties had positive significant relationship. 

2. Multiple linear regression models provided higher R2 values than nonlinear Beta regression 

models. 

3. After the synthetical simulation was conducted Beta regression models were more accurate 

to predict the actual data. 

4. After the synthetical simulation was conducted the standard deviations of beta regression 

models’ outputs were closer to the actual standard deviations.  

Model Variable Minimum 25th 

Percentile 

Median Mean 75th 

percentile 

Maximum Standard 

Deviation 

N/A Actual 

 TC,W/(m.K) 0.8419 1.2220 1.4850 1.5140 1.7953 2.441 0.384 

 TD, mm2/s 51.76 85.81 103.30 105.22 123.47 181.30 25.43 

 SH, 

(M.J)/(m3.K) 

0.005 0.0111 0.0134 0.0154 0.0176 0.0361 0.0064 

 Synthetical 

MLR TC,W/(m.K) 0.852 1.206 1.350 1.375 1.527 2.550 0.246 

 TD, mm2/s 61.26 85.25 95.32 96.85 106.63 162.74 15.97 

 SH, 

(M.J)/(m3.K) 

0.006 0.0107 0.0129 0.0134 0.0154 0.0313 0.0038 

NLBR TC,W/(m.K) 0.638 1.186 1.366 1.373 1.557 2.40 0.277 

 TD, mm2/s 50.98 84.92 96.61 97.07 108.82 160.36 17.27 

 SH, 

(M.J)/(m3.K) 

0.002 0.0104 0.0134 0.0135 0.0163 0.0317 0.0044 
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5. Multiple linear regression models overfitted the actual results which made them less 

accurate than nonlinear Beta regression models. 

6. Although non-linear beta regression models showed better prediction, multiple linear 

regression models can still be reliably used for estimation. 
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