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ABSTRACT

The detrimental impact of foodborne pathogens on human health makes food safety a major
concern at all levels of production. Conventional methods to detect foodborne pathogens, such as
live culture, high-performance liquid chromatography, and molecular techniques, are relatively
tedious, time-consuming, laborious, and expensive, which hinders their use for on-site applications.
Recurrent outbreaks of foodborne illness have heightened the demand for rapid and simple
technologies for detection of foodborne pathogens. Recently, Lateral flow assays (LFA) have drawn
attention because of their ability to detect pathogens rapidly, cheaply, and on-site. Here, we
reviewed the latest developments in LFAs to detect various foodborne pathogens in food samples,
giving special attention to how reporters and labels have improved LFA performance. We also
discussed different approaches to improve LFA sensitivity and specificity. Most importantly, due to
the lack of studies on LFAs for the detection of viral foodborne pathogens in food samples, we
summarized our recent research on developing LFAs for the detection of viral foodborne pathogens.
Finally, we highlighted the main challenges for further development of LFA platforms. In summary,
with continuing improvements, LFAs may soon offer excellent performance at point-of-care that is
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competitive with laboratory techniques while retaining a rapid format.

Introduction

In the last decade, outbreaks of foodborne diseases from
various food sources have raised public awareness of food
safety (Karp et al. 2015). According to the World Health
Organization (WHO 2022), around 600 million individuals
- almost 1 in 10 people worldwide- acquire foodborne
infections after eating contaminated food each year. In addi-
tion, nearly 420,000 individuals die yearly from diarrheal
disorders (WHO 2022). A substantial number of these fatal-
ities were avoidable through early detection of pathogens in
food and water (WHO 2022, 2016). Unfortunately, children
under five years of age carry 40% of the foodborne disease
burden, with 125,000 deaths yearly (WHO 2022). The symp-
toms of foodborne diseases range from simple gastroenteritis
to potentially catastrophic neurologic, hepatic, and renal
complications (Fung, Wang, and Menon 2018). The majority

of foodborne diseases are attributed to bacteria (Campylobacter
spp., Salmonella spp., Staphylococcus aureus (S. aureus), Vibrio
cholera (V. cholera), Escherichia coli (E.coli) O157:H7,
Clostridium  perfringens, and Listeria monocytogenes (L.
monocytogenes)), viruses (Norovirus, Hepatitis E, Hepatitis
A, Rotavirus, Adenoviruses, Sapoviruses, and Astroviruses),
and protozoa (Cryptosporidium spp., Cyclospora spp., and
Toxoplasma spp.) (Bintsis 2017; Adley and Ryan 2016).
Foodborne diseases impede socioeconomic development
by straining healthcare systems and harming national econ-
omies, tourism, and international food trade. Around $110
billion is lost annually in productivity and medical expens-
esas a result of contaminated food with foodborne patho-
gens in low-income and middle-income countries (WHO
2022, 2016). In addition, globalization of trade has increased
the risk of the transnational spread of foodborne diseases in
the current scenario. Although they were once limited to
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small communities, many outbreaks of foodborne diseases
now have global consequences (Scott 2003).

Implementing effective monitoring systems that include lab-
oratory readiness is one of the most rational and reasonable
strategies to avoid or minimize the harmful effects of foodborne
diseases in people. Diagnostic food labs play critical roles in
identifying and isolating foodborne pathogens using conven-
tional and molecular diagnostic methods, which are the corner-
stone of pathogen detection and identification. However, these
methods are relatively tedious, time-consuming, laborious, and
expensive. Therefore, on-site quick diagnostic techniques that
are robust, efficient, sensitive, and cost-effective are urgently
needed to speed up the detection of foodborne pathogens.

In the past 25years, biosensors for rapid pathogen detection
have been developed based on integrating a sensitive transducer
and a selective biorecognition element. These biosensors pro-
vide quantitative or semiquantitative analytical measurements
without requiring other chemicals or processing steps (Cesewski
and Johnson 2020), enabling on-site pathogen quantification
and identification that complement laboratory-based methods
like polymerase chain reaction (PCR) and Enzyme-linked
immunosorbent assay (ELISA) (Sohrabi et al. 2021). Biosensors
have been implemented in various analytical techniques for
environmental, medical, food safety, industrial processing,
defence, and security applications (Arora, Chand, and Malhotra
2006). During the COVID-19 pandemic, lateral flow assays

Table 1. Five main types of technologies used to identify foodborne pathogens.

(LFAs) attracted wide attention as one of the most important
biosensing platforms; however, extensive efforts are still being
made in academia and industry to improve the performance of
LFA-based testing (Kim and Lee 2022).

In this review, we highlighted the principles and features of
LFA-based strategies for foodborne pathogens detection in food
samples, focusing on recent improvements in LFA platforms for
ultra-sensitive detection of foodborne pathogens. We also dis-
cussed different approaches to improve LFA sensitivity and
specificity. We also address the utilization of various reporters
for signal amplification, including; nanoparticles (NPs)
(Pashazadeh-Panahi et al. 2021), nanomaterials (Soozanipour
et al. 2021) and other labeling materials. Most importantly, due
to the lack of studies on LFA for the detection of viral food-
borne pathogens in food samples, we summarized our recent
research on developing LFA for the detection of viral foodborne
pathogens. In summary, with continuing improvements, LFAs
may become the fastest (<30min), ultrasensitive (PCR-level),
and “sample-to-answer” point of care (POC) diagnostics test.

Current challenges in conventional methods for
foodborne testing

Current technologies for foodborne pathogen screening
require labor-intensive sample enrichment steps, pathogen

Viral and
parasatic
Special foodborne
Laboratory-Based or Time to Specificity Number of instrument  pathogen
Technology On-Site Results Cost $ (%) Samples/Batches  required detection Limitations Ref
Culture Laboratory-Based Minimum 3-6 100 1 sample Yes No Time-consuming, (Bouguelia
2-3days up laborious, and et al. 2013)
to a week must be followed
by biochemical
tests (‘metabolic
fingerprinting’),
molecular tests
(typically PCR), or
mass
spectrometry.
Needs at least a
BSL2 laboratory.

PCR Laboratory-Based ~ 4h 20 100 Up to 96 samples Yes Yes Expensive, (Liu, Cao, et al.
equipment, 2019)
laborious,
time-consuming,
and highly
trained personnel

LAMP On-Site 2-3h 10-20 100 1-4 samples Yes Yes High rate of false (Buddolla and
positivity due to Kim 2021)
heavy
dependence on
indirect detection
methods like
turbidity and
nonspecific dye

ELISA Laboratory-Based ~4-6h 10 70-90 Up to 96 samples Yes Yes Low sensitivity (Gomaa and

Boye 2015)
(Torok
et al. 2015)

LFA On-Site 15-20 min 1 100 1 sample No Yes Low sensitivity and  (Zhao et al.

specificity 2016a)
(Tominaga
and Ishii
2020)

For sensitivities (%), Please refer to the text in section 2, as it varies significantly depending on the foodborne pathogen.
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Figure 1. Comparison of the sensitivity, price ($least expensive; $$more expen-
sive; $$Smost expensive), and detection time of signal-amplified LFAs com-
pared emerging isothermal nucleic acid amplification diagnostics, PCR, digital
enzyme- linked immunosorbent assay (dELISA), and commercial diagnostic
tools. Figure created using BioRender.com and adapted from (Liu et al. 2021).

isolation and purification, and costly readout machinery.
Table 1 and Figure 1 summarize the advantages and disad-
vantages of the 5 main types of technologies used to identify
foodborne pathogens in food samples.

Conventional live culture remains the gold standard for
foodborne pathogen detection and identification; however,
this method is tedious, laborious, and time-consuming
(2-3days) (Zhao et al. 2014). Culture methods have also
been reported to show poor sensitivity for low-level con-
tamination with a high background of indigenous micro-
flora in the samples, rendering the recovery of the target
organism difficult. Although it is highly specific, conven-
tional culture method sensitivities vary depending on the
type of pathogen. For example, the limit of detection (LoD)
for the detection of; Salmonella Spp was 1.76 colony form-
ing unites/ ml (CFU/ml) (Sharif and Tayeb 2021), for
Campylobacter spp was 0.3-5x10° CFU/mL (Buss et al.
2019), for Shigella spp was 10° CFU/mL (Jiménez, McCoy;,
and Achi 2010), for Listeria spp was <10* cells/mL (Gasanov,
Hughes, and Hansbro 2005), and for Escherichia coli (E.
coli) was 10> CFU/g (J. O’Sullivan et al. 2007). Most impor-
tantly, false negative results may occur due to viable but
non-culturable pathogens. The failure to detect foodborne
pathogens would increase the transmission risk of
pathogens.

One of the most commonly used molecular-based meth-
ods for the detection of foodborne bacterial pathogens is
PCR. PCR is effective clinical procedure for the rapid detec-
tion and recognition of pathogens in the healthcare system
(Kawasaki et al. 2009, 2010); however, they are also expen-
sive, requires specialized equipment and highly trained per-
sonnel, and relies on extensive sample pretreatment and
costly instruments (Buckwalter et al. 2014). PCR have been
used in the detection of numerous foodborne pathogens
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like Salmonella spp (LoD:10° CFU/mL (Tang et al. 2018)),
Campylobacter jejuni (LoD: 102 CFU/ml (Jelenik et al.
2005)), Shigella spp (LoD: 10" CFU/mL (Tang et al. 2018)),
Listeria spp (LoD:10°-10* CFU/mL (Li, Ye, et al. 2020)), and
E. coli O157:H7 (LoD: 10®> CFU/mL (Wei et al. 2018)).

Loop-mediated isothermal amplification (LAMP), has
been regarded as an innovative gene amplification technol-
ogy and emerged as an alternative to PCR-based methodol-
ogies in both clinical laboratory and food safety testing. Due
to its rapidity and sensitivity, LAMP has been used to detect
various foodborne pathogens. LAMP is proven to be more
specific and sensitive as compared to PCR assays for the
detection of foodborne pathogens including; Vibrio parahae-
molyticus (V. parahaemolyticus) (LoD:10 CFU/reaction
(Wang et al. 2013)), Vibro vulnificus (LoD: 2.5x 10°CFU/g
(Han, Wang, and Ge 2011)), Salmonella (LoD: 10' CFU/mL
(Techathuvanan, Draughon, and D’Souza 2010)), S. aureus
(LoD: 3.4 CFU/g (Jiang et al. 2020)), and Shigella (LoD:
5CFU/10mL). Commercial LAMP Kkits are available for the
detection of Enterohemorrhagic Escherichia Coli (EHEC),
Salmonella and L. monocytogenes (Yamazaki et al. 2018)

Antibody-based immunoassays such as ELISA (Shen et al.
2014) are easier to perform than other antibody-based meth-
ods, but it is still difficult to deploy in on-site settings
because of its requirements for special equipment and oper-
ating expertise (Zhao et al. 2014). In addition, the relatively
poor sensitivity of ELISA remains a significant drawback.
Many studies have been performed using ELISA for rapid
detection of foodborne pathogens such as Salmonella (LoD:
10* to 10° CFU/mL (Paniel and Noguer 2019)), Campylobacter
(LoD: 10° to 10° CFU/mL (Hochel et al. 2007), Listeria
(LoD: 6.6x10°> CFU/mL (Portanti et al. 2011)), E.coli (LoD:
6.8x10? to 6.8x10°> CFU/mL (Shen et al. 2014)), and V. par-
ahaemolyticus (LoD: 10* cells (Kumar et al. 2011)).
Commercial ELISA test kit such as BIOLINE Salmonella
ELISA is also available to detect Salmonella in food prod-
ucts. The LoD of this test kit was 1 CFU/25g sample with
a minimum of four of the 20 food matrixes tested (Bolton
et al. 2000). In addition, high-throughput and automated
ELISA systems such as VIDAS (BioMerieux) and Assurance
EIA (BioControl) are available for the detection of food-
borne pathogens (Glynn et al. 2006). Several studies applied
VIDAS for the detection of Salmonella in pork samples,
fruits and vegetables (Vieira-Pinto et al. 2007; Gomez-Govea
et al. 2012), L. monocytogenes in fish samples, beef, pork,
fruits, and vegetables (Vaz-Velho, Duarte, and Gibbs 2000;
Meyer et al. 2011; Gomez-Govea et al. 2012), E. coli O157:H7
in Minas Frescal cheese, fruits, and vegetables (Gomez-Govea
et al. 2012; Carvalho et al. 2014), Campylobacter spp. in
fruits and vegetables (Gomez-Govea et al. 2012) and staph-
ylococcal enterotoxin in raw milk cheese (Cremonesi
et al. 2007).

The recent progress in multi-gene detection technology
includes microarray technology (Call, Brockman, and
Chandler 2001). Microarrays were initially used for the study
of gene expression, but oligonucleotide DNA microarray has
been widely studied for the detection of foodborne patho-
gens. Wang et al. developed a microarray assay that detected
and identified 22 foodborne pathogens (Wang et al. 2007)
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including; S. aureus, L. monocytogenes, V. parahaemolyticus,
Vibrio cholerae, Campylobacter jejuni, Clostridium perfringens,
Shigella spp. Salmonella spp., and Bacillus cereus (B. cereus)
with LoD varying between 10' to 10° CFU/ml (Wang et al.
2007). Despite their high sensitivity, microarrays are not
desirable for microbial food analysis because low to medium
density array will serve as the ideal microarray platform that
can provide reliable results without involving the use of com-
plicated equipment’s and data management. The most signif-
icant disadvantages of microarrays include the low accuracy,
precision, specificity, and high cost of a single experiment.

Chromatographical methods are another standard tech-
nique for food testing (Eugster et al. 2011). They are sensi-
tive and accurate despite their many drawbacks, such as
being time-consuming, tedious, laborious, multi-complex,
and limited for detecting bacterial-borne pathogens. Sun
et al. (Sun et al. 2017) developed a multiplex PCR-based
procedure followed by high-performance liquid chromatog-
raphy (mPCR-HPLC) assay for high-throughput screening
foodborne pathogens, including; Salmonella spp., L. monocy-
togenes, Enterobacter sakazakii, S. aureus, Shigella spp., E. coli
O157:H7, V. parahaemolyticus, Vibrio cholerae, and Vibrio
vulnificus. The detection limit of mPCR-HPLC was 10!
CFU/mL in pure cultures and less than 10> CFU/g in con-
taminated matrixes (Sun et al. 2017).

None of those mentioned above methods perfectly fulfill the
criteria for the urgently required on-site multiplex detection sys-
tem for foodborne pathogens. Recently, LFA has evolved to fill
this gap and to offer performance at the POC that is competi-
tive with laboratory techniques while retaining a rapid format.
In the following sections, the principles and features of LFA-based

strategies for foodborne pathogens detection in food samples
were highlighted, focusing on recent improvements in LFA plat-
forms for detecting bacterial and viral foodborne pathogens.

LFA: definition and assay formats

The LFA is a paper-based platform for detection and quan-
tification of analytes in complex mixtures, where the sample
is placed on a test device, and the results are displayed
within 5-30 min. Atypical LFA has four components: a sam-
ple pad, a conjugate release pad, a nitrocellulose membrane
(NC), and an absorption pad. All four components are lam-
inated onto a sheet of plastic backing. Sandwich and com-
petitive assays are the two standard formats for LFA, and
each has distinct characteristics and benefits.

Sandwich LFA

In the sandwich assay format, three different antibodies are
usually used; (1) conjugate antibodies, immobilized on the
conjugation pad, which recognize one epitope in the target.
These antibodies are linked to reporter particles, (2) capture
antibodies, immobilized at the test line on the NC, which rec-
ognize another epitope of the target, and (3) anti-species anti-
bodies, which are immobilized on the control line. Positive
results are obtained when the conjugated labeled antibody
(Ab) antigen (Ag) complex binds to the antibodies on the test
line, and any extra labeled antibodies are collected at the con-
trol line forming two lines as shown in Figure 2. Negative
results are obtained when the reaction antibody only reacts
with the anti-species antibodies on the control line. Hence,

@ Reporter Particles

Q{f Labelled Antibody
Primary Antibody

Y Secondary Antibody

@ Target

Sample Pad

Conjugate Pad NC

Positive Result %

Absorbant Pad

Negative Result

Test Line

Control Line

Figure 2. Schematic design of a sandwich LFA. When the analyte binds to both the capture antibody immobilized at the test line and the detection antibody, a
colour develops at the test line, indicating a positive result. Figure created using BioRender.com. NC: Nitrocellulose membrane.
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Reporter Particles
Labelled Analyte

Primary Antibody

Target

=}
®
Y Secondary Antibody
[

Sample Pad Conjugate Pad NC

Positive Result

Absorbant Pad

Negative Result

Test Line

Control Line

Figure 3. Schematic diagram shows the competitive format (First setup). The color intensity developed at the test line is inversely proportional to the amount of

analyte. Figure created using BioRender.com.

only one red line will develop at the control line. The quantity
of analyte present in the sample can be determined by the
color intensity that is visible at the test line. Typically, this test
format is used for large analytes with multiple epitopes.

Competitive LFA

There are two different setups that may be used in the com-
petitive immunoassay format. In the first setup (Figure 3),
the labeled analyte is immobilized on the conjugation pad.
When the target is absent in the sample, the labeled analyte
flows and binds to the detection antibody and the secondary
antibody (anti-species) immobilized on the test and control
line, respectively (Sajid, Kawde, and Daud 2015). Hence, two
red lines develop on the test and control lines. When the
target analyte is present in the sample, the unlabeled analyte
competes with the labeled analyte immobilized on the conju-
gation pad and binds to the test line. Whereas the labeled
analyte binds to the secondary antibodies on the control line.
Hence, only a single red line develops on the control line
(Pohanka 2021).

In the second setup (Figure 4), the labeled antibodies are
immobilized on the conjugation pad. When the target is
absent in the sample, the labeled antibodies flow and bind to
the target analyte carrier and the secondary antibody on the
test and control line. Hence, two red lines develop. When the
target analyte is present in the sample, the target analyte
binds to the labeled antibodies immobilized on the conjuga-
tion pad. Hence, these labeled antibodies will not be able to
bind to the target analyte carrier on the test lines. However,
the labeled antibodies conjugated to the target analyte will
bind to the secondary antibodies immobilized on the control
line. Thus, only a single red line develops on the control line.

Reporter agents and reading instruments

An optical signal is generated from reporter particles bound
at the test line in the LFA. This signal can be read qualita-
tively or semi-quantitatively by the naked eye or using an
optical reader. To maximize the sensitivity of an LFA, each
binding event between the target and the reporter should
produce the strongest possible signal. Large reporters usually
result in robust signal per binding event; however, reporter
particles that are too large do not easily flow through the
NC and have fewer opportunities to bind at the test line.
Therefore, a small reporter with a diameter ranging between
20 to 500nm is typically selected for use in LFA.

In recent years, the utilization of novel nanomaterials as
reporter molecules has increased dramatically. Gold nanopar-
ticles (AuNPs) are the most commonly used reporters in
mass-produced tests (Nguyen et al. 2020; Ge et al. 2014;
Quesada-Gonzélez and Merkogi 2018), as they permit
naked-eye detection. This is highly advantageous for quality
applications or applications seeking cost efficiency, as it does
not require an external reader. Combining nanoparticle-based
detection with an external reader may increase reproducibil-
ity and provide quantitative results. The following sections
highlight what we consider to be the most significant
nanoparticles in terms of their readout type (see Table 2 for
a summary of commercially available reporter agents).

Gold nanoparticles (AuNPs)

Since the 1980s, AuNPs have been the most frequently used
detection labels in LFAs (Verheijen et al. 2000; Fong et al.
2000; Shyu et al. 2002). The reasons for their popularity
include (1) production of a robust red color for naked-eye
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® Reporter Particles
o Target Analyte Carrier

ﬁ! Labelled Antibody
Y Secondary Antibody
@ Target

/

1 Y

A Sample Pad Conjugate Pad NC

Positive Result

Absorbant Pad

A

Negative Result

Test Line

Control Line

Figure 4. Schematic diagram shows the competitive format (Second setup). The color intensity developed at the test line is inversely proportional to the amount

of analyte. Figure 4 created using BioRender.com.

Table 2. Advantages and disadvantages of commercially available reporter agents.

Label Advantages Disadvantages
AuNPs +  Qualitative naked-eye detection +  Low sensitivity
« Easy conjugation protocol
«  Strong signal
+ Quantitative detection by external readers (became very
affordable)
Carbon nanoparticles/ + Qualitative naked-eye detection + External reader needed for quantitative detection
carbon nanotubes « High signal-to-noise ratio + Nonspecific adsorption
«  Cheaper than AuNPs +  Weaker signal than AuNPs
«  Very Stable
Latex beads + Qualitative naked-eye detection + External reader needed for quantitative detection
+  Resistant to chemical and physical damage +  Less sensitive
«  Cheaper than AuNPs +  Weaker signal than AuNPs
«  Multiple colors
QDs «  Strong signal + UV external light reader needed for quantitative detection
« Multiple colors + Higher toxicity
UCNPs +  Strong fluorescent signal + Near-infrared laser needed for quantitative detection
« Safer than QDs, as they do not require a UV source + More expensive than QDs
«  Multiple colors
Liposomes + Multiplexing +  Require extra hardware depending on the loaded label

- Easy conjugation

Magnetic nanoparticles -+ Dual magnetic/colourimetric signal
« High signal-to-noise ratio
« Very sensitive

+ Sensitive to pH and ionic strength
+  Require a non-optical reader for magnetic measurements

detection, (2) availability in different sizes and shapes, (3)
low toxicity, (4) ease of functionalization via covalent bond-
ing (Parolo, de la Escosura-Muiiz, and Merko¢i 2013; Di
Nardo et al. 2019; Mao et al. 2009), and (5) high stability.
The size and shape of conventional AuNPs can also be mod-
ified to achieve higher sensitivity. In addition, the optical
signal of AuNPs in colorimetric LFAs can be amplified by
depositing enzymes and silver ions (Sajid, Kawde, and Daud
2015). AuNPs produce red bands at the test and control
lines of the LFA when acting as reporter particles. AuNPs
can also act as carriers if coupled with an antibody modified

with horseradish peroxidase (HRP) enzyme. Once substrates
are added, they produce insoluble chromogens, which can-
not be moved by the flow, concentrating the color at the test
and control lines. LFAs that utilize the HRP enzyme produce
two different optical signals: one produced by the red color
of the AuNPs and the other by the substrate of the HRP,
which is more sensitive, achieving an ‘on-demand’ tuning of
the biosensing performance (Parolo, de la Escosura-Muiiz,
and Merkogi 2013).

Another method to enhance the sensitivity of AuNPs is
by using silver ions, which tend to gather around the
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10 N.YOUNES ET AL.

nano-gold in the form of silver under the action of the
reducing agent. Silver enhancement technology has been fre-
quently used in immunogold assays to amplify the signal of
the colloidal gold probe (Rodriguez et al. 2016). Table 3
summarize LFA studies in which AuNPs were used for the
detection of foodborne pathogens.

Magnetic nanoparticles (MNPs)

Recently, iron oxide magnetic nanoparticles (MNPs) have
received interest as promising materials for rapid and
high-sensitive diagnosis methods due to their unique prop-
erties (Xu et al. 2019). When an external magnet is present,
MNPs can function as "nano-magnets" in the system. They
move very quickly in the direction of the external magnet,
but as soon as the magnetic field is removed, they lose all
of their magnetism (Ha et al. 2018). In addition, it is a
well-established fact that MNPs are able to retain their mag-
netic properties while forming stable conjugates with a wide
range of biomaterials. Due to these properties, MNPs enable
magnetic pre-concentration of a target from a very diluted
concentration via two steps: (1) targets interact with biocon-
jugated MNPs, and (2) target-bioconjugated MNPs are col-
lected with an external magnet and re-dispersed into a small
volume of matrix for the pre-concentration of samples to
improve the detection sensitivity. Most importantly, MNPs
offer low background noise since the biological materials
that do not interact with MNPs are non-magnetic (Gowri,
Ashwin Kumar, and Suresh Anand 2021). Furthermore,
MNPs have a high surface area, which enables quick inter-
action between the target and antibodies conjugated to
MNPs, which in turn reduces the amount of time required
for detection. Therefore, MNPs have been successfully used
for the quick and extremely sensitive detection of a wide
variety of target analytes, ranging from viruses (Castilho
et al. 2011; Sanchez-Cano et al. 2021) and bacteria (Pappert
et al. 2010; Mun and Choi 2015) to food allergens (Speroni
et al. 2010; Yin et al. 2022).

Because MNPs are capable of transmitting both an optical
signal and a magnetic signal, they make excellent labels for
LFAs. Their dark color allows them to be used as conven-
tional optical labels, and their magnetic field enables easier
functionalization, sample pretreatment (Nash et al. 2012),
and sensitive readout. Although optical readouts rely heavily
on labels on the NC, magnetic field sensing permits the use
of all labels collected along the test line (Quesada-Gonzalez
and Merkoc¢i 2018). The major advantage of MNPs is that
they can be detected and quantified by means of external
devices, allowing the quantitative detection of the target.
However, MNPs are more expensive to use compared to
AuNPs. Table 3 summarize LFA studies in which MNPs
was used.

Carbon nanoparticles

Since their discovery in 1991, Carbon nanoparticles (CNPs)
(Mao et al. 2009; Noguera et al. 2011a) and carbon nano-
tubes (Qiu et al. 2015; Yao et al. 2016) have emerged as one

of the most promising nanomaterials for the development of
biosensors (Iijima 1991). In addition to their large surface
area, carbon nanotubes exhibit superior electrical conductiv-
ity, mechanical strength, and chemical inertness (Ajayan
1999). Most Importantly, Carbon nanoparticles are preferred
for their high signal-to-noise ratio (black to a white back-
ground) (Mens et al. 2008; Amerongen, Barug and Lauwaars
2005) and their excellent sensitivity, i.e., low picomolar by
visual inspection (Gordon and Michel 2008). Further, they
are inexpensive to produce, resistant to aggregation, and
easy to functionalize. Carbon nanotubes are known to have
a high surface specificity and allow various alterations with
functional groups enabling sensitive protein recognition
based on electron transfer processes. In addition, carbon
nanotubes have been shown to have excellent chemical sta-
bility. This has led to the development of CNT-based sensor
systems for biorecognition, diagnostics, and therapeutic pur-
poses such as DNA  sensors (Sanchez-Pomales,
Santiago-Rodriguez, and Cabrera 2009), chemical sensors
(Kong et al. 2000), and immunosensors (Okuno et al. 2007).
Table 3 summarize LFA studies in which carbon nanoparti-
cles were used.

Fluorescent nanoparticles

Fluorescent nanoparticles (FNs) are frequently recommended
for the detection of targets at low concentrations and/or
quantitative applications. This incurs extra costs and neces-
sitates the use of an external reader. Quantum dots (QDs),
upconverting nanoparticles (UCNPs), and liposomes encap-
sulating fluors are examples of fluorescent LFA reporters.
QDs, also known as fluorescent semiconductor nanocrystals,
can be used to develop highly sensitive LFAs because of
their bright signal, resistance to photobleaching (Yan et al.
2016; Bruno 2017), chemical and thermal stability, and ease
of surface modification (Wang, Meng, et al. 2019). The size
of QDs ranges from 1nm to 10nm, which enables them to
disperse well in water and to be combined with biomole-
cules. When activated by UV light, QDs display intense pho-
toluminescence, which can be adjusted by modifying the
elemental composition and size of the QDs. Therefore, QDs
are appropriate for multiplexed detection (Medintz et al.
2005; Wang, Shen, et al. 2020). Nevertheless, the formation
of QD-biomolecule complexes are difficult, resulting in ren-
dering their application compared to AuNPs (Costa-Fernandez,
Pereiro, and Sanz-Medel 2006).

UCNPs have been employed as labels in LFAs since the
early 2000s (Niedbala et al. 2001b) (Corstjens et al. 2001;
Hampl et al. 2001). Their near-infrared excitation wave-
lengths do not generate membrane autofluorescence, and
their strong emission in the visible spectrum makes them
more sensitive than QDs as detection molecules in LFAs
(Kim et al. 2018). However, the need for an expensive and
bulky near-infrared laser makes the incorporation of UCNPs
into LFAs impractical for many on-site applications (Kim
et al. 2018; He et al. 2018; You et al. 2017) (Gong et al. 2019).

Many studies have examined the use of fluorescent dyes
added to liposomes to increase the sensitivity of LFAs.
Liposomes can be combined with a wide range of



fluorescent dyes capable of producing a strong fluorescence
signal, and the composition of the lipid bilayer can be
altered to permit straightforward bioreceptor functionaliza-
tion of the liposome surface (Khreich et al. 2008; Baeumner
et al. 2004; Edwards and Baeumner 2006; Edwards, Korff,
and Baeumner 2017). The two fundamental disadvantages of
liposomes as LFA indicators are their complex production
processes and poor stability. Table 3 summarize LFA studies
in which fluorescent nanoparticles were used.

Improving the sensitivity and specificity of LFAs
Selection of the best antibody pair

The specificity of LFAs can be increased by reducing non-
specific binding (NSB) and by using antibodies with high
affinity for the analyte. Several sample processing techniques
are available to reduce NSB, which leads to false-positive
findings. For example, when detecting analytes from whole
blood, blood cells and large proteins are often removed from
the blood by filtering or centrifugation prior to LFA (Liu
et al. 2021). It was also shown that preheating urine
decreased the activity of thermally unstable biomolecules,
resulting in fewer false-positive findings when LFA was used
to detect cryptococcal antigens (Nam, Thaxton, and
Mirkin 2003).

The LFA efficacy is heavily dependent on the affinity pro-
teins (i.e., antibodies) that recognize the target. Maximum
specificity can be achieved by molecules with optimal affin-
ity (Bembenek et al. 2011; Brooks et al. 2008; Wu,
Milutinovic, et al. 2015). Antibodies are a typical option
because of their sensitivity as well as their specificity when
it comes to the specific detection of very low concentrations
of the analyte. While aptamers and various other affinity
reagents are also options, antibodies are the primary affinity
reagent used for lateral flow rapid tests.

The selection of the optimal antibodies is a critical aspect
of LFA design. The ultimate performance of the LFA mainly
depends on the specificities of the antibodies used to bind a
target in the specimen. The decision of whether to utilize
polyclonal or monoclonal antibodies is one of the earliest
decisions that must be made in the process of LFA develop-
ment. Polyclonal antibodies are derived from the serum of
animals that have been vaccinated. They are made up of
complex mixtures of antibodies, each of which was created
by a unique B cell clone in the animal. There is an inherent
lack of consistency from one animal to the next, and even
fluctuation from one bleed of the same animal to the next
since every host species and even every individual host will
have a distinct immunological response. On the other hand,
monoclonal antibodies are produced in the laboratory; thus,
they are homogenous. Monoclonal antibodies are unique in
that they are only able to bind to a single epitope of the
target and were generated by a single B cell clone. Therefore,
polyclonals may have a stronger recognition ability owing to
multiple kinds of antibodies targeting different epitopes of
the target, but monoclonals are more consistent since they
target just one epitope of the target. This is because
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polyclonals target numerous antigens simultaneously. An
additional benefit is that the cell clones that are used in the
production of monoclonal antibodies may be regenerated
endlessly in the laboratory, but the animal hosts that are uti-
lized in the production of polyclonal antibodies will ulti-
mately perish.

Extensive efforts have been made to enhance the sensitiv-
ity and specificity of LFAs for more precise and effective
on-site diagnostics. Assay optimization and sample enrich-
ment are two ways to increase sensitivity (Soh, Chan, and
Ying 2020; Nguyen et al. 2020; Bishop et al. 2019). Signal
amplification can boost LFA sensitivity close to that of
PCR-based assays. Several other approaches to improve LFA
sensitivity are promising but require extended testing time
(Bishop et al. 2019; Rodriguez et al. 2016). Hence, balancing
sensitivity and test duration is a critical challenge for the
future development of on-site assays. LFA specificity is pri-
marily increased by optimizing the test and applying
high-affinity antibodies and reagents with high specificity.

Improving sensitivity by assay optimization

Signal amplification

Chemical enhancement of colorimetric signal. The LFA
sensitivity can be improved by increasing the colorimetric
signal of the test. A quick and easy way to boost the
signal is by chemically increasing the colorimetric contrast
of the positive test line. This enhanced contrast can be
achieved using different methods, including;
enhancement, double gold conjugation, and induced gold
aggregation (Liu et al. 2021). In the silver enhancement
method, Ag-reducing reagents are flowed through the
LFA strip after running the sample, and Ag is nucleated
on captured AuNPs in the test area. The Ag layer forming
on the AuNPs reporter particles amplifies the color
intensity of the test area. This method significantly
enhances the sensitivity by 10-fold compared to traditional
LFA (Serebrennikova, Samsonova, and Osipov 2018;
Anfossi et al. 2013). For the double gold conjugation,
secondary AuNPs are used to bind with the primary
AuNPs that are already captured on the test area leading
to enhanced color intensity. This binding can be
accomplished through the utilization of the high biotin-
streptavidin binding affinity (Shen and Shen 2019) or by
employing primary and secondary antibodies, which is
similar to the basis of indirect ELISA. It was shown that
the double gold conjugation method has significantly
increased the sensitivity of LFA by approximately 30-fold
for the detection of the Hepatitis B virus (Shen and Shen
2019). The concept of the induced gold aggregation
technique is similar to the double gold conjugation
approach. However, more AuNPs are coated on the
captured AuNPs, thus better amplifying the color intensity.

silver
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Label design. The label design plays an essential role in
amplifying the colorimetric contrast of LFA. Replacing
the traditional small (20-40nm) nanoparticles employed
with labels that have stronger colorimetric contrast is the
easiest way to enhance the signal while maintaining the
LFA format. Stronger contrast can be achieved by
modifying the size and structure of the reporter particles
or by replacing the particles with clusters or particles
made of another metal, metal oxide, or organic material.
For instance, gold-nanoparticle-decorated silica nanorods
(AuNPs -SiNRs), achieved a 50-fold lower LoD in the
detection of rabbit IgG than traditional LFA with AuNPs
(Xu et al. 2014). Similarly, polystyrene microbeads were
used to enhance the colorimetric contrast of AuNPs.
Utilizing polystyrene microbeads improved the sensitivity
of LFA for the detection of influenza virus by 64-fold and
16-fold over that achieved with 10nm and 30nm AuNPs
-based LFAs, respectively (Liu et al. 2020).

Enhancing LFA reagents. Enhancing LFA reagents can be
used to induce catalytic reactions in the test area to
amplify the signal contrast. Catalytic amplification is
usually achieved by utilizing enzymes or nanozymes to
induce oxidation/reduction reactions in the test area.
HRP is one of the most commonly used enzymes in LFA
platforms. In LFA, HRP is linked to detection molecules
(i.e., antibodies) that are conjugated with reporter particles
immobilized on the conjugation pad. After the sample
flow through the LFA is completed, the HRP substrate
and H202 solution are flowed through the LFA after
washing to induce enzymatic amplification and enhance
the optical contrast at the test line (He et al. 2011). Parolo
et al. reported an increase in sensitivity up to 1 order of
magnitude compared to traditional AuNPs -LFAs by
applying enzymatic amplification (Parolo, de la Escosura-
Muiiiz, and Merkoci 2013).

Nanozymes, which are artificial enzymes based on nano-
materials, were rapidly developed as surrogates of natural
enzymes. Nanozymes have several advantages over natural
enzymes, including higher catalytic stability, an easier modi-
fication process, and lower manufacturing costs (Jiang et al.
2019). For instance, thin platinum (Pt) shells on top of gold
(Au) nanoparticles (NPs) (Au@PtNPs) was able to produce
an LoD of 0.8 pg/mL. This finding is significantly more sen-
sitive than commercial ELISA, which has an LoD of >1pg/
mL (Loynachan et al. 2018).

External readers. Amplification of LFA signals may also
be achieved with the assistance of external readers. When
labeled particles that change in color intensity are used in
LFA, a charge-coupled device or a complementary metal-
oxide-semiconductor camera detection device will be
utilized for assay quantification (Gussenhoven et al. 1997).
In case of using fluorescent labeled particles, a
photodetector with an excitation light source is used for

assay quantification (Ho and Wauchope 2002). The laser
beam, or electric potential, or magnetic field can be used
to activate/concentrate captured nanoparticle labels on the
test line, resulting in an enhanced signal (Draz and
Shafiee 2018). This amplified signal can then be detected
by sensitive optical, electrical, or magnetic sensors/
electrodes, respectively, that can distinguish between
minute signal variations and background noise. Among
these, LFA readers utilizing image sensors, such as a
charge-coupled device or metal-oxide-semiconductor
camera, are most commonly used because of the
advantages of their simple structure and small size (You,
Park, and Yoon 2013). An image sensor-based LFA reader
acquires an image of the test line (aggregated labeled
particles, antigens, and antibodies). Then, the pixel
intensity of the test line, which changes according to the
concentration of the target analyte, is analyzed (Sajid,
Kawde, and Daud 2015). However, problems such as the
high possibility of false positives and false negatives and
limitations for accurate and multiplex quantification have
been observed in the utilization of optical readers.

Recently, our team have designed and developed an ultra
high-sensitivity inductive transducer, called the Femtogmag,
for the detection and quantification of superparamagnetic
nanoparticle reporters that are immuno-captured on the test
line (Khodadadi et al. 2019). As a proof of concept, the fem-
toMag was used to quantify the hCG pregnancy hormone by
quantifying the number of 200nm magnetic reporters
immuno-captured within the test line of the LFA strip. A
sensitivity of 100 pg/mL has been demonstrated. Upon fur-
ther design and control electronics improvements, the sensi-
tivity is projected to be better than 10pg/mL. Magnetic
reporters provide several advantages compared to other opti-
cal reporters (1) Magnetic fields do not interact with biolog-
ical materials, so the signal is stable (2) magnetic fields are
not affected by LFA media, so every magnetic reporter
within the test line contributes to detection; and (3) the
properties of magnetic reporters can be tuned to match the
biomarkers to optimize trapping efficiency and detection
(Yoshino, Maeda, and Matsunag 2010; Yu et al. 2022; Jacinto
et al. 2018). The femtoMag also provides a number of tech-
nological advancements over the current state-of-the-art
magnetic biosensor technologies, including (1) high sensitiv-
ity, (2) Quantitation, (3) simple and easy integration with
LFA technology, (4) portable electronic controls, and (5)
low-cost manufacturability. The low-cost easy-to-use fem-
toMag platform offers high-sensitivity/high-precision target
analyte quantification and promises to bring state-of-the-art
medical diagnostic tests to the POC.

Optimization of the assay kinetics

Optimization of assay kinetics, such as transport and reac-
tion kinetics, is essential for LFA development and can be
used to increase sensitivity. The assay kinetics affect the
selective binding (SB) and NSB of the antibodies and ana-
lytes, which determine the sensitivity and specificity of the



assay (55-57). Assay kinetics should be optimized to increase
SB and reduce NSB, thus, enhancing the assay sensitivity
(Zhan et al. 2020).

The sensitivity of LFAs is limited by the reaction rate
(Zhan et al. 2017b; Mosley et al. 2016). Increasing the reac-
tion rate can help in boosting assay sensitivity. Hence, max-
imizing the SB. However, the transport of molecules and
labels is limited by the diffusion rate, and the surface reac-
tion is limited by the reaction rate. Increasing the reaction
kinetics is associated with the formation of the sandwich
ternary; conjugation/target/capture antibody. Liang et al.
showed that the sandwich ternary develops more slowly
when the target binds first with the conjugated label and
then the capture antibody in a premixing flow compared to
binding with the capture antibody and then the conjugated
label in a sequential flow. For instance, the LoD of the LFA
platform for detecting malarial antigens from a premixing
flow was reported to be 4- to 10-fold higher than that
obtained from a sequential flow (Liang et al. 2016).

Improving sensitivity by sample enrichment

The reaction rate coefficient is relatively constant for most
immunoreactions between antigens and antibodies. It is pos-
sible to effectively increase the reaction rate and, as a result,
boost the sensitivity by increasing the number of captured
labels on the test area by preconcentrating the food sample
before introducing the sample into the LFA test. Magnetic
separation is one technique that may be used for
pre-concentration, which produces a 10-fold increase in sen-
sitivity (Sharma et al. 2019). Alternatively, Mashayekhi et al.
used an aqueous two-phase (Bradbury et al. 2019) micellar
system composed of the nonionic surfactant Triton X-114 to
concentrate a model protein and reported a 10-fold increase
in sensitivity from 0.5pg/mL to 0.05ug/mL (Mashayekhi
et al. 2012).

Analytes can also be preconcentrated during the LFA
flow phase. The comparatively low LoD of LFAs may be
attributed to the fact that low target concentrations induce
kinetically limited surface reactions. To overcome this prob-
lem, Moghadam et al. preconcentrated the antigen-conjugation
complex into a narrow band and transported it to the cap-
ture line using the isotachophoresis technique. This approach
increased the LoD by 400-fold and 160-fold for 90s and
5min reaction, respectively (Moghadam, Connelly, and
Posner 2015).

Another way to boost the reaction rate and enhance the
sensitivity is to increase the number of efficient binding sites
for the conjugated labels by altering the structure of the
label or changing the orientation of the detection molecules.
For instance, the number of binding sites can be increased
by increasing the size of AuNP labels (Zhan et al. 2017a) or
by functionalizing the particle surface with several layers
(Lou et al. 2019) to allow for the loading of additional
detection molecules.

Improved conjugation approaches have the potential to
offer more effective binding sites than standard physical
adsorption when the orientation of the detection molecules
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is forced in a specific direction (Trilling, Beekwilder, and
Zuilhof 2013; Di Nardo et al. 2019; Welch et al. 2017). A
particular orientation can be achieved through covalent
binding mediated by a chemical layer or through bioaffinity
binding mediated by a biomolecular layer (Trilling,
Beekwilder, and Zuilhof 2013; Di Nardo et al. 2019; Welch
et al. 2017). It is also necessary to adjust the coverage of the
detection molecules in order to maximize the affinity for the
analyte and get rid of any steric hindrance that may be gen-
erated by a thick layer of detection molecules (Saha, Evers,
and Prins 2014). Another way to boost the sensitivity of the
LFA is to add more effective binding sites to the test line.
For instance, the use of three-dimensional “proteinticle”
probes with multiple self-assembled and orientated peptides
was shown to give a 4-fold to 8-fold improvement in sensi-
tivity (Lee et al. 2015). In a different approach, the addition
of cellulose nanofibers to the NC enabled more capture mol-
ecules to be loaded and increased the assay sensitivity by
20-fold (Tang et al. 2019; Quesada-Gonzalez et al. 2019).

Commercially available LFAs for the detection of
foodborne pathogen

The benefits of LFAs for the detection of food pathogens
include multiplexing capabilities, dependability, and adher-
ence to the same standards of precision as traditional detec-
tion techniques. In addition, LFAs are user-friendly and
capable of producing qualitative, semiquantitative, or quanti-
tative results after only a few (10-30) minutes. Most impor-
tantly, LFAs are economical, as their rapid findings save
operational costs by accelerating product release while main-
taining product dependability. Table 4 summarizes the char-
acteristics of commercially available LFAs for the detection
of foodborne pathogens.

Recent advances in LFA-based testing for foodborne
pathogens

Bacterial foodborne pathogens

Bacteria are the most abundant type of foodborne pathogens
that threaten human health (Mead et al. 1999; Hariram and
Labbé 2016). Hence, the detection of foodborne bacterial
pathogens is of supreme importance to guarantee food qual-
ity. Biochemical characterization and microbiological identi-
fication are used as conventional methods to detect
foodborne bacteria (Byrne et al. 2015). Recently, LFA was
shown to be a quick and sensitive alternative approach to
identifying foodborne pathogens (Keiser and Utzinger 2005;
Law et al. 2014; Hwang et al. 2016; Zhao et al. 2016a; Li
et al. 2021). Table 3 lists recent studies on LFAs for the
detection of foodborne bacterial pathogens.

Anthrax is an infectious disease caused by Bacillus
anthracis (B. anthracis). A combination of immunomagnetic
separation and LFA has been used to detect B. anthracis in
milk (Fisher et al. 2009a; Wang, Tian, et al. 2015). Fisher
et al. (Fisher et al. 2009a) studied the immunocapture of B.
anthracis spores using anti-spore antibodies coupled with
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carboxylated magnetic beads and were able to recover 95%
of B. anthracis spores when 10°-107 spores were inoculated
in 1mL milk (Fisher et al. 2009a).

E.coli is the etiological agent of many waterborne and
foodborne diseases (Singh, Sharma, and Nara 2015a). Wu
et al. used an aptamer-based biosensor to rapidly detect E.
coli O:157:H7 (Wu, Milutinovic, et al. 2015). This assay uti-
lized two distinct aptamers, each designed to precisely target
the outer membrane proteins of the bacterium. The first
aptamer enriched E. coli 0:157:H7 cells on magnetic beads,
and the other was used as a signal reporter. The signal pro-
duced by the second aptamer was amplified using an iso-
thermal strand displacement amplification technique. Positive
signals, generated as red bands on the test line, could be
produced by 10 CFU/mL of E. coli O157:H7 (Wu,
Milutinovic, et al. 2015). Bruno et al. (Bruno 2014) used a
sandwich-format LFA sensor to detect E. coli. In this system,
amino end-labeled capture aptamers were immobilized on
an analytical NC using UV light with a wavelength of
254nm. When E. coli cells passed through the capture line,
they were captured by the amino group on the membrane
surface. The aptamer-conjugated colloidal gold demonstrated
a visible LoD between 3x10%nd 6x10° E. coli cells in the
buffer (Bruno 2014).

Liu et al. developed a simple and ultra-sensitive LFA for
the rapid recognition of Salmonella in food samples. They
used AuNPs conjugated with a DNA probe that was comple-
mentary to the 16S ribosomal DNA and RNA of Salmonella.
The synthesized single-stranded DNA had an LoD of five
femtomolar. For cultured Salmonella, the nucleic acids of 107
bacteria were rapidly detected in 30min. Additionally, with
silver enhancement, the LoD was improved to detect 10*
bacteria, which is lower than the human infectious dose of
foodborne Salmonella (10° CFU) mL-1. Because of its low
cost, high sensitivity, high specificity, and ease of use, the
LFA developed by Liu et al. may be a valuable tool for
microbial detection in large-scale diagnostic or food safety
applications in impoverished nations (Liu et al. 2013b).

Wang et al. developed an LFA strip biosensor that could
detect Salmonella enteritidis (S. enteritidis) with an LoD of
10> CFU/mL using positively charged, surface nitrogen-rich,
carbon nanoparticles (pNPs) made by calcination and etch-
ing procedures (Wang, Yao, et al. 2019). These nanoparticles
not only generate a signal but also function as an adsorbent
to trap bacteria (Wang, Yao, et al. 2019). Bacterial cells stick
to the pNCs by electrostatic contact and hydrogen bonding,
and this complex is then selectively recognized by an
anti-bacterial antibody coated on the test line, causing the
color of the test line to progressively darken. The pNPs were
able to recover 85-100% of Salmonella from various food
specimens; however, the generalizability of the approach is
currently limited by the availability of suitable antibodies
(Wang, Yao, et al. 2019). Taking advantage of simplicity,
label-free, convenience, and sensitivity, the pNC-based LFA
has the application potential for pathogenic microorganisms
monitoring in food safety and early clinical diagnosis fields
(Wang, Yao, et al. 2019).
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Viral foodborne pathogens

The LFA research and commercialization for the detection
of viral foodborne pathogens are more hindered compared
to those for bacterial foodborne pathogens. The bacterial
detection techniques cannot be used for viral detection due
to many factors; (1) viruses are far more complicated to cul-
ture and amplify compared to bacteria, which often cannot
be enriched (Chhabra and Vinjé 2016), (2) viruses are usu-
ally present in small quantities in food matrices and cannot
proliferate in host-free environment, (3) the size of viruses
range from 20 to 400nm, while the size of bacteria ranges
from 1 micron to 5 microns. Therefore, the sensing plat-
forms developed for bacterial detection must be significantly
adjusted in order to identify viral pathogens due to their
extremely smaller size. (4) the composition of cell surface
proteins of bacteria is not comparable with the hemaggluti-
nin and neuraminidase compositions of viruses, and this
necessitates the selection of specific biorecognition elements
for the detection of viral-specific proteins, and (5) viruses
are often present with lower copy numbers compared to
bacteria in food samples matrix, which demands superior
sensitivity of the virus detection biosensors to be at least
attomolar or picomolar level (Neethirajan et al. 2017).
Therefore, separation, pre-concentration, and purification of
viral pathogens from food samples are crucial toward sensi-
tive virus detection using LFA. Nevertheless, due to the het-
erogeneity in genome and surface structures among viruses,
a universal viral extraction technique would be extremely
difficult for the on-spot rapid and easy foodborne viral
detection from food samples.

Our team is currently working to develop LFA for the
detection of viral foodborne pathogens; Norovirus (NoV)
and Hepatitis E (HEV). Using europium nanoparticles, we
were able to detect NoV at a concentration as low as 10ng/
mL (Work in Progress). In addition, using AuNPs, we were
able to detect HEV at a concentration as low as 5ng/mL
(Work in Progress). Currently, we are working to generate a
novel quantitative magnetic immunoassay for the detection
of foodborne pathogens, NoV and HEV. Using the fem-
toMag as a reader (Khodadadi et al. 2019), the LFA will
have sensitivity rivaling those of central laboratory instru-
ments, which will enable rapid, high-quality quantitation of
viral levels and can serve as a simple, low-cost, easy-to-use
point-of-need analytical platform for rapid and reliable early
infection detection of foodborne pathogens associated with
acute gastroenteritis from food samples.

Conclusion and future perspectives

Various contaminants threaten food quality and pose threats
to human health. Most current methods to detect food con-
taminants are difficult to use on-site because they require
special laboratory equipment and skilled personnel. LFAs
offer many advantages for the rapid detection of foodborne
pathogens, including cost-effectiveness, simplicity, rapidity,
and ease of use in on-site settings. Another important
advantage of LFAs is that they can analyze different analytes
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simultaneously, which is of supreme importance. Current
challenges for LFA platform development for the detection
of foodborne pathogens include (1) enhancing the signal-to-
noise ratio to reduce background noises and increase detect-
able signals (2) enhancing detection specificity and sensitivity;
(3) improving storage duration; (4) allowing user-friendly
and unskilled operation (Mangal et al. 2016).

With the changing of the global demographic and epide-
miologic structure, as well as food processing and harvesting
systems, We can expect new foodborne viruses to emerge in
society through both animal and plant-derived foods. A
rapid and sensitive detection system can reduce ongoing
transmission of pathogens as well as play a crucial role in
preventing pathogen transmission through early detection
and control of foodborne illness outbreaks.

Various LFAs for food safety monitoring are commercially
available; however, their widespread acceptance is hindered
by their lack of sensitivity. The sensitivity, reproducibility,
and multi-analyte capabilities of LFAs must be improved
substantially for LFA-based food safety evaluation to be
adequate.
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