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A new approach for generating approximate analytic solutions of transient nonlinear heat conduction problems is presented.
It is based on an effective combination of Lie symmetry method, homotopy perturbation method, finite element method, and
simulation based error reduction techniques. Implementation of the proposed approach is demonstrated by applying it to determine
approximate analytic solutions of real life problems consisting of transient nonlinear heat conduction in semi-infinite bars made
of stainless steel AISI 304 and mild steel. The results from the approximate analytical solutions and the numerical solution are
compared indicating good agreement.

1. Introduction

Many physical problems involve transient or unsteady heat
conduction. Examples include startup or shutdown of power
plant, gas turbine, and heat exchanger. For a homogeneous
material with constant properties, the Fourier differential
equation
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with three physical properties or the equation
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with just one coefficient is solved to predict the temperature
distribution during the heating or cooling process. Here 𝑘
is the thermal conductivity, 𝜌 is the density, 𝑐𝑝 is the heat
capacity, and 𝛼 = 𝑘/𝜌𝑐𝑝 is the thermal diffusivity. Thermal
diffusivity 𝛼 is a material-specific property for characterizing
unsteady heat conduction and it describes how quickly a
material reacts to a change in temperature. It should be

noted that each of these quantities can vary with temperature.
Any change in the thermal boundary conditions around
a material results in heat flow in or out of the material
until thermal equilibrium is achieved. Materials with a high
thermal diffusivity will achieve thermal equilibrium faster
than those with lower thermal diffusivity.

Most metallic materials have thermal properties (thermal
conductivity, specific heat, and density) that are usually
temperature-dependent. This results in nonlinearities in the
governing partial differential equations (PDEs) describing
the temperature distribution through these materials. The
analysis of nonlinear heat conduction problems is of increas-
ing importance and interest in various engineering and
scientific fields. However, no general theory exists for solving
nonlinear partial differential equations, and because of the
difficulties associated with the solution of nonlinear heat
transfer problems, simplifying assumptions are usually made
to linearize such problems. For example, constant thermal
conductivity is generally assumed for materials having ther-
mal conductivity which varies slightly with temperature.
However, if temperature change is substantial or the thermal
conductivity varies greatly with temperature, the assumption
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of constant thermal conductivitymay lead to significant error
in the solution. Therefore, such situations require solving
nonlinear transient heat transfer problems. It is usually dif-
ficult and mathematically challenging to obtain exact closed
form solutions of such nonlinear transient heat transfer
problems. Therefore, a number of numerical methods such
as time integration, the finite-difference method (FDM), the
finite-element method (FEM), and the boundary-element
method (BEM) have been proposed to solve such problems
[1–5]. Though the solutions obtained through sophisticated
numerical techniques are extremely accurate approximation
of the analytic solution, yet the natural tabular form of
numerical solutions hampers their real-time applicability
unlike solutions in functional form. An alternate is to look
for approximate solutions in function form which are more
or less as accurate as numerical solutions. Such approximate
analytic solutions can be used in real time and can be easily
manipulated at different points in space and time, which may
result in better insight into physical phenomenon governed
by the PDE. With this motivation, the main objective of
this work is to implement a new systematic procedure for
generating approximate solutions of nonlinear heat conduc-
tion PDEs in function form which also meet the accuracy
benchmarks of numerical solutions. As test cases, we develop
mathematical models for heat conduction in stainless steel
AISI 304 and mild steel and apply our procedure to find
accurate enough approximate analytic solutions to PDEs
governing these real-life problems.

While there is no general theory for directly solving non-
linear PDEs, the approach of investigating nonlinear PDEs by
transforming to ODEs or simpler PDEs has worked well in
sufficient generality, compare [6]. This includes linearization
transformations, methods of reduction of PDEs to ODEs, or
transformations that result in reduction of the complexity in
general. A powerful general technique for analyzing nonlin-
ear PDEs by reducing them to ODEs is given by classical Lie
symmetry method, also known as similarity method. PDEs
that model physical phenomena naturally inherit symmetries
from the underlying physical system. The similarity method
takes advantage of these natural symmetries in a PDE and
leads to determining special variables, namely, similarity
variables, that give rise to the similarity reduction to ODEs.
A large amount of literature about the classical Lie symmetry
theory and its applications is available, for example, [6–10].

The purpose of this paper is to apply a new approach
for finding accurate enough approximate analytic solutions
of nonlinear PDEs, particularly arising from heat conduction
problems. The method utilizes an effective combination
of Lie symmetry analysis, homotopy perturbation method,
finite element method, and error reduction techniques. A
summary of our approach is as follows. Lie symmetries are
first utilized to reduce the initial-boundary value problem
of PDE to a boundary value problem of ODE. The reduced
ODE problem is then simultaneously solved by finite element
method and homotopy perturbation method to, respectively,
generate numerical solution and initial approximation of the
approximate analytic solution. Next, using the numerically
generated solution curve as the benchmark for accuracy, an
error reduction of the initial approximation curve is carried

out to generate explicit approximate solution of the ODE
problem. Finally the similarity transformation provides the
approximate analytic solution of the IBVP of original PDE.

It should be noted that, in general, the solutions of PDEs
are surfaces or hypersurfaces while the solutions of ODEs
are represented by curves. Furthermore, it is well known
that approximating a surface is an increasingly complex and
intractable problem. The idea presented here for generating
approximate solutions of PDE, that is, approximating the sur-
face solution, practically involves only approximating a curve
which is a tractable problem in comparison to the question of
approximating surfaces. This makes it a promising approach
especially when a reasonably accurate initial approximation
of the solution curve of ODE can be obtained.

In the next section we develop mathematical models for
heat conduction in stainless steel AISI 304 and mild steel.
Section 3 presents the systematic procedure for generating
approximate analytic solutions using a combination of Lie
symmetry, finite element, homotopy perturbation, and error
reduction methods. Sections 4 and 5 are devoted to appli-
cation of the method for investigation of heat conduction
models for stainless steel AISI 304 andmild steel, respectively.

It is assumed that the reader is familiar with standard
computations of Lie symmetry and homotopy perturbation
method. The reader is referred to [7–9, 11–13], respectively,
for an introduction to Lie symmetry method and homotopy
perturbation method.

2. Formulation of Test Problems

Thenonlinear PDE that describes the transient nonlinear heat
conduction in a one-dimensional medium is

𝜕𝑇 (𝑥, 𝑡)
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) , (3)

where 𝑇(𝑥, 𝑡) denotes the temperature at a point 𝑥 at time 𝑡
and 𝛼(𝑇) is the temperature-dependent thermal diffusivity of
the material.

To apply our method, we will consider test problems for
heat conduction in stainless steel AISI 304 andmild steel. For
this purpose, the corresponding thermal diffusivity functions
𝛼(𝑇) need to be modeled first. Tables 1 and 2, respectively,
give temperature-dependent thermal properties of AISI 394
stainless steel and mild steel considered in this work. Trend
lines fitted on these datasets show that linear equation is the
best fit for stainless steel as shown in Figure 1, and second-
order polynomial is the most accurate fit for mild steel as
illustrated in Figure 2. Table 3 gives the estimated thermal
diffusivity functions for stainless steel and mild steel, along
with the goodness of fit (𝑅2). Using these thermal diffusivity
functions, we will apply our method to investigate transient
heat conduction in semi-infinite solid. Precisely, in Sections 4
and 5, approximate analytic solutions will be constructed for
initial-boundary value problem of the form

𝜕𝑇 (𝑥, 𝑡)

𝜕𝑡
=

𝜕

𝜕𝑥
(𝛼 (𝑇)
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) ,

𝑇|𝑡=0 = 𝑇𝑖, 𝑇|𝑥=0 = 𝑇𝑠, 𝑇|𝑥=∞ = 𝑇𝑖

(4)
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Figure 1: Thermal diffusivity of stainless steel AISI 304.
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Figure 2: Thermal diffusivity of mild steel.

with the thermal diffusivity functions of stainless steel and
mild steel, respectively.

3. The Method for Generating Approximate
Analytic Solutions

Themain approach for finding approximate analytic solutions
consists of implementing the steps highlighted below.

Given an IBVP of a PDE of the form

𝐹 (𝑥, 𝑡, 𝑇 (𝑥, 𝑡) , 𝑇𝑥, 𝑇𝑡, 𝑇𝑥𝑥, 𝑇𝑥𝑡, 𝑇𝑡𝑡) = 0. (5)

Step 1. Reduction of IVBP of PDE to a BVP of ODE: the
Lie symmetries of PDE (5) can be found by employing the

standard well-known procedure, compare [7–9]. It is further
required to systematically identify the symmetry that leaves
the boundaries and boundary conditions invariant [14]. This
is done by taking the most general symmetry operator 𝑋 of
PDE (5) and finding the conditions under which it leaves the
boundaries invariant as well as imposing the restrictions on
𝑋 due to invariance of boundary conditions on the boundary.
Further details about these steps are illustrated in Section 4
below. The similarity variables of the symmetry that leaves
the whole IBVP invariant will lead to the reduction of IBVP
of PDE (5) to a BVP of ODE of the form

𝐺 (𝑧, 𝑉 (𝑧) , 𝑉𝑧, 𝑉𝑧𝑧) = 0. (6)

The aim of the remaining steps is to find an approximate
solution 𝑉Approx(𝑧) of BVP of ODE (6) in function form and
then use the similarity transformations of the symmetry to
obtain approximate solution 𝑇(𝑥, 𝑡) of the IBVP of PDE (5).

Step 2. Find numerical solution 𝑉Num of BVP of ODE (6)
and use this as a benchmark for obtaining function form
𝑉Approx(𝑧) of the approximate solution of BVP of ODE (6).

Step 3. Obtain an initial guess 𝑉Initial for the approximate
analytic solution 𝑉Approx(𝑧). This is a crucial step as it will be
used as a basis to generate approximate analytic solution in
function form. Here we use homotopy perturbation method
to obtain initial guess 𝑉Initial but other kinds of approxima-
tions like upper/lower solutions can also be employed.

Step 4. Improve the initial approximation 𝑉Initial to get the
approximate analytic solution 𝑉Approx(𝑧) up to the desired
level of accuracy. The improvement in the accuracy of initial
approximation 𝑉Initial depends on reducing the difference
between 𝑉Initial and the benchmark numerical solution curve
𝑉Num of BVP of ODE (6). In case of good initial approxi-
mation, as obtained in the next sections through homotopy
perturbation method, the simulation based techniques sim-
ilar to noise reduction or smoothing techniques of image
processing should be sufficient. This idea is implemented
in two ways in subsequent sections to improve the level of
accuracy of approximate analytic solutions. In Section 4, the
simulations based on perturbing the initial approximation
𝑉Initial are utilized to generate accurate enough approximate
analytic solution 𝑉Approx(𝑧) of the BVP of ODE, whereas in
Section 5, the error curve obtained through the difference
of 𝑉Initial and 𝑉Num is treated to generate the approximate
analytic solution 𝑉Approx(𝑧) of the BVP of ODE.

Step 5. Use the similarity variables in 𝑉Approx(𝑧) to get the
approximate analytic solution 𝑇(𝑥, 𝑡) of the IBVP of PDE (5).

Step 6. Validate by carrying out a comparative analysis of the
approximate analytic solution 𝑇(𝑥, 𝑡) at different times with
the numerical solution the IBVP of PDE at corresponding
times.

In Sections 4 and 5, we illustrate implementation of
the above procedure and provide simulation results and
approximate analytic solutions for nonlinear heat conduction
in stainless steel and mild steel, respectively.
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Table 1: Thermal properties of AISI 304 stainless steel.

Temperature
[K]

Specific heat
(𝑐)

[kJ/kg⋅K]

Conductivity
(𝑘)

[W/mK]

Density
(𝜌)

[kg/m3
]

Thermal diffusivity
(𝛼 = 𝑘/𝜌𝑐)
(m2/s)

100 0.272 9.2 7963 4.25𝐸 − 03

300 0.477 14.9 7900 3.95𝐸 − 03

500 0.536 18.2 7822 4.34𝐸 − 03

700 0.5695 21.2 7736 4.81𝐸 − 03

900 0.5965 24 7644 5.26𝐸 − 03

1100 0.6255 26.7 7550 5.65𝐸 − 03

1300 0.654 29.23 7455 6.00𝐸 − 03

1500 0.682 31.7 7362 6.31𝐸 − 03

1700 0.71 34.17 7269 6.62𝐸 − 03

1900 0.738 36.63 7175 6.92𝐸 − 03

2100 0.766 39.1 7082 7.21𝐸 − 03

2300 0.794 41.57 6989 7.49𝐸 − 03

2500 0.822 44.03 6895 7.77𝐸 − 03

4. Approximate Analytic Solution to IBVP for
Stainless Steel AISI 304

As first test problem, we consider transient heat conduction
in a semi-infinite solid bar made of AISI 304 stainless steel
which is initially at temperature 𝑇𝑖 = 300∘K and is subjected
to a surface temperature 𝑇𝑠 = 900∘K at 𝑥 = 0. The
temperature-dependent diffusivity for stainless steel AISI
304, as estimated in Section 2, is given by

𝛼 (𝑇) = 𝑎𝑇 + 𝑏, where 𝑎 = 2.0 × 10−6, 𝑏 = 0.0037. (7)

The objective is to determine an approximate analytic expres-
sion for the temperature distribution 𝑇(𝑥, 𝑡) satisfying the
following IBVP:

𝜕𝑇 (𝑥, 𝑡)

𝜕𝑡
=

𝜕

𝜕𝑥
((𝑎𝑇 (𝑥, 𝑡) + 𝑏)

𝜕𝑇 (𝑥, 𝑡)

𝜕𝑥
) , (8)

𝑇|𝑡=0 = 𝑇𝑖, 𝑇|𝑥=0 = 𝑇𝑠, 𝑇|𝑥=∞ = 𝑇𝑖, (9)

where 𝑎 = 2.0 × 10−6 and 𝑏 = 0.0037.
It is first required to systematically find the symmetry

that preserves the IBVP ((8), (9)). Applying the Lie symmetry
theory [7–9], the Lie symmetry algebra of the PDE (8) is
determined to be four-dimensional and is generated by

𝑋1 =
𝜕

𝜕𝑥
, 𝑋2 =

𝜕

𝜕𝑡
, 𝑋3 = 𝑥

𝜕

𝜕𝑥
+ 2𝑡

𝜕

𝜕𝑡
,

𝑋4 =
𝑎𝑥

2

𝜕

𝜕𝑥
+ (𝑎𝑇 + 𝑏)

𝜕

𝜕𝑇
.

(10)

In order to obtain the symmetry that leaves the whole IBVP
invariant, we consider the general symmetry operator

𝑋 = 𝑘1𝑋1 + 𝑘2𝑋2 + 𝑘3𝑋3 + 𝑘4𝑋4 (11)

of PDE (8) and search for the operator that preserves the
boundary and the boundary conditions (9).

The invariance of the boundaries 𝑥 = 0, 𝑡 = 0 or
equivalently

[𝑋 (𝑥 − 0)]𝑥=0 = 0,

[𝑋 (𝑡 − 0)]𝑡=0 = 0

(12)

implies

𝑘1 = 𝑘2 = 0, (13)

so𝑋must be

𝑋 = 𝑘3𝑋3 + 𝑘4𝑋4. (14)

In addition to the restrictions imposed by (13), the invariance
of initial and boundary conditions, that is,

[𝑋 (𝑇 − 𝑇𝑖)]𝑡=0 = 0, on 𝑇 = 𝑇𝑖,

[𝑋 (𝑇 − 𝑇𝑠)]𝑥=0 = 0, on 𝑇 = 𝑇𝑠,

(15)

implies that we must have

𝑘4 = 0. (16)

Hence the IBVP (8), (9) is invariant under the symmetry

𝑋 = 𝑥
𝜕

𝜕𝑥
+ 2𝑡

𝜕

𝜕𝑡
, (17)

where we have chosen 𝑘3 = 1. The similarity variables

𝑧 (𝑥, 𝑡) =
𝑥

√𝑡
, 𝑉 (𝑧) = 𝑇 (18)

of 𝑋 imply that the solution of IBVP (8), (9) is of the form
𝑇 = 𝑉(𝑧), where 𝑉(𝑧) satisfies the ODE

(𝑎𝑉 + 𝑏)
𝑑
2
𝑉

𝑑𝑧2
+ 𝑎(

𝑑𝑉

𝑑𝑧
)

2

+
𝑧

2

𝑑𝑉

𝑑𝑧
= 0, (19)
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Table 2: Thermal properties of mild steel.

Temperature
[K]

Specific heat
(𝑐)

[kJ/kg⋅K]

Conductivity
(𝑘)

[W/mK]

Density
(𝜌)

[kg/m3
]

Thermal diffusivity
(𝛼 = 𝑘/𝜌𝑐)
(m2/s)

100 0.346 68.1 7892 2.49𝐸 − 02

145.8 0.3662 66.36 7883 2.30𝐸 − 02

191.7 0.3863 64.62 7874 2.12𝐸 − 02

237.5 0.4065 62.88 7866 1.97𝐸 − 02

283.3 0.4267 61.13 7857 1.82𝐸 − 02

329.2 0.4468 59.39 7848 1.69𝐸 − 02

375 0.467 57.65 7840 1.57𝐸 − 02

420.8 0.4864 55.79 7827 1.47𝐸 − 02

466.7 0.505 53.8 7809 1.36𝐸 − 02

512.5 0.5236 51.81 7791 1.27𝐸 − 02

558.3 0.5421 49.81 7772 1.18𝐸 − 02

604.2 0.5616 47.82 7753 1.10𝐸 − 02

650 0.5905 45.8 7726 1.00𝐸 − 02

800 0.685 39.2 7726 7.41𝐸 − 03

1000 1.169 30 7726 3.32𝐸 − 03

with the boundary conditions

𝑉 (𝑧 = 0) = 𝑇𝑠 = 900, 𝑉 (𝑧 = ∞) = 𝑇𝑖 = 300. (20)

Next the reduced BVP (19), (20) is to be simultaneously
solvednumerically andby employing homotopy perturbation
method. The homotopy solution will be utilized later as
initial guess for the approximate analytic solution of BVP
(19), (20) whereas numerical solution will be used as the
benchmark curve to improve the accuracy of the initially
guessed homotopy solution.

In order to apply homotopy perturbation method [11–13]
for finding approximate closed form solution of the boundary
value problem (19), (20), we construct a homotopy of the
expression (19) in the following form:

𝑏
𝑑
2
𝑉

𝑑𝑧2
+
𝑧

2

𝑑𝑉

𝑑𝑧
+ 𝑝(𝑎𝑉

𝑑
2
𝑉

𝑑𝑧2
+ 𝑎(

𝑑𝑉

𝑑𝑧
)

2

) = 0. (21)

The homotopy parameter 𝑝 has values 0 or 1; the value 𝑝 = 0
corresponds to a linear equation which can easily be solved
and the value 𝑝 = 1 corresponds to the original equation (19).
The solution𝑉(𝑧) can be expanded in terms of the homotopy
parameter 𝑝 as follows:

𝑉 = 𝑉0 + 𝑝𝑉1 + 𝑝
2
𝑉2 + ⋅ ⋅ ⋅ . (22)

Substituting (22) in (21) and equating coefficients of the same
powers of 𝑝, we obtain a set of equations from which the first
two consist of the equation

𝑏
𝑑
2
𝑉0

𝑑𝑧2
+
𝑧

2

𝑑𝑉0

𝑑𝑧
= 0 (23)

with the boundary conditions

𝑉0 (𝑧 = 0) = 𝑇𝑠, 𝑉0 (𝑧 󳨀→ ∞) = 𝑇𝑖 (24)

and the equation

𝑏
𝑑
2
𝑉1

𝑑𝑧2
+
𝑧

2

𝑑𝑉1

𝑑𝑧
+ 𝑎𝑉0

𝑑
2
𝑉0

𝑑𝑧2
+ 𝑎(

𝑑𝑉0

𝑑𝑧
)

2

= 0 (25)

with the boundary conditions

𝑉1 (0) = 0, 𝑉1 (𝑧 󳨀→ ∞) = 0. (26)

The solution of the boundary value problem (23), (24) can
easily be obtained as

𝑉0 (𝑧) = 𝑇𝑠 − (𝑇𝑠 − 𝑇𝑖) erf (
𝑧

2√𝑏
) . (27)

Substituting solution (27) in (25) and removing the secular
terms, we obtain

𝑏
𝑑
2
𝑉1

𝑑𝑧2
+
𝑧

2

𝑑𝑉1

𝑑𝑧
+
𝑎𝑒
−𝑧
2
/2𝑏
(𝑇𝑠 − 𝑇𝑖)

2

𝑏𝜋

+ 𝑧
𝑎𝑒
−𝑧
2
/2𝑏

(𝑇𝑠 − 𝑇𝑖) 𝑇𝑠

2
3
√𝑏√𝜋

= 0.

(28)

The solution of the boundary value problem (28) and (26) can
be written in the following form:

𝑉1 (𝑧)

=
𝑎 (𝑇𝑠 − 𝑇𝑖)

2𝑏

× {
𝑧
3
√𝑏2𝑒
−𝑧
2
/2𝑏
𝑇𝑠

√𝜋

+ (1 − erf ( 𝑧

2√𝑏
)) erf ( 𝑧

2√𝑏
) (𝑇𝑠 − 𝑇𝑖)} .

(29)
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Figure 3: Initial approximation 𝑉Initial and numerical solution 𝑉Num
of BVP (19), (20).

Since we are looking for an approximate closed form solution
of the problem (19), setting 𝑝 = 1 in (22), we obtain a first
order approximate solution

𝑉 (𝑧) = 𝑉0 (𝑧) + 𝑉1 (𝑧) . (30)

Substituting (27) and (29) in (30), we obtain an approximate
closed form solution of BVP (19), (20) in the following form:

𝑉 (𝑧) = 𝑇𝑠 − (𝑇𝑠 − 𝑇𝑖) erf (
𝑧

2√𝑏
)

+
𝑎 (𝑇𝑠 − 𝑇𝑖)

2𝑏

× {
𝑧
3
√𝑏2𝑒
−𝑧
2
/2𝑏
𝑇𝑠

√𝜋

+(1 − erf ( 𝑧

2√𝑏
)) erf ( 𝑧

2√𝑏
) (𝑇𝑠 − 𝑇𝑖)} .

(31)

We call this solution the initial guess 𝑉Initial for the intended
approximate analytic solution of the BVP (19), (20).

The numerical solution𝑉Num of BVP (19), (20) is obtained
using finite elementmethod.Defining the initial relative error
as

𝐸Initial =
𝑉Initial − 𝑉Num

𝑉Num
, (32)

it is found that

Max 󵄨󵄨󵄨󵄨𝐸Initial
󵄨󵄨󵄨󵄨 = 0.06119845971. (33)

Figure 3 gives the plots of the initial approximation𝑉Initial and
the numerical solution 𝑉Num, while the initial relative error
𝐸Initial is shown in Figure 5.

In order to improve the accuracy level of the initial
approximation (31), we introduce the parameters 𝛼, 𝛽, 𝛿, 𝜖,
and 𝜆 in (31) to obtain the expression

𝑉̃ (𝑧) = 𝑇𝑠 − (𝑇𝑠 − 𝑇𝑖) erf (
𝜖𝑧

2√𝑏
) +

𝑎 (𝑇𝑠 − 𝑇𝑖)

2𝑏

× {
𝛽𝑧
3
√𝑏2𝑒
−(𝛼𝑧)

2
/2𝑏
𝑇𝑠

√𝜋

+(1 − erf ( 𝛿𝑧

2√𝑏
)) erf ( 𝜆𝑧

2√𝑏
) (𝑇𝑠 − 𝑇𝑖)} .

(34)

Small variations of the parameters from the values

𝛼 = 1, 𝛽 = 1, 𝛿 = 1, 𝜖 = 1, 𝜆 = 1 (35)

in 𝑉̃(𝑧) generate a sequence of curves in the neighborhood
of the initial approximation curve 𝑉initial. Several careful
numerical simulations are performed for small variation of
the above parameters, leading to the values

𝛼 = 1.4, 𝛽 = 1, 𝛿 = 0.93,

𝜖 = 0.9101, 𝜆 = 0.91

(36)

for which the relative error between 𝑉̃(𝑧) and 𝑉Num is less
than 0.4%.

Hence we obtain an approximate analytic solution𝑉Approx
of BVP (19), (20) as

𝑉Approx (𝑧)

= 𝑇𝑠 − (𝑇𝑠 − 𝑇𝑖) erf (
𝜖𝑧

2√𝑏
) +

𝑎 (𝑇𝑠 − 𝑇𝑖)

2𝑏

× {
𝛽𝑧
3
√𝑏2𝑒
−(𝛼𝑧)

2
/2𝑏
𝑇𝑠

√𝜋

+(1 − erf ( 𝛿𝑧

2√𝑏
)) erf ( 𝜆𝑧

2√𝑏
) (𝑇𝑠 − 𝑇𝑖)} ,

(37)

where the parameters 𝛼, 𝛽, 𝛿, 𝜖, and 𝜆 are given by (36), with

Max
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑉Approx − 𝑉Num

𝑉Num

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

= 0.003959810186. (38)

Theplots of the numerical solution𝑉Num and the approximate
analytic solution 𝑉Approx are given in Figure 4, and Figure 5
shows the plot of Error(𝑧) where

Error (𝑧) =
𝑉Approx − 𝑉Num

𝑉Num
. (39)
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Table 3: Thermal diffusivity functions considered in the current study.

Material Thermal diffusivity function
𝛼(𝑇), m2/s 𝑅

2 Temperature range
(K)

Stainless steel
AISI 304

𝛼(𝑇) = 𝑎𝑇 + 𝑏

𝑎 = 2.0 × 10
−6, 𝑏 = 0.0037

0.9968 100–2500

Mild steel
𝛼(𝑇) = 𝑎𝑇

2
+ 𝑏𝑇 + 𝑐

𝑎 = 1.0 × 10
−8, 𝑏 = −3.0 × 10

−5,
𝑐 = 0.0276

0.9957 100–1000
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0 500 1000 1500 2000

z

VNum
VApprox

Figure 4: Approximate analytic solution 𝑉Approx and numerical
solution 𝑉Num of BVP (19), (20).
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Figure 5:Comparison of relative errors for the initial approximation
and approximate analytic solution of BVP (19), (20).

Finally the similarity variables (18) provide the approxi-
mate analytic solution of IBVP (8), (9) as

𝑇 (𝑥, 𝑡) = 𝑇𝑠 − (𝑇𝑠 − 𝑇𝑖) erf (
𝜖 (𝑥/√𝑡)

2√𝑏
) +

𝑎 (𝑇𝑠 − 𝑇𝑖)

2𝑏

×
{

{

{

𝛽(𝑥/√𝑡)
3
√𝑏2𝑒
−(𝛼(𝑥/√𝑡))

2

/2𝑏
𝑇𝑠

√𝜋
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Figure 6: Approximate analytic solution𝑇(𝑥, 𝑡) of the IBVP (8), (9).

+ (1 − erf (
𝛿 (𝑥/√𝑡)

2√𝑏
))

× erf (
𝜆 (𝑥/√𝑡)

2√𝑏
) (𝑇𝑠 − 𝑇𝑖)

}

}

}

,

(40)

where the parameters 𝛼, 𝛽, 𝛿, 𝜖, and 𝜆 are given by (36). A
surface plot of the approximate analytic solution 𝑇(𝑥, 𝑡) is
provided in Figure 6.

For validation purpose, we carry out a comparative
analysis of the approximate analytic solution 𝑇(𝑥, 𝑡) and the
numerical solution of IBVP (8), (9). In order to numerically
solve the IBVP (8), (9), a transient thermal analysis is
performed using FEA software ANSYS. The given structure
is modeled using 3D Conduction Bar Elements (LINK33).
LINK33 is a uniaxial element with the ability to conduct heat
between its nodes. The element has a single degree of free-
dom, temperature, at each node point. The conducting bar
is applicable to a steady-state or transient thermal analysis. A
refined uniformmesh is used tomodel the nonlinear thermal
gradient through the solid. The length of the model is taken
as 𝐿 = 2m assuming that no significant temperature change
occurs at the interior end point during the time period of
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Figure 7: Comparison of approximate analytic solution 𝑇(𝑥, 𝑡) and
numerical solution of IBVP (8), (9) at different times.

interest. This assumption is validated by the temperature of
node at 𝑥 = 𝐿 at the end of the transient analysis.

Figure 7 shows the comparison of temperature distribu-
tion at different times using the approximate analytic solution
(40) and the numerical solutions at corresponding times.The
figure shows good agreement between approximate analytic
solution and the numerical results.

5. Approximate Analytic Solution to
IBVP for Mild Steel

In this test problem, we consider transient heat conduction
in a semi-infinite solid bar made of mild steel which is
initially at temperature 𝑇𝑖 = 300∘K and is subjected to a
surface temperature 𝑇𝑠 = 900∘K at 𝑥 = 0. The temperature-
dependent diffusivity for mild steel, as estimated in Section 2,
is given by

𝛼 (𝑇) = 𝑎𝑇
2
+ 𝑏𝑇 + 𝑐,

where 𝑎 = 1.0 × 10−8, 𝑏 = −3.0 × 10
−5
, 𝑐 = 0.0276.

(41)

The objective is to determine an approximate analytic expres-
sion for the temperature distribution 𝑇(𝑥, 𝑡) satisfying the
following IBVP:

𝜕𝑇 (𝑥, 𝑡)

𝜕𝑡
=

𝜕

𝜕𝑥
((𝑎𝑇(𝑥, 𝑡)

2
+ 𝑏𝑇 (𝑥, 𝑡) + 𝑐)

𝜕𝑇 (𝑥, 𝑡)

𝜕𝑥
) ,

(42)

𝑇|𝑡=0 = 𝑇𝑖, 𝑇|𝑥=0 = 𝑇𝑠, 𝑇|𝑥=∞ = 𝑇𝑖, (43)

where 𝑎 = 1.0 × 10−8, 𝑏 = −3.0 × 10−5, and 𝑏 = 0.0276.
In order to identify the symmetry that preserves the IBVP

(42), (43) we first find the Lie symmetry algebra of the PDE

(42) which is determined to be three-dimensional and is
generated by

𝑋1 =
𝜕

𝜕𝑥
, 𝑋2 =

𝜕

𝜕𝑡
, 𝑋3 = 𝑥

𝜕

𝜕𝑥
+ 2𝑡

𝜕

𝜕𝑡
. (44)

Using the restrictions imposed by the boundaries and bound-
ary conditions in themanner similar to Section 4, we find that
the symmetry that leaves the whole IBVP (42), (43) invariant
is

𝑋 = 𝑥
𝜕

𝜕𝑥
+ 2𝑡

𝜕

𝜕𝑡
. (45)

The similarity variables

𝑧 (𝑥, 𝑡) =
𝑥

√𝑡
, 𝑉 (𝑧) = 𝑇 (46)

of 𝑋 imply that the solution of IBVP (42), (43) is of the form
𝑇 = 𝑉(𝑧), where 𝑉(𝑧) satisfies the ODE

(𝑎𝑉
2
+ 𝑏𝑉 + 𝑐)

𝑑
2
𝑉

𝑑𝑧2
+ (2𝑎𝑉 + 𝑏) (

𝑑𝑉

𝑑𝑧
)

2

+
𝑧

2

𝑑𝑉

𝑑𝑧
= 0

(47)

with the boundary conditions

𝑉 (𝑧 = 0) = 𝑇𝑠 = 900, 𝑉 (𝑧 = ∞) = 𝑇𝑖 = 300. (48)

Next the reduced BVP (47), (48) is simultaneously solved
numerically and by homotopy perturbation method. The
homotopy solution will be utilized below as initial guess
𝑉Initial for the approximate analytic solution 𝑉Approx of BVP
(47), (48) whereas the numerical solution 𝑉Num will be
used as the benchmark curve to improve the accuracy of
the initially guessed homotopy solution. In order to find
homotopy solution 𝑉Initial of the boundary value problem
(47), (48), we construct a homotopy of the expression (47)
in the following form:

𝑐
𝑑
2
𝑉

𝑑𝑧2
+
𝑧

2

𝑑𝑉

𝑑𝑧

+ 𝑝[𝑎𝑉
2 𝑑
2
𝑉

𝑑𝑧2
+ 𝑏𝑉

𝑑
2
𝑉

𝑑𝑧2
+ 2𝑎𝑉(

𝑑𝑉

𝑑𝑧
)

2

+ 𝑏(
𝑑𝑉

𝑑𝑧
)

2

] = 0,

(49)
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Figure 8: Initial approximation 𝑉Initial and numerical solution 𝑉Num
of BVP (47), (48).

and apply the same procedure as in the previous section to
obtain an approximate closed form solution of the BVP (47),
(48) as

𝑉 (𝑧) = 𝑇𝑠 − (𝑇𝑠 − 𝑇𝑖) erf (
𝑧

2√𝑐
) +

𝑒
−𝑧
2
/2𝑐
(𝑇𝑠 − 𝑇𝑖)

12𝑐𝜋

× { − 6𝑏𝑇𝑠 + 𝑒
𝑧
2
/2𝑐 erf 𝑐 ( 𝑧

2√𝑐
)

× (4𝑎𝜋𝑇
2

𝑠
− 4𝑎𝜋𝑇

2

𝑠
erf 𝑐( 𝑧

2√𝑐
)

2

− 6𝑏𝜋𝑇𝑖 erf (
𝑧

2√𝑐
) + 6𝑏𝑇𝑠

+ 9𝑏𝜋𝑇𝑠 erf (
𝑧

2√𝑐
) − 4𝑎𝜋𝑇𝑠𝑇𝑖

+ 4𝑎𝜋𝑇𝑠𝑇𝑖 erf 𝑐(
𝑧

2√𝑐
)

2

)} .

(50)

We call this solution the initial guess 𝑉Initial for the intended
approximate analytic solution of the BVP (47), (48).

Thenumerical solution𝑉Num of BVP (47), (48) is obtained
using finite elementmethod.Defining the initial relative error
as

𝐸Initial =
𝑉Initial − 𝑉Num

𝑉Num
, (51)

it is found that

Max 󵄨󵄨󵄨󵄨𝐸Initial
󵄨󵄨󵄨󵄨 = 0.1500655840. (52)

Figure 8 gives the plots of the initial approximation𝑉Initial and
the numerical solution 𝑉Num, while the initial relative error
𝐸Initial is shown in Figure 11.
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Figure 9: The difference Δ between the initial approximation 𝑉Initial
and numerical solution 𝑉Num of BVP (47), (48).

In order to improve the accuracy level of the initial
approximation (31), we adopt an approach different from the
previous section and focus on approximating the difference
between 𝑉Num and 𝑉Initial in function form. Plotting the
difference

Δ (𝑧) = 𝑉Initial − 𝑉Num, (53)

as shown in Figure 9, implies that the difference Δ(𝑧) can
be represented by a skewed function. As an ansatz for
approximating Δ(𝑧) we take the skewed function of the form

𝑓 (𝑧) = 𝛽𝑒
−𝐾𝑧
2

erf (𝛼𝑧) , (54)

where the parameter 𝛼 mainly contributes to the location of
the peak, the parameter 𝐾 mainly affects the shrinking or
expanding of the skewed curve, and 𝛽 controls the height of
the peak of the curve. Performing several careful numerical
simulations suggest the values of the parameters

𝛼 = 0.0105, 𝐾 = 0.000014, 𝛽 = 101.02 (55)

giving accurate enough function form representation of Δ(𝑧)
that makes the relative error between approximate analytic
solution and numerical solution about 0.7%, as shown below.

Defining

𝑉Approx (𝑧) = 𝑉Initial − 𝛽𝑒
−𝐾𝑧
2

erf (𝛼𝑧) , (56)

where the parameters 𝛼, 𝛽, and 𝐾 are given by (55), provides
an approximate analytic solution 𝑉Approx of BVP (47), (48)
with

Max
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑉Approx − 𝑉Num

𝑉Num

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

= 0.00740878478. (57)

Theplots of the numerical solution𝑉Num and the approximate
analytic solution 𝑉Approx are given in Figure 10, and Figure 11
shows the plot of Error(𝑧) where

Error (𝑧) =
𝑉Approx − 𝑉Num

𝑉Num
. (58)
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Figure 10: Approximate analytic solution 𝑉Approx and numerical
solution 𝑉Num of BVP (47), (48).
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Figure 11: Comparison of relative errors for the initial approxima-
tion and approximate analytic solution of BVP (47), (48).

Finally the similarity variables (46) provide the approxi-
mate analytic solution of IBVP (42), (43) as

𝑇 (𝑥, 𝑡) = 𝑇𝑠 − (𝑇𝑠 − 𝑇𝑖) erf (
𝑥/√𝑡

2√𝑐
) +

𝑒
−(𝑥/√𝑡)

2

/2𝑐
(𝑇𝑠 − 𝑇𝑖)

12𝑐𝜋

× { − 6𝑏𝑇𝑠 + 𝑒
𝑧
2
/2𝑐 erf 𝑐 (𝑥/

√𝑡

2√𝑐
)

× (4𝑎𝜋𝑇
2

𝑠
− 4𝑎𝜋𝑇

2

𝑠
erf 𝑐(𝑥/

√𝑡

2√𝑐
)

2

− 6𝑏𝜋𝑇𝑖 erf (
𝑥/√𝑡

2√𝑐
) + 6𝑏𝑇𝑠
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Figure 12: Approximate analytic solution 𝑇(𝑥, 𝑡) of the IBVP (42)
and (43).

+ 9𝑏𝜋𝑇𝑠 erf (
𝑥/√𝑡

2√𝑐
) − 4𝑎𝜋𝑇𝑠𝑇𝑖

+ 4𝑎𝜋𝑇𝑠𝑇𝑖 erf 𝑐(
𝑥/√𝑡

2√𝑐
)

2

)}

− 𝛽𝑒
−𝐾𝑧
2

erf (𝛼𝑧) ,
(59)

where the parameters 𝛼, 𝛽, and𝐾 are given by (55). A surface
plot of the approximate analytic solution 𝑇(𝑥, 𝑡) is provided
in Figure 12.

For validation purpose, we carry out a comparative
analysis of the approximate analytic solution 𝑇(𝑥, 𝑡) and
the numerical solution of IBVP (42), (43). The numerical
solutions of IBVP (42), (43) are obtained by performing a
transient thermal analysis using FEA software ANSYS, as
explained in the previous section. Figure 13 shows the com-
parison of temperature distribution at different times using
the approximate analytic solution (59) and the numerical
solutions at corresponding times. The figure shows good
agreement between approximate analytic solution and the
numerical results.

6. Conclusion

Themathematical modeling of most of the physical processes
in fields like diffusion, chemical kinetics, fluid mechanics,
wave mechanics, and general transport problems is governed
by such nonlinear PDEs whose exact analytic solutions are
hard to find. Therefore, the methods of finding approximate
analytic solutions become important in investigating such
nonlinear PDEs. In this paper, we present a new systematic
procedure for generating approximate analytic solutions of
nonlinear PDEs, particularly arising from heat conduc-
tion problems. The methodology followed here exploits an
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Figure 13: Comparison of approximate analytic solution𝑇(𝑥, 𝑡) and
numerical solution of IBVP (42) and (43) at different times.

effective combination of Lie symmetry analysis, homotopy
perturbation method, finite element method, and simulation
based error reduction techniques. The similarity variables of
an appropriate Lie symmetry are first utilized to reduce the
IBVP of PDE to a BVP of ODE. The reduced ODE problem
is then simultaneously solved numerically and by homotopy
perturbation method to, respectively, generate numerical
solution and initial approximation of the approximate ana-
lytic solution of BVP of ODE. Next, using the numerically
generated solution curve as the accuracy benchmark, an
error reduction of the initial approximation is carried out
by utilizing simulations to generate an approximate analytic
solution which meets the accuracy benchmark of numerical
solution. Finally the similarity transformations provide the
approximate analytic solution of the IBVP of the origi-
nal PDE. The approach is applied to obtain approximate
analytic solutions for test problems consisting of transient
heat conduction in bars made of stainless steel AISI 304
and mild steel. The validity of solutions is verified by a
comparison between the approximate analytic solutions and
the numerical solutions of the test problems. The results
indicate good agreement between the approximate analytical
solutions and the corresponding numerical solutions. The
idea presented here to get approximate analytic solution
of PDE, that is, approximating the surface 𝑇(𝑥, 𝑡), prac-
tically involves approximating a curve 𝑉(𝑧) which is a
tractable problem in comparison to increasingly complex
and intractable problem of approximating the surface 𝑇(𝑥, 𝑡)
itself. It can become particularly efficient when a reasonably
accurate initial approximation of the solution curve 𝑉(𝑧) of
the reduced ODE can be obtained, as was the case here in
the form of homotopy solutions. Another advantage of the
approximate analytic solutions obtained by our approach is
that these can be used in real time or negligible CPU time to

evaluate the solution of the PDE with the same accuracy as
the numerical solution.

Although, here, we have restricted applications of our
approach to heat conduction problems, it can be adapted for
obtaining approximate analytic solutions for the class of PDEs
where the PDE can be reduced to an ODE through similarity
variables. For instance, the approach can be directly applied
to all the reduced-via-similarity BVPs of ODEs in [15]. For
further application, the approach can be extended to obtain
approximate solutions where the reduction is a system of
ODEs like the reduced laminar boundary layer problems in
[16, 17].
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