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Abstract: Euphorbia is one of the largest genera in the Euphorbiaceae family, comprising 2000 species

possessing commercial, medicinal, and ornamental importance. However, there are very little data

available on their molecular phylogeny and genomics, and uncertainties still exist at a taxonomic level.

Herein, we sequence the complete chloroplast (cp) genomes of two species, E. larica and E. smithii,

of the genus Euphorbia through next-generation sequencing and perform a comparative analysis with

nine related genomes in the family. The results revealed that the cp genomes had similar quadripartite

structure, gene content, and genome organization with previously reported genomes from the same

family. The size of cp genomes ranged from 162,172 to 162,358 bp with 132 and 133 genes, 8 rRNAs,

39 tRNA in E. smithii and E. larica, respectively. The numbers of protein-coding genes were 85 and

86, with each containing 19 introns. The four-junction regions were studied and results reveal that

rps19 was present at JLB (large single copy region and inverted repeat b junction) in E. larica where

its complete presence was located in the IRb (inverted repeat b) region in E. smithii. The sequence

comparison revealed that highly divergent regions in rpoC1, rpocB, ycf3, clpP, petD, ycf1, and ndhF of

the cp genomes might provide better understanding of phylogenetic inferences in the Euphorbiaceae

and order Malpighiales. Phylogenetic analyses of this study illustrate sister clades of E. smithii with

E. tricullii and these species form a monophyletic clade with E. larica. The current study might help

us to understand the genome architecture, genetic diversity among populations, and evolutionary

depiction in the genera.

Keywords: chloroplast genomics; genus Euphoria; comparative analyses; Euphorbiaceae

1. Introduction

Plants have chloroplasts (cp) that help in photosynthesis [1]. The genomic component of cp is

composed of circular and double-stranded DNA molecules [2]. Moreover, it is very essential for fatty

acids, starch, and pigments biosynthesis [3]. The chloroplast contains its own independent genomic

component, which is highly conserved in angiosperms. The chloroplast genome possesses certain

characteristics such as small single copies, multiple copies, and a simple structure [4]. Unlike the other

genomes, such as the nuclear genome, which has more repetitive sequences, the mitochondrial genome

in which frequent rearrangements of nucleotide occur, the chloroplast genome is conservative [5].

The chloroplast genome is maternally inherited in angiosperm, having its own independent evolutionary

route [6]. The chloroplast genome shows collinearity among the plant kingdom, which is why
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phylogenetic trees are constructed on the basis of chloroplast data, and the genome structure of

chloroplast provides information regarding the specie origin, evolution, and also the differences

between closely related and other species [7]. In recent years, with the advent of advanced sequencing

technology, more chloroplast genomes have been sequenced [4]. In this study, we sequenced the

complete chloroplast genome of ecologically endangered species E. smithii and E. larica and performed

a comparative analysis with other genomes from the Euphorbiaceae family.

The Euphorbiaceae (Spurge family) is one of the largest families in angiosperm and comprises

300 genera and almost 7500 species [8]. Euphorbia larica Boiss. and Euphorbia smithii S. Carter belong

to the genus Euphorbia, which is the largest genus in the Euphorbiaceae family, comprising almost

2000 identified species, which mostly produce latex and possess a unique flower structure [9]. The genus

is estimated to have originated in Africa approximately 48 million years ago and expanded to the

American continents through two single long-distance dispersal events, i.e., 30 and 25 million years

ago [10–13]. Euphorbia is an ecologically, medicinally, and commercially important genus in the

Euphorbiaceae family, and various indigenous based traditional folk recipes are utilized as medicines

for curing skin diseases, intestinal parasites, gonorrhea, warts, and migraines [14]. The Euphorbia species

constitutes monocyclic diterpenoids that possess anti-bacterial, anti-cancer, anti-HCV, and analgesic

activities [15–17]. Some plants of this genus secrete a sap which prevents the growth of other species

and shows their habitat dominance feature [18]. In addition, some plants from this genus (for example,

E. pulcherrima) is used for ornamental purposes [19,20].

In the case of E. larica and E. smithii, E. larica is native and widely found in northern regions of

Oman [21], whilst E. smithii (near-threatened) was once considered endemic to Oman but has also been

found in Yemen [22]. E. larica is a woody species with a self-supporting habitat, whereas E. smithii

is a shrub [23]. The species are rich in flavonoids [23], alkaloids [9], and terpenoids [23]. The latex

of E. smithii is used for veterinary medicines at a local level [24]. Similarly, the latex derived from

E. larica is used to treat the camel parasite [25]. There are several examples of understanding the

genetic diversity of the Euphorbia species, such as E. telephioides [26] and E. pulcherrima [27]. However,

no study has been performed on E. larica and E. smithii due to the lack of genome or related sequence

data. Understanding the genetic diversity is essential to ensure increased conservation efforts for the

decline of such endemic or native species in the world. Looking at the importance of these species,

we sequenced the complete chloroplast genome of two important species, E. larica and E. smithii,

and performed comparative analysis with related species (E. esula, E. tirucalli, M. esculanta, J. curcas,

H. brasiliensis, R. communis, V. fordii, C. tiglium, and D. tonkinensis). In our study, the sequencing of

complete chloroplast genomes of E. larica and E. smithii encourages and provides a basis for a more

detailed study of chloroplast molecular biology and also helps in the genetic breeding and molecular

evolution of this threatened species. This study also provides details of evolutionary analysis and helps

in the classification of this morphologically diverse species. Some previous studies have suggested

that this group has been difficult to discern mainly due to homoplasious morphological characters and

inadequate taxon sampling in previous phylogenetic studies [28].

2. Results

2.1. Comparative Characteristics of Chloroplast genomes

The chloroplast genome of the Euphoria species showed a typical tetrad quadripartite structure

comprising (i) small single copy, (ii) large single copy, (iii) inverted repeat A, and (iv) inverted

repeat B that are mirror images of each other (Figure 1A,B). The complete chloroplast genome of

E. smithii was 162,172 bp, which is 186 bp less than E. larica (162,358 bp). The two sequenced genomes

were compared with two from the Euphorbia genus (E. esula and E. tirucalli) and seven (M. esculanta,

J. curcas, H. brasiliensis, R. communis, V. fordii, C. tiglium, and D. tonkinensis) other cp genomes from the

Euphorbiaceae family. The large single-copy region (LSC) of E. smithii was observed with a length of

91,158, while the LSC of E. larica was 91,537 bp in length. The length of the small single copy region of
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E. smithii (18,603 bp) was 364 bp larger than E. larica (18,239 bp). The smallest IR region length was

10,100 bp in C. tiglium and the highest was observed in the R. communis (27,347 bp). Overall, there were

little differences among the two sequenced genomes, and the main differences were in the LSC and

SSC regions. The complete chloroplast genome ranges from 150,021 bp in C. tiglium to 163,856 bp in

J. curcas (Table 1).

 

 

Figure 1. Genome circular map of the E. smithii and E. larica. Thick lines indicate the extent of the

inverted repeat regions (IRa and IRb), which separate the genome into small (SSC) and large (LSC)

single copy regions. Genes drawn inside the circle are transcribed clockwise, while those outside of the

circle are transcribed counter-clockwise. Genes belonging to different functional groups are color-coded.

The dark gray in the inner circle corresponds to the GC content, while the light gray corresponds to the

AT content.
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Table 1. Summary of complete chloroplast genomes of E. laica and E. smithii.

E. smithii E. larica E. esula E. tirucalli M. esculanta J. curcas H. brasiliensis R. communis V. fordii C. tiglium D. tonkinensis

Size (bp) 162,172 162,358 160,512 163,091 161,453 163,856 161,191 163,161 161,528 150,021 163,481

Overall GC contents 35.8 35.6 35.6 35.6 35.9 35.4 35.7 35.7 36.0 35.4 35.7

LSC size in bp 91,158 91,537 90,309 91,259 89,275 91,846 89,209 89,650 89,132 111,654 91,453

SSC size in bp 18,603 18,239 17,023 18,168 18,250 17,849 18,362 18,816 18,758 18,167 18,476

IR size in bp 26,206 26,291 26,590 26,832 26,954 27,023 26,810 27,347 26,819 10,100 26,776

Protein coding
regions size in bp

79,173 80,458 80,274 74,289 72,108 79,206 78,852 79,494 80,283 68,601 79,857

tRNA size in bp 2885 2887 2925 2885 2814 2797 2812 2802 2742 2560 2740

rRNA size in bp 9050 9049 9049 9049 6252 9047 9050 9050 9048 9050 9050

Number of genes 132 133 132 130 128 129 129 131 129 122 134

Number of protein
coding genes

85 86 85 82 83 84 84 86 85 78 84

Number of rRNA 8 8 8 8 7 8 8 8 8 8 8

Number of tRNA 39 39 39 39 38 37 37 37 36 34 36

Genes with introns 19 19 18 13 20 21 21 19 21 20 20
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The total numbers of genes annotated in E. smithii and E. larica were 132 and 133, respectively,

including 85 and 86 protein coding genes (PCGs), 8 rRNAs, 39 tRNAs, and 19 intron-containing genes

(Table 1). The number of protein-coding genes varied among these genomes, the highest of which

were recorded in E. larica and R. communis, whilst the lowest were 78 in C. tiglium. The highest number

of introns containing genes among the compared genomes was 21, noted in J. curcas, H. brasiliensis,

and V. fordii, and the lowest were 13 in E. tirucalli. GC content of E. smithii was found higher than GC

content of E. larica; the highest GC content found in the compared genome was 36% found in V. fordii,

while the lowest was observed in J. curcas and C. tiglium with 35.4%. Relative conservation of the

genome structure and gene contents were observed among all the eleven chloroplast genomes with no

specific gene organization and rearrangement observed, though some differences were still found in

the number of genes, intron losses, and contraction and expansion in the IR regions. The chloroplast

genome contains some of the important genes responsible for the vital process of life, i.e., photosynthesis

and self-replication of chloroplast being a self-replicating organelle in the plant cell (Supplementary

Table S1). The self-replication of chloroplast includes the gene responsible for the large subunit of

ribosomal proteins, the small subunit of ribosome, DNA dependent RNA polymerase, rRNA genes,

and tRNA genes. The genes responsible for photosynthesis further include photosystem I and II,

and 33 genes are responsible for carrying out photosynthesis in the chloroplast genome (Supplementary

Table S1).

The chloroplast genome of E. smithii, E. larica, E. esula, and E. tirucalli contains 18 introns containing

genes. Out of these 18 introns containing genes, five are tRNAs, and three genes, ycf3, clpP, and rps12,

contain double introns (Table 2). The base composition analyzed in sequenced and compared genomes

reveal that adenine (A) at the first position was 31.0%, 31.2%, 31.0%, and 30.9% and on second position

29.7%, 29.8%, 29.8%, and 29.9%, while at third position 13.8%, 32.1%, 28.4%, and 32.4% in the E. larica,

E. smithii, and E. tirucalli, respectively. Likewise, the composition of base T (thymine) at the first

position was 24.3%, 25.9%, 24.1%, and 23.9%; at second position 32.6%, 32.7%, 28.4%, and 38.4%; and at

third position 38.2%, 38.2%, 38.6%, and 38.4%, respectively. Furthermore, the abundance of “G” and

“C” at the first, second, and third positions were observed less than the abundance of “A” and “T”

(Table 3).
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Table 2. The genes with introns in the Euphorbia species chloroplast genome and the length of exons and introns.

Gene Exon I (bp) Intron 1 (bp) Exon II (bp) Intron II (bp) Exon III (bp)

E.l E.s E.e E.t E.l E.s E.e E.t E.l E.s E.e E.t E.l E.s E.e E.t E.l E.s E.e E.t

atpF 145 145 145 145 670 671 666 667 470 470 470 470
petB 6 6 773 779 642 642
PetD 8 8 779 780 496 496
rpl2* 400 396 396 396 634 629 624 629 464 468 468 468
rpl16 9 9 1395 1395 399 399
rpoC1 430 432 432 767 769 775 1613 1618 1617
rps12* 114 114 114 114 232 232 232 232 541 536 536 536 26 26 26 26
clpP 71 71 71 71 825 831 821 827 291 291 291 291 650 648 653 651 229 229 229 229
ndhA 553 554 553 553 1138 1111 1116 1137 539 541 539 539
ndhB* 777 777 777 682 682 678 756 756 756
ycf3 124 124 124 124 733 747 747 733 230 230 230 230 669 676 675 677 153 153 153 153

trnA-UGC* 38 38 38 38 813 803 813 803 35 35 35 35
trnI-GAU* 42 42 42 42 945 945 945 945 35 35 35 35
trnL-UAA 37 37 37 37 587 583 619 590 50 50 50 50
trnK-UUU 37 37 37 37 2551 2560 2555 2563 28 29 29 29
trnV-UAC 39 582 42

Euphorbia larica = E.l, Euphorbia smithii = E.s, Euphorbia esula = E.e, Euphorbia tirucalli = E.t.
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Table 3. Base composition of the Euphorbia species in the chloroplast genome.

T/U C A G Length (bp)

E.l E.s E.e E.t E.l E.s E.e E.t E.l E.s E.e E.t E.l E.s E.e E.t E.l E.s E.e E.t

Genome 32.7 32.5 32.7 32.6 18.1 18.1 18 18.1 31.7 31.7 31.8 31.8 17.5 17.6 17.6 17.5 162,258 162,172 160,512 163,091

LSC 34.5 34.3 34.5 34.3 16.7 16.8 16.6 16.7 32.8 32.7 32.9 32.9 16.0 16.1 16.1 16.1 91,537 91,158 90,309 91,259

SSC 35.0 34.6 34.8 35 15.7 15.8 15.9 15.8 34.9 34.9 35 34.9 14.3 14.7 14.3 14.3 18,239 18,603 17,023 1818

IR 28.9 29 28.7 29.1 20.5 20.5 21.9 20.4 28.6 28.5 29 28.6 22.0 22.1 20.4 21.9 26,291 26,206 26,590 26,832

tRNA 26.5 25.5 25.4 25.5 21.6 23.2 23.2 23.3 24.7 22.2 22.3 22.1 27.2 29.2 29.1 29.1 2887 2885 2925 2885

rRNA 18.8 18.8 18.8 18.8 23.7 23.7 23.7 23.7 25.8 25.8 25.7 25.7 31.8 31.8 31.8 31.8 2049 9050 9049 9049

Protein Coding genes 31.8 31.8 31.8 31.6 17.4 17.4 17.3 17.3 31.1 31.1 31.2 31.1 19.8 19.8 19.6 19.9 80,458 79,173 80,274 74,289

1st position 24.3 25.9 24.1 23.9 18.3 18.4 18.4 18.5 31.0 31.2 31.0 30.9 26.1 24.3 26.3 26.6 26,817 26,390 26,758 24,763

2nd position 32.6 32.7 28.4 38.4 19.9 19.8 19.9 19.9 29.7 29.8 29.8 29.9 17.5 17.5 17.4 17.5 26,817 26,390 26,758 24,763

3rd position 38.2 38.2 38.6 38.4 32.2 13.8 16.6 13.4 13.8 32.1 28.4 32.4 15.5 18.1 13.8 15.7 26,817 26,390 26,758 24,763

Euphorbia larica = E.l, Euphorbia smithii = E.s, Euphorbia esula = E.e, Euphorbia tirucalli = E.t.
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2.2. Analysis of Repetitive Sequences in the Genomes

Repeat analyses of the two sequenced Euphoria species and seven other chloroplast genomes

were conducted. The result of the repeats shows the total number of repeats present in E. smithii

(171) and E. larica (162). Among the compared genomes, the highest number of repeats was found in

V. fordii with 184, followed by H. brasilliensis with 182. Furthermore, the lowest repeats were found

in E. esula, comprising 143 repeats (Figure 2). Among the repeats, the tandem repeats were found

highest, followed by the forward and palindromic repeats. The repeats of different sizes were also

studied. In E. smithii, the palindromic repeats were found to be 46 among which the 15–29 size repeats

were found to be 37, and the 30–44 size repeats, as well as >90, were 4. The forward repeats were

55 in which 15–29 were found to be 49, and 30–44 were found to be 5. Among the 70 tandem repeats,

15–29 were 64, 30–44 were 5, 45–59 was 1. In E. larica, among the 46 palindromic repeats, the 15–29 were

39, 30–44 were 3, 45–59 were 1 and >90 were 3. The forward repeats were 54, among the 15–29 were 44,

30–44 were 7, 45–59 were 1, and >90 were 2. The tandem repeats were analyzed to be 62 in which

15–29 were 56, 30–44 were 3, 60–74 were 1, and >90 were 2 (Figure 2D).

 

 

Figure 2. Analysis of repetitive sequences in E. smithii and E. larica. (A) Total number of repeats present

in the genome. (B) Number of palindromic repeats in the genome. (C) Number of forward repeats

present in the genome. (D) Number of tandem repeats present in the genome.

2.3. SSRs Polymorphism Analysis

Simple sequence repeats (SSRs) are the microsatellites present in the chloroplast genomes,

which play an important role in the cp genome. They are usually varying from one to six base pairs and

present in all genome. In our current study, we determined the SSRs in the sequenced and compared

cp genomes. Our result for SSRs analysis reveals that there are 101, 119,104, 100, 126, 119, 104, 144,

and 143 SSRs found in the E. larica, E. smithii, E. esula, E. tirucalli, H. brasilliensis, J. curcas, M. esculenta,

R. communis, and V. fordii genomes, respectively (Figure 3A). The highest number of SSRs was found in

R. communis, while the lowest was observed in E. larica. Moreover, the mono nucleotide in E. larica

and E. smithii were highest with 68 and 81, while the lowest were tri in E. larica and hexa in E. smithii,

which were found and were observed to be absent in the E. larica cp genome (Figure 3B). The SSRs

present in the CDS region were 17 and 21, LSC region comprised 71 and 93, SSC region comprised

an equal number, which is 18. In In inverted repeat regions, the number of SSRs was 12 and 8 in the

E. larica and E. smithii, respectively (Figure 3C–E). In both E. larica and E. smithii, most mononucleotide
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SSRs were T (61.7%, 46.1%) motifs, with the majority of dinucleotide SSRs being A/T (8, 13) motifs

(Supplementary Figure S1).

 

 
Figure 3. Analysis of simple sequence repeats (SSRs) in chloroplast genomes of E. smithii and E. larica.

(A) Total number of SSRs present in complete genomes. (B) Total number of SSRs present in the CDS of

the genome. (C) Total number of SSRs present in the LSC of genome. (D) Total number of SSRs present

in SSC of the genome. (E) Total number of SSRs present in IRs of the genome.

2.4. Compression and Augmentation of IR Region

The expansion and contraction of the inverted repeats at the border region in the chloroplast

genome is commonly observed and mainly responsible for the size variation in the chloroplast genome.

Therefore, for the complete study of inverted repeat regions in the sequenced genomes of E. larica

and E. smithii, we compared the IR border regions and the genes present within these junctions with

the other nine chloroplasts genomes. Critically analyzing the junctions of E. larica revealed that the

length of LSC was found to be 91,537 bp and the rps19 gene was located on the junction of LSC/IRb

(JLB). The gene rpl2 was located 286 bp from the JLB in the IRb region. The ycf1 gene was located at

JSB and JSA junctions while the ndhF gene was located in the SSC region, 187 bp away from the JSB

junction. The JLA junction includes the rps19 gene and the trnH gene located in the IRa and LSC region,

respectively. The E. smithii junctions contained the same genes present in the E. larica, with small

differences in the location from the junction region like the rps 19 gene that is located in the IRb region

7 bp away from the JLB region. In all the compared genomes, the location of rps19 at the JLB junction

shows a similar pattern in E. larica, E. esula, H. brasilliensis, M. esulenta, and D. tonkinesis, while the

complete location of rps19 in the IRb region was observed in the E. smithii, E. tirucalli, R. communis,
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and V. fordii. Surprisingly, the rps19 was found completely in the LSC region in J. curcas. The rps19

gene, like ycf1, is present at two locations in the junction region, while in some genomes, among the

compared genome like C. tiglium, it was found completely absent at JLB, while at JLA it was present in

the IRa region (Figure 4).

The ycf1 gene was present at both the JSB and JSA junction in all compared genomes. The ndhF

gene was found in all compared genomes at the SSC region near the JSB junction, except the few

genomes like in M. esulenta and D. tonkinensis. It is present at the JSB while absent in the V. fordii

genome. The trnH gene was present in the LSC region near the JLA junction in all genomes, except

V. fordii, C. tiglium, and D. tonkinesis, where it was missing and was replaced by rpl22, trnV, and rpl22

in these genomes, respectively. Surprisingly, the rrn16 gene was found in the IRa and IRb regions.

The C. tiglium genome was absent in all other sequenced and compared genomes (Figure 4).

 

Figure 4. Distances between adjacent genes and junctions of the small single-copy (SSC),

large single-copy (LSC), and two inverted repeat (IR) regions among plastid genomes E. smithii

and E. larica and related species within the Euphorbiaceae family. Boxes above and below the primary

line indicate the adjacent border genes. The figure is not to scale with regards to sequence length and

only shows relative changes at or near the IR/SC borders.
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2.5. Comparison of the Hotspot Region in the cp Genome

Chloroplast genomes present in most of the higher plants are relatively conserved and stable in

terms of their structure and gene content. Despite the conserved structure, some variation in plant

groups like genome size, gene content, and genome structure still occur due to the different evolutionary

histories and genetic backgrounds. The E. larica cp genome was taken as a reference for detecting a

divergence hotspot in E. smithii, E. esula, and E. tirucalli. The divergence in protein-coding genes was

also analyzed and 65 genes were studied for the pairwise distance among these genomes. Sequence

divergence analysis of the Euphoria species and compared genomes revealed a high conservative degree

of the coding region as compared to non-coding regions. Furthermore, it was found that sequence

divergence in the single copy region was higher than in inverted repeats regions. Further analysis of

genes revealed that some of the divergent regions in these genomes were rpoC1, rpocB, ycf3, clpP, petD,

ycf1, and ndhF. These regions were divergent but less divergent than non-coding regions (Figure 5).

 

 

Figure 5. Visual alignment of plastid genomes with the previously reported cp genomes. VISTA-based

identity plot showing sequence identities among eight species, using E. larica as a reference.

2.6. Phylogenomic Analysis of E. larica and E. smithii and Its Comparison with Related Species

In this study, a dataset of 32 complete chloroplast genomes was used to construct the phylogenetic

tree of E. larica and E. smithii. The Couepia paraensis chloroplast genome was used as an out group in

this study. The phylogenetic tree was constructed using MP (maximum parsimony), ML (maximum

likelihood), and BI (Bayesian interference). The result of the phylogenetic tree based on the complete

chloroplast genome shows that E. smithii and E. larica share the same clade, which further makes a

sister clade with E. esula with high bootstrap values (Figure 6).
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Figure 6. Phylogenetic trees of E. smithii and E. larica. The entire genome dataset was analyzed using

three different methods: Bayesian inference (BI), maximum parsimony (MP), and maximum likelihood

(ML). Numbers above the branches represent bootstrap values in the ML and MP, and posterior

probabilities in the BI trees. Red color represents the positions of E. smithii and E. larica.

3. Discussion

With the advancement of next-generation sequencing technologies, the number of sequenced

genomes has increased rapidly in the NCBI database. The availability of this data provides new

insight into the chloroplast genomics, phylogenetic studies, rearrangement of genomes, sequence

divergence, simple sequence repeats analysis, and the study of nucleotide substitution in these

genomes. Euphorbiaceae is a large family and the number of the sequenced chloroplast genome

is very limited [29]. The two sequenced cp genomes are comparatively analyzed with another cp

genome to study the various parameters of these genomes. The chloroplast genome structure and

gene order of these two chloroplast genomes are highly conserved with no specific genome inversion

reported, and the gene order was the same and found consistent with previously reported genomes [30].

In the present study, we compared eleven chloroplast genomes. All of them were assembled into a

single chloroplast genome presenting a typical quadripartite structure. Analysis of two sequenced

Euphorbia genomes revealed that, like most of the higher angiosperm genomes, they comprised the

tetrahedral structure containing two pairs of inverted repeats, one large single-copy region and one

small single-copy region [4,31]. There was a 186 bp difference observed between the two sequenced
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chloroplast genomes, and the size was also comparable with other compared Euphorbia species, as well

as the Vernicia fordii chloroplast genome, which is 161,528 bp in length [32], suggesting that chloroplast

genomes are conserved. The result was consistent with previously reported studies [30]. The total

number of genes presented in the chloroplast genome is divided into three main categories. The first is

related to chloroplast gene expression and its self-replication. This includes the majority of rRNA, tRNA,

and genes for RNA polymerase synthesis. The second category of genes is related to the vital process

of life, i.e., genes responsible for photosynthesis, which includes photosystem I and photosynthesis II.

The third category of genes is responsible for other biosynthesis genes and some genes of unknown

function, such as matK and ycf1 [33,34], similar to sequenced Euphorbia chloroplast genomes. During

evolution, some genomes are liable to gain or lose introns, and this process plays a key role in expression

and gene regulation [35]. In the Euphorbia species, there are 12 genes and 6 tRNA which contain

introns and were found to be similar in the previously reported V. fordii cp genome belonging to

Euphorbiaceae [32]. Some of the genes in the chloroplast genome contain double introns, such as rps12,

clpP, and ycf3, and in some genes like rpl2 and rpl16, the second intron is absent, which is consistent

with previously reported genomes of Manihot esculenta [35] and Oresitrophe [36]. This phenomenon

was absent in H. micrantha cp genomes (EF207446). The GC content of these sequenced genomes was

consistent with a previously reported genome from this genus [37,38]. The number of repeats, including

forward, tandem, and palindromic repeats, were studied in the chloroplast genomes sequenced and

compared, and were found in a larger amount than in the previously reported cp genome of V. fordii

(49 repeats) [32]. Among these repeats, tandem repeats were found several times more than palindromic

and forward repeats, which are consistent with the Teucrium and Commiphora species [30,31], as well as

S. miltiorrhiza [39], as previously reported.

SSRs (simple sequence repeats) are repeats that play an important role in genome stabilization

and rearrangement of genome sequences, and these SSRs make the cp genome favorable because of

its use as a molecular maker and phylogenetic analysis [40,41]. In our study 101 and 119 total SSRs

were found in E. larica and E. smithii respectively, which is higher than the Euphorbiaceae family

members [32]. However, it is similar to the previously reported B. sacra cp genome [42]. Among the

dinucleotide SSRs, AT was found to be the most abundant in the sequenced and compared cp genomes,

similar to the previously reported genomes [30]. Another and important characteristic of the chloroplast

genome, which is useful for evolutionary studies, is the location of the boundaries among the four

chloroplast regions. Evaluating their contraction and expansion can shed some light on the evolution

of some taxa [43]. From our results, we noticed that the length variation in the IR regions created

some pseudogenes, like the ycf1Ψ or rps19Ψ. The ycf1 pseudogene is present in all studied species,

whereas the rps19 pseudogene is only present in C. icaco, H. racemose (Chrysobalanaceae), V. seoulensis

(Violaceae) [44], and M. esculenta (Euphorbiaceae) [35]. Inverted repeats are the most conserved region

in the chloroplast genome and the construction and expansion of these IR regions are the common

evolutionary events that lead to the differences in the size of chloroplast genomes [45]. In most of the

plants, the border and junctions of the quadripartite structure of the genome structure is conserved

but some species show inversion at the junction, as previously reported in [46], and loss of genes

reported in [47], as well as contraction and expansion, which is a common event observed in the

cp genomes of angiosperms [48]. Some angiosperm also show the loss of inverted repeats, such as

geranium [49] and fabaceae [50]. Our study analysis of junction regions shows that the rps19 gene is

present at the JLB junction in E. larica, while other genes like ndhF also show a pattern that is similar in

Violaceae, as previously reported [44]. The rps19 gene present in the IRb region near the JLB junction

was found in the present study of the Byrsonima species reported by Alison et al. [51]. Previously,

it was identified that the alignment of many genomes contributes and identifies mutational hotspots,

which are widely used for interspecies discrimination and species-level phylogenetic studies [52].

The coding region in many previous studies has been proven to play an important role in species-level

phylogenetic analyses like some of the genes, such as ycf1 in Anemopaegma [53] and rps16, psaI, psbT,

psbH, petB, rpoA, and rps11 in Notopterygium [54], which were more divergent than non-coding regions.
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However, a number of studies have confirmed that there is more variation in the non-coding region

comprising the intergenic spacer regions and introns. For species identification in some previous

studies, the clpP, rps16, rpoB-trnC, rbcL-accD, and ccsA-ndhD regions were used as markers [55] and

trnH-psbA, trnG-trnM, trnT-trnL, rpl32-trnL, rps15-ycf1, ycf4-cemA, and petD-rpoA were the divergence

hotspot regions in Veroniceae and Veronica [48].

In our study, the four Euphorbia species were compared through mVISTA and multiple alignment

analyses. It was revealed that some of the regions were found more divergent and consisted of

non-coding regions as compared to coding regions. Some regions, like rpoC1, rpocB, ycf3, clpP, petD,

ycf1, and ndhF, were larger in number. These results are consistent with previously reported cp

genomes [23,28]. Furthermore, we screened the four most mutational hotspots, ndhF, ycf1, ndhA,

and rpl32-trnL, which can be used as genetic markers for species delimitation and phylogenetic studies

of the genus Euphorbia. However, our study finds that more hotspot regions were present in the SSC

region while the IR region was conserved, similar to the previously reported [56]. The phylogenetic

position of genus euphorbia and our sequenced species were not identified on the basis of the complete

chloroplast genome. Previously, some phylogenetic study was carried out on the basis of ITS regions

and the plastid ndhF gene [57]. Based on the previous studies, it was not possible to understand

the position of these two sequenced E. smithii and E. larica and the compared genome in this genus.

Our study, on basis of complete cp genome sequences, provides a detail of the phylogenetic position

of genus Euphorbia species. The current study reported for the first time sequence datasets of the

two species, and it might help us to understand the genome architecture, genetic diversity amongst

populations, and evolutionary depiction in the genera.

4. Material and Methods

4.1. Chloroplast DNA Extraction and Sequencing

Young fresh healthy green leaves of E. larica and E. smithii were collected from the Nizwa

governorate (57◦31′59.99′′ E) and placed immediately in liquid nitrogen. The contamination-free

chloroplast DNA was extracted according to a modified protocol of Shi et al. [58]. An ion torrent

sequencing platform was used for the sequencing of these samples using the Ion Torrent S5 sequencer

with an ion torrent server (Life Technologies, Carlsbad, CA, USA). Genomic libraries were prepared

according to the manufacturer’s instructions (Life Technologies, Carlsbad, CA, USA). Total chloroplast

DNA of each sample was sheared enzymatically for 400 bp using the Ion Shear™ Plus Reagents

kit, and libraries were prepared using the Ion Xpress™ Plus gDNA Fragment Library kit. Prepared

libraries were quantified and qualified on a Qubit 3.0 fluorometer and bioanalyzer (Agilent 2100

Bioanalyzer system, Palo Alto, CA, USA). Libraries preparation was followed by template amplification

(Ion OneTouch 2 instrument, Life Technologies, Carlsbad, CA, USA) and enrichment of the amplified

template (Ion OneTouch™ ES enrichment system, Life Technologies, Carlsbad, CA, USA) by using Ion

520 and 530 OT2 reagents. The sample was loaded onto the Ion S5 sequencing chip and sequencing

was performed according to the protocol of Ion Torrent S5 (Life Technologies, Carlsbad, CA, USA).

4.2. Genome Assembly

A total of 1,018,614 and 1,396,422 raw reads were generated for E. larica and E. smithii, respectively.

The obtained reads of the genomes were mapped to the selected reference genome of E. esula using

Bowtie2 (v.2.2.3) [59] in Geneious Pro (v.10.2.3) [60] software. The mean coverage of the assemblies

for E. larica and E. smithii were 186X and 256X, respectively. The IR junction regions were identified

using the already published genome of E. esula, and an iteration method using the MITObim (v.1.8)

software [61] was utilized to adjust the sequence length. After sequencing, FastQC (v0.11.6) [61] was

performed to check the read quality. To reduce biases in the analysis, an in-house script was used to

filter out reads if less than 90% of the bases that made up the read were below Q20. Trimmomatic
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(v0.36) [62] was used to remove adapter sequences. Only high-quality reads were mapped using

Bowtie2 in Geneious Pro (v.10.2.3) [60] as previously performed in cp genome of Vachellia nilotica [63].

4.3. Genome Annotation

Chloroplast genomes were annotated by using Dual Organellar Genome Annotator (DOGMA) [64],

and BLASTX and BLASTN were used to identify the positions of ribosomal RNAs, transfer RNAs,

and coding genes. The tRNAscan-SE version 1.21 [65] software was used to annotate tRNA genes.

Additionally, for manual adjustment, Geneious and tRNAscan-SE [65] were used to compare it with

previously reported genomes. Correspondingly, the start and stop codon and intron boundaries were

also manually adjusted compared with a pre-published E. esula cp genome. In addition, the structural

features of both Euphorbia species cp genomes were illustrated using OGDRAW [66]. Correspondingly,

MEGA6 software [67] was used to determine the relative synonymous codon usage and deviations in

synonymous codon usage by avoiding the influence of amino acid composition. The divergence of

these three Euphorbia species taxa genomes with other related species (Figure 5) was determined by

using mVISTA [68] in Shuffle-LAGAN mode, using E. esula as a reference genome.

4.4. Repeat Identification

REPuter software [69] was used for the identification of palindromic, forward, and tandem repeats

present in the genome. The criterion was a minimum of >15 base pairs with a sequence identity of

90%. Furthermore, SSRs were determined using Phobos version 3.3.12 [70] with the search parameters

set for mononucleotide repeats at ≥10 repeat units, for dinucleotide repeats at ≥ 8repeat units, for tri

nucleotide and tetra nucleotide repeats at ≥4 repeat units, and for penta nucleotide and hexa nucleotide

repeats at ≥3 repeat units. Tandem Repeats Finder version 4.07 b [71] with default settings was used to

determine tandem repeats.

4.5. Sequence Divergence and Phylogenetic Analysis

The average pairwise sequence divergence of the complete cp genomes of Euphorbia species

with related species was determined. Comparative sequence analysis after comparing gene order

and multiple sequence alignment was used to identify missing and ambiguous gene annotations.

MAFFT version 7.222 [72] with default parameters was used for the alignment of complete genomes,

and pairwise sequence divergence was calculated by selected Kimura’s two-parameter (K2P) model [73].

To resolve the phylogenetic position of E. larica and E. smithii within the Euphorbiaceae family,

cp genomes were downloaded from the NCBI database. Alignment of the complete cp genomes

was constructed on the basis of conserved gene order and structure of the cp genome, and three

different methods were applied to infer phylogenetic analysis: Bayesian inference (BI), implemented

using Mr Bayes 3.1.2 [74,75]; maximum parsimony (MP), implemented using PAUP 4.0 [76]; and both

maximum likelihood (ML), implemented using MEGA 6 [60], employing previously described

settings [77,78]. For ML analysis, parameters were adjusted with a BIONJ tree with 1000 bootstrap

replicates using the Kimura 2-parameter model with gamma-distributed rate heterogeneity and

invariant sites. A heuristic search for MP analysis was run with 1000 random addition sequence

replicates with the tree-bisection-reconnection (TBR) branch-swapping tree search criterion. The best

substitution model, GTR+G model, was used according to the Akaike information criterion (AIC)

by jModelTest version 2102 for Bayesian posterior probabilities (PP) in the BI analyses. The Markov

Chain Monte Carlo (MCMC) method was run with four incrementally heated chains for 1,000,000

generations, starting from random trees, and sampling one out of every 100 generations. The first 25%

of trees were discarded as burn-in to estimate the value of posterior probabilities.

Supplementary Materials: The following are available online at http://www.mdpi.com/2223-7747/9/2/199/s1,
Figure S1: Frequency of identified SSR motifs in different repeat class types, Table S1: Genes in the sequenced
E. smithii and E. larica chloroplast genomes.
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