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COVID-19 complications still present a huge burden on healthcare systems and warrant

predictive risk models to triage patients and inform early intervention. Here, we profile 893

plasma proteins from 50 severe and 50 mild-moderate COVID-19 patients, and 50 healthy

controls, and show that 375 proteins are differentially expressed in the plasma of severe

COVID-19 patients. These differentially expressed plasma proteins are implicated in the

pathogenesis of COVID-19 and present targets for candidate drugs to prevent or treat severe

complications. Based on the plasma proteomics and clinical lab tests, we also report a 12-

plasma protein signature and a model of seven routine clinical tests that validate in an

independent cohort as early risk predictors of COVID-19 severity and patient survival. The

risk predictors and candidate drugs described in our study can be used and developed for

personalized management of SARS-CoV-2 infected patients.
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The rapid and widespread dissemination of the severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2) has
pressured healthcare systems globally. To date, there have

been over 60 million individuals infected worldwide, leading to
over 1.5 million deaths due to severe complications from the
Coronavirus disease 2019 (COVID-19). The International Severe
Acute Respiratory and Emerging Infections Consortium (ISA-
RIC) released its latest comprehensive report on 14 July 2021
including data from 30 January 2020 to 25 May 2021 for 442,643
individuals with laboratory-confirmed SARS-CoV-2 infections
from more than 1600 sites across 61 countries. Patients were split
equally between males (221,591) and females (220,390), with a
median age of 60 years. The most common comorbidities at
admission were hypertension (41%), smoking (35%), diabetes
mellitus (28%), cardiovascular disease (17%), and obesity (12%)1.
The five most common symptoms at admission were shortness of
breath, cough, history of fever, fatigue, and altered consciousness
or confusion. Oxygen saturation (SpO2%) less than 94% was
present in 34.8% and 25.3% of the patients who were and were
not on oxygen therapy at admission, respectively. Admission to
intensive care or high dependency units (ICU/HDU) at some
point of illness, which could be defined as severe COVID-19, was
reported for 70,476 (15.9%) patients with an estimated case-
fatality ratio of 37.9%; the overall estimated case-fatality ratio is
24.9%1.

Several studies reported symptoms and comorbidities asso-
ciated with severe COVID-19 complications; however, early
prognostic tools to stratify the risk of developing complications
are imperative. In this study, we hypothesized that changes in
plasma proteins offer prognostic molecular profiles and can help
identify the most informative clinical features presented at
admission, which can predict the risk of developing complica-
tions. To address this, we used proteomic panel-profiling of
plasma from patients with severe complications versus mild-
moderate symptoms and control subjects to characterize biolo-
gical processes and pathways associated with disease pathogenesis
and severity. Then we evaluated the plasma proteins and asso-
ciated routine clinical tests in an independent cohort and
examined candidate FDA-approved drugs targeting multiple
upregulated proteins and based on biological pathways specific
for patients with severe complications.

Results
Study cohort characteristics. Characteristics of the study groups,
patients (severe and mild-moderate) and healthy controls, are
summarized in Table 1. Most infected patients were males
(n= 91, 91%). The median age [interquartile range (IQR)] of
patients with severe COVID-19 disease defined by admission to
ICU (47[35–55] years), but not mild-moderate patients, was
higher than the control groups (vs. 38[33–42] years, p < 0.001).
The ethnicity distribution in the severe and mild-moderate
groups was not significantly different; however, the control group
had a higher percentage of the Indian subcontinent ethnicity
(p= 0.04). Patients with severe disease had a significantly higher
BMI and were either overweight (n= 25, 50%) or obese (n= 18,
36%) (p < 0.001), and had a significantly higher heart rate and
lower SpO2 (p < 0.001 for both). Moreover, diabetes and hyper-
tension were significantly associated with severe complications in
the lungs and kidneys, compared to mild-moderate disease
(Supplementary Data 1).

High differential protein expression in plasma from patients
with severe complications. Plasma from 50 severe and 50 with
mild-moderate COVID-19 patients and 50 control subjects were
analyzed using ten different Olink panels (Supplementary

Data 2). For one patient, P064, Olink assays failed QC for seven
panels; thus, was excluded. The number of differentially expressed
proteins (DEPs) from single panels for samples that passed
Olink’s QC (Supplementary Fig. 1) is summarized in Fig. 1a.
Given the characteristics of our cohort, such as over-
representation of males in all groups and younger age of con-
trols, the DEP analyses were corrected for interaction between
severity and obesity, sex, age, ethnicity, heart rate, and SpO2.
Severe disease versus control identified a large numbers of DEPs;
more than 40 out of 92 (>43%) per panel across all panels,
whereas the number of DEPs was less in mild-moderate disease
versus control. Receiver operating characteristic (ROC) curve
analyses using the DEPs in each panel, calculated as a single score,
found that all panels significantly classified severe cases versus
mild-moderate cases and controls; high area under the curve
(AUC, p < 0.01) (Fig. 1a).

For a comprehensive molecular view, we carried out the
analysis on combined data from the ten Olink panels (893 unique
proteins) as a single dataset (Supplementary Data 2). Unsuper-
vised hierarchical clustering, before filtering, revealed that the ten
panels could differentiate severe from mild-moderate diseases and
controls (Fig. 1b). More DEPs were identified when comparing
the severe disease to mild-moderate disease or controls than the
mild-moderate disease to controls (Fig. 1c and Supplementary
Data 3). Additionally, the DEPs in severe disease versus mild-
moderate disease and controls were mainly upregulated, whereas
DEPs in mild-moderate versus controls groups had an equal up-
and-down-regulation distribution (Fig. 1c).

Functional analysis of the deregulated proteins in plasma of
severe COVID-19 patients. The DEPs in severe versus mild-
moderate, severe versus controls, and mild-moderate versus
controls were subjected to Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathways enrichment analysis. The statistical
significance of enriched pathways should be treated cautiously
since our proteomic assays were based on enriched panels;
however, relative enrichment is warranted. Cytokine–cytokine
receptor interactions were enriched gradually from control sub-
jects to mild-moderate and then severe diseases groups (Supple-
mentary Fig. 2a–c). Such gradual enrichments were observed for
several pathways, mainly related to immune, inflammation, and
infection and the associated cell signaling pathways.

While standard pathway analyses are informative, the function
of proteins in the plasma, particularly during pathology, may not
be accurately reflected in such analyses. To this end, we focused
on the DEPs in the severe COVID-19 group to carry out
functional annotation based on information from databases and
literature and concerning their role in circulation and pathogen-
esis. In total, 375 DEPs were identified in plasma from severe
versus mild-moderate groups (Supplementary Fig. 2d, Supple-
mentary Data 3), of which 189 (50%) are secreted proteins based
on the Human Protein Atlas secretome2 and 123 (33%) DEPs are
released (secreted or shed) proteins according to literature
(Supplementary Data 3, Supplementary Notes). There was no
literature for the presence of 64 (17%) DEPs in blood; however,
62 of those were also detected in severe COVID-19 patients in the
independent, longitudinal cohort of SARS-CoV-2 infected
patients from the Massachusetts General Hospital (MGH
cohort)3 (Supplementary Data 3). Among the 375 DEPs, 288
(77%) were classified into 11 functional groups based on the
suggested relationship between functional annotation according
to databases and literature searching and COVID-19 pathogen-
esis and immunity. The remaining 88 DEPs consisted of 64
intracellular or membrane proteins with no described function in
the blood and 24 secreted proteins with an unclear role in
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COVID-19 pathogenesis (for details, refer to Supplementary
Data 3, Supplementary Notes).

The 288 functionally annotated DEPs in severe versus mild-
moderate cases included cytokines and chemokines (13 DEPs),
markers of innate immunity (6 DEPs), and markers of T or NK
cells-mediated immunity (6 DEPs), which are presumably
initiated in the alveolus and the interstitium in response to
infection before reaching to circulation (Fig. 2). A significant
number of DEPs in the severe group were related to immune
evasion (33 DEPs), including IL10, which may play a pathological
role in COVID-19 severity proinflammation and T-cell
exhaustion4. Another large functional network is connected to
T helper (Th) cell dysfunction in the severe group (31 DEPs),
including the inflammatory role of IL6 and the highly
inflammatory trans-signaling through the soluble IL6 receptor5

that maintains local Th17 cells6. However, agonists of Th1/Th17
responses (labeled pos. in Fig. 2) are countered by a high level
of antagonists in the severe group (labeled neg. in Fig. 2),
including soluble IL17RA7,8, and IL17RB9, which act as decoy
receptors to inhibit the functional effect of IL17 secreted by Th17
cells. Other examples of immune evasion and Th cell dysfunction
are detailed in the “Discussion” section (Supplementary Data 3
and Supplementary Notes elaborate further on the function of
DEPs).

Three additional functional networks were expressed in the
severe group; inflammation (24 DEPs), coagulopathy (27 DEPs),
and neutrophil activation and NETosis (program for the
formation of neutrophil extracellular traps [NETs]) (24 DEPs).
Finally, 124 DEPs are related to organ damage; lung damage (14
DEPs), endothelial and cardiovascular damage (66 DEPs), and
other or multiple organs (44 DEPs) (Fig. 2). Of the 124 DEPs

related to organ damage, 116 and 115 (93%) were significantly
deregulated on day 0 (at admission) and day 3 in patients who
were eventually intubated or died (severe group) by day 28 in the
MGH cohort3 (Supplementary Data 3). Overall, 364 (97%) out of
the 375 DEPs in severe versus mild-moderate and controls groups
were also significantly deregulated in the MGH cohort in patients
who eventually developed severe COVID-19 on admission (day
0) and day 3, respectively. This suggests that dysregulation of
these proteins is an early event and not restricted to ICU-
admitted patients, as in our cohort. Furthermore, 330 proteins
were deregulated in the same direction in our cohort and the
MGH cohort; 91% concordance (Supplementary Data 3).

Next, we analyzed the interactions between the 288 proteins
(Fig. 2) using the STRING database10 (STRING-db, version:
11.0). We found that 587 interactions with a STRING-db
confidence score of 0.7 or higher connected 213 (74%) of these
proteins, suggesting a complex biological interplay between the 11
functional networks (Supplementary Fig. 3). Among the clinically
available blood biomarkers in our cohort, C-reactive protein
(CRP) concentration correlated with most DEPs (308, 82%),
followed by creatinine (242, 64%), urea (210, 56%), and glucose
levels (194, 52%) (Fig. 3). In respect to blood cells, white blood
cells (WBC) counts had the highest frequency of correlations with
DEPs (179, 48%), followed by neutrophils (92, 24%), platelets (74,
20%), and eosinophils (33, 9%), whereas lymphocyte and
monocyte count correlated only with 20 (5%) and 7 (2%),
respectively (Fig. 3). At the individual functional groups level
(Fig. 2), CRP, followed by creatinine, showed the highest
frequency of correlations with DEPs in all groups. WBC followed
by neutrophils showed the highest frequency of correlations with
DEPs in all functional groups (Supplementary Fig. 3), but it was

Table 1 Characteristics of patients with COVID19 and controls.

Variables Controls (n= 50) Mild-Moderate (n= 50) Severe (n= 50) Total (n= 150) P-value

Age (years)
Mean ± SD 37.4 ± 7.7 40.0 ± 11.9 45.9 ± 11.2 41.1 ± 0.9 <0.001
Median [IQR] 38 [33–42] 40 [32–51] 47 [35–55]a 40 [34–49]

Sex n (%)
F 2 (4.0) 8 (16.0) 1 (2.0) 11 (7.3) 0.02
M 48 (96.0) 42 (84.0) 49 (98.0) 139 (92.7)

Ethnicity n (%)
Indian subcontinent 43 (86.0) 30 (60.0) 33 (66.0) 106 (70.7) 0.04
Middle East North Africa 5 (10.0) 15 (30.0) 10 (20.0) 30 (20.0)
Others 2 (4.0) 5 (10.0) 7 (14.0) 14 (9.3)

BMI (kg/m2)
Mean ± SD 25.4 ± 4.0 26.5 ± 3.9 29.7 ± 6.1 27.2 ± 0.4 <0.001
Median [IQR] 24 [23–27] 26 [23–28] 28 [26–33]a, b 26 [24–29]

Obesity Level n (%)
Normal (≤25) 28 (56.0) 20 (40.0) 7 (14.0) 55 (36.7) <0.001
Overweight (25–30) 17 (34.0) 21 (42.0) 25 (50.0) 63 (42.0)
Obese (30+) 5 (10.0) 9 (18.0) 18 (36.0) 32 (21.3)

Heart rate (beats per minute)
Mean ± SD 76.5 ± 10.0 89.8 ± 16.1 102.4 ± 16.3 89.3 ± 1.5 <0.001
Median [IQR] 78 [70–82] 86 [78–104]b 100 [88–117]a, b 86 [78–100]

SpO2 (%)
Mean ± SD 98.7 ± 0.8 98.2 ± 2.1 93.6 ± 6.9 79.2 ± 0.8 <0.001
Median [IQR] 99 [98–99] 99 [97–100]b 96 [91–97]a, b 78 [72–86]

SBP (mmHg)
Mean ± SD 122.5 ± 10.3 131.1 ± 17.7 125.5 ± 17.6 126.4 ± 1.3 0.02
Median [IQR] 121 [116–130] 129 [119–139]a 128 [109–137] 126 [116–135]

DBP (mmHg)
Mean ± SD 77.9 ± 7.4 80.2 ± 9.1 79.5 ± 12.6 79.2 ± 0.8 0.50
Median [IQR] 78 [73–81] 81 [74–88] 78 [71–86] 78 [72–86]

BMI body mass index, SBP systolic blood pressure, DBP diastolic blood pressure.
aSignificantly different compared to control subjects.
bSignificantly different compared to Mild-Moderate subjects.
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notable that blood cell counts generally had lower frequency of
correlations with DEPs compared to biochemical markers.

Potential drugs to target deregulated proteins in COVID-19
patients with severe complication. In addition to targeting the
enriched KEGG pathways (Supplementary Fig. 2) such as TNFα,
coagulation, or JAK-STAT, an analysis of protein-drug interaction

(PDI) was carried out based on the upregulated proteins sum-
marized in Fig. 2 in patients with severe versus mild-moderate
disease groups. The Drug-Gene Interaction database11 (DGIdb,
v4.2.0) was screened for FDA-approved drugs which interact with
the significantly upregulated proteins (>1.5-fold) in severe group
versus both the mild-moderate and control groups. We identified
215 FDA-approved drugs that targeted 74 proteins and were
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grouped according to drug classes (sheet a of Supplementary
Data 4). Briefly, the FDA-approved drugs list included anti-viral
drugs (e.g., ribavirin and ritonavir), anticoagulant and thrombo-
lytic drugs (e.g., tenecteplase), corticosteroids and glucocorticoids
(e.g., dexamethasone, methylprednisolone and prednisone), non-
steroidal anti-inflammatory (e.g., aspirin and indomethacin),
nonsteroidal antiandrogen (e.g., flutamide), immunosuppressive

and immunomodulatory drugs (e.g., anakinra, methotrexate,
tocilizumab, atezolizumab, and nivolumab).

A larger number of drugs (113 drugs) target single proteins,
which were upregulated by greater than or equal to 2-fold in
severe versus mild-moderate groups (Fig. 4a), compared to the 38
drugs that target single proteins which were upregulated by 1.5 to
2-fold in severe COVID-19 (Supplementary Fig. 4). A notable
feature of the PDI networks is the large interactions between the

Fig. 1 Differential protein expression in plasma from patients with active SARS-CoV-2 infection. The limma package was used to identify differentially
expressed proteins (DEPs) from the single Olink panels and the combined dataset (893 unique proteins), which was defined as protein with more than
1.25-fold change with a P-value < 0.05 and FDR < 0.1. a Summary of the number of DEPs in each of the ten Olink panels used in the study. DEPs were used
to calculate a score for each panel (refer to “Methods”), which was used for ROC curve analysis and the AUC under the ROC curves is stated for each
panel. All ROC curves AUC had a P-value < 0.01. DeLong et al. method70. b Unsupervised hierarchical clustering based on all proteins (a total of 893
unique proteins) assayed using the ten Olink panels showed a separation between patients with severe complications compared to mild cases and controls.
The heatmap shows z-scores and clustering was done using correlation and average linkage. Principal component analysis (PCA) confirmed the separation
of the severe cases based on the expression profiles of all proteins. c Volcano plots summarizing the DEPs across the patient groups. Differential
expression analysis addressed severity as the main effect and included all factors, from obesity to SpO2 (except for disease grading), to correct for the
interaction of these factors with severity. The time between admission to blood collection was also considered for interaction with disease severity in the
comparison between severe and mild cases (right volcano plot in c). The number and percentage of the DEPs relevant to all proteins assayed are stated in
each panel. Similar analyses were carried out for each panel and shown in Supplementary Fig. 1.

Fig. 2 Functional analysis of deregulated plasma proteins in severe versus mild COVID-19 disease. Differentially expressed proteins (DEPs) in patients
with severe complications compared to mild-moderate disease were subjected to network analysis using the STRING-db (Supplementary Fig. 3) and
annotation for their function as circulating proteins (Supplementary Data 3 and Supplementary Notes). Of the 375 DEPs (1.25-fold change in severe vs.
mild cases), 288 (77%) DEPs shown in the Figure could be allocated to 11 functional groups considering their potential function as circulating proteins;
chemotaxis, coagulopathy/fibrinolysis, immune evasion, innate immunity, T- or NK-cell immunity, T-/Th-cells dysfunction, inflammation, neutrophils/
neutrophil extracellular traps (NETosis), and organ damage (lung, cardiovascular or other and multiple organs). The remaining 87 DEPs were either known
to exist in circulation with unclear function or with known function but with no literature supporting their secretion or release into the blood (see
Supplementary Data 3 and Supplementary Notes). The color intensities (red: upregulated, blue: downregulated; legend) depict the log2 fold-change
between severe and mild-moderate cases. DEPs are classified as agonists (pos.) or antagonist (neg.) for the Th1/Th17 and Th2 immune responses.
Network interactions between the 278 DEPs and their correlation with clinical blood test are shown in Supplementary Fig. 3.
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proteins. This may suggest that the benefit from many single-
target drugs might be compromised, whereas drugs targeting
several proteins may be more promising. To this end, we focused
on 66 drugs that target multiple proteins with 2-fold or more
(Fig. 4b) or 1.5- to 2-fold (Supplementary Fig. 4) upregulation in
severe versus mild-moderate groups. Twenty-five of these 66
drugs target three or more upregulated proteins in severe versus
mild-moderate groups (sheet b Supplementary Data 4). The drug
atorvastatin targets the highest number of proteins, CXCL10,
LDLR, PLAT, TFPI, IL2RA, FAS, and LEPR with 56 interactions.
The anti-viral drug ribavirin targets four proteins with more
overall interactions (68 interactions); IL6, LDLR, VWF, and
CST3. The two forms of a glucocorticoid, prednisone and
methylprednisolone, target four proteins with 43 interactions,
CALCA, VWF, CXCL10, and IL2RA. The two anti-TNF drugs,
etanercept, and infliximab, target the same four proteins (IL6,
TNFRSF1A, TNFRSF1B, and KLRD1) with 74 interactions. We
deduced drug combinations that would target the highest number
of the total 265 interactions (detailed in sheet b of Supplementary
Data 4), which included ribavirin+ infliximab or etanercept
without (7 targets-96 interactions) or with methylprednisolone
(10 targets-127 interactions), ribavirin+methylprednisolone
without (7 targets-99 interactions) or with cyclosporine (11
targets-167 interactions), and ribavirin+ sirolimus without (9
targets-127 interactions) or with methylprednisolone (12 targets-
158 interactions). Combining ribavirin and methylprednisolone
with sirolimus or cyclosporine targeted the largest fraction (60%)
of the 265 interactions between the upregulated proteins in the
severe COVID-19 patients.

The molecular severity score: a 12-protein signature for
COVID-19 severity. To develop blood protein signatures, we
used the MUVR tool12 for variable selection and validation in

multivariate modeling to identify the most stable DEPs that can
differentiate all groups’ status (severe versus mild-moderate,
severe versus controls, and mild-moderate versus controls). We
also used Boruta, a wrapper algorithm for all relevant feature
selection13. By overlapping the features selected by MUVR and
Boruta, 35 common proteins were identified (Fig. 5a), of which 12
were selected in 100% of individual 500 variable selection runs
(Fig. 5b). These 12 proteins were combined to develop the
COVID-19 molecular severity score, which classified severe ver-
sus the mild-moderate and controls groups with 100% specificity
and 98% sensitivity (AUC under ROC curve 0.999) (Fig. 5c).

We validated the COVID-19 molecular severity score in the
independent Massachusetts General Hospital (MGH) cohort3

(Supplementary Data 5). The score was significantly higher in
patients with severe (Acuity 1—death [A1] and Acuity 2—
intubated, ventilated but survived 28 days [A2]) compared to
non-severe disease (Acuity 3–5, A3–5) (Fig. 6a, b, Supplementary
Data 6 for statistical comparisons). The severity scores from
plasma collected on days 0 and 3 were highly predictive of
COVID-19 severity using the maximum acuity data (A1 or A2
versus the rest, Fig. 6c). The MGH cohort included 57 patients
who were intubated at admission but survived for the 28 days,
thus, these patients were excluded from the severity analysis to
better evaluate the prognostic value of the molecular severity
score. The score using day 0 data predicted severity (AUC 0.836)
and death (AUC 0.872) between day 3 and day 28 post-admission
(Fig. 6d). The score using day 3 data also predicted severity and
death (AUC 0.941) between days 7 and 28 post-admission
(Fig. 6e). The COVID-19 molecular severity score on day 3 may
still be prognostically useful since most of the severity (34 out 52
[60%]) and death (32 out of 42 [76%]) events occurred between
days 7 and 28 post-admission. Finally, the molecular severity
score in the MGH cohort was significantly higher in severe
COVID-19 patients compared to symptomatic SARS-CoV-2
negative patients (n= 78) but not different between non-severe
virus positive and virus negative patients (Supplementary Fig. 5).

A molecularly trained clinical score to predict COVID-19
severity. We hypothesized that the molecular severity score could
be used to identify informative clinical parameters and provide
scoring system for each parameter to combine them into a single
score to predict COVID-19 severity. Eleven out of the 24 clinical
parameters available in our cohort were significantly associated
with the molecular severity score (Supplementary Fig. 6a), 10 of
which significantly classified severe versus mild-moderate disease
by ROC curve analysis (Supplementary Fig. 6b). MUVR deter-
mined that 7 were most informative (Fig. 7a, Supplementary Fig.
6c, and Supplementary Data 6 for statistical comparisons), which
were combined to develop a molecularly trained 7-marker Clin-
ical Score where each clinical measure was weighted according to
its molecular severity score. The 7-marker clinical score differ-
entiated severe and mild-moderate groups with 94.7% sensitivity
and 85.7% specificity and outperformed each of the single para-
meters in our cohort (Fig. 7b). Adding the remaining clinical
markers (diabetes, SpO2 and/or eosinophils) to the 7-marker
clinical score did not improve classification (Supplementary
Fig. 6d).

Four out of the 7 markers were also available in the MGH cohort;
neutrophil counts, lymphocyte counts, CRP and creatinine levels
(Supplementary Data 5). A 4-marker clinical score discriminated
severe from mild-moderate groups in our cohort (Fig. 7c), predicted
severity in the MGH cohort using data from days 0 (AUC 0.77) and
3 (AUC 0.85), and was more prognostic than the single markers
(Fig. 7d). The 4-marker score in the MGH cohort predicted 70%
(95% CI 63–77%) and 81% (95% CI 72–90%) risk of severity for
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patients with a score higher than 6 compared to 16% (95% CI
12–20%) and 8% (95% CI 4–12%) severity risk for patients with a
score less than 4 based on days 0 and 3 data, respectively (Fig. 7d).
While the 4-marker clinical score may be more readily available for
clinical utility, the molecular severity score was significantly more
predictive in the MGH cohort (AUC pairwise comparison;
P= 0.0009 for day 0 and P= 0.0004 for day 3 data). The molecular

severity score was more predictive than every clinical feature in the
MGH cohort (P < 0.0001 from AUC pairwise comparisons), which
included age, BMI, pre-existing conditions (kidney, heart, and lung
diseases, diabetes, hypertension and immunocompromised condi-
tions), symptoms at presentation (respiratory, fever or gastrointest-
inal), or blood markers (lymphocytes, monocytes and neutrophils
counts, CRP, creatinine, D-dimers, and LDH concentrations).
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Discussion
The population of Qatar with SARS-CoV-2 infection during the
early first wave of the COVID-19 pandemic is demographically
unique14 (predominantly males of younger age) when compared
to other populations such as that described in the ISARIC1. The
cohort of SARS-CoV-2 infected patients in this study was col-
lected early in the pandemic and in the same time frame as the

nationwide cohort of the first consecutive 5000 patients with
COVID-19 in Qatar14, thus had similar characteristics of most of
the SARS-CoV-2 infected patients (88.7%) being males, with a
median age of 35 and the majority (65%) under 45 years old14.
Between March and April 2020, hospitalizations were pre-
dominately under 65 years of age; 95.7% for non-ICU and 85.2%
for ICU patients. ICU patients in Qatar were further enriched for

Fig. 4 Drug–protein interactions of upregulated plasma proteins in severe COVID-19 patients. Proteins with more than 2-fold upregulation in severe
versus mild-moderate cases were subjected to protein-drug interaction analysis (PDI, using Drug-Gene Interaction database DGIdb, v4.2.0). Target
proteins are colored red according to the fold change of expression in severe versus mild cases, whereas drugs are shown in gray boxes or nodes. Drugs
that target 1.5- to 2-fold upregulated proteins in severe versus mild cases are shown in Supplementary Fig. 4. Interactions between proteins are depicted by
red or blue lines for STRING-db confidence score of 0.7 to 1.0 or 0.5 to 0.7, respectively. a Drugs which target single proteins with 2-fold or more
upregulation in severe COVID-19 patients versus mild-moderate cases. b Drugs which target with two or more upregulated proteins in severe COVID-19
patients. Those multi-target drugs affect proteins shown in (b) and/or proteins with 1.5- to 2-fold upregulation in severe versus mild cases (Supplementary
Fig. 4).
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males (92.6%), and only 16 patients (14.8%) in the ICU were
above 65 years or older14. Our study selection for patients aged
between 18 and 65 and being mainly males with only 9% females
was based on the local COVID-19 demographics during the early
first wave of the pandemic.

Various differentially expressed plasma proteins were identified
in severe COVID-19 patients compared to mild-moderate disease
and controls in our study. Typical KEGG pathway enrichment
analysis found relative enrichment of pathways in severe versus
mild-moderate COVID-19 disease, which have been previously
reported in COVID-19. These included cytokine–cytokine receptor
interactions and viral interaction cytokine/cytokine receptor inter-
actions related to the cytokine storm15–17, immune, inflammation,
and infection pathways such as TNF and JAK-STAT signaling
pathways15,17, and complement and coagulation cascades15,18,19.

Patients with severe disease in our cohort had lower lympho-
cyte counts and the COVID-19 molecular severity score sig-
nificantly associated with lymphopenia, a prominent feature of

SARS-CoV-2 infection and disease severity20. Another feature of
severe COVID-19 disease is apparent immunity, particularly T
cell responses20. While our study did not directly investigate
immune cells, the detailed analysis of the 375 dysregulation
plasma proteins, particularly for functional role in circulation,
shed light on the pathogenesis of severe COVID-19 disease. This
functional annotation outlined 11 functional networks including
cytokines and chemokines and markers of innate and T and NK
cell-mediated immunity which were counteracted by larger net-
works of immune evasion and T helper (Th) cell dysfunction. For
example, severe COVID-19 patients had higher levels of the
soluble form of ULBP2, a ligand for the NKG2D receptor on NK
cells that mediates mediating cytotoxicity, which inhibits NK-cells
as a mechanism to evade immunosurveillance by NK cells21,22.
Other examples include circulating PD-L1, which induces
immune suppression and damage, and associates with COVID-19
pathogenesis and mortality23, soluble LILRB4 (sLILRB4), which
can be produced by a splice variant24 and suppresses T cell
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Fig. 6 Validation of the COVID-19 molecular severity score in the Massachusetts General Hospital (MGH) cohort. a The molecular severity scores were
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responses and elicits T cell anergy or activation of Treg or T
suppressor cells24–26, and PVR (CD155) which is a ligand for
CD226 (DNAM-1) and TIGIT expressed on NK cells and a
subset of T cells27, but the soluble form inhibits NK cells CD226-
mediated cytokine production28. NECTEN2 (also called PVRL2),
a ligand for DNAM-1 and PVRIG on NK and T cells27, has a
soluble form (sNECTIN2) which is inhibitory of function29,30 and
was elevated in plasma of severe COVID-19 patients in our
cohort. Both TIM-1 (HAVCR1) and its ligand TIM-4 (TIMD4)
were upregulated in the plasma of severe COVID-19 patients. The
soluble form of TIM-1 may be inhibitory of cellular function31

including its role in regulating Th2 responses32. Likewise, the

soluble form of TIM-4 may be inhibitory of cellular function
TIM-4 in Th2 development31. Another duo of a ligand and its
receptor that was upregulated in plasma of severe COVID-19 is
IFNL1 (INF lambda 1, type-III INF) and one of its receptors,
IFNLR1. IFNL1 is released by epithelial tissues to bind to IL10RB/
IFNLR1 dimers and is involved in antiviral host defense and
inhibits Th2 polarization towards Th133–35. However, soluble
IFNLR1 (sIFNLR1/sIFN-λR1) inhibits the antiviral and immune
effects of type III INF signaling and the induction of IFN-
stimulated genes36. Further indicators of immune evasion include
ST3GAL1 which is carried in circulation by platelets and released
upon activation37 and ST3GAL1-mediated O-linked sialylation of
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Fig. 7 A clinical risk score for COVID-19 complications based on the 12-protein molecular severity score. a The clinical parameters available in the
cohort were evaluated for their association with the 12-protein molecular severity score to identify significantly associated parameters and allow scoring
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groups. Refer to Supplementary Data 6 for more details of the statistical comparisons and exact p-value. The groups in each of the seven selected clinical
parameter (markers) were given a numeric, integer value from 0 to 3 (shown in red bold font) according to the 12-protein severity score. These values
were then used to calculate the Clinical Risk Score by adding the values across the 7 markers for each patient. Refer to Supplementary Fig. 6 for details of
variable selection. b ROC curve analysis confirmed the significant predictive value of the Clinical Risk Score, which combined the 7 clinical markers. c, d Of
the 7 markers in (a), 4 (CRP and creatinine levels and lymphocyte and neutrophil cell counts) were available in the MGH cohort, thus, were used for
independent validation (Supplementary Data 5). c, d Show the ROC curve of the Clinical Risk Score based on the 4 markers in our cohort from Qatar and
the MGH cohort (from day 0 and day 3 data) from the US, respectively. D Also shows the risk of COVID-19 severity (% risk with 95% confidence interval)
in the MGH cohort according to the 4-marker Clinical Risk Score. For b–d the Clinical Risk Scores outperformed each of the single clinical parameters in
pairwise comparisons (p < 0.0001, DeLong et al. method70).
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CD55 act as CD55-mediated immune evasion38 and the dramatic
early proinflammatory IL10 elevation which may play a patho-
logical role in COVID-19 severity proinflammation and T-cell
exhaustion4. Finally, the T and NK cell-specific serine protease
granzyme A (GZMA) for lysis of target cells was specifically
downregulated in plasma from severe versus mild-moderate
COVID-19 patients in our cohort in line with previously reported
reduced levels in COVID-19 severe patients associate with
impaired NK- and cytotoxic T cell functions39,40.

Increased neutrophil counts (neutrophilia)41,42 and eosinophils
counts42 are known features of severe COVID-19 and were
replicated in our study. In contrast CD4+ and CD8+ T cells are
significantly reduced in severe COVID-1941,42 but these were not
investigated in our study. Nonetheless, a large functional network
deduced from the dysregulated plasma proteins in our study
pointed to Th cell dysfunction, which is an emerging area in
severe COVID-19 immunopathology17,20,43,44. Both agonist and
antagonist plasma proteins of Th1, Th2, and Th17 were identi-
fied. For example, the highly inflammatory IL6 trans-signaling
through the soluble IL6 receptor5 which maintains local Th17
cells6 is challenged by the upregulated levels of IL27 that
potentiates the early phase of Th1 response and suppresses Th2
and Th17 differentiation45. Other agonists of Th1 and Th17
responses including soluble IL17RA7,8, and IL17RB9 which act as
decoy receptors to inhibit the functional effect of IL17 secreted by
Th17 cells. Other examples of upregulated soluble, decoy recep-
tors which may skew Th cell responses include IL1R1 and IL1R2
(inhibit IL1B46), IL1RL1 (inhibits IL3347), IL1RL2 (inhibits
IL3648), and IL18R1 and IL18BP (inhibit IL1849–51). Other
functional networks identified in the severe COVID-19 group in
our cohort have been previously characterized, including
inflammation, coagulopathy, neutrophil activation and NETosis,
and endothelial damage52.

In addition to the high concordance with the MGH study, the
plasma proteins identified in our study also confirmed the find-
ings from several studies that identified deregulated plasma
proteins associated with COVID-19 severity, ICU admission and
mortality53,54. Importantly, one study reported a unique neu-
trophil activation signature composed of neutrophil activators
(G-CSF, IL8) and effectors (RETN, LCN2, and HGF), with a
strong predictive value to identify critically ill patients whereby
the effector proteins strongly correlated with absolute neutrophil
count53. Our study not only identified those components of the
neutrophil activation signature but also found that the COVID-19
molecular severity score also correlated with absolute neutrophil
counts. Besides Olink technology, mass spectroscopy has also
been used to identify deregulated proteins in sera from SARS-
CoV-2 infected patients (e.g., ref. 55,56). In addition to pathway
analysis, these two examples of mass spectroscopy-based pro-
teomics developed predictors of COVID-19 severity. Although
none of their serum biomarkers were identified in our study, the
biological functions reported in these studies were also captured
in our analysis, including complement factors and the coagulation
system, inflammation modulators, and pro-inflammatory factors
upstream and downstream of IL6. We cannot exclude that the
mass spectroscopy-based studies are more comprehensive and
less biased than the panel profiling used in our study. However, it
should be noted that there was a small overlap between all the
proteins detected by mass spectroscopy in sera (before statistical
analysis). A more comprehensive comparison between the several
published serum or plasma proteomics of COVID-19 patients
using the Olink platform and different mass spectroscopy
methods is warranted but is beyond the scope of our study.

Our study developed a weighted scoring method to use clinical
markers available at admission to predict severity. Several large
cohort studies have identified clinical features associated with

severity, such as certain comorbidities and older age. These
associations, or risk factors, require integration in a model
(scoring system) to be used as prognostic tools. A large study by
the US National COVID Cohort Collaborative (N3C) based on
174,568 adults with SARS-CoV-2 developed a machine learning
model to predict clinical severity using 64 inputs available on the
first hospital day with an AUC of 0.8757. Another recent study
compiled prediction models for COVID-19 severity from 41 stu-
dies where more than 60% of the models were from China, the
remaining were from Europe or the US, and two were
multinational58. The compiled models included eight which could
be evaluated in the study’s independent cohort (University of
Illinois Hospital [UIH] Cohort, n= 516) and found that the
AUCs from these ‘external’ models ranged from 0.69 to 0.89,
while their ‘internal’ models had AUCs of 0.84 for mortality and
0.83 for criticality58. Compared to the N3C study (AUC 0.87), the
simpler 7- and 4-marker clinical scores developed in our study
had AUCs of 0.93 and 0.90, respectively, and the AUCs from the
4-marker clinical score in the MGH cohort was 0.77 and 0.85 on
day 0 and day 3 of admission. Similarly, the AUCs in our study
were at least comparable to those from the ‘external’ and ‘internal’
models from the UIH cohort study.

In terms of the specific clinical variables, the seven markers in
our model were ranked high in terms of importance in the 64-
input model from the N3C study (importance ranks using ran-
dom forest and XG Boost methods were 4 and 23 for glucose, 5
and 3 for respiratory rate, 7 and 10 for WBC, 8 and 53 for
creatinine, 11 and 27 for the neutrophil count, 14 and 20 for
lymphocyte count, and 16 and 14 for CRP)57. The UIH internal
models included all the markers of the 4-marker clinical score
(CRP, creatinine, neutrophils, lymphocytes) and 5 out of the
7-marker clinical score in our study (WBC in addition to the 4
markers). Interestingly, the UIH study noted that the features
used in the tested models were “surprisingly diverse” and the
number of variables in each model ranged from 2 through 1158.
However, the study also noted that three external models (from
China) performed well in their cohort from the US, demon-
strating that prediction is possible despite geographical and ethnic
differences and variations in health systems and during different
times of the pandemic58. Our study agrees with this conclusion
since the 4-marker clinical score from the patients in Qatar
performed well in the US MGH cohort. Importantly, the 12-
protein COVID-19 molecular severity score reported here was
cross-validated in an independent, ethnically different, larger
cohort from the Massachusetts General Hospital.

In addition to their potential biomarker value, proteomic
profiles can also be used to predict potential drugs for interven-
tion. Our drug–protein interaction analyses shortlisted several
FDA-approved drugs that can target the upregulated proteins in
severe COVID-19 cases. The classes of potential drugs identified
in our analysis is in line with those summarized in the living
systematic review and metanalysis of drug treatments for
COVID-1959. These include the glucocorticoids methylpredni-
solone and dexamethasone which have been shown to reduce the
risk of mortality, mechanical ventilation requirement and length
of hospital stay59. Other examples identified in our analysis
include tocilizumab and sarilumab which target the IL6R and
found to reduce the need for mechanical ventilation and the
length of hospital stay59, the anti-IL6 antibody siltuximab which
has been recently shown to improve survival in hospitalized
COVID-19 patients60, and the JAK inhibitor ruxolitinib
which has been shown to reduce the risk of mechanical ventila-
tion and its duration59. Infliximab and adalimumab were two
examples of anti-TNF targets identified in our study; an approach
suggested for treating COVID-1961 and are still until trials in the
UK (AVID-CC trial62) and the US (ACTIV-1 IM trial,
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NCT04593940). While aspirin was proposed in our analysis, its
effect against COVID-19 mortality is supported in a
metaanalysis63, but only associated with a small increase in the
rate of being discharged alive64. Guided by drug–protein inter-
actions, our analysis proposed combinations that target the larger
number of proteins and interactions where ribavirin with
methylprednisolone can be used in combination with infliximab,
cyclosporine or sirolimus. Cyclosporine was recently shown to
associate with a significant decrease in COVID-19 mortality in a
cohort study65. Sirolimus (rapamycin) has been proposed to be
used against COVID-19 based on preclinical and clinical
evidence66.

In conclusion, our study identified deregulated proteins in the
plasma of patients with severe COVID-19 complications that may
inform therapeutic interventions. The 12-protein signature
identified in our study was developed as the COVID-19 molecular
severity score and used to stratify patients according to COVID-
19 severity in an independent cohort. The COVID-19 molecular
severity score could predict outcomes up to 28 days post-
admission and from as early as 3 days of admission. The clinical
risk scores, based on 7 or 4 clinical markers, developed in this
study uses a simple scoring system of clinical parameters available
at the time of admission. The molecular severity and the clinical
risk scores developed here have the potential to stratify SARS-
CoV-2 infected patients at early stages according to their risk of
developing complications to prospectively inform healthcare
management and clinical decision-making to prevent complica-
tions and mortality.

Methods
Patient recruitment. The study received IRB approval from the Hamad Medical
Corporation (HMC, Doha, Qatar) and was supported by a grant from HMC-
Medical Research Council (MRC); approval and fund number MRC-05-003.
Written informed consent was obtained from all the participants in the study.
Participants were not compensated for participation. The conduct of this study was
in accordance with the International Council for Harmonization’s Guideline for
Good Clinical Practice (ICH-GCP) and the Declaration of Helsinki. A cohort of
100 patients (mild-moderate and severe) affected by COVID-19 disease and
admitted to Hamad Medical Corporation (HMC) hospitals; tertiary level hospitals
in Doha, Qatar, were recruited. Infection was confirmed by positive RT-PCR assays
for SARS-CoV-2 from sputum and throat swab with Ct values around 30. Patients
with severe COVID-19 were defined as those requiring ICU admissions due to
COVID-19 disease or disease complications, while patients with mild-moderate
COVID-19 were admitted to community hospitals but did not requiring ICU care.
Fifty control subjects were recruited at the Clinical Research Center of the Anti-
Doping Laboratory Qatar from volunteers identified by Qatar Red Crescent
Society, according to the criteria of being healthy, without prior history of con-
firmed COVID-19 infection diagnosis, normal SpO2%, and vital signs. Individuals
with poor cognitive ability, or any past or present medical disease or were not able
to consent were excluded.

Samples collection and processing. Peripheral blood was collected within 5 to
7 days of admission into commercially available EDTA-treated tubes, and plasma
and peripheral blood mononuclear cell (PBMC) fractions were separated using
Ficoll. Plasma was stored at −80 °C until further analysis.

Olink proteomic assays. Plasma samples were profiled in-house using the proxi-
mity extension assays (PEA), 96-plex immunoassay developed by Olink Proteomics
(Uppsala, Sweden)67 following the standard protocol at Qatar Biomedical Research
Institute’s (QBRI) Olink certified proteomics core facility. Quality control and data
normalization according to internal and external controls were carried out using the
Normalized Protein eXpression (NPX) software, Olink NPX Manager (version
2.1.0.224), and every run was checked and validated by the Olink support team in
Uppsala. Ten different panels, each focused on a specific disease or biological
process, were used in our study; panel names are stated in the results.

Bioinformatics. For the analysis of Olink assays, the protein expression values, as
log2 of Normalized Protein eXpression (NPX), were used. Two approaches were
used in the analysis; single-panel and combined-panels analyses before confirming
the overlap between the two approaches. Olink data that did not pass quality
control was excluded from the analyses. R packages for hierarchical clustering
(heatmap.2 in version 3.1.1 of the gplots package), principal component analysis

(PCA, prcomp in the Stats R package version 4.1.1), differential expression analysis
(Linear Models for Microarray Data, limma version 3.28.14), volcano plots, gene-
ontology biological process (GO-PB) and KEGG pathways enrichment analyses
were used through the standalone version of iDEP.92 (version .92)68 installed in
RStudio (version 1.2.5). Severe COVID-19 is associated with age and other factors,
and infections in Qatar and our cohort had unique characteristics such as
enrichment for males and younger age. Thus, the differential expression analyses
between the three study groups accounted for interaction between severity as the
main effect and other variables, including obesity, sex, age, ethnicity, heart rate, and
SpO2. The median and interquartile range (IQR) for blood collection from severe
(5 [IQR 4–7] days) versus mild-moderate groups (4 [IQR 2–6] days) approached
significance (t-test p= 0.061). Thus, for more accuracy in the differential expres-
sion analysis between severe and mild-moderate groups, we also accounted for the
interaction between severity as the main effect and the number of days between
admission to blood collection.

For variable selection and validation, we used two algorithms; MUVR12

(multivariate modeling with minimally biased variable selection in R, version
0.0.975), a statistical validation framework, incorporating a recursive variable
selection procedure within a repeated double cross-validation (rdCV) scheme, and
Boruta13 (version 7.0.0), a wrapper algorithm for all relevant feature selection that
reports the importance of features and the number of times a feature is selected
from repeated runs compared to all other features. Differentially expressed proteins
selected by MUVR were used to develop protein signatures represented as meta-
protein scores calculated as the ratio of average expression of NPX values of
upregulated proteins to the average expression of NPX values of downregulated
proteins. Upregulated and downregulated proteins were defined according to the
score. For example, if the score was from the comparison of severe versus mild-
moderate COVID-19 patients, we used the upregulated or downregulated proteins
in the severe versus mild-moderate groups. Scores were evaluated using receiver
operating characteristic (ROC) curve analyses to determine the area under the
ROC curve (AUC), sensitivity, specificity, and significance (p < 0.05) using
MedCalc® (version 12.7, MedCalc Software Ltd., Belgium).

Protein-protein interaction (PPI) was analyzed and visualized using the
STRING database (STRING-db version 11.0)10 accessed through Cytoscape
(version 3.7.2)69. Protein-drug interaction (PDI) was analyzed using the Drug-
Gene Interaction database (DGIdb, version 4.2.0)11, only using FDA-approved
drugs, and interaction networks were visualized in Cytoscape.

Validation of the COVID-19 molecular severity score in the MGH cohort. To
validate the COVID-19 molecular severity score (the 12-protein signature) devel-
oped here, we used the Massachusetts General Hospital (MGH) cohort. The MGH
cohort enrolled 384 acutely ill patients, 18 years or older patients, with a clinical
concern for COVID-19 upon arrival in the emergency department as described
previously3. SARS-CoV-2 positivity was reported for 306 patients (80%) while the
remaining 78 patients were SARS-CoV-2 negative. The COVID-19 molecular
severity score was calculated as described above (meta-protein score) for each
patient. The performance of the COVID-19 molecular severity scores in the MGH
cohort was evaluated with ROC curve analysis using MedCalc® (version 12.7,
MedCalc Software Ltd., Belgium).

Statistics & Reproducibility No statistical method was used to predetermine
sample size. No data were excluded from the analyses except for one patient, P064,
whose Olink assays failed the internal Olink QC in seven out of the 10 panels used;
thus, was excluded in the initial analysis for Fig. 1 and Supplementary Figs. 1 and 2.
As per the manufacturer instructions, the plasma samples from the three groups of
our cohort were randomized across the Olink plates to minimize bias. The
Investigators were not blinded to allocation during experiments and outcome
assessment; however, the sample acquisition and processing, Olink data acquisition
and internal Olink QC, and the subsequent data analysis and bioinformatics were
carried out by independent groups of the Investigators. Patient clinical data
analysis was performed using Statistical Package for Social Sciences (SPSS version
26, Chicago IL, USA). Groups were compared using the chi-square test, and
Fisher’s exact test (two-tailed) replaced the chi-square in the case of a small sample
size where the expected frequency is less than 5 in any group. The results were
presented as mean ± SD for normally distributed data or median (IQR) for skewed
results and/or number and percentage of participants as appropriate. The level of
statistical significance was set at p < 0.05. GraphPad Prism (version 8.4.3, GraphPad
Software LLC, CA, USA) was used to compare protein signature scores across
clinical subgroups using unpaired, two-tailed t-tests or one-way ANOVA with
Dunnett’s multiple testing correction.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All raw data relating to the cohort in this study are supplied in Supplementary Data 2
and were used to generate Fig. 1, Supplementary Fig. 1, Fig. 5c, Fig. 7a–c, and
Supplementary Fig. 6. Supplementary Data 3 contains the data used for Fig. 2, Fig. 3,
Fig. 5a, b, Supplementary Fig. 2, and Supplementary Fig. 3. Supplementary Data 4
contains the data for Fig. 4 and Supplementary Fig. 4. Supplementary Data 5 includes the
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data extracted from the publicly available Massachusetts General Hospital (MGH) cohort
published by Filbin et al.3 and used to generate the graphs in Fig. 6, Supplementary Fig. 5,
and Fig. 7d. Supplementary Data 6 details the statistical comparisons related to Fig. 6a, b,
Fig. 7a and Supplementary Fig. 6a. The two databases used in this study are available
online; String-db (version 11) at https://string-db.org/ and DGIdb (version 4.2.0) at
https://www.dgidb.org/.
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