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Abstract: Methylated polycyclic aromatic hydrocarbons (PAHs) are suspected to be some of the toxic
compounds in crude oil towards marine life and are needed as single compounds for environmental
studies. 1-, 3- and 6-methylchrysene (3a,b,c) were prepared as single isomers by photochemical
cyclization of the corresponding stilbenoids in the Mallory reaction using stoichiometric amounts of
iodine in 82-88% yield. 2-methylchrysene (3d) was prepared by photochemical cyclization where
the regioselectivity was controlled by elimination of an ortho-methoxy group under acidic oxygen
free conditions in 72% yield. These conditions failed to form 4-methylchrysene from the corre-
sponding stilbenoid. All stilbenoids were made from a common naphthyl Wittig salt and suitably
substituted benzaldehydes. We have also demonstrated that methylchrysenes can be oxidized to the
corresponding chrysenecarboxylic acids by KMnO4 in modest yields.

Keywords: polycyclic aromatic hydrocarbon; Mallory reaction; oxidative 6π-electrocyclization;
eliminative photochemical cyclization; formylation; methylated PAH; PAH metabolite; oxidation

1. Introduction

Polycyclic aromatic hydrocarbons (PAHs) are a group of pollutants of great concern,
particularly to the aquatic environment [1,2]. Petrogenic PAHs in nature typically originate
from industrial or urban effluents, manmade accidents, and discharge of produced water
from offshore oil production [1]. Contrary to pyrogenic PAHs, petrogenic PAHs have a
large content of alkylation [3]. The concentration of monomethylated chrysenes is typically
10 times higher than chrysene in crude oil [3,4]. Some species, like Atlantic Haddock,
subject to commercially important fisheries, are very sensitive to oil pollution at the egg
stage [5]. The toxic effects of PAHs are often caused by their metabolites, and the position of
alkylation have impact on these effects [1,6,7]. Alkylation on small PAHs makes them more
potent agonists than the mother compounds toward aryl hydrocarbon receptors (AHR
receptors) that regulate the PAH metabolism [8].

Further studies on the effect of alkylated PAHs require pure single compounds to
elucidate these effects in exposure studies, and the compounds made in this work have
already contributed to understanding some of the effects of methylation [7–9]. When
the work described in this paper began, methylated chrysenes where only available as
expensive analytical standards is small amounts, but not in the 0.1–0.5 g quantities desired
for various environmental exposure studies.

Substituted chrysenes have been made in a variety of methods like the Diels-Alder
reaction [10] and intra-molecular Pd-catalyzed C-H activation [11], but most common
is photochemical oxidative cyclization, also known as the Mallory reaction [12,13]. The
oxidative photocyclization of stilbenes is catalyzed by iodine, and typically air is bubbled
through the solution during irradiation [14]. With the extensive studies of this reaction

Molecules 2023, 28, 237. https://doi.org/10.3390/molecules28010237 https://www.mdpi.com/journal/molecules

https://doi.org/10.3390/molecules28010237
https://doi.org/10.3390/molecules28010237
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/molecules
https://www.mdpi.com
https://orcid.org/0000-0002-4636-0066
https://orcid.org/0000-0002-6094-4965
https://orcid.org/0000-0003-0662-1839
https://doi.org/10.3390/molecules28010237
https://www.mdpi.com/journal/molecules
https://www.mdpi.com/article/10.3390/molecules28010237?type=check_update&version=1


Molecules 2023, 28, 237 2 of 13

in the 1960–1980′s one might expect all methylated chrysenes to have been made this
way before.

6-methylchrysene (3c) was prepared from photocyclization of styrene attached to
a methylated naphthalene in 70% yield [15] (Scheme 1a) and recently by a metathesis
reaction [16]. 5-methylchrysene were made in large scale (12 g in 15 L benzene) in 29%
yield [17]. Cyclization of 1-(1-phenylprop-1-en-2-yl)naphthalene as 0.02 M in cyclohexane
gave 5-methylchrysene in 65% yield after 12 h irradiation [18] (Scheme 1b). No synthe-
sis of 4-methylchrysene nor 2-methylchrysene (3d) has ever been published to our best
knowledge. 3-Methylchrysene (3b) was made by the Mallory reaction in 69% yield after
24 h irradiation [19], and later as a 2.5 g batch in 1 L of cyclohexane in 79% yield after 3 h
irradiation with a 400 W high pressure mercury lamp [20] (Scheme 1c). 1-Methylchrysene
(3a) was made only recently, in a flow system with plugs of air at 100 mg-scale in 89%
yield [21,22], while Carrera et al. [23] used a regular immersion well photoreactor with
DPQ/air to obtain 3a in 49% yield (Scheme 1d).

In 1991 Katz’s group developed improved conditions for cyclization of stilbenes [24].
Excluding oxygen prevented degradation by reactive oxygen species formed during the
photoreaction. This was possible by using stoichiometric amounts of iodine in degassed
solvents with epoxide as a scavenger of the formed HI that will otherwise react with the
substrate. We decided to employ these improved conditions in our synthesis of methylated
chrysenes and find out if this would give improved yields compared to the literature.
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Scheme 1. Previous photocyclizations to chrysenes. Green dots mark available positions for photocy-
clization. Red dots mark blocked positions. Numbering of substituent positions are shown in the
products. (a) [15], (b) [18], (c) [19,20], (d) [21–23].

2. Results and Discussion
2.1. Photochemical Cyclization Using Stoichiometric Amount of I2

To obtain a single isomer of a substituted chrysene with the Mallory reaction [12,13]
we need both ortho-positions to be identical by symmetry, like in the synthesis of 3b and
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3c (Scheme 1c,d), or one ortho-position blocked like in the synthesis of 3a (Scheme 1d). A
substituent in meta-position will give two isomers as both ortho-positions are available for
reaction but giving different products [25].

The stilbenes needed for the photocyclization are readily available through a Wit-
tig reaction. Wittig salt 1a (Scheme 2) was made by refluxing triphenylphosphine and
1-(chloromethyl)naphthalene in toluene. The product formed a precipitate that was washed
with diethyl ether to obtain the pure product in 88% yield. The following Wittig reaction
can be performed using an array of different bases. We preferred using a two-phase reac-
tion with 50% aqueous NaOH in dichloromethane [26] at room temperature for practical
reasons. Reaction with the suitable benzaldehydes gave stilbenoids 2a and 2b in high
yields (Scheme 2). The E/Z-ratio of the stilbenoids have no consequence for the following
photocyclization as the double bond isomerize in the process. Close inspection of NMR
spectra sometimes allowed determination of the ratio which is then given in the experimen-
tal section. We found that the coupling constants for the double bond were about 12 Hz
for Z-configuration and 15–16 Hz for E-configuration. This matches the reported coupling
constants of 15.9 Hz (E) and 12.1 Hz (Z) for styrylnaphthalene [27]. The Wittig-reaction
were less reactive with acetophenone giving stilbenoid 2c (Scheme 2). After 2 days we
achieved only 52% yield. The more reactive Wittig-Horner reagent 1b gave 2c in 81% yield
upon reflux in THF with potassium tert-butoxide as a base.
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Scheme 2. Photocyclization under oxidative conditions.

Finally, the stilbenoids were subjected to the photochemical oxidation with stoichiomet-
ric amounts of iodine (Scheme 2). The reactions were followed by TLC, but the disappearing
color of iodine in the reaction were also a good indication on completion of the reaction.
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The photochemical reactions were performed in a 400 W medium pressure mercury lamp
in a quartz glass immersion well fitted with a Pyrex filter. The reactions were made in
3–13 mM solution depending on the amount of starting material. Purification with flash
chromatography gave 3a–c in 82–88% yield, better than the results reported for 3b [20] and
5-methylchrysene [18] using catalytic amounts of I2 in a batch reactor. Synthesis of 3a in a
flow reactor gave a similar yield [21,22]. Recrystallization were performed to get melting
points and ensure that the compounds intended for toxicology studies were as pure as
possible. We intentionally did not synthesize 5-methylchrysene [18] because it was already
commercially available, and it is known to be very carcinogenic [28], requiring more strict
safety precautions than was available to us.

2.2. Photochemical Cyclization under Eliminative Conditions

A synthesis route like in Scheme 2 with a meta-substituted stilbenoids would make a
mixture of 2- and 4-methylchrysene (3d,f) that would be demanding to separate. Olsen and
Pruett [29] attempted to control the regioselectivity with a bromine substituent in one ortho-
position. This worked as a blocking group under regular I2, O2 conditions (Scheme 3a).
Another approach was to eliminate Br in a basic environment without I2 nor O2 and control
the regioselectivity this way. This basic elimination (KOtBu or KOMe in the corresponding
alcohol) changed the regioselectivity some but were hampered with significant amounts
of regular photocyclization on the unsubstituted ortho-position. Regular photochemical
cyclization worked better and 1-bromo-4-methylphenanthrene was obtained, but with a
significant amount of dehalogenation occurring after the photocyclization. Treating this
mixture with LiAlH4 gave however 4-methylphenanthrene in 65% yield.
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Another approach by Mallory and coworkers [30] used a methoxy group as a con-
trolling group that is eliminated under acidic conditions (A few drops of H2SO4 in
t-BuOH/benzene) in the I2- and O2-free photoreaction (Scheme 3b). They succeed to
eliminate ortho-methoxy and form 2-methylphenanthrene from the corresponding stil-
bene in 74% yield. The 4-methylphenanthrene was formed in 53% yield together with 9%
1-methoxy-2-methylphenanthrene. The eliminative reaction was 2–4 times slower than the
oxidative reaction, giving 30–175 h irradiation time.

Considering these options, we decided to try the elimination of a methoxy group, and
follow the route outlined in Scheme 3b. Both approaches lacked commercially available
starting materials, but the methoxy aldehydes were readily available by the Skattebøl
ortho-formylation [31,32].
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Formylation of 4-methylfenol, benefiting from the symmetry, gave only aldehyde 4a
(Scheme 4). Aldehyde 4b was made from 2-methylfenol where only the desired position
was available for formylation. After a simple methylation of the hydroxy group these
compounds were subjected to the same Wittig reaction (Scheme 5) as the previous alde-
hydes. Substituting benzene in the original conditions with toluene, the solvent mixture
was degassed by ultrasound under N2, and kept under a stream of N2 during irradia-
tion. After 40 h the starting material was consumed, and 2-methylchrysene (3d) could
be isolated in 72% yield. Stilbenoid 2e (Scheme 5) was subjected to the same conditions.
Here, the reaction was even slower and was stopped after 134 h with some remaining
starting material. The product was isolated in 49% yield but turned out to be the oxidative
product 3e. There was no trace of 4-methylchrysene (3f). As 4-methylphenanthrene could
be formed this way, although in less amounts than 2-methylphenanthrene, this came as
a surprise. Repeated photocyclization of 2e gave the same result. To make sure nothing
was wrong with the procedure nor equipment we made the corresponding stilbene and
obtained 4-methylphenanthrene in the same yield as reported [30]. Apparently, the steric
hindrance in this reaction [30] increases so much from phenanthrene to chrysene that no 3f
is formed.
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Scheme 4. Synthesis of aldehydes.

As mesyl groups are easily eliminated to form double bonds by base, an attempt
on elimination by basic conditions was made. Aldehyde 4b was protected with a mesyl
group (Scheme 4), and stilbenoids 2f made in the Wittig reaction (Scheme 5). Applying
the same base system used for eliminative photocyclization with Br [29], 3 eq. KOtBu
in tBuOH/toluene, 2f were irradiated under oxygen free conditions. Unfortunately, the
starting material decomposed rather than forming a cyclized product, making a greenish
color to the reaction. After 5 h the starting material was decomposed without forming any
isolable products.
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2.3. Direct Oxidation of Methylchrysene 3b

One expected metabolite from methylchrysenes is the corresponding carboxylic
acids [9]. To provide reference material, experiments were conducted to oxidize 3b to
the corresponding acid. Although toluene has been oxidized to benzoic acid in a wide
range of ways, we were unable to find any description of direct oxidation of a methyl group
on PAHs larger than naphthalene. Vogel [33] describes oxidation of several substituted
toluenes with KMnO4, but also describes the oxidation of phenanthrene to biphenyl-2,2’-
dicarboxylic acid with hydrogen peroxide. A study on degradation of PAHs by KMnO4
found the order of reactivity as benzo[a]pyrene > pyrene > phenanthrene > anthracene >
fluoranthene > chrysene [34]. Chrysene being the more stable PAH towards oxidation of
the ring system motivated us to attempt oxidation by KMnO4. KMnO4 slowly degrades in
water and several equivalents of reagent are needed [35]. Based on an oxidation procedure
in pyridine/water [36], we were after several attempts able to isolate chrysene-3-carboxylic
acid (6) in 25% yield, when all starting material was consumed (Scheme 6).
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Scheme 6. Direct oxidation of 3-methylchrysene (3b) to chrysene-3-carboxylic acid (6).

3. Materials and Methods
3.1. General Information

The photochemical reactions were performed in a 400 W medium pressure mercury-lamp
in a 2 L quartz immersion well reactor (reaction volume 1.2 L) fitted with a no. 3408 Pyrex
glass filter sleeve supplied by Photochemical Reactors Ltd. Silica gel 60A C.C. 40–43 µm from
SDS were used for flash chromatography. Melting points were obtained in sealed capillary
tubes on a Stuart Scientific melting point apparatus SMP3. NMR-spectra were measured on
a Varian Mercury 300 MHz instrument with tetramethylsilane or solvent peak as internal
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reference (CDCl3: 0.0 ppm, 77.0 ppm; CD3OD: 3.31 ppm, 49.0 ppm). HRMS analyses were
performed on an JMS T100 GC-AccuTOFTM EI-TOF from Jeol.

3.2. Synthesis
3.2.1. Synthesis of Wittig-Reagents

(Naphthalen-1-ylmethyl)triphenylphosphonium chloride (1a)
Triphenylphosphine (28.80 g, 109.8 mmol) and 1-(chloromethyl)naphthalene (17.60 g,

99.6 mmol) was dissolved in toluene (100 mL) and stirred with reflux under nitrogen
atmosphere at 120 ◦C for 2 days. The solvent was removed under reduced pressure, and
the solids was washed with diethyl ether (5 × 100 mL) to give 38.43 g (88%) of 1a as a
white solid.

The NMR data were in accordance with those reported by Mousawi et al. [37].
Diethyl(naphthalen-1-ylmethyl)phosphonate (1b)
The synthesis was inspired by Schwender et al. [38]: 1-(chloromethyl)naphthalene

(2.024 g, 11.46 mmol) was stirred in triethylphosphite (4.0 mL, 23 mmol) at 120 ◦C under
N2-athmosphere for 68 h. The product was purified by flash chromatography (Petroleum
ether: ethyl acetate: isopropanol, 4.5: 4.5: 1). This gave 3.91 g of 1b as a clear oil (66% pure
by 1H NMR, approx. 83% yield) containing remains of triethylphosphite. This oil was used
without further purification.

The NMR data were in accordance with those reported [39].

3.2.2. Synthesis of Stilbenes

General procedure for Wittig-reaction to Stilbenes
Wittig-salt 1a (1.2 eq.) and desired aldehyde (1 eq.) in DCM (120 mL) and 50% aq.

NaOH (12 mL) was vigorously stirred under N2-atmosphere at room temperature until
the aldehyde was consumed (1–3 days). The mixture was washed with water (300 mL)
and the water phase extracted with DCM (100 mL). The combined DCM-phases were
dried with anhydrous MgSO4, concentrated under reduced pressure, and purified by flash
chromatography (Eluent: Petroleum ether/Ethyl acetate: 19/1) to obtain a mixture of E/Z-
isomers as a viscous oil (94–99% yield). The oil was used in the following photo-cyclization
without further purification.

The NMR-spectra of the mixtures were complicated and sometimes also containing
a rotamer giving a mix of three NMR-species. NMR-spectra are provided in the supple-
mentary materials. Spectra are partly tabulated for compounds when one isomer can be
separated from the NMR-spectra.

(E/Z)-1-(2-Methylstyryl)naphthalene (2a)
Wittig-salt 1a (7.318 g, 16.67 mmol) and 2-methylbenzaldehyde (1.667 g, 13.87 mmol)

were reacted for 21 h according to the general procedure to yield 2a (3.367 g, 99%) as a
sticky solid (E:Z approx. 1:1).

1H NMR (300 MHz, CDCl3) δ 2.37 (s, 3H), 2.49 (s, 3H), 6.84–7.56 (m, 17 H), 7.72–7.93 (m, 7H),
8.16 (d, J = 8.7 Hz, 1H), 8.26 (d, J = 7.2 Hz, 1H) ppm. HRMS(EI+, TOF) m/z calcd for C19H16
[M]+ 244.12465, found 244.12482.

(E/Z)-1-(4-Methylstyryl)naphthalene (2b)
Wittig-salt 1a (7.288 g, 16.61 mmol) and 4-methylbenzaldehyde (1.656 g, 13.78 mmol)

were reacted for 24 h according to the general procedure to yield 2b (3.163 g, 94%) as a
viscous oil (E:Z approx. 1:1).

NMR spectra are consistent with reported data for (E)-2b [40]. HRMS (EI+, TOF) m/z
calcd for C19H16 [M]+ 244.12465, found 244.12467.

(E/Z)-1-(2-Phenylprop-1-en-1-yl)naphthalene (2c)
Wittig-salt 1a (7.292 g, 16.61 mmol) and acetophenone (1.672 g, 13.92 mmol) were

reacted for 48 h according to the general procedure to yield 2c (1.734 g, 51%) as a viscous oil.
Alternative procedure:
A mixture of 1b (1.36 g, 4.90 mmol) and acetophenone (0.405 g, 3.37 mmol) in dry

THF (80 mL) was heated to reflux (oil bath 75 ◦C) under nitrogen atmosphere. The mixture
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was then added potassium tert-butoxide (0.600 g, 5.35 mmol) and stirred at reflux for 48 h.
The mixture was evaporated onto silica and purified by flash chromatography (Eluent:
Petroleum ether/Ethyl acetate: 19/1) to yield 2c (0.660 g, 81%) as a viscous oil (E:Z approx.
1:3, based on the Me-signal in 1H NMR that is reported to be 2.05 (s, 3H) ppm for (E)-2c [41],
while our minor isomer has the Me-signal at 2.13 (d, J = 1.5 Hz, 3H) ppm).

Major isomer (Z)-2c: 1H NMR (300 MHz, CDCl3) δ 2.36 (d, J = 1.5 Hz, 3H), 6.95–6.99 (m, 3H),
7.05–7.54 (m, 9H), 7.62 (d, J = 8.6 Hz, 1H), 7.78–7.82 (m, 2H), 8.15 (d, J = 6.8 Hz, 1H) ppm; HRMS
(EI+, TOF) m/z calcd for C19H16 [M]+ 244.12465, found 244.12476.

(E/Z)-1-(2-Methoxy-5-methylstyryl)naphthalene (2d)
Wittigsalt 1a (6.294 g, 14.33 mmol) and aldehyde 5a (1.768 g, 11.77 mmol) were reacted

for 3 days according to the general procedure to yield 2d (2.770g, 97%) as a viscous oil (E:Z
approx. 1:3).

Major isomer: (Z)-2d: 1H NMR (300 MHz, CDCl3) δ 1.88 (s, 3H), 3.71 (s, 3H), 6.68 (s, 1H),
6.70 (d, J = 6.0 Hz, 1H), 6.87 (d, J = 8.4 Hz, 1H), 6.97 (d, J = 12.2 Hz, 1H), 7.08 (d, J = 12.2 Hz, 1H),
7.22-7.38 (m, 1H), 7.44–7.49 (m, 3H), 7.69 (d, J = 7.8 hz, 1H), 7.81–7.84 (m, 1H), 8.09–8.12 (m, 1H)
ppm; 13C NMR (75 MHz, CDCl3) δ 20.2, 55.5, 110.4, 124.7, 125.4, 125.7, 125.8, 126.5, 127.1,
127.2, 128.1, 128.3, 128.7, 130.5, 125-130(2C), 131.7(C), 133.6(C), 135.6(C), 155.1(C) ppm; HRMS
(EI+, TOF) m/z calcd for C20H18O1 [M]+ 274.13523, fund 274.13530.

(E/Z)-1-(2-Methoxy-3-methylstyryl)naphthalene (2e)
Wittigsalt 1a (5.854 g, 13.33 mmol) and aldehyde 5b (1.686 g, 11.22 mmol) was reacted

for 3 days according to the general procedure (Flash eluent Petroleum ether/Ethyl acetate:
19/1) to yield 2e (2.577 g, 95%) as a viscous oil (E/Z = 1:3).

Major isomer (Z)-2e: 1H-NMR (300 MHz, CDCl3)δ 2.28 (s, 3H), 3.86 (s, 3H), 6.51–6.56 (m, 1H),
6.67 (d, J =7.6 Hz, 1H), 6.93 (d, J = 7.3 Hz, 1H), 7.05 (d, J =12.2 Hz, 1H), 7.13 (d, J = 12.2 Hz, 1H),
7.26–7.50 (m, 3H), 7.67–7.72 (m, 2H), 7.81-7.85 (m, 1H), 8.08–8.12 (m, 1H) ppm; 13C-NMR (75 MHz,
CDCl3) δ 16.0, 60.7, 123.2, 124.6, 125.5, 125.9, 126.0, 126.6, 127.4 (2CH), 128.0, 128.4, 128.6, 130.1,
123-131(2C), 131.7(C), 133.6(C), 135.0(C), 156.9(C) ppm; HRMS (EI+, TOF) m/z calcd for C20H18O1
[M]+ 274.13521, found 274.13490.

(E/Z)-2-Methyl-6-(2-(naphthalen-1-yl)vinyl)phenyl methanesulfonate (2f)
Wittigsalt 1a (4.462 g, 10.16 mmol) and aldehyde 5c (1.779 g, 8.304 mmol) was reacted

for 2 h according to the general procedure (DCM (75 mL), 50% aq. NaOH (7.5 mL), flash
eluent: Petroleum ether/Ethyl acetate: 1/1) to yield 2f (2.221 g, 79%) as a viscous oil.

NMR spectra are given in the SI. No single isomer can be tabulated. HRMS(ESI+, TOF)
m/z calcd for C20H18NaO3S [M+Na]+ 361.08688, found 361.08713.

3.2.3. Photochemical cyclization of stilbenes

1-Methylchrysene (3a)
The photoreactor was flushed with N2 and loaded with stilbene 2a (3.660g, 14.98 mmol),

I2 (4.190 g, 16.49 mmol), 1,2-epoxybutane (21 mL, 247 mmol) and degassed toluene (1200 mL).
The reaction was stirred under N2 atmosphere until all was dissolved, and stirred under
UV-irradiation for 11 hrs. The reaction mixture was reduced to half volume under reduced
pressure and washed with sat. aq. Na2S2O3 (400 mL). The water phase was extracted with
ethyl acetate (250 mL) and the combined organic phases washed with brine (250 mL) and
dried over anhydrous MgSO4. The product was isolated by flash chromatography (Petroleum
ether/ethyl acetate: 19/1) to yield 3.09 g (85%) of 3a.

This product was recrystallized from heptane/chloroform (100/70 mL), and the re-
mains once more with heptane/chloroform (50/15 mL) to yield together 2.19 g (60%) of 3a
as white crystals. Melting point: 254–255 ◦C. Lit. 250.4–254 ◦C [42].

1H NMR (300 MHz, CDCl3) δ 2.82 (s, 3H), 7.49 (d, J = 6.9 Hz, 1H), 7.57–7.73 (m, 3H),
7.99 (d, J = 8.7 Hz, 2H), 8,20 (d, J = 9,3 Hz, 1H), 8.66–8.80 (m, 4H) ppm; 13C NMR
(75MHz, CDCl3) δ 19.9(CH3), 120.9(CH), 121.4(CH), 121.5(CH), 123.1(CH), 123.3(CH),
126.25(CH), 126.31(CH), 126.6(CH), 127.3(CH), 127.4(CH), 127.8(C), 128.5(CH), 128.6(C),
130.5(C), 130.6(C), 131.1(C), 132.0(C), 134.9(C) ppm.

The NMR spectra were in accordance with those reported by Lutnæs and Johansen [43].
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3-Methylchrysene (3b)
The photoreactor was flushed with N2 and loaded with stilbene 2b (1.631g, 6.675 mmol),

I2 (1.894 g, 7.462 mmol), 1,2-epoxybutane (14.45 g, 200.4 mmol) and degassed toluene
(1200 mL). The reaction was stirred under N2 atmosphere until all was dissolved, and stirred
under UV-irradiation for 11 hrs. The reaction mixture was reduced to 400 mL under reduced
pressure and washed with sat. aq. Na2S2O3 (300 mL). The water phase was extracted with
EtOAc (200 mL) and the combined organic phases washed with brine (200 mL) and dried
over anhydrous MgSO4. The product was isolated by flash chromatography (Petroleum
ether/ethyl acetate 19:1) to yield 1.324 g (82%) of 3b.

Product from this batch and 2 pilot batches were recrystallized together from methanol/
chloroform, and the remains once more with methanol/chloroform to yield a total of 1.688g
(74%) of 3b as white crystals. Melting point: 174.0–174.7 ◦C. Lit: 173–175 ◦C [11].

1H NMR (400 MHz, CDCl3) δ 2.67 (s, 3H), 7.48 (dd, J = 8.1, 1.2 Hz, 1H), 7.63 (ddd,
J = 7.4, 7.0, 1.2 Hz, 1H), 7.71 (ddd, J = 7.6, 6.9, 1.4 Hz, 1H), 7.90 (d, J = 8.1Hz, 1H),
7.97–8.01 (m, 3H), 8.58 (s, 1H), 8.66 (d, J = 9.1 Hz, 1H), 8.72 (d, J = 9.1 Hz, 1H), 8.78 (d,
J = 8.3 Hz, 1H) ppm; 13C NMR (100 MHz, CDCl3) δ 22.3(CH3), 120.3(CH), 121.3(CH),
122.7(CH), 123.2(CH), 126.3(CH), 126.6(CH), 127.0(CH), 127.1(CH), 127.8(C), 128.26(CH),
128.34(C), 128.4(CH), 128.5(CH), 130.2(C), 130.61(C), 130.64(C), 132.1(C), 136.4(C)ppm.

The NMR spectra were in accordance with those reported by Lutnæs and Johansen [43].
6-Methylchrysene (3c)
The photoreactor was flushed with N2 and loaded with stilbene 2c (0.3150 g, 1.289 mmol),

I2 (0.3600 g, 1.418 mmol), 1,2-epoxybutane (2.806 g, 38.91 mmol) and degassed toluene
(400 mL). The reaction was stirred under N2 atmosphere until all was dissolved, and stirred
under UV-irradiation for 2 hrs. The reaction mixture was reduced to 200 mL under reduced
pressure and washed with sat. aq. Na2S2O3 (150 mL). The water phase was extracted with
ethyl acetate (100 mL) and the combined organic phases was washed with brine (100 mL) and
dried over anhydrous MgSO4. The product was isolated by flash chromatography (Petroleum
ether/ethyl acetate 19/1) to yield 0.274 g (88%) of 3c.

The product was recrystallized from methanol/chloroform in two rounds to yield
0.140 g (44%) of 3c as white crystals. Melting point: 158.7–160.1 ◦C. Lit. 159–161 ◦C [44].

1H NMR (300 MHz, CDCl3) δ 2.89 (s, 3H), 7.61–7.71 (m, 4H), 7.943-7.98 (m, 2H),
8.16 (d, J = 7.9 Hz, 1H), 8,56 (s, 1H), 8.70 (d, J = 9.1 Hz, 1H), 8.77–8.82 (m, 2H) ppm; 13C
NMR (75MHz, CDCl3) δ 20.6(CH3), 121.1(CH), 121.5(CH), 123.1(CH), 123.6(CH), 124.7(CH),
126.2(CH), 126.27(CH), 126.31(CH), 126.4(CH), 126.5(CH), 127.3(C), 128.0(C), 128.5(CH),
130.2(C), 130.6(C), 131.9(C), 132.2(C), 133.1(C) ppm.

The NMR-spectra were in accordance with those reported by Lutnæs and Johansen [43].
2-Methylchrysene (3d)
Stilbene 2d (1.303 g, 4.750 mmol) was dissolved in a degassed 9:1 mixture of t-

butanol/toluene (1200 mL) under N2 in the photoreactor and added 4 drops of conc.
H2SO4. The mixture was irradiated for 40 hrs (followed by TLC) and concentrated un-
der reduced pressure. The crude was purified by column chromatography (Petroleum
ether/Ethyl acetate 9/1) to yield 0.828 g (72%) of 3d as a pale-yellow solid.

Recrystallization from chloroform/methanol gave 0.559 g (49%) of 3d as white crystals.
Melting point: 230–231 ◦C. Lit. 229–230 ◦C [45].

1H NMR (300 MHz, CDCl3) δ 2.56 (s, 3H), 7.50 (d, J = 8.5 Hz, 1H), 7.56–7.69 (m, 2H),
7.73 (s, 1H), 7.87–7.96 (m, 3H), 8.61–8.66 (m, 3H), 8.73 (d, J = 8.3 Hz, 1H) ppm; 13C
NMR (75 MHz, CDCl3) δ 21.5(CH3), 121.1(2CH), 123.00(CH), 123.01(CH), 126.1(CH),
126.6(CH), 126.9(CH), 127.2(CH), 127.6(C), 127.9(CH), 128.2(C), 128.5(CH), 128.6(CH),
130.6(C), 131.9(C), 132.3(C), 136.1(C) ppm.

The NMR-spectra were in accordance with those reported by Lutnæs and Johansen [43].
1-Methoxy-2-methylhrysene (3e)
Stilbene 2e (1.401 g, 5.106 mmol) was dissolved in a degassed 9:1 mixture of t-

butanol/toluene (1200 mL). The mixture was added 4 drops of conc. H2SO4 and loaded
into the photoreactor under N2 atmosphere. After irradiation for 134 h, the mixture was
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concentrated under reduced pressure and purified by flash chromatography (Petroleum
ether/Ethyl acetate: 9/1) to afford 0.674 g (49%) of 5a as a colorless solid.

Melting point of recrystallized compound (CHCl3/methanol): 191–192 ◦C.
1H NMR (300 MHz, CDCl3) δ 2.53 (s, 3H), 3.97 (s, 3H), 7.51 (d, J = 8.5 Hz, 1H),

7.59–7.71 (m, 2H), 7.94–7.98 (m, 2H), 8.31 (d, J = 9.3 Hz, 1H), 8.44 (d, J = 8.6 Hz, 1H), 8.64 (d,
J = 9.0 Hz, 1H), 8.72 (d, J = 9.3 Hz, 1H), 8.77 (d, J = 8.3 Hz, 1H) ppm; 13C NMR (75 MHz,
CDCl3) δ 15.9(CH3), 61.3(OCH3), 119.0(C), 121.0(CH), 121.2(CH), 121.3(CH), 123.1(CH),
126.2(CH), 126.59(C), 126.63(CH) 127.1(C), 127.3(CH), 127.7(C), 128.4(C), 128.5(CH), 129.9(CH),
130.5(C), 130.6(C), 132.0(C), 154.3(C); HRMS (EI+, TOF) m/z calcd for C20H16O [M]+ 272.11957,
found 272.11972.

Attempted photocyclization of stilbene 2f
Stilbene 2f (0.532 g, 1.57 mmol) was dissolved in degassed t-Butanol/toluene (9:1,

300 mL) together with potassium t-butoxide (0.490 g, 4.37 mmol) under N2 atmosphere.
The mixture was irradiated for 5 hrs. The solution got a greenish cast to it, and starting
material was decomposing without any product being formed.

3.2.4. Formylation of phenoles

2-Hydroxy-5-methylbenzaldehyde (4a)
Following the description of Hansen and Skattebøl [31], water free MgCl2 (2.973 g,

31.22 mmol) and paraformaldehyde (4.701 g, 156.5 mmol) was dissolved in dry THF
(100 mL) under N2 atmosphere. Triethylamine (10.5 mL) was added dropwise under
stirring. After 10 min. 4-methylfenol (2.170 g, 20.06 mmol) was added dropwise. The
mixture was refluxed in an oil bath at 75 ◦C for 1.5 h. After reaching room temperature
the mixture was transferred to a separating funnel with diethyl ether (35 mL), and the
organic phase washed with 1 M HCl (3 × 35 mL), water (2 × 35 mL) and brine (35 mL). The
organic phase was dried over anhydrous MgSO4 and concentrated under reduced pressure
to afford 2.226 g (82%) of 4a as a tick oil that was used without further purification.

1H NMR and 13C NMR were in accordance with the description of Batt and Nayak [46].
2-Hydroxy-3-methylbenzaldehyde (4b)
Following the description of Hofsløkken and Skattebøl [32], water free MgCl2 (2.956 g,

31.04 mmol) and paraformaldehyde (4.622 g, 155.0 mmol) was dissolved in dry THF
(100 mL) under N2 atmosphere. Triethylamine (10.5 mL) was added dropwise under
stirring. After 10 min. 2-methylphenol (1.995 g, 18.44 mmol) was added. The mixture was
refluxed in an oil bath at 75 ◦C for 1.5 h. After reaching room temperature the mixture was
transferred to a separation funnel with diethyl ether (35 mL), and the organic phase was
washed with 1M HCl (3 × 35 mL), water (2 × 35 mL) and brine (35 mL) The organic phase
was dried over anhydrous MgSO4 and concentrated under reduced pressure to afford
2.456 g (98%) of 4b as a tick oil that was used without further purification.

1H NMR and 13C NMR were in accordance with the description by Aspinall et al. [47].

3.2.5. Protection of Hydroxybenzaldehydes

2-Methoxy-5-methylbenzaldehyde (5a)
Aldehyde 4a (2.226 g, 16,35 mmol) was dissolved DMF (9 mL) in an oil bath at

50 ◦C. The mixture was added K2CO3 (2.733 g, 19.77 mmol) and iodomethane (1.40 mL,
22.5 mmol), and stirred for 1 h. Upon reaching room temperature, water (20 mL) was
added, and pH adjusted to 7 with 1 M HCl before extraction with ethyl acetate 2 × 10 mL).
The combined organic phases were washed with brine (10 mL), dried over anhydrous
MgSO4 and concentrated under reduced pressure. The remains were purified by flash
chromatography (Petroleum ether:/Ethyl acetate 9/1) to afford 1.896 g (77%) of 5a as an oil.

1H NMR (300 MHz, CDCl3) δ 2.31 (s, 3H), 3.90 (s, 3H), 6.92 (d, J = 8.5 Hz, 1H), 7.36
(dd, J = 8.5, 1.9 Hz, 1H), 7.63 (d, J = 1.9 Hz, 1H), 10.45 (s, 1H); 13C NMR (75 MHz, CDCl3)
δ 20.1(CH3), 55.6(OCH3), 111.5(CH), 124.3(C), 128.4(CH), 129.9(C), 136.5(CH), 159.9(C),
189.9(CHO) ppm; HRMS(EI+, TOF) m/z calcd for C9H10O2 [M]+ 150.06753, found 150.06790.

2-Methoxy-3-methylbenzaldehyde (5b)
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Aldehyde 4b (2.070 g, 15.20 mmol) was dissolved in DMF (9 mL) in an oil bath at
50 ◦C. The mixture was added K2CO3 (2.666 g, 19.29 mmol) and iodomethane (1.40 mL,
22.5 mmol), and stirred for 1 h. Upon reaching room temperature, water (20 mL) was
added, and pH adjusted to 7 with 1 M HCl before extraction with ethyl acetate (2 × 10 mL).
The combined organic phases were washed with brine (10 mL), dried over anhydrous
MgSO4 and concentrated under reduced pressure. The remains were purified with flash
chromatography (Petroleum ether/ethyl acetate 9/1) to afford 1.895 g (83%) of 5b as an oil.

1H NMR (300 MHz, CDCl3) δ 2.35 (s, 3H), 3.90 (s, 3H), 7.17 (dd, J = 7.6, 7.6 Hz, 1H),
7.46 (ddd, J = 7.5, 1.7, 0.7 Hz, 1H), 7.70 (dd, J = 7.8, 1.7 Hz, 1H), 10.39 (d, J = 0.7 Hz, 1H); 13C
NMR (75 MHz, CDCl3) δ 15.4(CH3), 63.0(OCH3), 124.3(CH), 126.4(CH), 129.1(C), 132.2(C),
137.5(CH), 161.7(C), 190.2(CHO) ppm; HRMS(EI+, TOF) m/z calcd for C9H10O2 [M] +

150.06753, found 150.06788.
2-Formyl-6-methylphenyl methanesulfonate (5c)
Aldehyde 4b (2.413 g, 17.72 mmol) was dissolved in DCM (13 mL) and added triethy-

lamine (5 mL) at 0 ◦C. Methanesulfonic chloride (2.812 g, 24.54 mmol) was added dropwise
under continued stirring, and allowed to react for another 30 min. The reaction mixture was
partitioned between EtOAc (200 mL) and saturated aqueous sodium bicarbonate (100 mL).
The organic phase was washed with 3 M HCl (100 mL) and brine (100 mL), before dried
over anhydrous MgSO4. The organic phase was then concentrated under reduced pressure
to yield 2.462 g (65%) of 5c as a thick oil. This oil was applied without further purification.

1H NMR (300 MHz, CDCl3) δ 2.46 (s, 3H), 3.38 (s, 3H), 7.36 (dd, J = 7.6, 7.5 Hz, 1H),
7.54 (dd, J = 7.5, 0.7 Hz, 1H, next to aldehyde), 7.77 (d, J = 7.6 Hz, 1H), 10.21 (s, 1H);
13C NMR (75 MHz, CDCl3) δ 16.7(CH3), 38.8(CH3SO3), 127.4(CH), 128.4(CH), 137.6(CH),
188.7(CHO) ppm (Quaternary C are not assigned due to impurities); IR (NaCl): 1700(CHO),
1351(CH3SO3), 1190(CH3SO3), 1144, 867 cm−1.

3.2.6. Oxidation of Methylchrysene

Chrysene-3-carboxylic acid (6)
3-methylchrysene (3b) (50 mg, 0.21 mmol) and KMnO4 (100 mg, 0.50 mmol) were

dissolved in pyridine/water (1 mL/2 mL). The reaction mixture was heated at reflux for
2 h, and then added more KMnO4 (200 mg, 1.0 mmol). The mixture was refluxed overnight.
A precipitate of MnO2 was filtered off. The filtrate was acidified by addition of HCl and
extracted with EtOAc (2 × 25 mL). The combined organic phases were dried over MgSO4
and concentrated under reduced pressure. The crude product obtained was purified by
flash chromatography (Petroleum ether/ethyl acetate 1/4) to yield 14.6 mg (25%) of 6 as a
white solid. Melting point: >300 ◦C.

1H-NMR (300 MHz, CD3OD) δ 8.51–8.62 (m, 2H), 8.95 (d, J = 7.8 Hz, 1H), 8.99–9.04 (m, 4H),
9.72 (d, J = 8.9 Hz, 1H), 9.79 (d, J = 8.2 Hz, 1H), 9.86 (d, J = 9.2 Hz, 1H), 10.30 (s, 1H), 14.08
(br. S, 1H, COOH) ppm; 13C NMR* (75 MHz, CD3OD) δ 130.6, 133.0, 133.4, 134.7, 135.7, 136.5
(2carbons), 136.7, 137.57, 137.60, 137.7, 138.0, 138.4, 138.5, 138.7, 139.4, 141.4, 143.7, 177.0 ppm;
HRMS (ESI−, TOF) m/z calcd for C19H11O2 [M−H]− 271.07645, found 271.07529.

*The 13C NMR was performed with 1 s extra delay between each scan.

4. Conclusions

We succeeded in making 1-, 2-, 3- and 6-methylchrysene (3a, 3d, 3b and 3c, respec-
tively) as pure compounds in gram scale. Unfortunately, 4-methylchrysene did not form
from methoxy-stilbenoid 2e in an eliminative photocyclization as previously described for
the corresponding 4-methylphenanthrene. Potassium permanganate oxidation of methyl-
chrysenes is not an effective reaction as it digests the whole ring system, but we were able
to obtain a modest yield of chrysene-3-carboxylic acid (6) from 3-methylchrysene (3b).
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