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Abstract: Automated brain tumor segmentation from reconstructed microwave (RMW) brain images
and image classification is essential for the investigation and monitoring of the progression of
brain disease. The manual detection, classification, and segmentation of tumors are extremely time-
consuming but crucial tasks due to the tumor’s pattern. In this paper, we propose a new lightweight
segmentation model called MicrowaveSegNet (MSegNet), which segments the brain tumor, and a
new classifier called the BrainImageNet (BINet) model to classify the RMW images. Initially, three
hundred (300) RMW brain image samples were obtained from our sensors-based microwave brain
imaging (SMBI) system to create an original dataset. Then, image preprocessing and augmentation
techniques were applied to make 6000 training images per fold for a 5-fold cross-validation. Later,
the MSegNet and BINet were compared to state-of-the-art segmentation and classification models to
verify their performance. The MSegNet has achieved an Intersection-over-Union (IoU) and Dice score
of 86.92% and 93.10%, respectively, for tumor segmentation. The BINet has achieved an accuracy,
precision, recall, F1-score, and specificity of 89.33%, 88.74%, 88.67%, 88.61%, and 94.33%, respectively,
for three-class classification using raw RMW images, whereas it achieved 98.33%, 98.35%, 98.33%,
98.33%, and 99.17%, respectively, for segmented RMW images. Therefore, the proposed cascaded
model can be used in the SMBI system.

Keywords: brain tumor segmentation; classification; antenna sensor; deep learning; Self-ONN;
sensor-based microwave brain imaging system

1. Introduction

Nowadays, brain anomalies such as brain tumors are one of the serious causes of
death worldwide. A brain tumor is the expansion of abnormal cells that are created inside
the head. It causes harm to the brain’s major tissues and develops into cancer. Brain
cancer can be fatal, crucially affect one’s quality of life, and it poses a threat to human
life. Due to the uncontrolled growth of brain tumors, the possibility of developing brain
cancer is increasing day by day. Brain tumor analysis, classification, and detection are
severe issues for radiologists and medical doctors. The accurate and timely investigation
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of brain cancer is imperious for the appropriate treatment of this disease. Brain tumor
segmentation can be a vital technique in medical imaging applications that segment the
specific tumor regions from the head image. Additionally, the automatic segmentation of
brain tumors from clinical images is important for the clinical assessment and planning
of brain cancer treatments. According to the American Cancer Society, brain cancer is the
10th leading cause of death for adults and children [1]. However, the initial detection,
classification, and proper investigation of brain tumors are particularly important to treat
the tumor sufficiently. At present, different types of imaging technologies: PET (positron
emission tomography), magnetic resonance imaging (MRI), ultrasound screening, X-ray
screening, and CT (computed tomography) are utilized to diagnosis brain tumors in ad-
vanced healthcare facilities [2–4]. These imaging standards help physicians and radiologists
identify different types of health-related diseases, such as brain cancer [4]. The crucial
drawbacks of these imaging modalities are they increase the risk of a cancerous hazard
because of their high dose radioactivity, lower susceptibility, high ionizing properties of
brain tissues, expense, and risk for pregnant women and old patients [4–10]. Microwave
imaging (MWI) showed excellent attention to the researchers for medical applications due
to its great features such as its non-ionizing radioactivity, penetration capability with low
power, non-invasive, risk-free ionization for the human body, and that it is cost-effective
with a low profile [11–13]. Recently, researchers have used microwave imaging technology
to overcome the drawbacks of the traditional medical imaging modalities [12–20]. An-
tenna plays an important role in microwave head imaging (MWHI) technology, where
single-antenna sensors act as transmitters and others act as receivers. Receivers receive the
backscattered bimedical signals, which are then processed by utilizing the image reconstruc-
tion algorithm. The image reconstruction algorithm is then applied to post-process the data
to generate reconstructed images. Different image reconstruction algorithms have been
used in microwave head imaging modalities to detect brain tumors [11,12,15,17,18,20–25].
However, the main limitations of the developed MWHI modalities are that they are (i) noisy,
blurry, and the images created by the system are of a low resolution, (ii) the identification
of the tumor with its location is complicated for a non-expert physician and radiologist,
and (iii) there is difficulty in detecting tumor regions by automatic detection. To overcome
such limitations, researchers have been applying deep learning techniques in microwave
imaging systems [26–31].

Deep learning is a kind of machine learning modality that can use the convolutional
neural network (CNN) model to classify and detect target objects. CNN has convolutional
layers for feature extractions and densely connected layer(s) for classification. Recent
advances in brain tumor segmentation have been made possible by deep learning methods
such as CNNs [32]. On the other hand, image classification is the essential role of medical
image analysis, in which deep convolutional neural networks (DCNNs) have been used for
the last ten decades. The image classification identifies whether the target object or disease
is present or not in the image of the investigation. Despite the fact that various deep neural
network-based segmentation models have been proposed for brain tumor segmentation,
nnU-net is the first segmentation model that is built to deal with the dataset diversity [33].
It optimizes and automates the crucial choices needed to create an effective segmentation
pipeline for any given dataset. Additionally, a U-net is used in medical applications to
segment brain tumors [34]. Thereafter, different modified versions of the U-net were used in
image segmentation applications [35]. Based on U-net, the stacked multi-connection simple
reducing net (SMCSRN) model was proposed for MRI brain tumor segmentation [36]. In
this approach, the network is a combination of three U-net models created by applying
240 × 240 image datasets as an input. It takes a long time to train the model and fails
to segment the small-sized tumor in the image due to the deeper architecture. A hybrid
two-track U-net model was proposed in [37] to segment the brain tumor automatically. The
architecture was trained and tested using the publicly available BRATS MRI dataset 2018
and received an 80% Dice score. It might be a problem to segment the tumor near the skull
due to over downsampling. A multi-cascaded CNN model was proposed to segment the
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tumor in MRI images [38]. The architecture obtains multi-scale features by using a multi-
cascade network to segment the tumor. The method used a coarse-to-fine segmentation
framework to evaluate the public BRATS 2013–2018 datasets. However, the model was
trained and tested on a small dataset and achieved a Dice score of up to 87%. A 3D Unet
such as the S3D-Unet architecture was proposed to segment tumors in 3D images [39]. The
maximum Dice score was only 78%, which means that a small area of the tumor cannot be
segmented in the images. The training and testing accuracy were comparatively low for
this network. In another study, a pre-trained DenseNet201 model was proposed to classify
the tumors [40]. It is based on multilevel features and concatenation characteristics that can
diagnose the tumor at an early stage. The approach achieved a 99.34% testing accuracy, but
the precision score and Dice score were 92% and 83%, respectively.

The dual pathway Densnet architecture model was proposed in [40] to segment and
classify tumor regions. The architecture was evaluated on the BRATS 2017 MRI dataset.
The reported precision, F1 score, and Dice score were 85%, 88%, and 89%, respectively.
The network model can only segment large areas of the tumor and not the small regions,
resulting in comparatively poor classification performances. The deep ResNet FPN-based
dilate network with middle supervision (RDM-Net) was used in [41] for segmenting the
multimodal brain images. The network’s performance was evaluated using the BRATS 2015
dataset, and it achieved 86%, 71%, and 63% Dice scores in segmenting the complete tumor,
core tumor, and enhanced tumor regions, respectively. The architecture fails to segment the
small-sized tumors. In [42], a multi-scale CNN (MSCNN)-based tumor classification and
image segmentation architecture was proposed. This network shows a better performance
for specifying the tumor shape and location in the image. The model is heavy due to the
deeper architecture; however, it cannot identify the small-shaped tumor location reliably. A
multi-class tumor image classification by ResNet-50 was proposed in [43]. The model used
a global average pooling mechanism to enhance the classification accuracy, but it achieved
a 97.08% mean accuracy and a 90.02% F1 score.

Recently, operational neural networks (ONNs) have been applied as a diverse net-
work standard for image analyzing, classification, and processing due to their non-linear
properties, low computational complexity, simplicity in structure, and high performance. A
self-organized ONN (Self-ONN) model was proposed in [44,45] to classify the biomedical
images. It is seen that the Self-ONN model can perform better than conventional CNN
models if the model architecture and parameters can be tweaked carefully. Since all the
above-mentioned works used deeper architectures, it is natural that these networks require
longer training and inference times and are not suitable for portable device deployment.
Therefore, there is a demand to design a lightweight deep learning-based segmentation
model to segment the tumor region from the reconstructed microwave (RMW) brain images,
and also a lightweight classification model to classify the RMW brain images with a better
classification performance. The main contributions of this work are specified below:

1. To the best of our knowledge, this is the first paper to propose a lightweight segmen-
tation model called MicrowaveSegNet (MSegNet) that can automatically segment the
desired brain tumors in RMW brain images from the sensors-based MBI system.

2. A lightweight classification model called BrainImageNet (BINet) is proposed to
classify the raw and segmented RMW brain images using a new machine learning
paradigm, the self-organized operational neural network (Self-ONN) architecture.

3. To segment both large and small brain tumors, the proposed MSegNet model is
developed and tested on RMW brain tumor images.

4. We formulated a tissue-mimicking head phantom model to investigate the imaging
system for generating the RMW brain image dataset.

5. A new Self-ONN model, BINet, three other Self-ONN models, and two conventional
CNN classification models are investigated on the raw and segmented RMW brain
tumor images to classify non-tumor, single tumor, and double tumor classes to show
the efficacy of the proposed BINet classification model.
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The rest of the article is organized as follows: Section 2 explains the experimental
setup of a sensor-based microwave brain imaging system and the sample image collection
process. The research methodology and materials, including the dataset preparation
and experimental methods, are discussed in Section 3. Section 4 discusses the results
of segmentation and classification models for the raw and segmented RMW images. A
discussion point regarding classification classes is presented in Section 5. Finally, the paper
is concluded in Section 6.

2. Experimental Setup of a Sensor-Based Microwave Brain Imaging System and
Sample Image Collection Process

In this research, an experimental sensor-based microwave brain imaging (SMBI) sys-
tem has been developed to generate microwave brain images and analyze the system’s
performance. The SMBI system framework has been implemented by our research group,
as reported in [23,46]. It is worth mentioning here that a wideband antenna sensor with a
high gain and unidirectional characteristics is required with a frequency band of 1 to 4 GHz
for the SMBI system [11,12,15,24,25].

2.1. Antenna Sensor Design and Measurement

A new spider net-shaped triple split-ring resonator (SNTSRR) metamaterial (MTM)
loaded three-dimensional (3D) wideband antenna sensor was constructed and printed on
low-loss Rogers RT5880 material with a 0.0009 loss tangent, 2.20 relative permittivity, and
1.575 mm thickness, which ensures the requirements of producing the desired brain images.
The schematic diagram of the MTM-loaded 3D antenna sensor structure is depicted in
Figure 1. The geometric parameter values of the designed antenna sensor are presented in
Table 1.

Table 1. The designed parameters of 3D antenna sensor.

Parameters Value
(mm) Parameters Value

(mm) Parameters Value
(mm)

L 53.00 b 9.34 k 4.00

W 22.00 c 4.00 t 1.00

L1 16.00 d 9.12 fl 9.50

L2 8.50 e 12.26 fw 3.00

L3 8.00 f 12.26 fc 4.24

L4 22.00 g 3.86 g1 0.50

L5 22.00 h 4.00 m 0.50

L6 3.93 i 9.22 n 1.00

a 12.26 j 9.49 .. ..

Initially, the plain patch is designed on the top side and back sides of the substrate.
Then, an M-shaped slot and rectangular-shaped slots are cut out from the top side and back
side to attain the required wideband frequency band. Walls of a twenty (20) mm length
and twenty-two (22) mm width, with 0.2 mm thick copper, are attached at the left side and
right side of the substrate towards the -z-direction. Thereafter, the fifty-three (53) mm long
and twenty-two (20) mm wide bottom slab, of a 0.2 mm thickness, is attached to the left-
and right-side walls to make it a 3D antenna.
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Figure 1. Graphic diagram of the 3D antenna sensor: (a) top view, (b) bottom view, (c) perspec-
tive view.

The side walls (i.e., left wall and right wall) and bottom slab help to increase the gain
and radiation directivity of the antenna. The sensor is fed at the top layer with a 50 Ω
cross-fed line via an SMA connector. Then, a 2 × 1 MTM array structure is placed on
the top and the bottom sides of the antenna sensor for enhancing the antenna sensor’s
gain, efficiency, and radiation directivity. The antenna sensor is designed and simulated
by the computer simulation technology (CST) simulator software. The optimized antenna
dimension is 53 × 22 × 21.575 mm3 (i.e., length (L) × width (W) × height (H), where
H = middle gap (h = 20 mm) + substrate thickness (Th = 1.575 mm).

Figure 2 illustrates different views of the fabricated prototype of the antenna sensor.
The fabricated sensor is set up with the PNA and then measured for the scattering pa-
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rameters (i.e., reflection coefficient). The antenna measurement pictures are illustrated in
Figure 3a. The measurement is performed within the frequency range of 1 GHz to 4 GHz.
The simulated and measured scattering parameters |S11| (i.e., reflection coefficient) are
illustrated in Figure 3b.
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Figure 3. Measurement setup and resultant outcomes of the antenna sensor: (a) PNA setup, (b) mea-
sured and simulated reflection coefficient, (c) gain, (d) efficiency.

It was discovered, depicted in Figure 3b, that the measured frequency band of the
sensor is 1.43 GHz to 3.71 GHz, with a maximum resonance of−37 dB at 1.76 GHz, whereas
the simulated operating frequency of the antenna is 1.51 GHz to 3.55 GHz with a maximum
resonance of −32 dB at 1.76 GHz. The attained operating frequency band of 1.43 GHz
to 3.71 GHz is used for microwave brain imaging as a compromise between the signal
penetration in the head tissues and the image resolutions. Except for a slight shift in the
resonances to the lower frequencies caused by fabrication or soldering tolerance, both
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measured and simulated results show a good agreement. The antenna sensor’s measured
gain is 6.03 dBi with a maximum efficiency of 91%, as shown in Figure 3c,d.

2.2. Phantom’s Composition Process and RMW Image Sample Collection

A four-layered (i.e., DURA, CSF, gray matter (GM), and white matter (WM)) tissue-
mimicking brain phantom model is constructed and utilized for evaluating the performance
of the system in this study. The tissue layers and tumors were fabricated according to
the recipe described in [47]. The length and height of the 3D skull are L = 160 mm and
H = 120 mm, respectively. However, at first, DURA was fabricated and filled into a 3D
human skull, then CSF, white matter, and gray matter were filled step by step in the
model. After that, the fabricated tumor(s) were placed in different locations for image
reconstruction purposes. The phantom’s composition steps are illustrated in Figure 4.
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RMW Brain Tumor Image Sample Collection

In this research, we utilized our new 3D antenna sensor in the implemented SMBI
system framework [46] to generate microwave brain images. The experimental SMBI
system is illustrated in Figure 5. The system has a circular-shaped rotating disk with a
nine-antenna sensor array holder for holding the antennas. The mounting framework
is connected to a portable stand via a stepper motor, rotating from 0 to 360 degrees. A
fabricated four-layered phantom model, including the tumors, has been placed in the
center of the framework. In addition, the tumors were inserted into several locations on the
phantom to generate RMW brain tumor images. The mounted nine-antenna sensor array
framework is rotated around the head model through the stepper motor, where one antenna
sensor transmits the microwave signals towards the head phantom, and then backscattered
signals are received by the remaining eight antenna sensors. The received backscattered
bio signals (S21, S31, S41, . . . . . . , S91) were collected in each 7.2◦ degrees rotation and
measured by the PNA (power network analyzer). Therefore, a total of 9 × 8 × 50 locations
were scanned around the phantom via the system to investigate its performance.

For image reconstruction purposes, we considered two scenarios: a tissue-mimicking
head phantom without tumors and with tumors. The reflected biosignals received by
the antenna sensors are presented in Figure 6. The signals were collected by the PNA.
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Figure 6a illustrates the reflected signals when a tumor was not present in the head model,
and Figure 6b illustrates the reflected signals, when the tumor was present in the head
model. The image processing unit is directly connected to the PNA. The collected signals
from the PNA were preprocessed by the MATLAB programming language. Thereafter, an
image reconstruction algorithm, M-DMAS (modified delay-multiply-and-sum) [23] was
utilized to produce the desired RMW brain images of the head regions. The frequency
range of 1.43 GHz to 3.71 was considered for image reconstruction. After that, the produced
images were sampled by the Origin pro data analyzer software to set the axis with respect
to the brain regions. These processes were repeated by the program and collected a set of
RMW image samples for further processing. The used imaging algorithm can reconstruct
only two tumor-based images and detect a minimum of a 5 mm small-sized tumor. The
minimum separation (i.e., resolution) for the algorithm to distinguish two tumors from
each other is approximately 38 × 38 pixels (i.e., a minimum 10 mm distance between two
tumors, where 1 pixel = 0.2645833333 mm).
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However, in practice, we need to compare the RMW images with the real head for
verifying the image reconstruction accuracy, so that the system can be used in real situations
(i.e., clinic or hospital); despite this, due to clinical permission issues in the lab, we cannot
use live human heads for comparing the imaging outcomes of the fabricated phantom
model. However, we compared our imaging outcomes with a simulated “Hugo Head”
model, which acts as a real head [48]. The Hugo model ensures the dielectric properties
of real brain tissues. We placed the tumor(s) in different locations on the Hugo model
and compared the image samples with a fabricated head model. The cartesian coordinate
system can be applied to detect the location of the tumor in the images. The simulated
(considering real situations) and experimental/collected RMW brain image samples with
their coordinates are illustrated in Figure 7. It is observed from Figure 7 that the RMW
images with tumor locations are almost the same and show a good agreement. In addition,
for verifying the imaging results, the comparison results with the other imaging systems
and reconstruction algorithms are presented in Table 2. It can be seen from Table 2 that
the used imaging system and algorithm performed better than other imaging systems and
algorithms.

Furthermore, the tumors were placed in different locations on the model, and 300 sam-
ples were collected, including non-tumor, single tumor, and double tumor cases, to create
the dataset. Later, image preprocessing and augmentation methods were applied to the
collected image sample dataset to produce a large enough training and testing dataset. Due
to the lack of image diversity, the proposed models were trained and tested using the same
phantoms. However, it is possible to test the models by using different phantoms, which
is our future work. The proposed segmentation model was utilized for segmenting the
tumor regions, and a classifier model was investigated on the raw and segmented RMW
brain images. Two experiments were carried out with the training dataset to segment the
tumor(s) and then classify the RMW brain images.
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Table 2. Comparison of the implemented system in bold with other imaging system and algorithms.

Ref. Types of
Phantom

Fabricated
Tissues Imaging System

Image
Reconstruction

Algorithm

No. of
Detection Application

[23] Semi-solid
heterogeneous

DURA, CSF,
WM, GM

Nine-antenna-
based experimental

system
IC-CF-DMAS Only one object Microwave stroke

imaging

[49] Liquid,
homogeneous

Only brain
tissue

Eight-antenna-
based experimental

system
DBIM-TwIST

Single tumor
with noisy

image

Microwave
tomography

imaging

[22] Semi-solid
heterogeneous

Brain CSF,
DURA

Single-antenna-
based simulated

system

Radar-based
confocal

Single tumor
with noisy

image

Microwave brain
imaging

[50]

Solid,
acrylonitrile
butadiene

styrene (ABS)

CSF, WM, and
GM

Single-antenna-
based simulated

system
Not stated

Single tumor
with noisy

image

Microwave brain
imaging

[51] Liquid,
heterogeneous

Brain, CSF,
fat, and
muscle

Simulated imaging
System

Segmentation
slice-based

Single tumor
with noisy

image

Magnetic resonance
imaging and

electromagnetic
imaging

[52]

Solid,
acrylonitrile
butadiene

styrene (ABS)

Skull, CSF,
brain

Two-antenna-
based experimental

system
EIT-based

Single tumor
with blurry

images

Microwave
tomography

imaging

[53] Semi-solid
heterogeneous

Scalp, skull,
CSF

Single-antenna-
based simulated

system

Multi-layer
time stable

confocal

Single object
with noisy

image

Microwave brain
imaging

[54] Liquid,
heterogeneous CSF, WM, GM

Single-antenna-
based experimental

system
Not stated Only one object Microwave brain

imaging

Used
Phantom

Semi-solid
heterogeneous

DURA, CSF,
GM, WM, fat,

skin

Nine-antenna-
based

experimental
imaging system

M-DMAS
Two tumors
with clear

image

Sensor-based
Microwave brain
tumor imaging

system (SMBIS)

3. Methodology and Materials

The study’s overall methodology is covered in this section, along with the dataset
description, pre-processing, data augmentation methods, and experimental analysis. The
comprehensive methodology of the research work is presented in Figure 8. This research
utilized RMW brain images, which were obtained from the implemented experimental
brain imaging system, as reported in our previous work [46]. The brain images, including
non-tumor, tumor, and corresponding segmented tumor region masks, are obtained. As
previously indicated, the study primarily uses two types of images: (i) healthy brain images
(i.e., non-tumor images) and (ii) unhealthy brain images (i.e., tumor-based images). The
unhealthy images are classified into two categories: (i) single tumor images and (ii) double
tumor images.

The work first explored the proposed lightweight MSegNet segmentation model
along with nine other state-of-the-art segmentation models to investigate the segmentation
performance of detecting tumor regions in the RMW brain images. At first, raw RMW brain
image samples were collected, and then image pre-processing was applied. In addition,
the corresponding ground truth masks are also created and then applied along with the
image dataset. Thereafter, a tumor mask is superimposed on the raw RMW images to
create a segmented tumor region-based image dataset. Then, the proposed lightweight
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BrainImageNet (BINet) classification model and five other CNN-based classification models
were used to investigate the classification performances of the raw and segmented RMW
brain images for three class classifications: non-tumor, single tumor, and double tumor.
The details of the sub-sections are discussed below.
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3.1. Dataset Preparation

The RMW brain images and their corresponding ground truth masks are used as an
original dataset in this research work. The original dataset consists of 300 RMW images,
where one hundred images are in the non-tumor (i.e., healthy brain) class and two-hundred
images are in the tumor (i.e., unhealthy brain) class, and corresponding ground truth masks
are made available in the dataset. The tumor class is further divided into two subclasses:
100 images for a single tumor and another 100 for double tumors. Samples of the raw and
segmented RMW brain images and their ground truth masks of the dataset are shown in
Figure 9.
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Figure 9. The RMW brain image samples and their corresponding ground truth masks from the
original dataset: (a) non-tumor, (b) single tumor, (c) double tumors.

3.2. Image Pre-Processing and Method of Augmentation

This section goes over image processing and data preparation for deep learning
techniques. The pre-processing method is the initial step of a DL (deep learning) model due
to its input constraints. The different CNN network models, including the segmentation
and classification models, have different input size requirements. Thus, images are pre-
processed (resized and normalized) before training the models. The images are resized to
256 × 256 pixels for the investigation of ten Unet segmentation network models such as:
(i) U-net, (ii) Modified Unet (M-Unet), (iii) MultiResUnet, (iv) Keras Unet (K-Unet), (v) Unet
with ResNet50 backbone, (vi) Unet with DenseNet161 backbone, (vii) ResNet152 FPN,
(viii) DenseNet121 FPN, (ix) nnU-net, and (x) proposed MSegNet. On the other hand, for
the raw and segmented brain tumor image classification purposes, the images are resized
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to 224 × 224 pixels for a vanilla CNN, three Self-ONNs, and the proposed BINet models.
Using the mean (M) and standard deviation (STD) of all images in the original dataset,
the z-score normalization method is used to normalize the images. Deep learning models
typically require a large image dataset to effectively train a model to segment and classify
the target object regions in the image.

In this study, the image augmentation technique is employed to create a large training
dataset for the deep segmentation models because our tiny dataset is unsuitable for training
them. In this research, three different image augmentation strategies (e.g., rotation, scaling,
and translation) are utilized to generate the training image set. The images are rotated in
both clockwise and counterclockwise directions at an angle ranging from 3 to 50 degrees.
The tumor objects are thus relocated at various locations within the images. Scaling is the
process of reducing or enlarging the size of an image. In this case, image magnifications
range from 2% to 15%. The image translation technique shifts the tumor objects to different
locations in the images by translating the images by 3–10% vertically and horizontally.
After pre-processing and augmentation, samples of the augmented images are illustrated
in Figure 10.

Biosensors 2023, 13, x FOR PEER REVIEW 14 of 29 
 

are resized to 224 × 224 pixels for a vanilla CNN, three Self-ONNs, and the proposed BINet 
models. Using the mean (M) and standard deviation (STD) of all images in the original 
dataset, the z-score normalization method is used to normalize the images. Deep learning 
models typically require a large image dataset to effectively train a model to segment and 
classify the target object regions in the image. 

In this study, the image augmentation technique is employed to create a large train-
ing dataset for the deep segmentation models because our tiny dataset is unsuitable for 
training them. In this research, three different image augmentation strategies (e.g., rota-
tion, scaling, and translation) are utilized to generate the training image set. The images 
are rotated in both clockwise and counterclockwise directions at an angle ranging from 3 
to 50 degrees. The tumor objects are thus relocated at various locations within the images. 
Scaling is the process of reducing or enlarging the size of an image. In this case, image 
magnifications range from 2% to 15%. The image translation technique shifts the tumor 
objects to different locations in the images by translating the images by 3–10% vertically 
and horizontally. After pre-processing and augmentation, samples of the augmented im-
ages are illustrated in Figure 10. 

Pre-processed  
Samples 

Rotation Technique Translation Technique 

      
(a) (d) (g) 

      
(b) (e) (h) 

      
(c) (f) (i) 

Figure 10. Augmented sample of training set: (a–c) pre-processed non-tumor, single tumor, and 
double tumor images, (d–f) images after rotation by 20 degrees counterclockwise and clockwise for 
non-tumor, single tumor, and double tumors, and (g–i) images after three percent horizontal, five 
percent vertical and horizontal, and five percent horizontal and three percent vertical translation for 
non-tumor, single tumor, and double tumors. 

3.3. Dataset Splitting and Ratio Consideration for Training and Testing Dataset 
Dataset splitting is a technique for evaluating the performance of a deep learning 

model. It is not good practice to use the entire dataset for training the model because if the 
entire dataset is used to train the model, we will not be able to assess the performance of 
the proposed model and an overfitting problem may occur. For that reason, proper dataset 
splitting is essential for the model. Typically, the dataset is split into three sets: the train-
ing, testing, and validation sets, with 60% for the training, 20% for the testing, and 20% 
for the validation, but the exact ratio depends on the collected dataset and model 

Figure 10. Augmented sample of training set: (a–c) pre-processed non-tumor, single tumor, and
double tumor images, (d–f) images after rotation by 20 degrees counterclockwise and clockwise
for non-tumor, single tumor, and double tumors, (g–i) images after three percent horizontal, five
percent vertical and horizontal, and five percent horizontal and three percent vertical translation for
non-tumor, single tumor, and double tumors.

3.3. Dataset Splitting and Ratio Consideration for Training and Testing Dataset

Dataset splitting is a technique for evaluating the performance of a deep learning
model. It is not good practice to use the entire dataset for training the model because if the
entire dataset is used to train the model, we will not be able to assess the performance of
the proposed model and an overfitting problem may occur. For that reason, proper dataset
splitting is essential for the model. Typically, the dataset is split into three sets: the training,
testing, and validation sets, with 60% for the training, 20% for the testing, and 20% for the
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validation, but the exact ratio depends on the collected dataset and model architecture. In
this work, the original image dataset was split into three sets, the training, testing, and
validation sets, and the appropriate percentage was set for all splits by considering the
model’s architecture and the small dataset as well as using the K-fold cross-validation
technique to avoid overfitting. Thus, this study uses a five-fold cross-validation technique
for training, validation, and testing purposes. Additionally, a random shuffling method
was applied to the dataset before making three splits so that every split had an accurate
representation of the dataset. Based on the architecture and image dataset, 80% of the
total images were utilized for training, and 20% were used for testing in order to do a
five-fold cross-validation. Additionally, 20% of the training dataset, which comprises 80%
of the dataset, is used for validation to prevent overfitting. Thus, the performances were
measured on five-fold cross-validation data which indicates more generalized performance.
After augmentation, 6000 images were created per fold for training the model. Table 3
displays a thorough overview of the image dataset.

Table 3. Dataset description for training, testing, and validation.

Dataset
Number of Original

Images Image Classes

Training Dataset

Number of
Images per

Class

Augmented
Train Images

per Fold

Testing
Images per

Fold

Validation
Image per

Fold

Raw RMW brain
image samples 300

Non-tumor 100 1980 20 16

Single tumor 100 2008 20 16

Double tumors 100 2012 20 16

Total 300 6000 60 48

3.4. Experiments

In this study, two sets of experiments (brain tumor segmentation, classification with
raw and segmented RMW brain images) were carried out. All segmentation models in
this work are implemented using the PyTorch library and Python 3.7 on the Anaconda
distribution platform. The experiments are run on a 64-bit version of Windows 10 with
128 GB of RAM and a 3.30 GHz 64-bit Intel(R) Xeon(R)W-2016 CPU. A 32 GB NVIDIA
GeForce GTX 1080Ti GPU is also utilized to speed up network training operations. The two
sets of experimental analysis (brain tumor segmentation and RMW image classification)
are explained in the following sections. Finally, the average of the performance metrics of
the five folds was calculated.

3.4.1. Proposed MicrowaveSegNet (MSegNet)—Brain Tumor Segmentation Model

Brain tumor segmentation is done to segment the tumors from the RMW brain images
to identify the correct spatial location of a tumor in the images. Nowadays, U-net-based
deep learning architecture is popularly used to segment objects in medical imaging appli-
cations [55]. The main benefit of this network is that it can precisely segment the target
features and effectively process and evaluate the images [36,56]. This study proposed
a lightweight segmentation model, called MicrowaveSegNet (MSegNet). The proposed
MSegNet model architecture is illustrated in Figure 11. Typically, a U-net model has four
encoding and decoding blocks and some skip connections. The MSegNet model used only
two levels in both encoding and decoding to make it a lightweight network. The model
consists of a contracting path with two encoding blocks followed by an expanding path
with two decoding blocks.
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Each encoder and decoder block is made up of two 3× 3 convolutional layers, followed
by a non-linear activation function. The input image (256 × 256) is fed into the encoder
of the network. Each encoding block is made up of two 33 convolutional layers followed
by a 2 × 2 max-pooling layer for down sampling. Every decoding block in the decoder
consists of an up-sampling followed by one 3 × 3 convolutional layer, a concatenation
layer, and another 33 convolutional layers. For up-sampling, the decoder starts with a 2 × 2
transposed convolutional layer. All convolutional layers in both the encoder and decoder
are followed by the BN (batch normalization) and rectified linear unit (ReLu) activation
functions. The contracting path from the encoder block is directly connected with the
decoder block’s concatenation layer to create a high-resolution segmentation feature map.
At the ending layer, 1 × 1 convolution is used to create the output map from the last
decoding block to two-channel feature maps. Thereafter, the Softmax function is utilized in
two-channel feature maps to map every pixel into a binary class of background or tumor.

3.4.2. Experimental Analysis of the Segmentation Models

For the experimental purposes, the proposed MSegNet model and other eight models
(as mentioned earlier) were trained and validated by using a five-fold cross-validation
image dataset to evaluate the tumor segmentation performance. The training was executed
using a learning rate (LR) of 0.0005 for a maximum of 30 epochs, batch size of 8, and
utilized Adam optimizer for network optimization. During training, if no improvement was
observed for ten successive epochs, then the learning rate was decreased by a learning factor
of 0.2 and the training is stopped if there was no improvement detected for 15 successive
epochs. The complete hyperparameters for all the models are shown in Table 4.
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Table 4. Hyper-parameters for all segmentation models.

Parameter’s Name Assigned Value Parameter’s Name Assigned Value

Input channels 3 Output channels 1

Batch size 8 Optimizer Adam

Learning rate (LR) 0.0005 Loss type Dice loss

Maximum number of epochs 30 Epochs patience 10

Maximum epochs stop 15 Learning factor 0.2

Initial feature 32 Number of folds 5

Moreover, the Dice score (DSC) and loss plots for different epochs during the training
of the proposed MSegNet model is presented in Figure 12. As can be observed from
Figure 12, the model was trained for 20 epochs and the model’s performance became
saturated after a few epochs in terms of the DSC and loss. So, it can be seen that the
proposed model is not over-fitting and converges well and should segment the desired
tumor regions in the RMW brain images reliably.
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3.4.3. Proposed BrainImageNet (BINet)—Brain Image Classification Model

Recently, an operational neural network (ONN)-based model was introduced in [57]
to overcome the linear nature of the CNN. The ONN is a diverse network that has demon-
strated a promising performance in a number of applications, including image denoising
and image restoration. It usages a permanent set of non-linear operators to discover com-
plicated patterns from any input [58,59]. On the other hand, the fixed set of operator
libraries restricts ONNs ability to learn. To overwhelm this issue, self-organized ONN
(Self-ONN) is offered in [60]. Instead of using a static group of operator libraries, Self-ONN
unavoidably discovers the best set of operators over the course of training. As a result,
the model becomes more solid, able to handle a wider range of situations, and capable
of making accurate generalizations. Self-ONN networks choose the best set of operators
during the training process, which can be a combination of any standard function or some
other functions that we do not know. The output OL

k at kth neuron of Lth layer of any ONN
can be illuminated as follows [45]:

OL
k = bL

k + ∑NL−1
i=1 ΨL

ki

(
wL

ki, yL−1
i

)
(1)

where bL
k and wL

ki are the biases and weights related to the neuron and layer, yL−1
i is the

input from the preceding layer, NL−1 is the kernel size, and ΨL
ki is the nodal operator of the

neuron. If ΨL
ki is linear, then the equation simply corresponds to a conventional CNN. In
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ONN, the aggregate nodal operator Ψ can be formulated using a set of standard functions
as follows [57]:

Ψ(w, y) = w1 sin(w2y) + w3exp(w4y) + . . . . . . + wqy (2)

Here, w denotes the q-dimensional array of the parameters, which is composed of
the internal parameters of the individual functions and weights. Instead of a static set of
operators, the combined nodal operator Ψ can be formulated by utilizing a Taylor series
function. The Taylor series function f (x), near point, and x = a is stated by the following
equation [57]:

f (x) = f (a) +
f ′(a)

1!
(x− a) +

f ′′ (a)
2!

(x− a)2 +
f ′′′ (a)

3!
(x− a)3 + . . . . . . +

f n(a)
n!

(x− a)n (3)

Equation (3) can be used to construct the nodal operator as follows:

Ψ(w, y) = w0 + w1(y− a) + w2(y− a)2 + . . . . . . + wq(y− a)q (4)

Here, wq = f (n)(a)
q! denotes the qth parameter of the qth order polynomial. In Self-

ONN, tanh has been employed as an activation function which is constrained at the range
of [−1, 1]. So, for tanh, a is equal to zero in Equation (4).

In this study, we developed a new lightweight classification model called BrainIma-
geNet (BINet) to classify the raw and segmented brain tumor images. BINet is designed
using a self-organized operational neural network (Self-ONN) architecture. The detailed
architecture of the BINet classification model is shown in Figure 13. As illustrated in
Figure 8, the BINet has six Self-ONN layers, where the first 4 layers have 8 neurons and the
other 2 have 16 neurons, respectively. Through the self-organization of its nodal operators,
it can accomplish the requisite non-linear transformations to extract optimal features from
the brain tumor images. The kernel sizes are set as 3 × 3 for the Self-ONN layer and 2 × 2
for the max-pooling layer, respectively. Moreover, the Q value is set to 3 as the order of qth
order polynomial for all operational layers. The input image of dimension 224 × 224 is fed
to the input layer. The images are propagated through the Self-ONN and max polling layers
and features are extracted into different feature maps. A flattening layer with 144 neurons
is used to convert the output of the convolutional layer into a one-dimensional feature
vector and apply it to the final dense layer. The network’s final classifier is the dense layer,
which employs a three-neuron MLP layer followed by a SoftMax activation function to
classify the upcoming images as non-tumor, single tumor, or double tumor.
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3.4.4. Experimental Analysis of the Classification Models

In this section, we discuss two classification experiments to investigate the classi-
fication performances of the networks: (i) classification using the raw RMW images
(non-segmented) and (ii) classification using the segmented RMW images. However,
the proposed BINet model and three variations of the Self-ONN-based model, such as
2 Self-ONN models with 4 operational layers and 1 with 6 operational layers (Self-ONN4L,
Self-ONN4L1DN, and Self-ONN6L), as well as 2 vanilla CNN models with 6 and 8 layers
(Vanilla CNN6L and Vanilla CNN8L), were investigated and the results were compared
separately by using the raw (non-segmented) and segmented RMW tumor images. In the
model names, “4L” means the model consists of four layers, “6L” means the model consists
of six layers, and “1DN” means the model consists of one dense layer in the final stage.
The training was executed using a learning rate (LR) of 0.0005 for a maximum of 30 epochs,
batch size of 16, utilized Adam optimizer for network optimization, and set stop criteria
based on the training loss. The Q order value is a significant factor during training the
models; Q = 1 is set to train the two vanilla CNNs, and Q = 3 is set for the Self-ONN and
BINet models. The hyperparameters for the classification models are presented in Table 5.

Table 5. Hyper-parameters for all classification models.

Parameter’s Name Assigned Value Parameter’s Name Assigned Value

Input channels 3 Q order 1 for CNN, 3 for
Self-ONNs

Batch size 16 Optimizer Adam

Learning rate (LR) 0.0005 Stop criteria Loss

Maximum number of epochs 30 Epochs patience 5

Maximum epochs stop 10 Learning factor 0.2

Image size 224 Number of folds 5

3.5. Performance Evaluation Matrices
3.5.1. Assessment Matrix for the Segmentation Model

After completion of the training and validation phase, the tumor segmentation per-
formances of the different networks (e.g., MSegNet and other eight network models) for
testing the RMW brain image dataset are evaluated. The performance evaluation matrices
are the accuracy (A), Intersection-over-Union (IoU), and Dice score (DSC), and these are
calculated by the following equations [61]:

A =
(NTP + NTN)

(NTP + NFN) + (NFP + NTN)
(5)

IoU =
NTP

(NTP + NFN + NFP)
(6)

DiceScore(DSC) =
(2× NTP)

(2× NTP + NFN + NFP)
(7)

3.5.2. Assessment Matrix for the Classification Model

The classification performance of the various CNN and Self-ONN models is evaluated
by the five evaluation matrices, such as: (i) the overall accuracy (A), (ii) weighted recall or
sensitivity (R), (iii) weighted specificity (S), (iv) weighted precision (P), and (v) weighted
F1-score (Fs). The assessment metrics are computed by utilizing the following formulas [61]:

A =
(NTP + NTN)

(NTP + NFN) + (NFP + NTN)
(8)
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R =
NTP

(NTP + NFN)
(9)

S =
NTN

(NFP + NTN)
(10)

P =
NTP

(NTP + NFP)
(11)

Fs =
(2× NTP)

(2× NTP + NFN + NFP)
(12)

where NTP denotes the number of tumor images which were detected as tumors, NTN
represents the number of non-tumor images which were detected as non-tumors, NFP
denotes the number of images incorrectly identified as a tumor, and NFN denotes the
number of images with tumor(s) that were missed by the network.

4. Results and Discussion
4.1. Brain Tumor Segmentation Performances

It is notable that the main advantages of the MSegNet model are: (i) a lightweight
architecture with only two layers in encoding and decoding blocks, (ii) a low training and
inference time, (iii) it can segment the desired tumor (small and large) regions precisely
with a high-resolution image, and (iv) it shows high segmentation performances in terms
of the accuracy, IoU, and Dice score compared to other deeper segmentation networks. For
experiment purposes, the proposed MSegNet model and other nine segmentation models
(as mentioned earlier) were used to investigate the tumor segmentation performances. The
tumor segmentation performance results of the MSegNet model are shown in Figure 14,
which illustrates the non-tumor, single tumor, and double tumors images, corresponding
to ground truth masks, generated masks, and the resultant segmented tumor regions of the
raw RMW brain images.

It is observed that the MSegNet model precisely segmented the desired region of the
tumor as an anomaly in the RMW brain images. The four evaluation performance matrices
of the segmentation models are presented in Table 6. It is observed from Table 5 that the
MSegNet model exhibited better performances compared to the other nine segmentation
models. The achieved accuracy (A), IoU, Dice score (DSC), and loss of the proposed
model are 99.97%, 86.92%, 93.10%, and 0.101, respectively. However, the high accuracy,
Dice score, and low loss ensure that the MSegNet model can clearly segment the desired
tumor regions in the raw RMW images. In addition, the computational complexity in
terms of the parameter (M), training time (time taken to train the model) per fold, and
inference time (time taken by the network model to segment tumor regions an input
image) of the MSegNet model was compared with nine Unet-based segmentation models,
presented in Table 7. The inference time per image was computed over the 48 images of
the validation set. It can be observed from Table 7 that the MSegNet model has only eight
network parameters and a low training and inference time that ensures the lightweight
characteristics of the model.
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Table 6. Performance evaluation matrices of all segmentation models. Bold represents the best
performing model.

Network Model Name Accuracy (%) IoU (%) Dice Score (%) Loss

U-net 99.96 85.72 91.58 0.1127

Modified Unet (M-Unet) 99.96 86.47 92.20 0.1086

Keras Unet (K-Unet) 99.96 86.01 91.91 0.1156

MultiResUnet 99.96 86.55 92.20 0.1064

ResNet50 99.95 86.43 92.13 0.1121

DenseNet161 99.95 85.62 91.59 0.1145

ResNet152 FPN 99.94 82.86 89.58 0.1312

DenseNet121 FPN 99.95 83.30 89.91 0.1318

nnU-net 99.96 84.95 92.85 0.1112

Proposed MSegNet 99.97 86.92 93.10 0.1010

Table 7. Computational complexity comparison of the proposed model with Unet based models.

Network Model Name Parameters
(M)

Training Time
(Second/Fold)

Inference Time
(Second/Image)

U-net 30 480 0.025

Modified Unet (M-Unet) 28 440 0.023

Keras Unet (K-Unet) 30 490 0.026

MultiResUnet 25 425 0.02

ResNet50 25 420 0.023

DenseNet161 28.5 450 0.033

ResNet152 FPN 40 720 0.05

DenseNet121 FPN 20 410 0.021

nnU-net 18 340 0.015

Proposed MSegNet 8 305 0.007

4.2. Raw and Segmented RMW Brain Images Classification Performances

In this section, we discuss the three Self-ONNs (Self-ONN4L, Self-ONN4L1DN, and
Self-ONN6L), two vanilla CNNs (vanilla CNN6L and vanilla CNN8L), and proposed BINet
classification models to investigate the classification effectiveness by applying the raw and
segmented RMW brain images. The classification models are able to classify the images
into non-tumor, single tumor, and double tumors classes. The main advantages of the BINet
model in this research are: (i) a lightweight architecture that uses a non-linear operation
to boost the network diversity along with the classification effectiveness, (ii) the ability
to optimize the learning weight of each layer during the training process, and (iii) that it
attains superior classification performances while significantly reducing the computational
complexity rather than conventional CNNs models.

All classification models were trained by using the raw RMW brain tumor images. The
comparative statistical classification performance (with mean, standard deviation (STD)
and paired t-test/p-value outcomes of the models for the raw RMW brain tumor images are
presented in Table 8. It was investigated that the conventional deeper CNN networks have
achieved lower performances than the three Self-ONNs models, but the BINet model was
the best model among all the networks and achieved the highest performances. The BINet
has exhibited a mean accuracy, precision, recall, specificity, and F1 score of 89%, 88.74%,
88.67%, 94.33%, and 88.61%, respectively, for the raw RMW brain images. Moreover, an
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STD accuracy, precision, recall, specificity, and F1 score of 3.49%, 3.58%,3.59%, 2.62%, and
3.59%, respectively, were obtained for the raw RMW brain images.

Table 8. Statistical classification results of all models for the raw RMW brain images. Bold represents
the best performing model.

Image
Type

Network
Model Name

Overall Weighted
p-ValueAccuracy

(A)
Precession

(P)
Recall

(R)
Specificity

(S)
F1 Score

(Fs)

Mean STD Mean STD Mean STD Mean STD Mean STD

Raw RMW
Brain

Images

Vanilla CNN6L 84.33 4.11 84.17 4.13 84.33 4.11 92.17 3.04 84.06 4.14 <0.05

Vanilla CNN8L 85.33 4.00 85.62 3.97 85.33 4.00 92.67 2.95 85.14 4.03 <0.05

Self-ONN4L 85.00 4.04 84.91 4.05 85.00 4.04 92.50 2.98 84.87 4.06 <0.05

Self-
ONN4L1DN 87.00 3.81 87.05 3.80 87.00 3.81 93.50 2.79 86.95 3.81 <0.05

Self-ONN6L 87.00 3.81 86.85 3.82 87.00 3.81 93.50 2.79 86.82 3.83 <0.05

Proposed
BINet 89.33 3.49 88.74 3.58 88.67 3.59 94.33 2.62 88.61 3.59 <0.05

Then, we investigated the statistical classification performances of all mentioned
classification models for the segmented RMW images. All models were trained by utilizing
the resultant segmented RMW brain tumor images to verify the classification efficacy.
The comparative statistical classification performances (with mean, standard deviation
(STD), and paired t-test/p-value) of the models for classifying the segmented RMW brain
tumor images into the three classes are presented in Table 9. It was observed that the
conventional deeper CNN networks and Self-ONN models improved the performances
but, the performances were lower than the BINet model. However, the BINet model was
the best among all networks and attained the highest performances. The attained mean
accuracy, precision, recall, specificity, and F1 score of the BINet model are 98.33%, 98.35%,
98.33%, 99.17%, and 98.33%, respectively. Furthermore, the STD accuracy, precision, recall,
specificity, and F1 score of the BINet model are 1.45%, 1.44%, 1.45%, 1.03%, and 1.45%,
respectively, for segmented RMW images. Therefore, it is concluded that the proposed
classification model exhibited a better performance for the segmented RMW brain images.

Table 9. Statistical classification results of all models for the segmented RMW brain images. Bold
represents the best performing model.

Image
Type

Network
Model Name

Overall Weighted
p-ValueAccuracy

(A)
Precession

(P)
Recall

(R)
Specificity

(S)
F1 Score

(Fs)

Mean STD Mean STD Mean STD Mean STD Mean STD

Segmented
RMW
Brain

Images

Vanilla CNN6L 95.00 2.47 94.98 2.47 95.00 2.47 97.50 1.77 94.96 2.48 <0.05

Vanilla CNN8L 95.67 2.30 95.77 2.28 95.67 2.30 97.83 1.65 95.65 2.31 <0.05

Self-ONN4L 94.00 2.69 93.96 2.70 94.00 2.69 97.00 1.93 93.96 2.70 <0.05

Self-
ONN4L1DN 96.33 2.13 96.41 2.11 97.00 1.93 98.17 1.52 97.00 1.93 <0.05

Self-ONN6L 96.67 2.03 96.79 1.99 96.67 2.03 98.33 1.45 96.66 2.03 <0.05

Proposed
BINet 98.33 1.45 98.35 1.44 98.33 1.45 99.17 1.03 98.33 1.45 <0.05
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4.3. Performance Analysis

It is evident from the classification performances in Tables 8 and 9 that the best classifi-
cation model was BINet for classifying the raw and segmented RMW brain images. The
overall classification accuracy was 89.33% for the raw images and 98.33% for the segmented
images, respectively. For the classification results, the confusion matrix of the BINet model
for the raw RMW brain images is illustrated in Figure 15a. It is shown that there was a total
of thirty-four images that were misclassified during the testing of the model. For instance,
eight misclassified images are illustrated in Figure 16. It can be observed from Figure 15a
that three non-tumor and fourteen double tumor images were misclassified as a single
tumor class. Three double tumors and six single tumor images were misclassified as non-
tumor classes, while eight single tumor images were misclassified as double tumor classes.
In contrast, after segmenting the tumors, the confusion matrix of the BINet classification
model is shown in Figure 15b. It can be observed from Figure 15b that only five tumor im-
ages were misclassified, and none of the non-tumor images were misclassified. One double
tumor image was misclassified as a single tumor class. Additionally, one single tumor was
misclassified as a non-tumor, and three single tumor images were misclassified as a double
tumor class. Through the training of Self-ONNs, the optimum non-linear parameters can be
learned to exploit the learning performance and attain a superior classification performance
in terms of non-tumor and tumor images. However, the proposed model performed better
and presented satisfactory outcomes for the segmented tumor images rather than the raw
RMW tumor images. Finally, it is concluded that the segmentation technique abetted to the
classification model for improving the classification performance, which is also applicable
to the portable microwave brain imaging system.
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5. Discussion about Classification Classes

In this research, we collected raw RMW brain images from the SMBI system for
classifying the images by the BINet model into three classes: non-tumor, single tumor,
and double tumor images. We selected the three classes due to two reasons: (i) this is
our first phase of research, where we applied the M-DMAS algorithm that can reconstruct
only non-tumor images and two tumor-based images, which was the limitation of the
algorithm, and (ii) the fabrication recipe is another key factor for the specific tumors such
as benign, malignant, meningiomas, and different categories of tumor grade, which implies
the dielectric properties of the real brain tumors. In that case, proper ingredient selection
was another challenge. We were unable to collect three tumor image samples and test
the algorithm’s performance if the brain phantom had three tumors or different grades of
tumors due to resource constraints. However, it was possible to fabricate triple tumors and
different types of tumors, such as benign, malignant, meningiomas, and different grade
tumors. Thus, we are designing another study as a future work for more than a double
tumor or any other type of tumor (i.e., benign, malignant, meningioma, etc.).

Future Improvement and Future Directions to Microwave Biomedical Community

We used the M-DMAS image reconstruction algorithm in this study, which can only
reconstruct non-tumor images and two tumor-based images, which is one of the algo-
rithm’s shortfalls. This is because if more than two tumors or any other types of tumors
such as meningiomas, pituitary adenomas, craniopharyngiomas, etc., are formed in the
brain, the algorithm will not reconstruct the images. On the other hand, in the proposed
classification model, the learning outcomes of the BINet depend on the nodal operators and
Q-order parameter values, which must be fixed in advance, which is another shortcoming
of the model. In other words, if the right operator setting for proper learning is lacking,
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the learning outcomes will decrease. Moreover, there is an inadequate discrepancy due
to the usage of one nodal operator set for every one of the neurons in a hidden layer.
Keeping in mind the mentioned limitations, we can focus on improving the following for
our future work, which will help researchers in the microwave biomedical community:
(i) the implementation of a new image reconstruction algorithm that will reconstruct more
than two tumors and different types of tumors, such as benign, malignant, meningiomas,
etc., with high-resolution images, (ii) the implementation of a full-phase portable imaging
system that can be used in a clinic or hospital, allowing for the easy use of live patients,
(iii) a proper ingredient selection and quantity for fabricating the different types of tumors,
(iv) an assessment of the classification performance of the proposed model for classify-
ing different types of tumor grades by optimizing the learning parameters and Q-order,
(v) computational complexity is the crucial issue for the Self-ONN model, so finding a
computational complexity and inference time reduction mechanism is another research
opportunity, and (vi) assessing the model by using a large multi-modal or 3D microwave
brain image dataset as well as a clinical assessment with a live patient.

6. Conclusions

This paper presents brain tumor segmentation and classification from the portable
sensors-based microwave brain imaging system through lightweight deep learning models.
A lightweight MicrowaveSegNet (MSegNet) segmentation model was used to segment the
brain tumors in the RMW brain images. The model can segment the target tumor regions
precisely with high-resolution images and shows high segmentation performances in terms
of the IoU and Dice score compared to other state-of-the-art segmentation networks. In the
beginning, a compact 3D wideband nine-antenna array sensor was utilized to implement
the brain imaging system framework, and then three hundred raw RMW brain tumor
image samples were collected for this study. The proposed MSegNet and other nine
segmentation networks were investigated and compared for verifying the segmentation
performances. Among all segmentation networks, the MSegNet achieved an IoU and
Dice score (DSC) of 86.92% and 93.10%, respectively, for tumor segmentation. Then, a
segmented RMW brain tumor image dataset was created by applying the superimpose
technique for classification purposes. After that, a lightweight BrainImageNet (BINet)
classifier model was used to classify the raw and segmented RMW brain images into
three classes (non-tumor, single tumor, and double tumors). The BINet uses non-linear
operations to boost the network diversity and computational effectiveness and attain a
superior classification performance. Furthermore, the BINet, two conventional CNNs, and
three Self-ONN classification models were examined by using the raw and segmented
RMW brain images, and then the classification outcomes were compared. The proposed
BINet classification model showed a better perfomance compared to other models. The
achieved mean accuracy, precision, recall, specificity, and F1 score of the BINet model are
89.33%, 88.74%, 88.67%, 88.61%, and 94.33%, respectively, for three classes classification
using the raw RMW images, whereas they are 98.33%, 98.35%, 98.33%, 98.33%, and 99.17%,
respectively, for the segmented RMW images. The high mean and low STD values ensure
the efficacy of the model. The BINet model showed better classification results for the
segmented tumor images rather than the original raw RMW tumor images. So, it is
concluded that a combination of the MSegNet and BINet models can be used for consistently
identifying the tumor(s) from the RMW brain images and this can be utilized in the portable
MBI system.
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