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Background. COVID-19 pandemic highlighted the importance 
of sensitive and specifi c tests that would be cost-effi  cient, fast 
and scalable. There are more than 200 COVID-19 detection 
tests available worldwide, with every country developing its 
own assays. Sample collection, preparing for a test, the test 
itself and interpretation of results have a strong impact on the 
clinical value of testing. The diversity of tests and workfl ows 
requires the analysis of their performance in clinics. 

Methods. Literature review, analysis of clinical reports, online 
resources, public and commercial reports were used to collect 
information about tests. The collected information was pro-
cessed to obtain information relevant to this review.

Results. COVID-19 tests based on the amplifi cation of nucleic 
acids are reviewed. Tests employ polymerase chain reaction 
(PCR) or loop-mediated isothermal amplifi cation (LAMP). The 
clinical value of these tests depends on the technologies used, 
as they diff er for LAMP, real-time and standard PCR methods. 
The diversity of sample preparation protocols, diff erent de-
signs of the tests, used chemicals and protocols have a signif-
icant impact on tests. Tailoring a testing workfl ow to available 
infrastructure and selecting the most effi  cient combination of 
tests and protocols for each step in a testing workfl ow is cru-
cial for the success.

Conclusion. Strengths and weaknesses of diff erent test sys-
tems and protocols that were reviewed herein can be helpful in selecting a testing workfl ow to 
achieve maximum clinical utility. 
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Використання тестів базованих на 
ампліфікації нуклеїнових кислот для 
контролю коронавірусної (COVID-19) 
пандемії
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Коронавірусна пандемія показала необхідність чутливих 
та специфічних тестів, які були б також недорогі, швидкі 
та могли б застосовуватись у великих об’ємах. На серпень 
2020, задекларованими є більше, ніж 200 різних тестів на 
визначення коронавірусу. Кожна країна розробляє власні 
тести. Відмінності між тестами та способами їх застосування 
вимагають детального аналізу.

Представлено огляд літератури, аналіз звітів з клінік, 
документації від державних, громадських та комерційних 
організацій, які використано для аналізування ефективності 
коронавірусних тестів, що ґрунтуються  на ампліфікації 
нуклеїнових кислот.

Проаналізувано робочі протоколи тестувань зі 
застосуванням полімеразної ланцюгової реакції (ПЛР) або 
ізотермічної кільцевої ампліфікації (LAMP). Різноманітність 
протоколів підготовки зразків, відмінності у виконанні тестів 
та протоколів оцінки результатів мають істотний вплив 
на чутливість та вибірковість тестів. Цю різноманітність 
узагальнено з акцентом на позитивні та критичні параметри 
робочих протоколів кожного з етапів тестування. Таке аналізування може бути корисним 
при виборі тестування.

Представлений огляд дозволить оцінити та вибрати протокол для тестування на коронавірус 
відповідно до клінічних вимог та наявної інфраструктури.
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Introduction. The workfl ow of COVID-19 
testing includes the collection of a sample, 
testing on-site at the point of care (POC) or 
transportation to a laboratory, testing with 
the use of advanced tools, interpreting re-
sults.  By August 1, 2020, 125 COVID-19 
test systems have been approved by the 
Food and Drug Administration (FDA) in the 
USA (https://www.fda.gov/medical-devices/
coronavirus-disease-2019-covid-19-emer-
gency-use-authorizations-medical-devices/
vitro-diagnostics-euas), and more than 100 
test systems were registered in China (see 
references at http://ph.china-embassy.org/
eng/sgdt/P020200324570010409522.pdf) 
and the European Union countries (see refer-
ences at https://ec.europa.eu/jrc/en/news/
coronavirus-testing-information-test-devic-
es-and-methods-single-place). The offi  cial 
website of the Ukrainian government re-
ports the use of German and Chines test sys-
tems, not specifying their number and types 
(https://covid19.gov.ua/en). The number of 
reported test systems is most probably an un-
derestimation, taking into account numerous 
developments in research laboratories and 
the legal recognition of laboratory-developed 
tests on the same level as in-vitro diagnos-
tics [1-3]. Moreover, an analysis of the logis-

tic of COVID-19 testing showed the impor-
tance of performing tests at core laboratories 
in the hospitals and points of care instead of 
outsourcing them to central laboratories [4]. 
Hospitals’ core laboratories decreased the 
turn-around time from 21 to 3.7 days as com-
pared to the outsourcing of testing [4]. 

COVID-19 detection tests are classifi ed into 
2 types - nucleic acid detection and serologi-
cal/immunological tests. Herein, we focus on 
nucleic acid amplifi cation-based tests. All re-
ported workfl ows of COVID-19 testing include 
sample collection, preparation for a test, the 
test itself and interpretation of results (Figure 
1). Variations are in the origin of the sample, 
the time for collection, conditions of prepa-
ration and transportation of the sample, test 
type, logistics, e.g. POC or outsourcing, and 
clinical interpretation of results. 

There is no test that would secure 100% sen-
sitivity and specifi city. The effi  cacy of testing 
depends on the probability of detecting the in-
fection and is the main concern concerns the se-
lection of a workfl ow. For example, viral nucleic 
acid detection is dependent on the viral load in 
a selected type of the sample over the course of 
infection (Figure 2) [5,6]. The highest viral load 

Fig. 1. The workfl ow of COVID-19 testing.

Main steps of the workfl ow are shown. Sample collection blocklist types of samples that were successfully evaluated 
for COVID-19 detection. Sample preservation and transportation is the next step of the workfl ow. RNA purifi cation step 
is widely used but is not essential. Note that the virus can be recovered from sample solutions for propagation in cell 
cultures and sequencing of the viral genome. LAMP, qRT-PCR and RT-PCR are 3 main techniques for detection of the viral 
genome. Examples of results interpretation are shown. 
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in nasal and oropharyngeal swabs was observed 
upon the onset of symptoms. However, even at 
the points of the highest viral load, the probabil-
ity of virus detection has never been 100%. It 
was reported that only 42% of people who died 
from COVID-19 tested positive for COVID-19 
[7]. Failure to detect COVID-19 could be due 
to variability in the effi  cacy at any stage of the 
workfl ow. Examples of test specifi city and sen-
sitivity are reported to range from 90% to 80% 
[6-9]. Therefore, biomedical variables, e.g. vi-
ral load and technical suitability of test work-
fl ow are crucial for the interpretation of results. 
To mitigate potential failure, multiple tests are 
ordered for a patient suspected to be infected; 
e.g. reportedly, the conclusion on the absence 
of infection may require up to 4 tests per person 
and at least 2 subsequent negative tests [6-9]. 

Therefore, accumulated clinical experience 
shows that there is a need for multiple testing 
and a clinical decision should include the in-
terpretation of the patient’s clinical condition 
(Figure 3). The following sections focus on 
each step of the workfl ow starting with a sam-
ple collection, followed by the point of care 
tests and tests in centralized laboratories, and 
then by the interpretation of results with em-
phasis on lessons learned from the tests based 
on the amplifi cation of COVID-19 nucleic acid.

Search strategy
The PubMed database was searched with the 
Medical Subject Headings (MeSH) search terms 
“COVID-19”, “detection”, “test”, “PCR” and 
“LAMP”. Collected publications were screened 
manually for a description of COVID-19 detec-
tion methods. The same terms were used to 
search Google, as there are many publications 
deposited online but not represented on PubMed, 
e.g. bioRxiv.org. The third source of searches 
were websites of agencies involved in fi ghting 
COVID-19, e.g. who.int, www.fda.gov, www.
ema.europa.eu and moz.gov.ua. The fourth 
source of information were online resources of 
companies producing COVID-19 detection kits.

Inclusion criteria were 1) a description of types 
and performance of COVID-19 detection kits, 2) 
description of technologies, reagents and proto-
cols used in COVID-19 testing and/or 3) analysis 
and comparison of diff erent kits and protocols. 
The exclusion criterion was the lack of detailed 
information about the kit, e.g. no description of 
the technology, no information about reagents 
and a lack of detailed protocol. This search was 
last updated on the 15 August 2020. 

Sample collection
The best option for sample collection would 
be self-collection at the time of the highest 

Fig. 2. The detection window is dependent on the viral load in a sample during the disease.

The window of COCID-19 detection during the disease is indicated by a red square line. The blue line illustrates the viral 
load in the sample collected at diff erent disease stages, e.g. initial infection, the onset of symptoms and recovery. Limit 
of detection of the PCR testing is defi ned as 10^3 – 10^4 per ml of a sample.
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viral load using a sample solution preserving 
COVID-19 RNA during storage and transpor-
tation. The importance of sample collection is 
emphasized by the report stating that subop-
timal sampling contributes signifi cantly to an 
increase in false-negative COVID-19 testing 
results [10]. 

Reportedly, COVID-19 was detected in all 
tested sources, i.e. nasopharyngeal, broncho-
alveolar lavage (BAL), sputum, saliva, cere-
brospinal fl uid (CSF), plasma and stool [11-
16]. Multiple sample sources refl ect a broad 
range of tissues and cells directly aff ected by 
the virus [11,17]. Endothelial, epithelial, myo-
epithelial, smooth muscle, hepatocytes, neu-
rons and glial cells were identifi ed as targeted 
directly by COVID-19 [17]. 

The important observation is that virus de-
tection is more dependent on the course of 
disease than on the sample source [3,6,7]. 
The stage of symptom appearance may have 
the highest viral load, while the load is lower 
at the stages of initial infection, recovery and 
after-recovery (Figure 2). The detection limit 
of most tests ranges from 5 to 10 viral RNA 
molecules per reaction, which corresponds 

to the viral load in the range of 3x10^4 RNA 
copies/ml [18]. If the load of the viral RNA 
is below 1x10^3 copies/ml in a sample, this 
would require reconsideration of the source of 
sampling and/or a need for concentration of 
the RNA.

Currently, the most frequent source of sam-
ples includes nasal and oropharyngeal swabs. 
More than 160 designs of swabs have been re-
ported [12]. The use of these swabs was sim-
ilar, provided that its material did not interfere 
with the extraction of nucleic acids and PCR 
reaction, e.g. swabs must not contain cotton, 
wood or calcium alginate [12]. 

Collection solutions, on the other side, may 
have a signifi cant impact on the preservation 
of the viral RNA and compatibility with subse-
quent testing. For example, the use of Variplex 
system without RNA extraction in a LAMP test 
led to 83% false-negative rate [13]. There-
fore, a sample solution must be compatible 
with transportation, storage conditions and 
the type of test to be used. Before embarking 
on the full-scale testing, compatibility of the 
sample solution with the planned sample type 
should be tested using control virus-contain-

Fig. 3. Detection tests are one of the four components in the diagnostics of COVID-19.

Diagnostic of COVID-19 requires a combination of 4 components: virus detection tests (viral genome or immune 
response to the virus), clinical symptoms, laboratory investigations and instrumental diagnostic by imaging. The value of 
components and points to be controlled is indicated.
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ing samples, positive and negative controls 
with defi ned concentrations of the viral RNA 
molecules.

There have been numerous attempts to min-
imize variability in sample collection. These 
include heating of samples and adding or-
ganic solvents and detergents. The rationale 
is that heating would lead to denaturation of 
molecules in the sample, including RNAases 
[19-21]. Organic solvents and detergents are 
expected to produce a similar result, i.e. in-
activation of RNA degradation enzymes [19-
21]. The additional eff ect is the dissociation of 
RNA-containing viral particles in the presence 
of detergents and subsequently, the release of 
RNA into a solution.

The report by Pan et al. showed that sample 
heating increased Ct of detection, indicating 
decreased sensitivity [5]. Another heating 
testing (at 560C to 650C) showed no diff erenc-
es as compared to non-treaded sample [22]. 
Adding ethanol to a sample solution also had 
an inhibitory eff ect on the microbial growth 
in the nasal, oropharyngeal swabs and sali-
va [20,22]. Strong detergents may inhibit the 
PCR reaction. For example, even low concen-
trations of sodium dodecyl sulfate, i.e. 0.1%, 
strongly inhibited PCR reaction. The inhibito-
ry eff ect was also observed with detergents 
of Triton X-100 type at concentrations higher 
than 1.0% [20,21]. The use of additives, like 
ethanol or detergents, should be pre-tested for 
every workfl ow to take advantage of blocking 
RNA/DNAases, sterilization and solubilization 
of viral RNA, and to avoid any negative impact 
on the reactions of reverse transcriptase and 
nucleic acid amplifi cation.

Therefore, when selecting a sample collection 
protocol, consideration should be given to a) 
the type of sample and collection method, e.g. 
swab, saliva, stool and sample solution com-
patibility; b) expected viral load in collected 
samples, to ensure that LOD of the test would 
allow detecting the infection; and c) preserva-
tion of viral nucleic acids in the sample solu-
tion upon collection and transportation.

Sample preparation
RNA in collected samples has to be accessible 
for amplifi cation. The most common approach 
is to purify RNA and then use it in reverse tran-

scriptase and amplifi cation reactions. There 
are many commercial kits for RNA purifi cation. 
The quality of kits is generally good, no serious 
issues have been reported. The only consider-
ation in terms of selecting a purifi cation proto-
col is the cost of the kit, requirements concern-
ing the tools, reagents and personnel. 

For example, the cost of kits vary from 4 to 10 USD 
per sample (see an example of Sigma Aldrich/
Merck at: https://www.sigmaaldrich.com/
life-science/molecular-biology/molecular-bi-
ology-products.html?TablePage=9618834; an 
example of Qiagen available at: https://www.
qiagen.com/kr/products/discovery-and-trans-
lational-research/dna-rna-purif ication/
rna-purifi cation/total-rna/rneasy-mini-kit/?-
clear=true#orderinginformation). Kits vary 
by mechanisms of RNA purifi cation, reagents 
and consumables. However, most kits deliver 
good results when used strictly following rec-
ommended protocols. 

RNA purifi cation can be performed manually or 
in an automated way. The best solution is to 
use the kit and the purifi cation device from the 
same manufacturer.  QIAcube or QIAcube HT 
can serve as examples of Qiagen purifi cation 
kits (https://www.qiagen.com/kr/search/prod-
ucts?query=qiacube). Automation comes with 
a price tag and may add from 15,000 to 25,000 
USD to the cost of the testing investment.

RNA purifi cation stage may also be prone to 
failures, especially when the viral load is low. 
Therefore, there were attempts to develop 
protocols that would omit the nucleic acid pu-
rifi cation step. Circumventing RNA purifi cation 
signifi cantly improves and facilitates on-site 
POC testing. Several reports show COVID-19 
markers in nasopharyngeal swabs [15,21] 
and saliva [14,20]. A direct comparison with 
the protocol including RNA purifi cation showed 
similar detection accuracy and reliability. The 
only concerns were about the potential de-
crease of LOD in presence of strong denatur-
ants in the sample solution, e.g. SDS, and in-
terfering components in the sample itself, e.g. 
mucin, enzymes, etc.

Therefore, the stage of sample preparation of-
fers options with or without RNA purifi cation. 
If the sample is used for further studies of 
COVID-19, e.g. sequencing, RNA purifi cation is 



54

Праці НТШ Медичні науки
2020, Том 62, № 2   ISSN 2708-8634 (print)

Proc Shevchenko Sci Soc Med Sci   www.mspsss.org.ua
ISSN 2708-8642 (online)    2020, Vol. 62, 2

Огляд Review

recommended. This would add additional cost 
and require specialized equipment and trained 
personnel. If the sample is used only to detect 
the virus, RNA purifi cation may be omitted. 
Omitting RNA purifi cation makes testing fast-
er, cheaper and more reliable. However, the 
compatibility of the sample type with a direct 
detection test should be evaluated due to the 
potential interference of sample components. 
This is performed by spiking intended samples 
with controlled quantities of the viral RNA and 
measuring the limit of detection. 

Nucleic acid amplifi cation tests, general 
comment
Monitoring COVID-19 pandemic requires tests 
to be used at points of care (POC) and tests 
requiring advanced laboratory infrastructure. 
POC tests could be performed on-site by the 
personnel with minimum training and with-
out advanced laboratory infrastructure. These 
tests would be employed for testing a large 
number of people in a short time. Examples 
include airports, ports of entry, and plac-
es of large people gatherings, e.g. industrial 
areas or rallies. The second type of tests is 
performed in a laboratory. Laboratory-based 
tests are essential in order to monitor infect-
ed people, confi rm their recovery, purify, se-
quence and study the virus. 

There is no sharp discrimination of these two 
application types by technologies employed in 
the tests. PCR and LAMP amplifi cation can be 
employed in POC and laboratory-based tests. 
The design of devices and instruments defi nes 
whether the test is suitable for POC or cen-
tral laboratory-based detection. Small tools 
even allow real-time PCR using a small bench-
top instrument with minimum requirements 
to sample preparation. An example of such 
approach is reported by Wee and colleagues 
[23]. LAMP is usually used for POC tests, as 
it does not require expensive tools. LAMP de-
tection can be performed using any device 
that maintains a constant temperature, e.g. a 
heating block or a thermostat. 

Tools are becoming cheaper and more com-
pact. On the contrary, the cost of consum-
ables and reagents is a signifi cant part of 
testing expenses. In addition, the miniatur-
ized and automated tools use dedicated con-
sumables. It limits the use of these tools to 

these unique consumables and minimizes 
fl exibility of assays.  

Loop-mediated isothermal amplifi cation 
(LAMP) tests
The application of LAMP to detect COVID-19 
has been successful. Some publications re-
ported and review LAMP assays to detection 
COVID-19 [24-29]. Herein, we focus on cri-
teria to consider when selecting a LAMP test 
(Figure 4). Recognition and amplifi cation of the 
targeted viral sequences are dependent on the 
specifi city of primers, the temperature of the 
reaction, buff er composition, pH, and presence 
of interfering substances from the sample. The 
effi  cacy of reverse transcriptase and a DNA 
polymerase also aff ects test performance.

There are no reported warnings for targeting 
specifi c COVID-19 genes and avoiding others. 
The consensus is that the targeted region is 
not crucial, as long as the sequence is unique 
for COVID-19 [29]. Similarity search tools, 
e.g. BLAST of NCBI, are a good option to fi nd 
primers that would be unique to COVID-19 
with no overlap with other species and genes, 
as they detect only COVID-19. 

LAMP methodology is based on the recog-
nition of 6 sequences of the targeted gene, 
followed by a building and amplifi cation of a 
nucleic structure representing targeted se-
quences, and the detection of this amplifi ed 
structure [27-29]. The positioning of target-
ed sequences allows LAMP primers to build 
a structure that would be self-amplifi ed. The 
key to performance of a LAMP test is primers 
design (Figure 4). 

It is almost impossible to manually design 
LAMP primers targeting 6 sequences in the 
viral genome in LAMP-required positions that 
would ensure comparable annealing parame-
ters. Many dedicated tools used for the design 
of LAMP primers are available online. Exam-
ples can be accessed at https://primerexplor-
er.jp/e/v4_manual/pdf/PrimerExplorerV4_
Manual_1.pdf, or http://www.premierbiosoft.
com/isothermal/lamp.html, or http://loopa-
mp.eiken.co.jp/e/lamp/primer.html. Similar 
annealing properties of primers are essential 
for the initial amplifi cation and formation of 
double-loop structures. These double-loop 
structures would be then amplifi ed. When the 
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structure is formed, the amplifi cation from the 
viral template is not maintained any more. The 
amplifi cation is dominated by the DNA syn-
thesis from the formed structure. Therefore, 
the applicability of the LAMP test is strongly 
dependent on the recognition of targeted viral 
sequences by primers during the initial phase 
of double-loop structure formation. 

There is no visualization of amplifi cation prod-
ucts in the standard LAMP test, e.g. the size of 
generated DNA products cannot be controlled. 
The LAMP signal is dependent on the quan-
tity of synthesized DNA and the type of DNA 
detection. For example, for detection using 
pH-sensing dyes, a buff ering capacity of the 
reaction should be not higher than 1 mM for 
a Tris buff er [30]. Frequently used pH-sens-
ing dyes, e.g. phenol red, cresol red, neutral 
red, hydroxy naphthol blue, could detect the 
accumulation of DNA at an initial level of 3 
to 30,000 copies in a reaction mix. This lev-
el of detection is comparable to real-time and 
classical PCR [30].  Direct comparison of the 
quantities of generated DNA in a LAMP and 
PCR assays is not relevant because the limit 
of detection plays a more important role, e.g. 
sensitivity of the detection method is crucial. 

To detect the virus using DNA-interacting dyes, 
the capacity of dyes to inhibit the amplifi cation 
reaction has to be considered. Quyen and col-
leagues tested 23 dyes and showed that some 
of DNA fl uorescence dyes can inhibit LAMP re-
action. The high inhibitory eff ect was reported 
for POPO3, DCS1, SYBR Green I, BOBO 3, Pico 
488, and TOTO 3 dyes. Dyes SYTO 9, SYTO 
13, SYTO 16, SYTO 64, SYTO 82, Boxto, Miami 
Green, Miami Yellow, and Miami Orange were 
found not to interfere with the amplifi cation of 
DNA [31]. Frequently used cresol red, neutral 
red and phenol red dyes have not been report-
ed as inhibitors of the LAMP reaction. For the 
use of other dyes, a comparison test is rec-
ommended adding dyes before and after the 
reaction, followed by monitoring of generated 
DNA products by an agarose gel electropho-
resis.

LAMP was successfully used to detect 
COVID-19 in versions with and without RNA 
purifi cation [32]. The authors targeted N-gene 
of the virus. Detecting a positive signal with 
the LAMP test was comparable with Ct below 

30 cycles for a real-time PCR [32]. This indi-
cates that the LAMP assay can be as sensitive 
as the real-time PCR.

Therefore, to develop an effi  cient LAMP test, 
optimization trials have to address: a) the de-
sign of primers, e.g. computer-assisted design 
is required, b) sample collection conditions 
should be optimal and composition of the 
sample collection solution should not interfere 
with LAMP, e.g. no detergents or nucleases, c) 
selecting amplifi cation conditions (buff ers, en-
zymes, additives and the protocol should al-
low effi  cient amplifi cation and detection), and 
d) the detection system should allow effi  cient 
detection, e.g. by selecting DNA dyes/fl uores-
cence, pH-sensing or pyrophosphate precipi-
tation (Figure 4). 

PCR tests: real-time reverse transcrip-
tase and standard reverse-transcriptase 
tests
PCR tests are the golden standard for COVID-19 
detection. PCR reaction is highly specifi c, has 
high fi delity, solid technology development and 
ensures high detection specifi city and sensitivi-
ty. A real-time reverse transcriptase (qRT-PCR) 
and standard reverse transcriptase (RT-PCR) 
use the same PCR principle, but diff erent com-
binations of primers and diff erent methods of 
signal generation and detection (Figure 5). 

Real-time PCR (qRT-PCR) is the most fre-
quently used technique to detect COVID-19. 
It is explained by robust development of its 
theory, reagents, protocols and tools. The 
success of qRT-PCR is also dependent on the 
automation and simultaneous amplifi cation 
and detection of the product. The majority of 
approved COVID-19 detection tests are based 
on qRT-PCR (to see examples, see www.fda.
gov/medical-devices and ec.europa.eu). They 
provide a good balance of high-quality PCR-
based detection and a reasonable level of au-
tomation. However, some issues must be con-
trolled to ensure high performance of tests, 
which are discussed in this section.

Standard RT-PCR is more laborious as com-
pared to qRT-PCR. To assess RT-PCR result, 
the generated product must be visualized. 
Agarose gel electrophoresis is a standard 
technique for visualization. When the analy-
sis quality has to be the highest, RT-PCR is 
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the fi rst choice. The visualized product shows 
the size and can be sequenced for validation. 
Sequencing of the generated product is also 
used for monitoring of mutations in the viral 
genome. The sequencing of RT-PCR products 
provides data for the monitoring of viral strains 
and subsequent spreading of the disease. Vi-
ral mutations may aff ect treatment strategies 
too. Therefore, if COVID-19 testing requires 
the highest quality and/or is to be combined 
with a study of COVID-19 virus, standard RT-
PCR is the method of choice (Figure 5).

When selecting a qRT-PCR or RT-PCR test for 
a clinical application, the entire workfl ow must 
be designed. The test must be compatible with 
sample collection and preparation protocols. 
The specifi city of primers, conditions of the 
reaction, specifi cation of tools, and available 
laboratory infrastructure are other concerns. 

Failure to develop a proper workfl ow design 
may lead to low sensitivity and specifi city. 
Recent reports show that qRT-PCR tests may 
not always detect positive cases, giving a 
false-negative value in 80% of cases [9]. This 
means that many positive cases are missed. 
Such a test may subsequently fail in prevent-
ing the infection spread. The analysis shows 

that the reason could be in a non-optimal 
workfl ow, and not in the performance of qRT-
PCR reaction itself. Negative results may be 
the result of sample collection and prepara-
tion, where the viral RNA has low stability and 
losses of RNA during purifi cation and interfer-
ence with the effi  cacy of PCR reaction [9]. This 
calls for positive controls in samples too, not 
only a positive technical control of the detec-
tion system. In clinical practice, it is ensured 
by spiking a sample upon collection with a 
known quantity of COVID-19 genomic marker, 
e.g. adding an aliquot of the sequence probe 
targeted in the test DNA.

To ensure successful completion of qRT-PCR 
and RT-PCR tests, diff erent combinations of 
primers and multiplexing have been test-
ed [33]. Primers targeting nucleocapsid (N), 
membrane protein (M), spike (S), envelop (E), 
nsp2, RNA-dependent RNA polymerase /heli-
case (RDRP/Hel) and orf1a regions have been 
reported [20,23,33,34,35,36]. The conclu-
sion is that the location of targeted sequenc-
es in COVID-19 genome does not infl uence 
detection. The design of primers to ensure 
COVID-19 specifi city is crucial. Primers’ spec-
ifi city is easy to secure with available online 
tools, e.g. BLAST of NCBI (blast.ncbi.nlm.nih.

Fig. 4. Critical steps of LAMP in the application to COVID-19 testing.

The impact on LAMP performance of primer design, optimization of the conditions of LAMP reaction, evaluation of 
interfering substances in a sample and the quality of enzymes are annotated. The size of arrows indicates relative impact, 
e.g. large arrow indicates a strong impact. For description, see the text.
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gov). The second important point of securing 
primer detection specifi city is an optimization 
of PCR reaction. An example of such optimi-
zation was demonstrated by Liu et al who 
reported the workfl ow of selecting well-per-
forming primers for RT-PCR and digital drop-
let-RT-PCR [37].

Multiplexing improves testing by detecting 
multiple regions of COVID-19 genome. Two 
to four gene regions have been targeted in 
the multiplex PCR [34,36]. Park et al reported 
detection optimization by targeting RDRP, N, 
E, and S genes in a single qRT-PCR reaction 
[36]. The success of this optimization was due 
to product visualization by standard RT-PCR 
used for optimization, as qRT-PCR does not vi-
sualize products. 3-plexing detection limit re-
ported by Ishige and colleagues was calculat-
ed as 25 copies of COVID-19 RNA per reaction 
[34]. Simultaneous detection of 4 genes (with 
8 primers in one reaction) was reported by Liu 
et al [37]. Thus, the reported developments 
of COVID-19 PCR tests showed that primers 
can target all regions of the viral genome, and 
multiplexing up to 4 gene markers in one re-
action is possible. The design of primers can 

be performed with available online tools while 
securing COVID-19 specifi city. Primers for 
qRT-PCR have to be validated using RT-PCR 
and amplifi ed product visualization.

The issues with PCR tests have been attributed 
to sample collection, RNA preparation and in-
terference with PCR reactions. Storing viral par-
ticles and RNA upon collection, losses of RNA 
during purifi cation and PCR reaction inhibiting 
substances are the main concerns (Figure 5). 

RNA is highly sensitive to degradation. Sta-
bilization of RNA upon collection has to be 
validated for sample collection solution. It is 
reported that Universal (UTM) and Viral (VTM) 
transport media are designed to preserve or 
lyse virus particles. If the testing workfl ow 
presupposes RNA purifi cation step that would 
remove all components of the transportation 
media, then there are no serious precautions 
to consider. RNA purifi cation for COVID-19 
tests is performed with the use of commercial 
kits. These kits are used for an automated or 
semi-automated procedure. The optimization 
of RNA purifi cation step includes the evalua-
tion of the lowest concentration of RNA in the 

Fig. 5. Critical steps of PCR-based tests for COVID-19.  

Critical points of the real-time RT-PCR (qRT-PCR) and RT-PCR are illustrated in the “Concerns” block. Potential solutions 
to these concerns are indicated in the “Solutions” block. For description, see the text.
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sample that the kit can recover from the sam-
ple to ensure the acceptable limit of detection.

The prevention of RNA degradation by follow-
ing the collection and transportation protocol 
would be the only other requirement. The tech-
nical control over the purifi cation and PCR re-
action includes the detection of household hu-
man genes, e.g. RNAse P gene. If the workfl ow 
circumvents RNA purifi cation step, the direct 
detection would require lysis of the sample, 
release and stabilization of RNA. It was report-
ed that detergents, e.g. Triton X-100, Tween 
20, in concentrations of up to 1% in the trans-
portation medium were tolerated in a reverse 
transcriptase and PCR reactions. Snap-heating 
of the collected sample to 700C and up to 1200C 
may be considered for sample preservation 
[19-21]. Thus, optimizing the testing workfl ow 
may require the evaluation of the transporta-
tion media (preserving or lysing), transporta-
tion conditions (frozen or +40C), and direct de-
tection or purifi cation of RNA steps followed by 
the PCR reaction [19-21].

Test effi  ciency depends on primers, enzymes 
and reaction buff ers. The design of prim-
ers was discussed above. Reverse transcrip-
tase and DNA polymerases with and without 
exo-nuclease activity and a strand-displace-
ment activity (e.g. Bst DNA polymerase for 
LAMP, Pfu and Taq DNA polymerases for PCR) 
are available from many suppliers. To select 
the enzyme, it is important to select the re-
action mix, too. Enzyme suppliers off er the 
reaction mix to be used with their enzymes. 
As this master mix is already optimized with 
enzymes, it is recommended to evaluate pro-
posed combinations fi rst. If the proposed 
enzyme-master mix combination is not per-
forming well, an alternative combination must 
be considered and tested. In some cases, it 
is possible to develop a special master mix, 
but it requires signifi cant eff orts to produce 
in-house enzymes.

For qRT-PCR tests, positive and negative con-
trols are standard. In addition, to optimize 
tests with these controls, it is recommended 
to include the acquisition of the melting curve. 
The analysis of amplifi ed products by electro-
phoresis is not performed, as the product is 
smaller and can be misinterpreted as primer 
dimers. qRT-PCR curves provide quantitative 

information, e.g. Ct values, which facilitates 
the interpretation of results.

Interpretation of RT-PCR results is straightfor-
ward using gel electrophoresis. The detection 
of amplifi cation products of the expected size, 
and, if required, sequencing of these products 
provide a secured interpretation. Standard RT-
PCR is semi-quantitative. However, visualization 
of the amplifi ed products makes quantifi cation 
less important for the interpretation of results. 
For the clinic, the result must be “positive” or 
“negative”, and the visualization of the product 
is suffi  cient for such a conclusion (Figure 5).

To optimize the testing workfl ow, it is recom-
mended to include the detection of the en-
dogenous human gene(s) in the testing, e.g. 
RNAse P gene [38]. This allows monitoring the 
entire workfl ow, while PCR positive and nega-
tive controls allow monitoring a PCR reaction.

The detection effi  ciency is dependent on the 
stage of the disease (Figure 1). An example of 
a low consistency between COVID-19 detec-
tion and CT changes in lungs may indicate that 
virus detection does not correlate with specifi c 
clinical symptoms [39]. This is a strong indi-
cation that COVID-19 detection must be in-
terpreted in combination with all clinical infor-
mation, e.g. symptoms, history of a patient’s 
health and travel pattern (Figure 3).

The fi nancial drawback of PCR tests is the re-
quirement for advanced tools and infrastruc-
ture. To take PCR-based tests to the bedside 
and clinics and healthcare providers on-site, 
portable devices (POC devices) are under de-
velopment. Wee et al reported the develop-
ment of the PCR tester for nucleocapsid (N) 
gene detection with LOD 6 copies of RNA per 
reaction from sputum and nasal exudate [23]. 
The readers are directed to the review of POC 
devices by Cheng et al. [8]. The performance 
of these devices is currently under evaluation, 
and if validated, it would signifi cantly ease the 
load on laboratories.

To sum up, PCR-based tests are and will be 
the main standard in the detection and study 
of COVID-19. Multiplexing of qRT-PCR will in-
crease its clinical value. RT-PCR is indispens-
able in the development of PCR-based tests 
and the study of COVID-19. Both qRT-PCR and 
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